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Abstract

The first-order formulation of theG/K symmetric space sigma model of the scalar coset
the supergravity theories is discussed when there is coupling of (m − 1)-form matter fields. The
Lie superalgebra which enables the dualized coset formulation is constructed for a genera
cosetG/K with matter coupling whereG is a non-compact real form of a semi-simple Lie gro
andK is its maximal compact subgroup.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The non-linear nature of the scalar sectors of the maximal supergravities has been e

larged to formulate the non-gravitational bosonic field equations as non-linear realizations
in [1,2]. The coset formulation of the scalars is improved to cover the other bosonic fields
as well. The method of[1,2] includes the dualisation of the field content and the construc-
tion of a Lie superalgebra which generates the doubled coset element whose Cartan form
would lead to the original field equations by satisfying the Cartan–Maurer equation. After
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the determination of the algebra structure it is possible to express the first-order field
tions as a twisted self-duality condition which the dualized Cartan form satisfies. In[3–5]
a more general coset formulation of the IIA[6–8], the IIB [9–11] and theD = 11 [12]
supergravity theories is introduced to include the gravity as well.

The scalar sectors of a wide class of supergravities, in particular the scalar sec
all the pure and the matter coupledN > 2 extended supergravities inD = 4,5,6,7,8,9
dimensions as well as the maximally extended supergravities inD � 11 can be formu
lated as symmetric space sigma models. The global symmetry groupsG of the scalar also
the bosonic sectors of the lower-dimensional Kaluza–Klein descendant supergrav
the D = 11 supergravity (the maximal supergravities) are semi-simple split real f
(maximally non-compact). For this reason the scalar coset manifoldsG/K whereK is the
maximal compact subgroup ofG are Riemannian globally symmetric spaces[13] and they
can be parameterized by the Borel subalgebra ofG. In general, especially for the ma
ter coupled supergravities, the scalar coset manifoldsG/K are based on non-split1 global
symmetry groupsG. In this case one has to use the solvable Lie algebra gauge[14] to
parameterize the Riemannian globally symmetric space scalar coset manifoldG/K.

In [15] theG/K symmetric space sigma model is discussed in detail when the g
symmetry groupG is in general, a non-compact semi-simple real form. The dualisa
and the first-order formulation of the general non-split symmetric space sigma mo
also performed in[15]. In this work we consider the coupling of other fields to the sc
coset Lagrangian of the general non-splitG/K symmetric space sigma model. We w
perform the complete dualisation of the fields and the first-order formulation when
is coupling of other (m − 1)-form matter fields to the scalar cosetG/K. We will construct
the dualized coset element which will realize the field equations of the scalar coset
is coupled to the (m − 1)-form fields. We will assume the most general non-split sc
coset case which is discussed in[15–17]. Beside the scalar fields there will be a num
of m-form field strengths whose number is fixed by the dimension of the fundam
representation of the Lie algebrag0 of G. As it will be clear in the next section the dime
sion of the representation and the number of the coupling fields must be the same
the coupling kinetic term between the scalar coset and the matter fields in the Lagr
can be constructed within an appropriate representation of the global symmetry grG

[16,17]. We will follow the standard dualisation method of[1,2] by introducing auxiliary
dual fields and by assigning generators to the original and the dual fields. The first ob
of this work will be to derive the Lie superalgebra structure which generates the do
coset element. The first-order formulation will then be presented as a twisted self-d
equation[1,2] by using the derived algebra structure and by calculating explicitly the dou
bled field strength. The dualisation method presented in[1,2] is the non-linear realizatio

of the relative supergravity theory, it is also another manifestation of the Lagrange multi-
plier methods in which the dual fields correspond to the Lagrange multipliers which are
introduced to construct the Bianchi Lagrangians. For this reason the Cartan form which is
generated by the dualized coset element, notonly realizes the original second-order field

1 By non-split we mean thatG is a non-compact real form of a semi-simple Lie group but it is not necessarily
maximally non-compact (split).
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equations of the matter coupled scalar coset by satisfying the Cartan–Maurer eq
but also yields the first-order field equations via a twisted self-duality equation[1,2,15].
This first-order formulation corresponds to the construction of the dualized Lagrang
adding the Bianchi terms to the Lagrangian ofthe original fields and consequently to t
derivation of the first-order algebraic field equations of the original fields in terms o
Lagrange multiplier (dual) fields[18].

We start by discussing the Lagrangian and deriving the field equations in Section2.
In Section3 we work out the dualisation and we construct the algebraic structure w
realizes the field equations and finally we obtain the first-order field equations.

2. The symmetric space sigma model and the couplings

The scalar sectors of a wide class of supergravity theories are formulated asG/K sym-
metric space sigma models[1,2,16,17]. The groupG is the global symmetry group of th
corresponding scalar Lagrangian and it is a non-compact real form of a semi-simp
group. The local symmetry groupK is the maximal compact subgroup ofG. The coset
spaceG/K is a Riemannian globally symmetric space for all the possibleG-invariant
Riemannian structures onG/K [13]. There is a legitimate parametrization of the co
representatives by using the solvable Lie algebra ofG [13,14]. If hk is the subalgebra o
the Cartan subalgebrah0 of g0 (the Lie algebra ofG) which generates the maximal R-sp
torus inG [13–16] let for i = 1, . . . , r {Hi} be the generators ofhk and also let{Em} be
the subset of the positive root generators ofg0 such thatm ∈ ∆+

nc. The roots in∆+
nc are the

non-compact roots with respect to the Cartan involutionθ which is induced by the Carta
decomposition

(2.1)g0 = k0 ⊕ u0,

wherek0 is the Lie algebra ofK andu0 is a vector subspace ofg0 [13,15]. The positive
root generators{Em} generate a nilpotent Lie subalgebrank of g0 [16]. The coset represen
tatives ofG/K which are the image points of the map from theD-dimensional spacetim
(we assumeD > 2 in order that the dualisation analysis of the next section would be m
ingful and we will take the signature of the spacetime as (−,+,+, . . .)) into the groupG
can be expressed as

(2.2)ν(x) = e
1
2φi (x)Hi eχm(x)Em.

This is called the solvable Lie algebra parametrization[14]. We should state that we mak

use of the Iwasawa decomposition

(2.3)g0 = k0 ⊕ s0 = k0 ⊕ hk ⊕ nk,

wheres0 is the solvable Lie subalgebra ofg0 which is isomorphic tou0 as a vector space
[13,15]. The diffeomorphism fromu0 onto the Riemannian globally symmetric spaceG/K

[13] enables the construction of the parametrization in(2.2).
An involutive automorphismθ ∈ Aut(g0) of a semi-simple real Lie algebrag0 is called

a Cartan involution if the induced bilinear formBθ (X,Y ) = −B(X,θ(Y )) whereB is the
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Killing form on g0 is strictly positive definite∀X,Y ∈ g0. If the semi-simple comple
Lie algebrag = gC

0 is the complexification ofg0 then the set of elementst of g which is
generated as

(2.4)t = k0 + iu0,

through the complexification ofg0, is a compact real form ofg whose conjugation wil
be denoted byτ . We should bear in mind thatg0 has the set equivalent images ing = gC

0
whose realizations ing0×g0 are isomorphic tog0. In this wayk0 andu0 can be considere
as subsets ofg and thent which is a subset ofg is also a subset of one of the images ofg0
in g. Thus under the realization ofg, tR corresponds to a subalgebra ofg0. The real semi-
simple Lie algebrag0 is also a real form of its complexificationg so that we may defin
σ as the conjugation ofg with respect tog0. The mapθ = σ · τ = τ · σ is an involutive
automorphism ofg. In fact θ is a Cartan involution ofg. TheR-linear restriction ofθ on
the image ofg0 in g induces a Cartan involution ong0 which we will again denote byθ .
After the introduction of the Cartan involutionθ we can easily define the roots in∆+

nc. For
each elementα ∈ h∗

0 the dual space of the Cartan subalgebrah0 of g0 we can define the
elementαθ ∈ h∗

0 such thatαθ (H) = α(θ(H)), ∀H ∈ h0. If α ∈ ∆ thenαθ ∈ ∆ as well.
Thus we have defined

(2.5)∆+
nc = {

α | α ∈ ∆+, α �= αθ
}
.

The scalar Lagrangian is defined in terms of the internal metricM = ν#ν where we have
introduced the generalized transpose # which is over the Lie groupG such that(exp(g))# =
exp(g#) ∀g ∈ g0. It is induced by the Cartan involutionθ over the Lie algebrag0 of G

(g# = −θ(g)) [1,15,17]. Thus in terms of the internal metricM the globallyG-invariant
and the locallyK-invariant scalar Lagrangian[1,2] is

(2.6)Lscalar= 1

4
tr
(
dM−1 ∧ ∗dM

)
.

TheG/K symmetric space sigma model is studied in detail in[15]. Thus referring to[15]
we can calculate the Cartan formG0 = dν ν−1 generated by the map(2.2)as

(2.7)G0 = 1

2
dφi Hi +

⇀

E′�
⇀

dχ.

We have used that[Hi,Eα] = αiEα . The row vector
⇀

E′ has the components(
⇀

E′)α =
e

1
2αiφ

i
Eα . The column vector

⇀

dχ is (dχα). We have also defined the matrix� as

∞∑ n
(2.8)� =
n=0

ω

(n + 1)! = (
eω − I

)
ω−1,

whereω
γ
β = χαK

γ
αβ with the structure constantsKγ

αβ defined as[Eα,Eβ ] = K
γ
αβEγ . Here

both� andω aren × n matrices wheren is the number of the roots in∆+
nc [15].

We will consider the coupling of(m − 1)-form potential fields{Al} to theG/K scalar
coset where the number of the coupling fields is determined such that they form a funda-
mental representation ofg0. The quadratic terms due to this coupling which must be added
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to the scalar Lagrangian(2.6)are the combinations of the internal metricM and the field
strengthsF l = dAl

(2.9)Lm = −1

2
MklF

k ∧ ∗F l = −1

2
F ∧M ∗ F.

As it is clear from aboveM andν are in an appropriate representation (i.e., fundame
representation ofg0) which is compatible with the number of the coupling fields. Thus
total Lagrangian becomes

(2.10)L = 1

4
tr
(
dM−1 ∧ ∗dM

) − 1

2
F ∧M ∗ F.

The Cartan involutionθ induced by the Cartan decomposition(2.1) is an involutive auto-
morphism ofg0 for this reason it has two eigenspacesθ+, θ− with eigenvalues±1. The
Cartan involutionθ induces the eigenspace decomposition of the Lie algebrag0 as

(2.11)g0 = θ+ ⊕ θ−.

The elements ofθ+ are called compact while the elements ofθ− are called non-compac
If the subgroup ofG generated by the compact generators is an orthogonal group th
the fundamental representation the generators can be chosen such thatg# = gT . Therefore
# coincides with the ordinary matrix transpose andM becomes a symmetric matrix in th
representation we choose. We will assume this case in our further analysis bearing i
that for the general case higher-dimensional representations are possible in which
still takeg# = gT [17].

By following the analysis of[15–17]and by using(2.7)we can derive the field equation
for the coupling potentials{Ak}, the axions{χm} and the dilatons{φi} of the Lagrangian
(2.10). Thus the corresponding field equations are

d
(
Mkl ∗ F l

) = 0,

d
(
e

1
2γiφ

i ∗ Uγ
) = −1

2
γj e

1
2γiφ

i

dφj ∧ ∗Uγ

+
∑

α−β=−γ

e
1
2αiφ

i

e
1
2βiφ

i

Nα,−βUα ∧ ∗Uβ,

d
(∗dφi

) = 1

2

∑

α∈∆+
nc

αie
1
2αiφ

i

Uα ∧ e
1
2αiφ

i ∗ Uα

(2.12)+ (−1)D+11

2

(
(Hi)nlν

n
mνl

j

)
Fj ∧ ∗Fm,
wherei, j = 1, . . . , r andα,β, γ ∈ ∆+
nc. The roots in∆+

nc and their corresponding genera-
tors{Em} are assumed to be enumerated. We have also defined the vectorUα = �α

β dχβ .
Furthermore the matrices{(Hi)nl} are the representatives of the Cartan generators{Hi}
under the representation chosen. We use the notation[Eα,Eβ ] = Nα,βEα+β . We should
remark that in the dilaton equation in(2.12)the contribution from the coupling fields{Ak}
is expressed in terms of the original fields rather than their weight expansions unlike the
expressions in[16,17]. For notational convenience we raise or lower the indices of the
matrices by using an Euclidean metric.
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3. Dualisation and the first-order formulation

In this section we will adopt the method of[1,2] to establish a coset formulation an
to derive the first-order field equations for the Lagrangian(2.10). Basically we will im-
prove the analysis presented for the non-split scalar coset in[15] to the case when there
matter field coupling to the non-split scalar coset. We will first define a Lie superalg
which will realize the doubled coset element. We assign the generators{Hi,Em,Vj } to
the fields{φi,χm,Aj }, respectively. We assume that{Hi,Em} are even generators with
the superalgebra structure since the coupling fields are scalars and they have even ra
The generators{Vj } are even or odd whether the rank of the coupling fields{Aj } namely
(m − 1) is even or odd. The next step is to introduce the dual fields{φ̃i , χ̃m, Ãj } which
would arise as a result of the local integration of the field equations(2.12). The first two
are(D − 2)-forms and the last ones are(D − m − 1)-forms. We also assign the dual ge
erators{H̃i, Ẽm, Ṽj } to these dual fields, respectively. The dual generators are even o
depending onD andm in other words according to the rank of the dual fields they
assigned to. We will derive the structure of the Lie superalgebra generated by the origi
and the dual generators we have introduced sothat it will enable a coset formulation fo
the Lagrangian(2.10). Similar to the non-linear coset structure of the scalars present
the last section we can define the map

(3.1)ν′ = e
1
2φiHi eχmEmeAjVj eÃj Ṽj eχ̃mẼme

1
2 φ̃i H̃i ,

which can be considered as the parametrization of a coset via the differential graded a
gebra[2] generated by the differential forms on theD-dimensional spacetime and the L
superalgebra of the original and the dual generators we propose. We are not inten
detect the group theoretical structure of this coset, rather we will only aim to constru
Lie superalgebra of the original and the dual generators which function in the param
tion (3.1). If one knows the structure constants of this algebra one can calculate the
form G′ = dν′ν′−1 which is induced by the map(3.1). Due to its definition the Carta
form G′ obeys the Cartan–Maurer equation

(3.2)dG′ − G′ ∧ G′ = 0.

By following the outline of[1,2] the structure constants of the Lie superalgebra wil
chosen so that when we calculate the Cartan formG′ it will lead us to the second-order fie
equations(2.12)via the identity(3.2) and it will satisfy the twisted self-duality equatio
∗G′ = SG ′ where the action of the pseudo-involutionS [2] on the generators is taken as

SHi = H̃i, SEm = Ẽm, SẼm = (−1)DEm, SH̃i = (−1)DHi,

(3.3)SV = Ṽ , SṼ = (−1)m(D−m)+1V .
j j j j

We know that the twisted self-duality equation will give us the locally integrated first-
order field equations which can be obtained from(2.12)by extracting an overall exterior
derivative operator on both sides of the equations[1,2,15,18]. This local integration pro-
duces auxiliary fields which are the dual fields we introduce. The dualisation method is
nothing but another manifestation of the Lagrange multiplier method while the dual fields
correspond to the Lagrange multiplier fields which are introduced to construct the La-
grange multiplier Lagrangian terms of the Bianchi identities of the original field strengths
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[18]. We may first calculate the Cartan formG′ = dν′ν′−1 from the map(3.1) in terms
of the unknown structure constants of the Lie superalgebra of the original and th
generators. We intend to construct an algebraic structure so that the Cartan form s
the twisted self-duality equation∗G′ = SG ′. In a sense the twisted self-duality equat
would correspond to the equation of motion of the dualized Lagrangian[2]. At this stage
we will assume that the Lie superalgebra of the original and the dual generators has
eral structure in which the commutator or the anti-commutator of two original gene
gives another original generator, an original and a dual generator leads to a dual ge
while two dual generators vanish under the algebra product. When we calculate the
ture constants of the Lie superalgebra which generates the correct Cartan formG′ which
leads to the field equations(2.12)in (3.2)we will see that they obey such a general sche
indeed. We may use the proposed twisted self-duality property of the dualized Cartan for
primarily to write it only in terms of the original fields because as it is clear from(3.3)the
pseudo-involution sends the original generators to the dual ones and the dual ones to
originals with a sign factor. Thus by using the formulas

deX e−X = dX + 1

2! [X,dX] + 1

3!
[
X, [X,dX]] + · · · ,

(3.4)eXYe−X = Y + [X,Y ] + 1

2!
[
X, [X,Y ]] + · · · ,

effectively and by applying the twisted self-duality condition∗G′ = SG ′, the calculation of
the Cartan formG′ = dν′ν′−1 only in terms of the original fields yields

G′ = 1

2
dφi Hi +

⇀

E′�
⇀

dχ + ⇀

VeUeB
⇀

dA + 1

2
(−1)D ∗ dφi H̃i

(3.5)+ (−1)De
1
2αiφ

i

�α
β ∗ dχβ Ẽα + (−1)(m(D−m)+1)

⇀

ṼeUeB ∗ ⇀

dA.

We have defined the yet unknown structure constants as

(3.6)[Hi,Vn] = θ t
inVt , [Em,Vj ] = βl

mjVl.

The matricesU andB in (3.5)are

(3.7)(U)nv = 1

2
φiθn

iv, (B)
j
n = χmβ

j
mn.

We introduce the row vectors
⇀

V and
⇀

Ṽ as (Vi) and (Ṽj ), respectively, the column vecto
⇀

dA is (dAi). We have also taken
(3.8)[Vm,Vn} = 0.

In (3.5)we have made use of the results of[15] in the calculation of the scalar sector of the
Cartan formG′ = dν′ ν′−1.

Now inserting the Cartan form(3.5) (which is written only in terms of the original
fields by primarily applying the twisted self-duality condition) in the Cartan–Maurer iden-
tity (3.2)should result in the second-order field equations(2.12) [2,15]. This main feature
of the coset formulation enables us to derive the commutation and the anti-commutation
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relations of the original generators which are already encoded in(3.5)and the commuta
tors and the anti-commutators of the dual and the mixed (an original and a dual) gen
which arise in the calculation of(3.2)within the graded differential algebra structure of t
differential forms and the generators. Thus a straightforward calculation of(3.2)by insert-
ing (3.5)and then the comparison of the result with the second-order field equations(2.12)
gives us the desired structure constants of the commutators and the anti-commutat
have

[Hj,Eα] = αjEα, [Eα,Eβ ] = Nα,βEα+β,

[Hl,Vi] = (Hl)
k
i Vk, [Eα,Vi] = (Eα)

j
i Vj ,

[Hj, Ẽα] = −αj Ẽα, [Eα, Ẽα] = 1

4

r∑

j=1

αj H̃j ,

[Eα, Ẽβ ] = Nα,−βẼγ , α − β = −γ, α �= β,

[Hi, Ṽk] = −(
HT

i

)l

k
Ṽl, [Eα, Ṽk] = −(

ET
α

)l

k
Ṽl,

(3.9)[Vl, Ṽk} = (−1)D−m 1

4

∑

i

(Hi)lkH̃i,

where the indices of the Cartan generators and their duals arei, j, l = 1, . . . , r andα,β, γ ∈
∆+

nc. The matrices((Eα)
j
i , (Hl)

j
i ) above are the representatives of the corresponding

erators((Eα), (Hl)). Also ((ET
α )

j

i , (H
T
l )

j

i ) are the matrix transpose of((Eα)
j

i , (Hl)
j

i ). We
should state once more that the dimension of the matrices above namely the dimen
the fundamental representation ofg0 is equal to the number of the coupling fields and th
corresponding generators since this is how wehave defined and constructed the coupl
of the matter fieldsAk to the scalar cosetG/K in the Lagrangian(2.10). The remaining
commutators or the anti-commutators of the original and the dual generators which a
listed in(3.9)vanish indeed. We observe that as we have assumed before the Lie s
gebra we have constructed in(3.9)has the general form

[O,D̃} ⊂ D̃, [O,O} ⊂ O,

(3.10)[D̃, D̃} = 0,

whereO is the set of the original and̃D is the set of the dual generators.
Now that we have determined the structure constants of the algebra generated

original and the dual generators we can explicitly calculate the Cartan formG′ = dν′ν′−1

in terms of both the original and the dual fields. By using the identities in(3.4) also the
structure constants given in(3.9)effectively we have
G′ = 1

2
dφi Hi +

⇀

E′�
⇀

dχ +
⇀

T̃e�e�
⇀

S̃ + ⇀

Vν
⇀

dA +
⇀

Ṽ
(
νT

)−1
⇀

dÃ

(3.11)+ (−1)m(D−m)

r∑

i=1

1

4
(Hi)klA

k ∧ dÃl H̃i .

In addition to the definitions given in Section2 we have introduced the row vectors
⇀

V

and
⇀

Ṽ as (Vk) and (Ṽl), respectively. The column vectors
⇀

dA and
⇀

dÃ are (Fk) and (dÃl).
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Besides we have the row vector of the duals of the solvable Lie algebra generators oG as

T̃i = H̃i for i = 1, . . . , r andT̃r+α = Ẽα for α ∈ ∆+
nc. The column vector

⇀

S̃ is defined as
S̃i = 1

2 dφ̃i for i = 1, . . . , r andS̃r+α = dχ̃α for α ∈ ∆+
nc. We have introduced the matric

� and� as

(3.12)�k
n = 1

2
φig̃k

in, �k
n = χmf̃ k

mn.

Here we have used the structure constants{g̃k
in} and{f̃ k

mn} from their definitions in

(3.13)[Eα, T̃m] = f̃ n
αmT̃n, [Hi, T̃m] = g̃n

imT̃n.

They can directly be read from(3.9). If one inserts(3.11)in the Cartan–Maurer equa
tion (3.2)one would obtain the second-order field equations and the Bianchi identities o
the original fields in terms of the original and dual fields which are the Lagrange m
pliers[2,18]. One can use the twisted self-duality equation which(3.11)obeys and which
gives the first-order equations to eliminate the dual fields and then write the second
field equations solely in terms of the original fields namely one would reach(2.12). This
is analogous to what we have done in the derivation of the algebra structure. We
obtained the second-order field equations in terms of the structure constants of th
bra by inserting(3.5) in (3.2) and then we have compared the result with(2.12) to read
the structure constants. The second-order field equations in terms of the structu
stants that are mentioned above do not contain the dual, Lagrange multiplier fields
we have used primarily the twisted self-dualitycondition that relates the dual fields to t
original ones and we have written the Cartan formG′ only in terms of the original fields
in (3.5).

Since we have obtained the explicit form of the Cartan formG′ in (3.11)we can use
the twisted self-duality equation∗G′ = SG′ to find the first-order field equations of th
Lagrangian(2.10). The validity of the twisted self-duality equation is justified in the w
that we have primarily assumed thatG′ obeys it when we derived the structure consta
which are chosen such that they give the correct Cartan formG′ which leads to the second
order field equations(2.12)in (3.2). Therefore directly from(3.11)the twisted self-duality
equation∗G′ = SG′ yields

νk
l ∗ dAl = (−1)m(D−m)+1((νT

)−1)k
l
dÃl,

e
1
2αiφ

i

(�)α+r
l ∗ dχl = (−1)D

(
e�e�

)α+r

j
S̃j ,

(3.14)
1

2
∗ dφi = (−1)D

(
e�e�

)i
j
S̃j + (−1)m(D−m)+D 1

4
(Hi)klA

k ∧ dÃl.
The exterior differentiation of(3.14)gives the second-order field Eq.(2.12) indeed. We
should remark once more that the roots in∆+

nc and the corresponding generators{Eα} are
enumerated. We can also express Eq.(3.14)in a more compact form as

M ∗ ⇀

dA = (−1)m(D−m)+1
⇀

dÃ,

(3.15)∗⇀

� = ⇀

P + (−1)De�e�
⇀

S̃ ,
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where we define the column vector
⇀

� as

�i = 1

2
dφi for i = 1, . . . , r,

(3.16)�α+r = e
1
2αiφ

i

�α
l dχl for α ∈ ∆+

nc.

Also the vector
⇀

P is

Pi = (−1)m(D−m)+D 1

4
(Hi)klA

k ∧ dÃl for i = 1, . . . , r,

(3.17)Pα+r = 0 for α ∈ ∆+
nc.

4. Conclusion

After a concise discussion of the symmetric space sigma model with its algebraic
ground we have defined the coupling ofm-form field strengths to the scalar Lagrangian
Section2. We have also obtained the field equations following the outline of[16,17]. In
Section3 we have adopted the dualisation method of[1,2] to establish a coset formulatio
of the theory and to explore the Lie superalgebra which leads to the first-order equat
motion as a twisted self-duality condition. The validity of the twisted self-duality propert
of the Cartan form is implicitly justified by our construction of the algebra since be
using the second-order field equations and the Cartan–Maurer equation we have
sumed that the Cartan form obeys the twisted self-duality equation in expressing it o
terms of the original fields during the derivation of the structure constants of the alg
As a result we have constructed a coset element by defining a Lie superalgebra st
and we have shown that both the first and the second-order field equations can be
obtained from the Cartan form of the coset element.

This work can be considered as an extension of the results which are obtained i[15].
The dualisation of theG/K symmetric space sigma model is performed in[15] when the
global symmetry group is a non-split semi-simple real form. Here we have studie
dualisation of the non-split scalar coset when it is coupled to other matter fields. We
constructed a framework in which the dualisation analysis of[15] is improved to include
the coupling matter fields. As a result we have obtained a general scheme which
effectively used in the coset realizations ofthe whole set of matter coupled supergraviti

The formulation given in this work assumes a general non-split scalar cosetG/K in
D > 2 spacetime dimensions. The coupling potentials are assumed to be (m − 1)-forms.
As it is clear from the construction, the results are general and they are applicable t

wide class of supergravity theories which contain similar couplings. In[19] the bosonic
sector of the ten-dimensional simple supergravity which is coupled toN Abelian gauge
multiplets is compactified on the Euclidean toriT 10−D and the resulting theories in various
dimensions have scalar cosets with couplings based on global symmetry groups which are
non-compact real forms of some semi-simple Lie groups. Therefore the results presented
here are applicable on them.

One can improve the dualized coset formulation presented here by including the gravity
and the Chern–Simons terms as well. This would extend the algebra structure obtained
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here. The group theoretical aspects of the coset formulation and the symmetry pro
of the first-order equations which are not considered in this work also need to be exa
One can also study the Kac–Moody symmetry scheme[3–5] of the matter coupled scala
cosets.
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