

EFFECTS OF DEGREE DISTRIBUTION IN RATELESS CODING

OMAR RAAD KADHIM KADHIM

SEPTEMBER 2014

EFFECTS OF DEGREE DISTRIBUTION IN RATELESS CODING

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

OMAR RAAD KADHIM KADHIM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF

ELECTRONIC AND COMMUNICATION ENGINEERING

SEPTEMBER 2014

iv

ABSTRACT

EFFECTS OF DEGREE DISTRIBUTION IN RATELESS CODING

KADHIM, Omar Raad Kadhim

M.Sc., Department of Electronic and Communication Engineering

Supervisor: Assoc. Prof. Dr. Orhan GAZİ

September 2014, 49 pages

In this thesis rateless codes which are adopted by a variety of applications such as,

wireless transmission, 3GPP, data storage, multicasting, video streaming are

inspected in details. The performance of two important types of rateless codes which

are Luby Transform and Raptor codes are measured via computer simulations. Both

hard decision and soft decision methods are used while measuring the performance

of these codes. For the soft decision decoding Belief Propagation algorithm was used

in an iterative manner. Degree distribution is an important criteria for the

performance of Luby Transform codes. A new degree distribution called random

degree (or exponential random) distribution is proposed for Luby Transform codes.

And simulation results support that the proposed distribution shows better

performance than the classical degree distributions such as all-at-once, ideal soliton,

robust soliton, and sparse.

Keywords: Rateless Coding, Luby Transform, Belief Propagation, Degree

Distribution

v

ÖZ

DERECE DAĞILIMININ ORANSIZ KODLAR ÜZERİNDEKİ ETKİLERİ

KADHİM, Ömer Raad Kadhim

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı

Tez Yöneticisi: Doç. Dr. Orhan GAZİ

Eylül 2014, 49 sayfa

Bu tezde kablosuz iletişim, 3GPP, veri depolama, video iletişim gibi günümüz

iletişim teknolojilerinin birçoğunda kullanılan oransız kodlar detaylı olarak

incelenmiştir. İki önemi oransız kod türü, Luby dönüşüm ve Raptor kodlarının

performansları bilgisayar benzetimi yoluyla ölçülmüştür. Benzetim esnasında hem

katı hem de yumuşak çözümleme algoritmaları kullanılmıştır. Yumuşak çözümleme

için karar yayılımı algoritması kullanılmıştır. Derece dağılımı Luby dönüşüm

kodlarının performansları önemli ölçüde etkilemektedir. Rasgele derece dağılımı

adında yeni bir derece dağılımı önerilmiş ve performansı benzetim yoluyla

ölçülmüştür. Elde edilen sonuçlar önerdiğimiz derece dağılımının hali hazırda

literatürde var olanlara göre (ideal soliton, robust soliton, ve sparse) daha iyi

performans gösterdiğini desteklemektedir.

Anahtar Kelimeler: Oransız Kodlar, Luby Dönüşümü, Karar Yayılımı, Derece

Dağılımı

vi

ACKNOWLEDGEMENTS

I am sincerely indebted and obliged to Assoc. Prof. Dr. Orhan GAZİ for his support,

special attention, surveillance and suggestions, as well as the encouragement he

showed me during the writing of this thesis. I am certain it would have not been

possible without his help.

I would also like to express my gratitude to my father and mother and wife for their

valuable and special support.

vii

TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISM.. iii

ABSTRACT.. iv

ÖZ………………………………………………………………………………….. v

ACKNOWLEDGEMENTS………………………………………………………... vi

TABLE OF CONTENTS………………………………………………………….. vii

LIST OF FIGURES………………………………………………………………... x

LIST OF ABBREVIATIONS……………………………………………………... xi

CHAPTERS:

 1. INTRODUCTION... 1

 1.1. Coding Theory: Classical vs. Modern Approach………………………. 1

 1.2. Fundamental of Channel Coding……………………………………..... 3

 1.3. Linear Codes…………….……………………....................................... 4

 1.4. Belief Propagation Algorithm (BP).. 5

 1.5. Decoding Graph………………….............……………………………... 6

 1.6. Thesis Outline... 6

 2. RATELESS CODES……………………….…………………….................... 8

 2.1. Rateless Encoding Decoding.. 8

 2.2. Tanner Graph……………………………………………………………. 9

 2.3. Low Density Equality-Check Code (LDPC)……………………………. 11

 2.3.1. LDPC encoding…………………………………………………... 12

 2.3.1.1. Lower triangular modification approach…....................... 12

 2.3.2. LDPC soft decoding using belief propagation……………...…..... 14

 2.4. Luby Transformer Code (LT)…………………………………………… 18

 2.4.1. LT encoder…………………………………………...................... 19

 2.4.2. Degree distributions for LT code……………………………….… 22

viii

 2.4.2.1. All-at-once distribution………………………………… 22

 2.4.2.2. Ideal soliton distribution……………………………...... 23

 2.4.2.3. Robust soliton distribution………………...................... 23

 2.4.2.4. Sparse distribution…………………….......................... 24

 2.4.3. Decoding of Luby transform (LT) code………………………….. 24

 2.4.3.1. Hard decoding algorithm……………….......................... 24

 2.4.3.1.1. Serial decoding……………………………… 25

 2.4.3.1.2. Parallel decoding…………........................... 25

 2.4.3.2. Soft decoding algorithm………….................................. 26

 2.5. Raptor Codes………….......……….......…………................................... 28

 2.5.1. Raptor encoding………......………….. 29

 2.5.2. Raptor decoding using belief propagation……………………...... 30

 2.5.2.1. Local-iteration decoder………………........................... 30

 2.5.2.2. Global-iteration decoder…………………...………….... 33

 3. NEW DEGREE DISTRIBUTION AND MODELING RESULTS………….. 36

 3.1. New Degree Distribution Implementation………….............................. 36

 3.1.1. Exponential distribution………………………………………...... 36

 3.1.2. Random degree distribution……………………………………… 37

 3.1.3. Gaussian distribution…………………………………………...... 39

 3.2. Modeling Results………………………………………………………… 40

 3.2.1. Low density equality check code (LDPC)……………………...... 40

 3.2.2. Raptor codes……………………………………………………… 41

 3.2.2.1. Local-iteration decoder………………........................... 41

 3.2.2.2. Global-iteration decoder……………………………….. 42

 3.3. LT Code Modeling Result……………………………………………….. 42

 3.3.1. LT code with robust soliton distribution…………………………. 43

 3.3.2. LT code with spars degree distribution…………………………... 43

 3.3.3. LT code with exponential degree………………………………… 43

 3.3.4. LT code with Gaussian degree distribution……………………… 44

ix

 3.3.5. Comparative between normal and new degree ………...………... 45

 4. CONCLUSION AND FUTURE WORKS………………………………........ 48

 4.1. Conclusion.. 48

 4.2. Future Works.. 49

REFERENCES.. R1

APPENDICES……………………………………………………………………....... A1

A. CURRICULUM VITAE………………………………………………………….. A1

x

LIST OF FIGURES

FIGURES

Figure 1 Equality check knot 1 linked up with adjustable knots………. 10

Figure 2 Tanner graph of the H matrix of the Hamming code…………. 10

Figure 3 Equality-check matrix in estimated lower triangular shape...... 13

Figure 4 The LT encoding/decoding process…………………………… 20

Figure 5 Parallel decoding of LT decoder………………………………. 26

Figure 6 Raptor encoding diagram……………………………………… 29

Figure 7 Raptor local-iteration decoder configuration………………….. 31

Figure 8 Raptor global-iteration decoder configuration………………… 34

Figure 9 Exponential degree distribution……………………………….. 37

Figure 10 Random degree distribution…………………………………… 38

Figure 11 Gaussian distribution………………………………………….. 39

Figure 12 LDPC code performance…………………………………........ 40

Figure 13 Raptor code performance using local-iteration decoder………. 41

Figure 14 Global-iteration decoder……………………………………….. 42

Figure 15 LT with exponential degree……………………………………. 44

Figure 16 LT code with Gaussian degree distribution……………………. 45

Figure 17 LT code with random degree and robust soliton distribution….. 46

Figure 18 LT code with random degree and spars degree distribution…… 46

xi

LIST OF ABBREVIATIONS

Cap Channel Capacity

3G 3rd Generation

IEEE Institute of Electrical and Electronics Engineers

LDPC Low-Density Equality-Check

i.i.d Independent Identical Distribution

BIMS Binary Input Memoryless Symmetrical

BP Belief Propagation

NP Nondeterministic Polynomial

LT Luby Transform

Wi-Fi Wireless Fidelity

Wi-MAX Worldwide Interoperability for Microwave Access

DVB Digital Video Broadcasting

DVBS2 Digital Video Broadcasting Second Generation

3GPP 3rd Generation Partnership Project

LLR Log-Likelihood Ratio

BPSK Binary Phase Shift Keying

AWGNC Additive White Gaussian Noise Channel

BER Bit Error Rate

SNR Signal to Noise Ratio

1

CHAPTER 1

INTRODUCTION

1.1. Coding Theory: Classical vs. Modern Approach

In 1948, an article about the mathematical theory of communication [1] was

published by Shannon that presented the essentials of communication boundaries.

The article explained the basic issues of transmission that regenerate at a point where

either exact or estimated information was chosen at another point. A fundamental

solution of this issue is somewhat instinctive and the chosen information can be

encoded with redundant information. In such a case, if delivered information

becomes corrupted due to noise, the redundant information will be sufficient to

recover the genuine information. Here, two serious questions regarding designer’s

code rose: the first is what type of redundancy will be feasible, and the second is in

order to identify how much redundancy will be used. Both questions are essential in

terms of theory as well as practice. With the assessment of the extra quantity required

with regard to constantly regenerating the actual information on the receiver side, it

is very necessary to know what the optimal use of these communication resources is.

Therefore, all coding schemes are allocated defined numbers (this process is called

information degree) which work in a genuine way to determine which parts of the

delivered data are beneficial. In contrast, the descriptive question actually defines the

coding scheme that is not only utilized for communication resources, but also

sufficiently capable to encode and decode efficiently. Therefore, the code designer’s

main function is to classify the coding structures with the highest possible data

percentage that must contain: (a) a reduced likelihood of interpreting error, and (b)

effectual encoding and decoding procedures.

2

He responded to the above questions by defining a certain parameter for information

rate to ensure dependable communication even with the existence of noise in the

channel. His results explained that there is a definite value Cap (C)  [0; 1] called

the channel capability such as if only R < Cap (C) then reliable communication is

possible. With the existence of these values, a trustworthy coding structure of data

rate ensures R, such as the coding structure with very little likelihood of arbitrary

error. However, Shannon's response was non-productive and based on likelihood. In

response, another question was asked as to which coding schemes will be efficient

enough to bring us near to that channel. For many years, coding theory has seen

some unexpected improvements that include: deriving observations from several

areas of arithmetic, engineering, and solving both theoretical and practical

approaches. However, attaining an effective coding scheme is still not easy.

According to Shannon, an arbitrary lined coding scheme is a methodology for

channel capacity; however, this does not contain a sufficient number of

characteristics to form an effective decoding path. This distinction among coding

theories is best described by Reiffen and Wozencraft [2]:

Any code that we can’t think of is better.

This pointed towards the leading approach that has proved this claim in just a few

attempts [3]. Before the early 90s, the response to the descriptive question with the

introduction of Turbo codes has been revealed [4, 5]. Their originality was aligned

within the utilization of the virtual arbitrary interleavers in encoding process and

within a sensibly planned repetitive decoding process. Turbo codes found sufficient

"arbitraryness" to the closest capacity method very similarly to arbitrary interleavers;

however, it was capable of reserving adequate structure to permit effective encoding

and decoding procedures. In reality, turbo codes that were introduced in the

preliminary conference publication were banned by the arbitrators [6]. Nevertheless,

today Turbo codes have become an essential part of day-to-day technology and make

our lives easier as they can be found on 3G mobiles, and various communications

standards such as IEEE 802.16 metropolitan wireless network standards [7]. After

the turbo codes that delivered the preliminary motion to the model of data coding

correction, the LDPC (low density equality check) coding approach was introduced

by Gallager in 1963 [8], but soon forgotten afterwards and later rediscovered by

3

MacKay, Neal [9 10, 11], Wiberg [12, 13], Sipser and Spielman [14, 15]. LDPC

codes were presented to have outstanding performance in comparison to large Turbo

codes. Later on, LDPC codes and their repetitive decoding approach were

extensively accepted and analyzed. The official knowledge of this new method

resulted in the entire arena of modern coding theory [16] in contrast to the traditional

coding theory that specifically handles the arithmetical production of codes. As an

outcome, decoding methods and applied codes are very well known nowadays

because they are amazingly close to the channel capacity [17], having outstanding

low mathematical issues and actively responding to severe calculated assessment

[18].

1.2. Fundamental of Channel Coding

The main purpose in channel coding is to deliver reliable data. For example, the

arrangement of k symbols x = (x1; x2;…; xk) ∈ X
k
, that are components of a

prearranged character X, diagonally is a channel with noise. In this regard, an

encoding leads to the x arrangements to the code word y = (y1; y2; : : : ; yn) ∈ Y
n
 that

later delivers and reduces by a noisy channel. The decoding process detects a

sequence of disorganized values, such as a conventional character z = (z1; z2;…;zn) ∈

Z
n
 assessed y based on z. Vectors x, y and z acknowledge the arbitrary variables, X

on X
k
, Y on Y

n
, Z on Z

n
, correspondingly. Subsequently, every xi, yi and zi is an

awareness of scalar arbitrary variables Xi, Yi and Zi, one-to-one. Moreover, we

usually consider that each Xi, Yi and Zi is self-governing and equally dispersed

(i.i.d.) in a likelihood concept consistent operation PX (x) PY (y) and PZ (z),

correspondingly. The association between Y and Z characters is demonstrated by a

likelihood operation PZ | Y (z | y), which is conditional.

In this study, the greater concern was with binary-input, low memory and symmetry

(BIMS channels). A binary codeword Y is the basic symbol of these channels that

showed either F2 = {0; 1} or set {-1; +1}. Each time the codeword value character {-

1; +1} is utilized, plotting 0 → +1, 1 →-1 is implied in this study. Furthermore,

BIMS channels have no memory: the outcome of such channels is immediate and

4

only depends on its input data. Additionally, the symmetry situation infers that the

outcome of the channel is symmetric to inserting data. This situation is too complex

to describe when Y = F2. However, if model Y = {-1; +1} and Z ⊏ R, then the

regularity situation is simplified:

 Z|Y Z|YP (z|1) = P (-z| - 1), z Z.  (1.1)

In the scenario of a low capacity channel C, the highest value of each data symbol

that delivers codeword Y from codeword Z is known as the channel capacity:

 Cap (C) = I (Y, Z) (1.2) (1.2)

Here, I(Y;Z) signifies the joint data between the Y and Z variables, and conveyed

data in bits. Shannon demonstrated that at all code rates R < Cap(C), consistent

broadcast is possible.

1.3. Linear Codes

Binary linear codes are the most demanded channel codes having data values as the

alphabet and the code word values, in which the alphabet is limited to F2. A dual

lined coding structure can be seen as a lined plotting from the group of information

2Fk to the group of code words C ⊏ 2Fn ; here C formulates a k-dimensional route of

2Fn . Characteristically, this dimensional route is called code, because it fetches the

related structure of the coding scheme. This is denoted as (n; k) binary linear code,

where n is the size and k is the dimension of the code, and its code rate R is distinct

as k/n, unless stated, all vectors are activated.

Linear codes are defined with a foundation set {g1; g2; : : : ; gk}, where gi ∈ 2Fn , that

indicate the producer matrix illustration of a lined code. Specifically, an n×k matrix

G is known as the producer matrix of code C if

 c ∈ C ⟺∃ x ∈ 2Fk : Gx = c (1.5)

It is to be noticed that every matrix that formulates a foundation of C with columns is

actually a producing matrix of C that offers a simple measurement of plotting data

over the code words. Eventually, C can be specified ultimately with subspace C 

within 2Fn and its base {h1; h2; …; hn-k}. Given below, the C subspace is shown as

5

  ' '

2 : . 0nC c F c c c C      (1.6)

Though it is possible to formulate the equality check matrix demonstration of a lined

code, the A (n-k) ×n matrix H would be the equality check matrix of C if

c ∈ C ⟺ Hc = 0

Evidently, a matrix formed by rows based on C⊥ is called the equality check matrix

of C. The dual subspace C⊥ of a linear (n, k) code C is an additional lined code with

distance n and measurement n - k, of C. The transferred equivalence check matrix of

C is the producer matrix of C ⊥ and the converse also holds true

In fountain codes, transactions being performed by the coding system without fix

percentage a priori. Every row of the producer matrix produces rapidly and

considered as an arbitrary variable 2Fk , whereas k is the measurement symbol. Thus,

instantly j ∈ N, the origin encoder produces a solo encrypted symbol yj = vj and x ∈

2Fk , where vj is an arbitrarily selected row vector from 2Fk . In such an arrangement,

the receiver detects the quantity of conventional word symbols zi1; zi2; :::; zin

consistent with the transferred symbols yi1; yi2; :::; yin. This shows that the derived

code (n; k) is binary lined code that is defined by a producer matrix with Vi1; vi2; :::;

ViN vectors. If decoding of such code fails, the additional encrypted symbols can be

gathered by a receiver that provides a better distance.

1.4. Belief Propagation Algorithm (BP)

The entire problem of linear encoding for BIMS channels is known as NP

accomplishment [19]. Having an effective and practical method for the encoding of

BIMS channels is not easy. Therefore, concretely forming a suboptimal repetitive

approach for a very small subclass of decrypting issues is problematic. In a similar

way, other approaches to decode lined codes are more complex because they are held

with customization. Due to the large numbers of code, decoding is no longer easy.

However, if we categorize this methodology into local functions, for example

functions described by a group of small divisions all variables, we will obtain a

starting point to develop new approaches. This complete factorization is typically

http://www.vocabulary.com/dictionary/contrariwise

6

envisioned with a graph known as a factor graph, which actually illustrates an

association between variables and functions and indicates which variable influences

which function. These graphs are simple and are general forms of Tanner graphs [20]

that defines LPDC codes as well. It could be said that a factor graph is a kind of

graphical model and Bayesian inference [21] can be performed over it easily.

However, the concept behind this is predictable. An ethical broadcast approach

merely abuses the factorization of the universal function to competently calculate.

This theoretical level is similar to the distributive legal calculations [19]. The

common toy example is about the use of the distributive law in the efficient

calculation of the function variables f (a, b, c) = AB + AC, whereas it is visibly

capable of calculating the factored version of the function f (a; b; c) = a (b + c) (one

addition and one multiplication) than its un-factored version (two multiplications and

one addition).

1.5. Decoding Graph

The most traditional and hands-on performance of linear codes could be the

Matrices, while Graphs have been demonstrated effective to prove and explore the

presentation of broadcast decoding with linear codes. Graphic codes include fountain

codes, turbo codes and LDPC codes. Their decoding matrices are typically signified

by Tanner graphs suitable for the low density of the matrices. Graphic codes are

mostly low density, which is why they are called sparse-graph codes. The bareness of

the decoding graph confirms the low calculation difficulty. Tanner [20] relived

LDPC codes by recommending Tanner graphs which are capable of recursive.

1.6. Thesis Outline

This thesis contains four chapters and these chapters are explained as follows:

Chapter-1 begins with a general introduction about coding theory. Furthermore, this

chapter presents an introduction to linear code and a brief description of belief

propagation. A decoding graph is also presented in this chapter.

7

Chapter-2 contains an introduction to rateless code, and Tanner graphs are explained

in more detail. Furthermore, Low Density Equality Check codes are mentioned with

specific information. Luby Transform encoding and decoding and normal degree

distribution are also demonstrated in this Chapter. Finally, Raptor code with two

types of decoder is explained.

Chapter-3 is dvided into two sections: the first section discusses new degree

distribution design and the second section deals with simulation results for all codes

and degree distribution and comparisons made between these degrees.

Chapter-4 consists of a conclusion and a list of future works.

8

CHAPTER 2

RATELESS CODES

2.1. Rateless Encoding Decoding

In 1998, Byers et al. [22] revealed the “digital fountain method” inspired by

authentic data delivery to various self-directed customers. Given below is an

innovative project of broadcast and multicast protocols. A receiver can re-establish

the source information with encoded symbols arbitrarily composed of a loss channel.

The channel’s lossy design can even be unidentified and data access starts on

arbitrary time. While a Tornado code is preferable in order to meet this fundamental

concept, it should already assess the channel loss rate and essentially allocate a fixed

code rate R, which is near to the loss rate, and in return it bounds the quantity of user

knots that is unevenly equal to 1⁄𝑅 [23] [24]. Consequently, the features of digital

fountains must be: to reliably deliver data in a single transmission, have no response,

have effective encoding and decoding, have data that should be accessible when

necessary, and a loss rate that is sufficiently acceptable. At this time, the immense

image of a theoretical digital fountain over a memoryless removal channel. A

demanded file is split into k blocks of similar size and each block is encapsulated

into a packet. Given these k packets, it s possible for the fountain encoder to create a

boundless stream of self-governing and similarly-scattered encoding packets. These

encoded packets are conveyed over the deletion channel, but only a fraction of the

packets is received error free with the remainder either lost or discarded. The

fountain decoder then, with high likelihood, improves the source packets from any

subset of established encoded packets of a number equal to, or higher than, k. This

procedure is usually used as a cup arbitrarily to gather some drops from a fountain

9

and once having accumulated a sufficient number of drops in the cup, thirst will be

satisfied.

Fountain codes, also known as rateless code, even though at both the sender and

receiver knots the code rate is unfixed and can possibly reach zero. Conversely, in

practice, only one should be asked to reflect any shortened fountain codes. As per the

requirements of the application, such as the decipher completion rate and calculate

price, there would be a linked up least number of arrived packets to comply with

conditions. For example, this least number is n, and the decoder improves the data at

a rate of 𝑘⁄𝑛 shortened fountain code. For a perfect or optimum fountain code, the

code rate needs to be 1. When k is somewhat smaller than n, the fountain code is sub-

optimum or nearby optimum. Now we have the two major classes of applied fountain

codes: Luby Transform (LT) codes and Raptor codes. Both are closer to optimum for

limited data size.

2.2. Tanner Graph

A Tanner graph or dynamic graph [25] is a divided graph which is related to the

equality check matrix H (N-K*N) or designer matrix G (K*N) where N and K

correspondingly accomplish the code word size and information length. The divided

graph contains two kinds of knots, the first being equal to N and achieving the data

bits. Additionally, it is also called a variable knot. The other knot is equal to N-K and

shows the equality check bits [26]. Moreover, it is acquainted with check knots.

Adjustable knots can link up only to see whether that variable is a particular check

knot. Similar knots cannot associate with each other easily, thereby showing that

there are no limits among identical knots.

Tanner Graph (Factor) example

Here, the Hamming (7, 4, 3) code with equality check matrix H (3*7) and producer

matrix G (4*7) is mentioned to prove [27] how a Tanner graph can be constructed.

Hamming (7,4,3) equality check matrix H code can be define as:

10

1 1 1 0 1 0 0

H 0 1 1 1 0 1 0

1 1 0 1 0 0 1

 
 

  
 
 

 (2.1)

By detecting equality check matrix above, H has found three check knots, mc

m=1,…, 3 and seven adjustable knots vl , l=1,2,3,…,7. This means each row acts as a

check knot and each column shows an adjustable knot. The first row of H satisfies

the equality check equation 11 2 3 5g g g g c    meaning that the variable knots

{1, 2, 3, 5} attach straight to a check knot via the boundaries as shown in Fig. 1. This

process recurs every time for each row. Finally, the Tanner graph is visible in Fig. 2.

Similarly, the columns of H act as incidence vectors in which equality check

equations contribute to the variable knot. On the other hand, the column of H

specifies that an adjustable knot is linked to the check knot {1,2,3}

v1

c1

v3

c1

v2v5

Figure 1: Equality check knot 1 linked up with adjustable knots

c1

v1v3

c
1

v2v4v5v6v7

c
1

c
1

c3 c2

Check node

Variable node

Figure 2: Tanner graph of the H matrix of the Hamming code

11

The G (4*7) of pretense (7, 4 ,3) equal to:

1 0 0 0 1 0 1

0 1 0 0 1 1 1
G

0 0 1 0 1 1 0

0 0 0 1 0 1 1

 
 
 
 
 
 

 (2.2)

2.3. Low Density Equality-Check Code (LDPC)

Low density equality-check code (LDPC) is basically error linear code, mostly

utilizing a noisy transmission network to decrease the likelihood of waste of data.

This likelihood can be decreased with LDPC maximall , hence the data transferred

percentage can be as close as desired to Shannon’s perimeter. LDPC was originally

altered by Robert Gallager in his PhD thesis at MIT in 1960 [28] by MIT Press 3

years after LDPC was published. Because of the restrictions on the mathematical

potential in examining the encoder and decoder for the given codes and the outline of

Reed-Solomon codes, LDPC was neglected for almost 30 years. R. Michael Tanner

defined LDPC code in 1981, as the Tanner graph [25]. Since turbo codes had

become inventive in 1993, the main emphasis was transformed to find low

multifaceted code which is closer to the Shannon channel size. LDPC was

rediscovered by Mackay [29], [11] and Luby [30]. Meanwhile, LDPC has also

established its identity in a few advanced applications such as 10GBase-T Ethernet,

Wi-Fi, WI-MAX, and Digital Video Broadcasting (DVB, DVBS2).

All lined code has both an equality check matrix and a mutual graph, but not all lined

code is capable of highlighting a clear image. If the 1 values in any row in an (n× m)

matrix where weight denoted as wr, and when the 1 values are in any column, the

column weight is denoted as wc, which is far lower than the measurement (wr << m,

wc << n). Code characterized by a sparse equality-check matrix is known as low

density equality check code (LDPC). The sparse characteristics of LDPC encourage

its mathematical benefits.

12

2.3.1. LDPC encoding

If the originator matrix G of error altering code is recognized, then the encoding can

be completed by reproducing the originator matrix G with a group of data. As we can

say that the encoded vector (c) is equal to the following:

 *c G m (2.3)

m here is the data vector, the number of processes of this technique relies on the

number of 1’s (Hamming weights) of the base vectors of G. If the vectors are solid,

the number of processes (cost) of encoding using this process is comparable to n2.

This cost becomes linear with n if G is sparse. Conversely, by the null space of a

sparse equality-check matrix H, the LDPC is specified. It is doubtful that the

originator matrix G will be sparse. For that reason, the unambiguous tactic of

encoding an LDPC needs number of processes, comparative (cost) to n
2
. This is too

sluggish for most practical applications. After that, it is suitable to have encoding

approaches that run on lined time.

2.3.1.1. Lower triangular modification approach

Urbanke & Richardson presented an encoding process that possessed proficiently

lined performance time for some codes with a sparse equality-check matrix. This

method consists of stages: pre-processing and encoding. In the pre-processing stage,

H is deployed into the shape as given in Fig. 3 by column and row variations.

13

A B
1

1

1

1T
0

C D E
n

n-k g K-g

Figure 3: Equality-check matrix in estimated lower triangular shape

Here T has an inferior three-sided shape with all transverse entrances is equal to 1.

Subsequently the process is complete by column and row variables and if H is sparse,

then A, B, C, D, E, T are also sparse.

 Let the codeword  s m, p1, p2 whereas m is the data bits, p1 and p2 are the

parity bits, p1 has length g, p2 has length k – g .

Calculating p1 and p2 as fallow in:

1. Compute top syndrome of m by using Eq. (2.4).

 v =AmT

r (2.4)

2. Calculate the series of parity bits, 2kA , which assume the top syndrome to 0.

1

2k =T A

rv

3. Determine the bottom syndrome of the vector 2[0]Am k

 2v =CmT A

b Ek
 (2.5)

4. Find the parameter Z from Eq. (2.6).

1Z ET B D  

 (2.6)

After that, the first equality fraction is calculated as in Eq.(2.7).

1

1 bp Z v
 (2.7)

14

5. Comput the new top syndrome in Eq. (2.8)

 1x rv v Bp 
 (2.8)

6. In the final, the else sets of equality bits 2kA , can be gained in Eq. (2.9).

1

2 xp v T 
 (2.9)

By using back- subtraction,
2kA and 2p in step 2 & 6 can be calculated in linear time.

Selecting the gap (g) as tiny as possible because the complexity of Eq. (2.9) in step

six is  2O k . Furthermore, the complexity of computing D at Eq. (2.6) is  3O k and,

this is computed for one time just previous any message block encoding.

2.3.2. LDPC soft decoding using belief propagation

The flexible chosen decoder performed to prepare the data that have a provisional

probability that the incoming bit is either a 1 or a 0 by given vector y. By letting Pi =

Pr [ci = 1| y] be the provisional likelihood that ci is a 1 given the value of y, we have

 Pr [ci = 0 | y] = 1-Pi (2.10)

By letting lqij be the data sent by data knot ci to check knot fj at round l, then every

datum contains a pair (0)lqij and (1)lqij which stands for the “amount of belief”

that yi is 0 or 1.

 (0) (1) 1l lqij qij  (2.11)

Specifically, (1)j lqi P
i

 and (0) 1qij Pl
i

 

Likewise, we let lrij be the data transfer by check knot fj to data knot ci in round l.

Each datum comprises a pair (0)lrij and (1)lrij which stands for the “quantity of

confidence” that yi is 0 or 1. Here, we obtain

 (0) (1) 1l lrij rij  (2.12)

(0)lrij is a likelihood that there is an even number of 1’s of on all other data knots

instead of ci. Initially, let us suppose the likelihood of having an even number of 1’s

on 2 data knots. Let q1 be the likelihood that there is a 1 at data knot c1 and let q2 be

the likelihood that there is a 1 at data knot c2. We have

15

 r 1 2 1 2 1 2P [c c 0] (1) (1)q q q q      (2.13)

 1 2 1 21 2q q q q   
 (2.14)

 1 2 1 2

1
(2 2 2 4)

2
q q q q   

(2.15)

1

[1 (1 2)(1 2)]
1 22

q q q    

(2.16)

Then we assume the likelihood to have an even number of 1’s on 3 data knots, c1, c2

and c3. Here, notice that 1 – q is the likelihood of having an odd number of 1’s on c1

and c2.

 1 2 3

1
[1 (1 2)(1 2)(1 2)]

2
q q q    

(2.17)

Generally

 r 1

1 1
P [(c c 0] (1 2)]

2 2 1

n
qn ii

     


 (2.18)

Consequently, the data that fj transmits to ci at round l is

 '

'

(l) 1 1
(0) (1 2 (1))]

2 2
j

n

ji i j
i V i

r q
 

  

(2.19)

(l) (l)(1) 1 (0)ji jir r 

(2.20)

whereas fj is the group of all data knots linked with the check knot. The data that ci

transmits to fj at round l is

 '

'

() (1)(0) (1) (0)

i

n
l l

ji ij i j i
j C j

q k p r 

 

  

(2.21)

 '

'

() (1)(1) (1)

i

n
l l

ji ij i j i
j C j

q k p r 

 

 

(2.22)

while ci is the combination of all check knots associated with the data knot ci. The

constant ijk is selected to perform

(l) (l)(0) (1) 1ji jiq q 

(2.23)

At every data knot, the computations given below are completed

() (1)(0) (1) (0)

i

n
l l

i i i ji

j C

Q k p r 



  

(2.24)

16

() (1)(1) (1)

i

n
l l

i i i ji

j C

Q k p r 



 

(2.25)

()l

iQ is the efficient likelihood of 0 and 1 at data knot ci at round l.

If

  () ()1 (0)l l

i iQ Q

(2.26)

the assessment at the point where ci = 1, and ci =0. This analysis fulfills the equality-

check equations and then dismisses them. Otherwise, the technique is executed via

an early decided number of repetitions.

As mentioned earlier, this technique uses many multiplications, which is not feasible

to deploy. One more method is the logarithmic likelihood percentage as

[0 |] 1

[1 |]

P c y pr i iL
i P c y pr i i

 
 



 
  
 

(2.27)

[0 |]

[1 |]
ln lni i

P c yr i

P c yr i

l L




 
    

 

(2.28)

Here, Li is the likelihood percentage and li is the log likelihood percentage where the

data knot is ci. By applying the log percentage, it converts multiplications into

additions, which uses fewer hardware resources. With a log likelihood percentage,

we obtain

1

1
i

i

P
L




(2.29)

From Eq. (2.21) and Eq. (2.22), the data that ci transmits to fj at round l is

 '

(1)

i

i

l

i j
j C j

l m 

 

  

(2.30)

'

'

(1)

()

()

()
(1)

1 1
(1 2 (1))

(0) 2 2
ln ln

1 1(1)
(1 2 (1))

2 2

l

l i j
ji i Mj il

ji l
lji

i j
i Mj i

q
r

m
r

q



 



 

 

 

 





(2.31)

17

'

'

'

'

(1)

(1)

1 tanh()
2

ln

1 tanh()
2

l

i j

i Vj i

l

i j

i Vj i

m

m



 



 











(2.32)

We have (2.30) due to (2.32),

''

'

1 (1)

(1)

i j
m i j

i j

q
e

q




(2.33)

Thus

 '
'

1
(1)

1 i j
mi j

q
e




(2.34)

And

'
'

'
'

1
1 2 (1) tanh()

21

i j

i j

m

i j

mi j

me
q

e


  



(2.35)

Eq. (2.24) and Eq. (2.26) fit into

()
() (0) ()

()

(0)
ln

(1)
i

l
l li

i i jil
j Ci

Q
l l m

Q 

  

(2.36)

If ()l

il > 0, then ci=0 else ci=1

In training, a certain broadcast is performed for the first of either a large number of

repetitions or until the transmitted probabilities of approaching the belief. As assured

chance based il   , where Pi =0 for il   and Pi = 1 for il   .

One essential feature of belief propagation is its performance timing, which is linear

to the code size. The process negotiates among check knots and data knots thereby

reducing the number of traversals. Furthermore, if the technique performs a steady

repetition, then every boundary will traverse a fixed number of times, thereby

showing that a number of processes are stable and only rely upon the number of

limitations. If we let the number of check knots and data knots grow linearly with the

code length, the number of processes carried out by belief propagation also rises

linearly with the code size.

18

2.4. Luby Transformer Code (LT)

The comprehension of LT codes for a period of removal codes are called common

removal codes. The symbol size for the codes may be arbitrary, from one-bit binary

value to general l bit value. It is possible to analyze that value route time in the

aspect encoding and decoding of symbolic processes, where a v process is either an

exclusive-or or duplicate of one symbol to another. If the real data is comprised of k

input symbols, then every encoded symbol can be produced self-reliantly of all other

encoded symbols on average by O (ln(k/δ)) symbol processes, and the k real input

symbols can be improved from any k+O(k ln2(k/δ)) of the encoded symbols with

likelihood 1 – δ at an average of O(k ln(k/δ)) symbol processes. LT codes are

rateless. For example, the number of encoded symbols produced from the data would

be infinite. Likewise, encoded values can be produced rapidly and might be less or

more as required. Similarly, decoding can improve a quiet same copy of the data

from any group of the produced encoded symbols that collectively are only

somewhat lengthier than the data. Therefore, without any doubt the loss model is on

the erasure channel and encoded symbols can be produced as needed and transmitted

over the erasure channel until a sufficient number has been reached at the decoder in

order to repair the data. Meanwhile, the decoder can repair the data from the least

number possible of encoded symbols, thereby implying that LT codes are near

optimum with deference to any erasure channel. Additionally, the encoded and

decoding periods are asymptotically very well-organized as a function of the data

size. Therefore, LT codes are world demanded in the aspect that they are

concurrently close optimal for every erasure channel and they are very effectual as

the data size develops. The analyses of LT codes are more diverse than examinations

of Tornado codes [31] [32] [33]. In actuality, the study of Tornado codes is only

appropriate to graphs with constant all-out degree. LT codes use graphs of

logarithmic solidity, hence the Tornado code analysis does not do so. In addition, the

investigation of Tornado codes depends on the techniques that respond overhead,

that is, integrally at least to a constant fraction of the data size, while the evaluation

of LT codes shows us that the response overhead is an asymptotically disappearing

fraction of the data size, in spite of being at the price of less advanced asymptotic

19

encoding and decoding times. The key to the design and examination of LT codes is

to introduce and analyze the LT procedure. This procedure and its analysis are

innovative simplifications of the traditional procedure and examination of throwing

balls arbitrarily into baskets and therefore may well be of self-governing attention.

Provided here is the analysis of the performance of the LT course using initial values

of likelihood theory, which accurately grab the performance of the data retrieval

method. The “digital fountain method” idea presented in [34] [35] is similar to

universal erasure code, with LT codes leading full recognition of this study.

2.4.1. LT encoder

The procedure of creating an encoded symbol is theoretically easy to define:

• Arbitrarily select the degree d of the code symbol from a degree distribution.

• Select consistently at chance based d separate input symbols as the closest of

the code symbols.

• The value of the code symbol is the exclusive-or of the d fellows.

These input symbols are known as a neighbor for the particular output code symbol

and the directories of these fellows is given by the set γ. Stating to Fig.4, we analyze

that for O0, D = 1 is yielded and the parallel to arbitrarily selected input index (or

the fellows) γ is I k -1. Hence, O0 comprises only Ik-1. For O1, we gain D = 2 and γ =

{1; 3}, and henceforth we have O1 = I1 XOR I3 etc.

.

20

...

D=1 D=2 D=5 D=7 … D=2D=30

O1 O2 O3 … Okrec-1Okrec-2O0

I0

I1

I2

I3

Ik-1

Figure 4: The LT encoding/decoding process

The inputs I are to the left and the output encoded symbols O at the top. The

input/output association in reality shows that the circles link to the given input and

output.

At the end of each column in Fig.4, the total degree D of the output symbol can be

seen. Similarly, note that the procedure mentioned above is not bound to bits only.

Bit vectors can be utilized as input symbols and an additional process, then

substitutes the XOR process for encrypting symbol generation. As analysed, the

association among the inputs and outputs can be demonstrated again by a

connectivity matrix (denoted by Hc). Outcomes are characterized again by columns

and the inputs are shown as rows of Hc. Each time when an input establishes a

portion of an outcome, the consistent entry in the matrix for the particular row and

column is marked 1. For example, for Fig.4, the connectivity matrix can be shown as

in Eq. (2.37):

21

 c

0 0 1 0 1 0

0 1 1 0 0 1

0 0 1 1 0 0

0 1 1 0 1 0
H

1 0 1 0 0 0 1 1

 
 
 
 
 
 
 
 
 
 
 
  

(2.37)

This matrix needs to be aware of the receiver for suitable deciphering of the inputs.

And later, the encoding procedure can be mentioned as:

 O= I × Hc (2.38)

Where O is of size 1×krec, I is size 1×k and Hc is of size k×krec. While utilizing the

encoding symbols to retrieve the original input symbols of the data, the decipherer

requires being familiar with the degree and group of fellows of each code symbol.

There are various methods of collaborating this data with the decipherer, based on

the application, including the degree and a list of companion directories which might

be given openly to the interpreter for each code symbol. In one more example, the

degree and companion indices of each code symbol can be calculated by the decoder

indirectly. This is all dependent upon the timing of receiving of the code symbol or

location of the code symbol as compared to the situations of other code symbols.

Here is another example where an encoding key may be connected with each code

symbol and then both the encoder and decoder apply the same purpose of the key in

order to yield the degree and a group of companions of the code symbol. In this case,

the encoder may arbitrarily select each key it uses to generate an code symbol and

keys may be passed to the decoder along with the code symbols. Every key might

rather be generated such as by a deterministic procedure, for example, where each

key may be bigger than the previous key. The encoder and decoder may be permitted

access to the few sets of arbitrary bits, and the key may be utilized as the kernel to a

pseudo-arbitrary producer that uses these arbitrary bits in order to produce the degree

and companion of the code symbol.

22

2.4.2. Degree distributions for LT code

If we repeat each code symbol that has an independently selected degree from a

degree distribution, the degree dispersal of all d, ρ (d) is the likelihood that an code

symbol has degree d. Here, we are supposed to create the arbitrary performance of

the LT procedure which is totally defined by the degree distribution ρ (・), the

number of code symbols K, and the number of input symbols k. Our objective is to

design degree distributions that meet the following two design goals.

As few code symbols as possible in the medium are needed to ensure the completion

of the LT procedure. Repeating the number of code symbols, which ensures success

of the LT procedure resembles the number of code symbols that assure complete

recovery of the data. The medium degree of the code symbols is as low as possible.

The normal degree is the number of a symbol’s processes on average it takes to

produce an code symbol. The average degree times K is the number of symbol

processes on average it takes to recuperate the whole data.

Here, we will see how to design ρ (D) to achieve the given conditions.

2.4.2.1. All-at-once distribution

For ρ (1) = 1, the degree distribution is named as All-At-Once and every code

symbol has a degree of accurate 1 and thus krec = K. Henceforth, all the input

symbols are added to the wave at once. Also, we observe that each symbol has a

minimal degree of 1, thus the amount of processing of each distinct symbol is

negligible. Nevertheless, the total number of code symbols required is unnecessarily

excessive, i.e. k ln(k/δ). Consequently, this kind of delivery is never used in practice.

23

2.4.2.2. Ideal soliton distribution

The major aim of this delivery is to keep krec as low as possible by following to the

stated total degree of K. One outcome from being the total of degrees that is at least

k.ln (k/δ) to conceal all input symbols. This is the traditional approach of ideal

soliton circulation. It allows to use just above k code symbols with a total degree of

k.ln(k/δ) in order aptly to cover k input symbols. This will make sure that the whole

number of code symbols transferred is lowest and also the total processes to decipher

the incoming vector is also less, for the provided number of input symbols and

failure likelihood. The Ideal Soliton circulation upholds the wave size through the

decoding procedures, equal to 1. For example, with each repetitive step one symbol

is done and precisely one symbol is attached to the wave. This behaviour can be

expressed by the following equation:

  
 

1 / 1

1 / 1 1, 2, ,

K for d

d

d d for d K







  







(2.39)

2.4.2.3. Robust soliton distribution

Robust soliton distribution tries to enhance best soliton distribution in this method

describe a new division which is as follows:

 R= C. K .ln (K /δ) (2.40)

Here C and δ shows two limitations. The mean of degree distribution relies on C

parameter. That shows the likelihood of low degrees can be upsurge, when we

choose C as a small value. δ this parameter signifies the failure likelihood of the

decoder to rebuild the real data. This distribution as follows:

  
 

1 / 1

1 / 1 1, 2, ,

K for d

d

d d for d K







  







(2.41)

  

   

 

/ 1,2,3, / 1

 / / /

0

()

R dK d K R

d R ln R K d K R

else



  

 







(2.42)

The standardization factor is:

24

  )
1

(()
K

d d
d

   


(2.43)

Then the Robust Soliton Distribution (RSD) is:

    (() /)
RSD

d d d      (2.44)

2.4.2.4. Sparse distribution

This study presents the possibility to optimize degree distributions by evolutionary

process. In the optimization framework, the context of enormous search space is a

key issue. The issue dimensionality is compared to the source data size k since an

individual should represent the likelihood on each degree from 1 to k. It is not easy to

manage too many variables even though k reaches into hundreds. Adopting a sparse

degree delivery is a substitute solution which often used in LT codes optimization. In

a sparse degree distribution, non-zero likelihoods distribute on only partial degrees,

which are predefined by a set of tags. The set of tags is a subset of all degrees and

used to bound the search in a sub-space whose size is much less than full degrees.

  
2 3 40.008 0.494 0.166 0.073

5 8 9 19 650.083 0.056 0.037 0.056 0.025

x x x x
x

x x x x x

  
 

   

 (2.45)

The index of x is the degree and the value which is in front of x is the likelihood of

the degree.

2.4.3. Decoding of Luby transform (LT) code

This segment presents two techniques which are used in LT decoding to rebuild the

data bits. The first is a hard decoding approach and used the data transient technique

and the second method known as soft decoding process based on likelihood changing

among variable knot and check knot.

2.4.3.1. Hard decoding Algorithm

While introducing the invention of LT codes, Luby presented a data passing

decrypting process to these erasure codes. The data passing approach is toughest

25

decoding scheme, which can be very fast and effective. We call LT codes with

Robust soliton distribution under data passing decoding, conventional LT codes or

Luby’s LT codes. There are two types of data passing decoding with the LT code:

serial decoding, and parallel decoding.

2.4.3.1.1. Serial decoding

The serial decoding procedure of LT codes is as follows:

Step 1: Find one v-knot of degree 1 and allocate its symbol value to its neighboring

s-knot. The v-knot is now said to have been released, no longer useful and the

neighboring s-knot is improved. At the same time, the edge incident on this v-knot is

removed, which is equal to delete a corresponding row from the producer matrix

reputable by the decoder.

Step 2: The value of the newly reinstated s-knot is XORed to the rest of its

companions and its edges are then detached from the graph, i.e., the column

corresponding to the improved source symbols is deleted from the generator matrix.

Step 3: If all the s-knots are recovered, the decoding is done and fruitful. Otherwise,

repeat from Step 1. If there is no degree-1 v-knot and the decoding is not done, c flag

failure.

2.4.3.1.2. Parallel decoding

Parallel decoding can be employed as easily as a serial technique but with faster

performance. An example of parallel data passing decoding of an LT code is given in

Fig.5. The code dimension is 𝑘 = 4 and the number of received packets is 𝑛 = 7, so

an (𝑛, 𝑘) = (7,4) truncated LT code is measured at the receiver. Suppose the producer

matrix of the truncated LT code is G given by Eq. (2.46). Because a packet is

equivalent to a symbol which can be presented with a bit order whose size ranges

from one bit to multiple bits, for simplicity we set the symbol size to be one bit. Let

assume the received encrypted symbols are [1 0 1 1 0 1 1]. It takes four iterations to

26

restore the four source symbols [0 0 1 1] in the serial manner, but it needs only two

iterations to finish the parallel decoding.

1 1 0 1 0 0 0

0 0 1 1 0 0 1

1 0 0 1 1 0 0

0 0 1 0 1 1 1

G

 
 
 
 
 
 

(2.46)

First iteration

1 2 3 4

v1 v2 v4 v5 v6 v7v3

0111001

1 2 3 4

v1 v2 v4 v5 v6 v7v3

00 1

1101101

??

Recover s1 and s4 with the values of v2 and v6,
respectively, whose degrees are 1.

S-node

Update the neighbors of s1 and s4 by XORing
their values to their neighbors.

S-node

10 ? ?

The second iteration – end of decoding

1 2 3 4

v1 v2 v4 v5 v6 v7v3

0111001

Recover s2 and s3 with the values of v3 (or v7)
and v1 (or v5), respectively, whose degrees are
1.

10 0 1

S-node 1 2 3 4

v1 v2 v4 v5 v6 v7v3

0110001

Update v4 the neighbor of s2 and s3 by XORing
their values to it.

10 0 1

S-node

Figure 5: Parallel decoding of LT decoder

2.4.3.2. Soft decoding algorithm

Though various distinctive techniques used for the deciphering of block codes can be

employed for the decoding of LT codes, the well-known belief propagation (BP)

procedure is most favoured by many researchers [28-33]. The BP approach uses data

transferring logic between check knots and variable knots in the Tanner graph. Data

exchanged between check and variable knots in a repetitive process until complete

deciphering occurs. LDPC codes are signified by Tanner graphs with one class of

variable knots which represent the data symbols. LT codes, on the other hand, have

27

two classes of variable knots. One of which presents the data symbols and the other

showing the position of the data symbols, including symbol indices which are used in

the encoding operation liable on the degree of these symbols. The first one presents

the data knots and these knots are not communicated, there are no data flows in the

channel. The second one is delivered over the channel which presents the code

variable knots.

Let gi,j be the value of i row and j column in the generator matrix G . Some

parameters of the BP algorithm are as follows:

L(v) ={ l: gv l =1} : the set of code positions that participate in the v-th check

equation.

V(l) ={ v: gv l =1} : the set of check positions in which code position l participates.

v,

y

lq : The likelihood that the value of variable knot l is y, given the information found

via the check knots other than check knot v.

,

x

v lr : The likelihood that a check knot v is pleased when variable l is fixed to a value

y and given the information obtained via the variable knots other than variable knot l.

In the following, a binary broadcast over an AWGN channel is expected. Moderated

symbols are transmitted over an AWGN channel and

 denote received symbols where n(i) is Gaussian white noise, which is self-

governing and obeys normal distribution η (0,σ
2
).

Initialization

Since the receiver obtains only the encoded variable knots which are communicated

over the channel, the initial knowledge of source symbols is zero. For l 1, 2 , L ,K ,

initialize the priori probabilities of the knots of source symbols:

1 2 0 1(1/1 exp (2 /)) & (1)p r p p
l l l

     (2.47)

28

For every (l,v) , such that gv,l =1

 &1 1 0 0
v, v,

q p q p
l l l l
 

(2.48)

Data crossing via the source symbols and encrypting symbols of LT code are

considered variable knots with which to deal with.

Step 1: Bottom-up (horizontal): For each (l,v), compute 1

, ,&v l v lr r and 0

,v lr .

1 0(1) / 2& (1) / 2
, , , ,

r r r r
v l v l v l v l

    

(2.48)

Step 2: Top-down (vertical): For each (l,v), update the values of 1 0

, ,&v l v lq q and

normalize:

 v', v',

1 1 1 0 0 0

, ,

' ()\ ' ()\v

&
l lv l l v l l

v V l v v V l

q p r q p r
 

  

(2.49)

1 0

, ,1/ ()v l v lq q 

(2.50)

1 1

, , *v l v lq q 

(2.51)

0 0

, , *v l v lq q 

(2.52)

For each l, calculate the a posteriori probabilities:

 v',

1 1 1 0 0 0

() ()
vl ll l l l

v V l v V l

q p r q p r
 

  

(2.53)

Finally, the hard decision approach is used to rebuild the data as follows:

If 1

lq > 0

lq , the bit is 1 otherwise the bit is zero.

2.5. Raptor Codes

A Raptor code [36] is an extension lead of an LT code, but it can accomplish linear

difficulty with data passing deciphering. Raptor codes have been assumed by The 3
rd

Generation Partnership Project (3GPP) , a teamwork contract that was carried out in

December 1998. Within the framework of 3GPP, Raptors codes are used for

dependable data delivery in mobile wireless broadcasting and multicasting.

Moreover, Raptor codes are concatenated codes.

29

2.5.1. Raptor encoding

Raptor codes are concatenated codes. A diagram of overall Raptor encoding is shown

in Fig.6. The source data symbols are first pre-coded by an outer code C. The

outcome symbols of the pre-code are known as midway symbols which are the input

symbols of an inner LT code. The pre-code is a stable rate erasure code usually with

a fairly high rate. The pre-code can be multistage, i.e., the pre-code can be a

concatenation of multiple fixed rate erasure codes. The inner LT code is sometimes

called a weakened LT code [37].

Message bits

Intermediate symbols

Encoded symbols

Pre-coding

LT-encoding

Figure 6: Raptor encoding diagram.

A Raptor code can be signified by (k, C, ρ(𝑥)), where k is the number of source

symbols and Ω(𝑥) is the polynomial of the encoded symbol degree distribution that

the inner LT code takes on the intermediate symbols. ρ(𝑥) is specified as

 () d

dd
d x 

 (2.54)

where, d is the selected degree of the LT encrypted symbol and ρ 𝑑 is the likelihood

that the value d is chosen. The average degree of the encoded symbols is equal to

 1 , where
'()x is the derivative of ()x with respect to x.

30

2.5.2. Raptor decoding using belief propagation

The iterative data passing procedure is executed on two matrices: the producer

matrix of the inner LT code, and the equality-check matrix of the outer erasure code.

The intermediate symbols are not only the v-knots of the Tanner graph of the

equality-check matrix of the pre-code’s, but also the s-knots of the generator matrix

LT code. The LT decoder passes updated decoding data to the pre-code decoder and

hard decisions are made on the output of the pre-code decoder. If the highest allotted

number of iterations ends and if all the interstitial symbols have obtained non-zero

values, the decoding is successful. There are two types of data-passing approaches

for Raptor codes [38]. In the first method, the LT decoder applies a data-passing

algorithm to recover as many intermediate symbols as possible until the LT decoding

is halted by a stopping set. The values of the recovered intermediate symbols are then

passed to the v-knots of the Tanner graph of the equality-check matrix of the pre-

code and the outer decoder restores the remaining intermediate symbols. This

method is a local-iteration scheme. The second method is a global-iteration scheme.

Each decrypting step consists of two phases: first on the LT code and the other on the

pre-code. At the end of either stage, the updated values of the intermediate symbols

are passed to the other decoder. The inventor of Raptor codes, Shokrollahi, stated in

[36] that the pre-codes for good raptor codes are generally of high rates. The higher

the pre-code rate, the fewer intermediate symbols are created. Therefore, with an

identical Raptor code rate, a greater proportion of intermediate symbols can be

restored by an identical inner LT code and then the error performance is accordingly

improved.

2.5.2.1. Local-iteration decoder

A local-iteration decoder for binary Raptor codes is shown in Fig 7. At the receiver

side, the fountain code is a shortened version, i.e., it is a fixed rate code at a time.

Suppose right now 𝑛 Raptor encoded bits have been composed at a user terminal to

improve 𝑘 source bits.

31

r 3

r n-1

r n

.

.

.

.

.

.
v N-k

.

.

.

.

.

.

.

.

.
.

.

.

I N

I N-1

I 2

I 1

c 1

c 2

c N-k

r 2

r 1

v N

v 2

v 1 m 1

m 2

m N-k

m N

Received bit Check node

LT decoder

Intermediate bits

Check node

LDPC decoder

Variable node LT generator matrix Pre-code Low density parity

check matrix

Figure 7: Raptor local-iteration decoder configuration

The corresponding decoder configuration is represented by Fig 7. The pre-code is

already known by the decoder, so the Tanner graph of the equality check matrix 𝐇 of

the pre-code is usually set up in advance. The Tanner graph of the inner weakened

LT code’s generator matrix 𝐆 can be built on the fly. The incoming output bits 𝑟1, ,

𝑟𝑛 are associated one-to-one to the c-knots of the LT Tanner graph. The rate 𝑘⁄𝑁 pre-

code C is an LDPC code. The two columns of v-knots 𝑣1,⋯, 𝑣𝑁 and 𝐼1, ⋯ , 𝐼𝑁 are the

same set of intermediate bits distinctly for the two Tanner graphs. With packet

erasure fountain code, 𝑣𝑖 hands in its final decoding data (some LLR) 𝑚𝑖 to 𝐼𝑖 once

the LT decoding is halted by a stopping set. However, for a Raptor code with soft

decoding over an AWGN channel, 𝑣𝑖 does not pass 𝑚𝑖 to 𝐼𝑖 until the maximum

allocated number of LT decoding iterations is finished. The LDPC decoder takes the

decoding data from the LT decoder as observed LLRs. 𝑐1, ⋯ , 𝑐𝑁−𝑘 are the c-knots of

the Tanner graph of the equality check matrix of the pre-code. The LDPC decoding

is terminated when a valid code word output from hard decision on 𝐼1, ⋯ , 𝐼𝑁 or the

maximum assigned number of LDPC decoding iterations are exhausted. Siva

32

Subramanian and Leib [38] introduced a concise and complete algorithm of local-

iteration Raptor decoding. In the Raptor decoder, we denote decoding data by 𝑚 and

the decoding repetition by the superscript. In the inner LT code, we denote an

accepted encoded bit by 𝑟 and its LLR value by 𝐿. The LLR data sent from a v-knot

𝑣 (an intermediate bit) to an encoded bit 𝑟 (a c-knot) is presented by 𝑚𝑣, and 𝑚𝑟, is

the deciphering data sent from a c-knot to a v-knot 𝑣. The data passed from the LT

decoder to the LDPC decoder is denoted by 𝑚𝑖 with 1 ≤ 𝑖 ≤ 𝑁. In the pre-code

decoder, mi,c, is the data sent from the v-knot 𝐼 (the intermediate bit) to the c-knot 𝑐,

and 𝑚𝑐, is the data sent from the c-knot 𝑐 to the v-knot 𝐼. The local-iteration

decoding starts with the LT decoder, transmitting the data from the v-knots to the c-

knots and then transferring the data back to the v-knots. At the start of iteration 0, all

data are originated to zeros, except for the experiential log likelihood ratios on the

accepted encoded bits. At each iteration step, v-knots send data to c-knots and then c-

knots feedback updated data to v-knots. The on-going LLR information is updated as

follows [40]:

''

()

(1),

,

0 0

0

l

lv r

r vr r

l
m

m l




 



 (2.55)

And

 ''

() 1 ()

, ,
2 tanh tanh(/ 2) tanh(/ 2)l l

r v v rv v
m L m


 
 

 (2.56)

where tanh(∙) and tanh
−1

(∙) are the hyperbolic tangent function and the inverse

hyperbolic tangent function, '

(1)

,

l

r v
m  is the LLR data sent to an intermediate bit at the

already existing repetition from all its surrounding received bits except for 𝑟, and

()

,

l

v rm is the LLR data sent to a received bit from all its surrounding intermediate bits

except for 𝑣. After the LT decoding is terminated by a preventing set, or the allocated

number 𝑝 of LT reiterations are ended, the final LLR data of a transitional bit is

specified as

()

,

p

i r vr
m m

(2.57)

Here 𝑟 is the group of incoming bits surrounding the 𝑖-th transitional bit. Taking 𝑚𝑖

as observed LLR information from the channel, the LDPC decoder works with

iteration 0. Similarly to the LT decoder, all data are originated to zeros with

33

exception of the received 𝑚𝑖 from the LT decoder. Each time in the repetitive

process, the v-knots send data first and then receive rationalized info from c-knots.

The LDPC decoder acts with given update instructions below [39]:

''

()

, (1)

,

0

0

il

I c l

ic Ic c

m l
m

m m l




 

 

(2.58)

 ''

() 1 ()

, ,
2 tanh tanh(/ 2)l l

c I I cI I
m m


 
 

(2.59)

Where the (1)

'
,

l

c I
m  LLR information is transmitted to a transitional bit at the earlier

repetition from all its surrounding c-knots excluding 𝑐, '

()

,

l

I c
m is the LLR info sent to a

c knot from all its surrounding interstitial bits with the exception of 𝐼. Finally, each

pre-code repeats the decoding that can make hard choices on the transitional bits.

With the sign function sgn (∙), the hard decision on the these v knots at repetition 𝑙 is

provided by the column vector:

()

,sgn() 1 / 2l

i c I ic
w m m     

(2.60)

It is to be noticed that small bits of 𝒘 may be 0.5’s because the current LLR values

of these transitional bits are still 0’s. Henceforth, the decrypting still desires to

remain. While all the entries of 𝒘 are 0’s or 1’s, the result can be confirmed as done.

 Hw b (2.61)

With the packet adjusting fountain code, subsequently the log-likelihood ratio data

are ±∞ or 0, 𝒘 is surely correct if 𝑤𝑖 ∈ {0,1}. With a lenient decoding fountain code,

if 𝒃 = 𝟎, 𝒘 is a code word and the decoding of the pre-code endures and ends; if 𝒃 ≠

𝟎, the pre-code decoding desires to endure until the repetition threshold 𝑞 is grasped.

If the decoder cannot output a codeword at the termination reiteration 𝑞, it may

announce that the decoding is unsuccessful and gather extra encoded bits to endure

decoding.

2.5.2.2. Global-iteration decoder

A global-iteration decoder for binary Raptor codes is shown in Fig. 8. This decoder

configuration works for both packet erasure correcting and bit error correcting

fountain codes. The global-iteration decoder is almost identical to the local-iteration

34

decoder. The only difference is that, with the alternating global-iteration scheme, the

LT decoder and the pre-code decoder hand over their updated LLR data of the

intermediate bit to each other at the end of every one of their own iterations. These

exchanged data are also viewed as observed LLR’s for the decoders.

r 3

r n-1

r n

.

.

.

.

.

.
v N-k

.

.

.

.

.

.

.

.

.
.

.

.

I N

I N-1

I 2

I 1

c 1

c 2

c N-k

r 2

r 1

v N

v 2

v 1

Received bit Check node

LT decoder

Intermediate bits

Check node

LDPC decoder

Variable node LT generator matrix Pre-code Low density parity

check matrix

1

,v lm

1

,l vm

2

,v lm

2

,l vm

1

,

N

v lm 

1

,

N

l vm 

,

N

v lm

,

N

l vm

Figure 8: Raptor global-iteration decoder configuration

Siva Subramanian and Leib [38] [41] and Huang et al. [42] offered the particulars of

global-iteration decoding of Raptor codes. Yet again, a rate of 𝑘⁄𝑛 Raptor code at an

arbitrary station at a rate of 𝑘⁄𝑁 LDPC pre-code is reflected, as presented in Figure 9.

The measured significations are similar to those used with the local-iteration,

excluding the data directed from 𝑣𝑖 to 𝐼𝑖, which is signified by ,

i

v Im and the data fed

back from 𝐼𝑖 to 𝑣𝑖 by ,

i

v Im . In the beginning, all data are originated to zeros, with

exception of the experiential channel data on the composed encoded bits. The data

update instructions are assumed as follows:

35

''

()

(1) (1),

,,

0 0

0

l

l lv r

I vr vr r

l
m

m m l 




 

 

(2.62)

 ''

() 1 ()

, ,
2 tanh tanh(/ 2) tanh(/ 2)l l

v r v rv v
m L m


 
 

(2.63)

() ()

, ,

l l

v I r vr
m m

(2.64)

''

()

,()

, (1) (1)

,,

0

0

l

v Il

I c l l

v Ic Ic c

m l
m

m m l 



 
 

 

(2.65)

 ''

() 1 ()

, ,
2 tanh tanh(/ 2)l l

c I I cI I
m m


 
 

(2.66)

And

() ()

, ,

l l

I v c Ic
m m

(2.67)

In this circling procedure, the decoder can make tough decisions on the interstitial

bits at the end of the pre-code decoder:

()

,sgn() 1 / 2l

i c I ic
w m m     

(2.68)

Once more, certain entries of 𝒘 may be 0.5’s, since the consistent transitional bits

have not acquired non-zero LLR values. Thus, the decoding requests to endure until

the maximum number of repetitions are drained. The result can still be confirmed

over Eq. (2.61).

36

CHAPTER 3

NEW DEGREE DISTRIBUTION AND MODELING RESULTS

3.1. New Degree Distribution Implementation

In this chapter, a new degree distribution is discussed, and the Luby transform (LT)

codes are implemented for various degree distributions over Preservative White

Gaussian Noise Channels AWGN. The MATLAB program is used to deploy

proposed codes and the new degree distribution. A Bit Error Rate (BER) against the

signal-to-noise ratio (SNR) is accepted to amount the presentation of the Luby

transform (LT) code with the new degree distribution.

3.1.1. Exponential distribution

Here, two independent operations in Fig. 9 are used to perceive the degree of the

likelihood values. This independent operation presents two levels of likelihood

values: the first presents a high likelihood level when we compare it with the second.

To begin, allocating a likelihood of degree one less than the likelihood of degree two

to confirm low redundant degree packets are sent. This leads to more effective

communication. After that, we select the likelihood of degree two from the first

exponential and the likelihood of degree three from the second dependent values

respectively and repeat this process for all degrees until obtaining all degree

likelihoods. We can write the dependable degree as in Eq. (3.1) thus

(3.1)

Then, standardization is used to this degree as in Eq. (3.2) as follows:

 

exp1 (d) () 2, 4,6,...

exp 2() () 3,5, , 1

for d even number K

d

d for d odd number K



 



   







37

 ()
1

K
X d

d
 



(3.2)

Finally, the exponential degree distribution is as in Eq. (3.3) follows:

 () /d X
RD

 

(3.3)

Figure 9: Exponential degree distribution

3.1.2. Random degree distribution

This degree shows the customization of spars degree distribution. Random degree

distribution can generate as follows:

1. In the first, random numbers x are generated with range from 1 to K-1.

 x 1,2,3,4,5,6, ,K-1  (3.4)

When K represents the length of message. In ours case K=1000 and this means the

range of generated numbers is equal to (1-999)

38

2. After that, tags numbers R are selected from x values and these tags are

chosen as multiples of the number five depends on the next Eq. (3.5).

  
 () 5 : 5 : K 5

R i
0

x i i

else

  
 


 (3.5)

3. The probabilities of these tags rP are computed as Eq. (3.6) follows :

    rP i R i / K (3.6)

4. The probability values of degree one and degree K are calculated in same

manner as in ideal soliton distribution algorithm and those degree as follows:

  r P 1 1/ K (3.7)

    r 1 / 1P K KK  (3.8)

5. Normalization factor is used as follows:

1

()
K

r

i

Z p i


 (3.9)

6. Finally, calculate the random distribution dsR by using Eq. (3.10) follows:

 /ds rR P Z (3.10)

Figure 10: Random degree distribution

39

3.1.3. Gaussian distribution

A Gaussian degree distribution is presented in Fig. 11. The Gaussian distribution

curve is attained by using Eq. (3.11). The Gaussian distribution curve is recurrent

many times with the size of the degree axis. From the modeling outcomes in Fig. 16,

we observe that when we increase the number of curve repetitions along the degree

axis, better performance is gained. In contrast, increasing the number of curves

reiterating means that growth in the mean degree distribution and many bits will take

high likelihoods.

2 2() /(2)1

()
2

xf x e  

 

 

(3.11)

Where  is the mean value and 2 presents the variance. In this simulation, we set

the mean to zero and the variance to 1.

Figure 11: Gaussian distribution

40

3.2. Modeling Results

The employment of a variety of rate-less codes over Additive White Gaussian Noise

Channels (AWGN) is achieved in this section. Luby transform code (LT) is

examined with all the new degree distributions which are obtainable in this chapter.

In this method, we associate the impact of two types of degrees on the performance

of the LT code.

3.2.1. Low density equality check code (LDPC)

Firstly, we present the simulation result for the LDPC code in Fig. 12 which is used

as a pre-code in a raptor code.

Figure 12: LDPC code performance

Fig. 12 shows an LDPC code presentation with a rate of ½. The size of the code

word is N=1032 and data bits is K=516 and by using a BPSK modification over the

AWGN channel, with 20 repetitions and a signal to noise ratio change from 0 to 9.

41

3.2.2. Raptor codes

In this type of code, two codes are concatenated. The first one involves one stage of

pre-code (LDPC) and the second one is LT code with two parameters c=0.1, and

0.05  with robust soliton distribution as already discussed in Chapter 2. The two

decoding methods are achieved in a raptor code decoder (local-iteration decoder

and global iteration decoder). The presentation of two decoding schemes is the

main reason for presenting this chapter with a comparison between the results of

these methods.

3.2.2.1. Local-iteration decoder

Figure 13: Raptor code performance using local-iteration decoder

Fig. 13 introduces raptor codes with a local-iteration Decoder with a pre-code LDPC

at a rate of ½ and an inner Luby transform code (LT). The length of the Raptor

codeword is N=1416 and message bits is K=516. BPSK modulation over an AWGN

42

channel, in 20 iterations and at a signal-to-noise ratio (SNR) in dB varying from 0 to

7 is used.

3.2.2.2. Global-iteration decoder

Fig. 14 shows the performance of raptor codes with Global-Iteration Decoder with

pre-code LDPC at a rate of ½ and the internal Luby transform code (LT). The size of

the raptor codeword is N=1416 and data bits K=516 using a BPSK modulation over

an AWGN channel, with 20 repetitions and a signal to noise ratio SNR in dB varying

from 0 to 7.

.

Figure 14: Global-iteration decoder

43

3.3. LT Code Modeling Result

This section is a review of the Luby transforms code with impacts of various degrees

and relates these degree impacts on presentation of this code over an AWGN

channel.

3.3.1. LT code with robust soliton distribution

This degree relies on two limitations, c and δ, as explained in Chapter 2. In this

modeling, we take c=0.1 and δ=0.05. Fig. 17 shows the performance of the LT code

adapting with robust soliton distribution and a signal-to-noise ratio (SNR) varying

from 0 to 7 dB. We send 100 frames per SNR and each frame contains upwards of

1400 bits accepted with BPSK alteration and is transmitted over an AWGN channel.

3.3.2. LT code with spars degree distribution

This degree is used to optimize LT code performance. The sparse degree is adapted

to the LT code Fig. 18 and we can observe the performance of this degree. It reaches

10
-5

 in signal-to-noise ratio (SNR) equal to 7 dB. This modeling is implemented over

an AWGN channel and a BPSK modulation is used in this modeling. This degree is

based on the selection tags from all degrees and this degree is based o on Eq. (2.45)

3.3.3. LT code with exponential degree

A dependable degree is accepted to LT code in Fig. 15 and we can analyse the

process of this degree. It reached 10
-5

 in signal-to-noise ratio (SNR) which is equal to

6 dB. This imitation is applied over an AWGN channel and a BPSK modulation is

utilized.

44

Figure 15: LT with exponential degree

3.3.4. LT code with gaussian degree distribution

Gaussian degree adapts to LT code in Fig. 16 and we can assume the behavior of this

degree. It reaches 10
-5

 in signal-to-noise ratio (SNR) equaling 6 dB. This imitation is

used over the AWGN channel and a BPSK inflection is applied.

45

Figure 16: LT code with Gaussian degree distribution

3.3.5. Comparative between normal and new degree

Random degree is accomplished to LT code Fig. 77 where it is assumed that there is

a difference between the arbitrary degree distribution effects and the robust degree

distribution effects on LT code performance. The LT code with arbitrary degree

distribution reaches the value 10
-5

 dB in signal-to-noise ratio (SNR) equalling 6 dB

and the LT code with the robust soliton distribution reaching the same value in SNR

which is 7 dB.

46

Figure 17: LT code with random degree and robust soliton distribution

Figure 18: LT code with random degree and spars degree distribution

47

Fig. 18 demonstrates the difference between the random degree distribution impact

and spars degree distribution impact on the LT code presentation. From the result, we

can see the LT code with an random degree distribution approaching the value 10
-5

dB in signal to noise percentage (SNR) equal to 6 dB and LT code with a sparse

degree distribution approach a similar value in the SNR equal to 7 dB.

48

CHAPTER 4

CONCLUSION AND FUTURE WORKS

4.1. Conclusion

This thesis focused on noisy decoding of rateless code using hard and soft decision

decoding methods. Rateless codes were originally invented for binary erasure

channels. Rateless codes are used in many applications nowadays, particularly in

broadcast and multicast services or in digital communication. Rateless codes are the

appropriate choice because they ensure reliable data transmission. The decoder of

rateless code can reconstruct the source packet without depending on a channel

coefficient or the manner of this channel. In this thesis, the two rateless code models

are illustrated in a general form for Raptor codes, LT codes and LDPC codes. We

tested LDPC code with the effective linear time encoding method (Lower Triangular

Modification Approach). Two types of decoding algorithm, namely classical belief

propagation and logarithmic likelihood ratio, are adapted to these codes. We have an

exhibit Raptor code with one stage of pre-code and use LDPC code as a pre-code. On

the decoder side, two decoder techniques, namely the local iteration decoder and the

global iteration decoder, are proposed for the raptor code. We proposed LT code with

a different degree distribution. In this dissertation, new degrees of Luby Transform

code distribution are developed after detailed studies with implementation in the

AWGN channel. Furthermore, comparisons are made between these degree

distribution effects on the performance of LT code over the AWGN channel in

Chapter Three. LT code gave better performance when new degree distributions are

adapted to it.

49

4.2. Future Works

In this work, we use belief propagation to decode these codes and this method

sometimes suffers from high error floors at high SNR. The MAP decision algorithm

is another idea to recover data in the decoder of these codes. Yet another idea would

be rateless convolutional code, which is block code and its implementation over

AWGN channels.

R1

REFERENCES

1. Shannon C. E., (1948), “A Mathematical Theory of Communication”, Bell

System Technical Journal, vol. 27, pp. 623- 637.

2. Wozencraft J., Reiffen B., (1961), “Sequential Decoding”, Massachusetts

Institute of Technology Press, Cambridge, USA, pp. 130-138.

3. Coffey J. T., Goodman R. M., (1990), “Any Code of Which We Cannot

Think Is Good ”, IEEE Transactions on Information Theory, vol. 36, no. 6,

pp. 1453-1461.

4. Berrou C., Glavieux A., Thitimajshima P., (1993), “Near Shannon Limit

Error Correcting Coding and Decoding: Turbo-Codes”, in Proceedings IEEE

International Conference on Communications ICC, vol. 2, pp. 1064-1070.

5. Berrou C., Glavieux A., Thitimajshima P., (1996), “Near Optimum Error

Correcting Coding and Decoding: Turbo-Codes”, IEEE Transactions on

Communications, vol. 44, no. 10, pp. 1261-1271.

6. Burr A., (2001), “Turbo-Codes: The Ultimate Error Control Codes”,

Electronics and Communication Engineering Journal, vol. 13, no. 4, pp. 155-

165.

7. Gracie K., Hamon M. H., (2007), “Turbo and Turbo-Like Codes: Principles

and Applications in Telecommunications”, Proceedings of the IEEE, vol. 95,

no. 6, pp. 1228-1254.

8. Gallager R., (1963), “Low-Density Parity-Check Codes”, Massachusetts

Institute of Technology Press, Cambridge, USA, pp. 168-195.

http://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
http://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
http://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
http://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology

R2

9. MacKay D. J. C., Neal R. M., (1996), “Near Shannon Limit Performance of

Low Density Parity Check Codes”, Electronics Letters, vol. 32, no. 18, pp.

1645-1646.

10. MacKay D. J. C., (1997), “Near Shannon Limit Performance of Low Density

Parity Check Codes”, Electronics Letters, vol. 33, no. 6, pp. 457-458.

11. MacKay D. J. C., (1999), “Good Error-Correcting Codes Based on Very

Sparse Matrices”, IEEE Transactions on Information Theory, vol. 45, no. 2,

pp. 399-431.

12. Wiberg N., Loeliger H. A., Kötter R., (1995), “Codes and Iterative

Decoding on General Graphs”, Euro. Transactions Telecommunication, vol.

6, pp. 513-525.

13. Wiberg N., (1996), “Codes and Decoding on General Graphs”,

PHILOSOPHIAE DOCTOR, Department of Electrical Engineering,

Linköping university, Sweden, pp. 30-50.

14. Sipser M., Spielman D. A., (1994), “Expander Codes”, Department of

Computer Science, IEEE 54
th

Annual Symposium on Foundations of

Computer Science, pp. 566-576.

15. Sipser M., Spielman D. A., (1996), “Expander Codes”, IEEE Transactions

on Information Theory, vol. 42, no. 6, pp. 1710-1722.

16. Richardson T., Urbanke R., (2008), “Modern Coding Theory”, Cambridge

University Press, New York, pp. 314- 325.

17. Chung S. Y., Forney J., Richardson T., Urbanke R., (2001), “On The

Design of Low Density Parity-Check Codes Within 0.0045 dB. of The

Shannon Limit”, IEEE Communications Letters, vol. 5, no. 2, pp. 58-60.

18. Richardson T., Urbanke R., (2001), “The Capacity of Low-Density Parity-

Check Codes Under Message-Passing Decoding”, IEEE Transactions on

Information Theory, vol. 47, no. 2, pp. 599-618.

R3

19. Aji S. M., McEliece R. J., (2000), “The Generalized Distributive Law”,

IEEE Transactions on Information Theory, vol. 46, no. 2, pp. 325-343.

20. Tanner R., (1981), “A Recursive Approach to Low Complexity Codes”,

IEEE Transactions on Information Theory, vol. 27, no. 5, pp. 533-547.

21. Bishop C., (2006), “Pattern Recognition and Machine Learning”, 1
st
 Edition,

Springer, California, pp. 359-422.

22. Byers J. W., Luby M., Mitzenmacher M., Rege A., (1998), “A Digital

Fountain Approach to Reliable Distribution of Bulk Data”, Association for

Computing Machinery Special Interest Groups Computer Communication,

vol.28, no. 4, pp. 56-67.

23. Mitzenmacher M., (2004), “Digital Fountains: a Survey and Look

Forward”, IEEE Information Theory Workshop, pp. 271-276.

24. Etesami O., Shokrollahi A., (2006), “Raptor Codes on Binary Memoryless

Symmetric Channels”, IEEE Transactions Information Theory, vol. 52, no. 5,

pp. 2033-2051.

25. Tanner R. M., (1981), “A Recursive Approach to Low Complexity Codes”,

Information Theory, IEEE Transactions on, vol. 27, no. 5, pp. 533-547.

26. Kschischang, F. R., Frey B. J., Loeliger H. A., (2001), “Factor Graphs and

The Sum Product Algorithm Information Theory”, IEEE Transactions,

vol. 47, no. 2, pp. 498-519.

27. Morelos-Zaragoza R. H., (2002), “The Art of Error Correcting Coding”, 1
st

Edition, Wiley, England, pp. 172-192.

28. Gallager R., (1962), “Low Density Parity-Check Codes”, Institute of Radio

Engineers Transactions Information Theory, pp. 21-28.

29. MacKay D. J., Neal R. M., (1995), “Good Codes Based on Very Sparse

Matrices”, In Cryptography and Coding, Springer Berlin Heidelberg, pp. 100-

111.

http://en.wikipedia.org/wiki/Category:Association_for_Computing_Machinery_Special_Interest_Groups
http://en.wikipedia.org/wiki/Category:Association_for_Computing_Machinery_Special_Interest_Groups

R4

30. Alon N., Luby M., (2001), “A Linear Time Erasure Resilient Code with

Nearly Optimal Recovery”, IEEE Transactions Information Theory, vol. 47,

no. 2, pp. 638-656.

31. Luby M., Mitzenmacher M., Shokrollahi A., (1998), “Analysis of Random

Processes Via and-or Tree Evaluation”, Proceedings of 9th Annual

Association for Computing Machinery-Society for Industrial and Applied

Mathematics Symposium on Discrete Algorithms, vol. 98, pp. 364-373.

32. Luby M., Mitzenmacher M., Shokrollahi A., Spielman D., Stemann V.,

(1997), “Practical Loss Resilient Codes”, Proceedings of 9th Annual

Association for Computing Machinery Symposium on Theory of Computing,

vol. 96, pp. 150-159.

33. Luby M., Mitzenmacher M., Shokrollahi A., Spielman D., (2001),
“Efficient Erasure Correcting Codes”, IEEE Trans. on Information Theory,

Special Issue on Codes and Graphs and Iterative Algorithms, vol. 47, no. 2,

pp. 569-584.

34. Xiaojing F., Zhou W., (2009), “Study on Belief Propagation Decoding

Algorithm of LDPC Codes”, Electronic Test, no.7, pp. 42-43.

35. Robert H., Zaragoza M., (2006), “The Art of Error Correcting Coding”,
Second Edition, John Wiley&Sons, pp. 204-206.

36. Shokrollahi A., (2006), “Raptor Codes”, IEEE Transactions Information

Theory, vol. 52, no. 6, pp. 2551–2567.

37. MacKay D. J. C., (2005), “Fountain Codes”, in Proceedings of IEEE

Communications, vol. 152, no. 6, pp. 1062-1068.

38. Sivasubramanian B. Leib H., (2008), “Fixed-Rate Raptor Codes Over

Rician Fading Channels”, IEEE Transaction Vehicular Technology, vol. 57,

no. 6, pp. 3905-3911.

39. McEliece R. J., MacKay D. J. C., Cheng J. F., (1998), “Turbo Decoding as

an Instance of Pearl's Belief Propagation Algorithm”, IEEE Journal on

Selected Areas in Communications, vol. 16, no. 2, pp. 140-152.

R5

40. Hu X. Y., Eleftheriou E., Arnold D. M., Dholakia A., (2001), “Efficient

Implementations of The Sum-Product Algorithm for Decoding LDPC Codes”,

Proceedings IEEE Global Telecommunications Conference, vol. 2001, pp.

1036–1036E.

41. Sivasubramanian B., Leib H., (2007), “Fixed-Rate Raptor Code

Performance Over Correlated Rayleigh Fading Channels”, Canadian

Conference on Electrical and Computer Engineering, pp. 912-915.

42. Huang W., Li H., Dill J., (2010), “Digital Fountain Codes System Model

and Performance Over AWGN and Rayleigh Fading Channels”,

In Proceedings International Conference on Computing, Communications and

Control Technologies, pp. 1-2.

 A1

APPENDICES A

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: KADHIM, Omar Raad Kadhim

Date and Place of Birth: 30 March 1987, Baghdad

Phone: +90 5312 460 774

Email: c1282557@student.cankaya.edu.tr

EDUCATION

Degree Institution Year of Graduation

M.Sc.
Çankaya Univ., Electronics and

Communication Engineering
2014

B.Sc.
Baghdad Univ., Electronics and

Communication Engineering
2008

High School Al Markzia School 2004

WORK EXPERIENCE

Year Place Enrollment

2009- Present
Ministry of Higher Education.

Al- Iraqi Univ.
Specialist

FOREIN LANGUAGES

Advanced English, Beginner French, Beginner Turkish

mailto:c1282557@student.cankaya.edu.tr

 A2

PUBLICATIONS

1. Kadhim O., “Degree Distribution Effects on Rateless Codes and Performance

of These Codes in AWGN Channel”, Progress in URSI Electronic and

Communication Research, Not Printed, Fırat University, Turkey, (2014).

HOBBIES

Football, Travel, Video Games

