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ABSTRACT 

 

 

 

EFFECTS OF DEGREE DISTRIBUTION IN RATELESS CODING 

 

 

 

KADHIM, Omar Raad Kadhim 

M.Sc., Department of Electronic and Communication Engineering 

Supervisor: Assoc. Prof. Dr. Orhan GAZİ 

 

September 2014, 49 pages 

 

 

In this thesis rateless codes which are adopted by a variety of applications such as, 

wireless transmission, 3GPP, data storage, multicasting, video streaming are 

inspected in details. The performance of two important types of rateless codes which 

are Luby Transform and Raptor codes are measured via computer simulations. Both 

hard decision and soft decision methods are used while measuring the performance 

of these codes. For the soft decision decoding Belief Propagation algorithm was used 

in an iterative manner. Degree distribution is an important criteria for the 

performance of Luby Transform codes. A new degree distribution called random 

degree (or exponential random) distribution is proposed for Luby Transform codes. 

And simulation results support that the proposed distribution shows better 

performance than the classical degree distributions such as all-at-once, ideal soliton, 

robust soliton, and sparse.  

Keywords: Rateless Coding, Luby Transform, Belief Propagation, Degree 

Distribution  
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ÖZ 

 

 

 

DERECE DAĞILIMININ ORANSIZ KODLAR ÜZERİNDEKİ ETKİLERİ 

 

 

 

KADHİM, Ömer Raad Kadhim 

Yüksek Lisans, Elektronik ve Haberleşme  Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Doç. Dr. Orhan GAZİ 

 

Eylül 2014, 49 sayfa 

 

 

Bu tezde kablosuz iletişim, 3GPP, veri depolama, video iletişim gibi günümüz 

iletişim teknolojilerinin birçoğunda kullanılan oransız kodlar detaylı olarak 

incelenmiştir. İki önemi oransız kod türü, Luby dönüşüm ve Raptor kodlarının 

performansları bilgisayar benzetimi yoluyla ölçülmüştür. Benzetim esnasında hem 

katı hem de yumuşak çözümleme algoritmaları kullanılmıştır. Yumuşak çözümleme 

için karar yayılımı algoritması kullanılmıştır. Derece dağılımı Luby dönüşüm 

kodlarının performansları önemli ölçüde etkilemektedir. Rasgele derece dağılımı 

adında yeni bir derece dağılımı önerilmiş ve performansı benzetim yoluyla 

ölçülmüştür. Elde edilen sonuçlar önerdiğimiz derece dağılımının hali hazırda 

literatürde var olanlara göre (ideal soliton, robust soliton, ve sparse) daha iyi 

performans gösterdiğini desteklemektedir. 

 

Anahtar Kelimeler: Oransız Kodlar, Luby Dönüşümü, Karar Yayılımı, Derece 

Dağılımı  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1.   Coding Theory: Classical vs. Modern Approach 

In 1948, an article about the mathematical theory of communication [1] was 

published by Shannon that presented the essentials of communication boundaries. 

The article explained the basic issues of transmission that regenerate at a point where 

either exact or estimated information was chosen at another point. A fundamental 

solution of this issue is somewhat instinctive and the chosen information can be 

encoded with redundant information. In such a case, if delivered information 

becomes corrupted due to noise, the redundant information will be sufficient to 

recover the genuine information. Here, two serious questions regarding designer’s 

code rose: the first is what type of redundancy will be feasible, and the second is in 

order to identify how much redundancy will be used. Both questions are essential in 

terms of theory as well as practice. With the assessment of the extra quantity required 

with regard to constantly regenerating the actual information on the receiver side, it 

is very necessary to know what the optimal use of these communication resources is. 

Therefore, all coding schemes are allocated defined numbers (this process is called 

information degree) which work in a genuine way to determine which parts of the 

delivered data are beneficial. In contrast, the descriptive question actually defines the 

coding scheme that is not only utilized for communication resources, but also 

sufficiently capable to encode and decode efficiently. Therefore, the code designer’s 

main function is to classify the coding structures with the highest possible data 

percentage that must contain: (a) a reduced likelihood of interpreting error, and (b) 

effectual encoding and decoding procedures. 
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He responded to the above questions by defining a certain parameter for information 

rate to ensure dependable communication even with the existence of noise in the 

channel. His results explained that there is a definite value Cap (C)   [0; 1] called 

the channel capability such as if only R < Cap (C) then reliable communication is 

possible. With the existence of these values, a trustworthy coding structure of data 

rate ensures R, such as the coding structure with very little likelihood of arbitrary 

error. However, Shannon's response was non-productive and based on likelihood. In 

response, another question was asked as to which coding schemes will be efficient 

enough to bring us near to that channel. For many years, coding theory has seen 

some unexpected improvements that include: deriving observations from several 

areas of arithmetic, engineering, and solving both theoretical and practical 

approaches. However, attaining an effective coding scheme is still not easy. 

According to Shannon, an arbitrary lined coding scheme is a methodology for 

channel capacity; however, this does not contain a sufficient number of 

characteristics to form an effective decoding path. This distinction among coding 

theories is best described by Reiffen and Wozencraft [2]: 

Any code that we can’t think of is better. 

This pointed towards the leading approach that has proved this claim in just a few 

attempts [3]. Before the early 90s, the response to the descriptive question with the 

introduction of Turbo codes has been revealed [4, 5]. Their originality was aligned 

within the utilization of the virtual arbitrary interleavers in encoding process and 

within a sensibly planned repetitive decoding process. Turbo codes found sufficient 

"arbitraryness" to the closest capacity method very similarly to arbitrary interleavers; 

however, it was capable of reserving adequate structure to permit effective encoding 

and decoding procedures. In reality, turbo codes that were introduced in the 

preliminary conference publication were banned by the arbitrators [6]. Nevertheless, 

today Turbo codes have become an essential part of day-to-day technology and make 

our lives easier as they can be found on 3G mobiles, and various communications 

standards such as IEEE 802.16 metropolitan wireless network standards [7]. After 

the turbo codes that delivered the preliminary motion to the model of data coding 

correction, the LDPC (low density equality check) coding approach was introduced 

by Gallager in 1963 [8], but soon forgotten afterwards and later rediscovered by 
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MacKay, Neal [9 10, 11], Wiberg [12, 13], Sipser and Spielman [14, 15]. LDPC 

codes were presented to have outstanding performance in comparison to large Turbo 

codes. Later on, LDPC codes and their repetitive decoding approach were 

extensively accepted and analyzed. The official knowledge of this new method 

resulted in the entire arena of modern coding theory [16] in contrast to the traditional 

coding theory that specifically handles the arithmetical production of codes. As an 

outcome, decoding methods and applied codes are very well known nowadays 

because they are amazingly close to the channel capacity [17], having outstanding 

low mathematical issues and actively responding to severe calculated assessment 

[18].  

1.2. Fundamental of Channel Coding 

The main purpose in channel coding is to deliver reliable data. For example, the 

arrangement of k symbols x = (x1; x2;…; xk) ∈ X
k
, that are components of a 

prearranged character X, diagonally is a channel with noise. In this regard, an 

encoding leads to the x arrangements to the code word y = (y1; y2; : : : ; yn) ∈ Y
n
 that 

later delivers and reduces by a noisy channel. The decoding process detects a 

sequence of disorganized values, such as a conventional character z = (z1; z2;…;zn) ∈ 

Z
n
  assessed y based on z. Vectors x, y and z acknowledge the arbitrary variables, X 

on X
k
, Y on Y

n
, Z on Z

n
, correspondingly. Subsequently, every xi, yi and zi is an 

awareness of scalar arbitrary variables Xi, Yi and Zi, one-to-one. Moreover, we 

usually consider that each Xi, Yi and Zi is self-governing and equally dispersed 

(i.i.d.) in a likelihood concept consistent operation PX (x) PY (y) and PZ (z), 

correspondingly. The association between Y and Z characters is demonstrated by a 

likelihood operation PZ | Y (z | y), which is conditional. 

 

In this study, the greater concern was with binary-input, low memory and symmetry 

(BIMS channels). A binary codeword Y is the basic symbol of these channels that 

showed either F2 = {0; 1} or set {-1; +1}. Each time the codeword value character {-

1; +1} is utilized, plotting 0 → +1, 1 →-1 is implied in this study. Furthermore, 

BIMS channels have no memory: the outcome of such channels is immediate and 
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only depends on its input data. Additionally, the symmetry situation infers that the 

outcome of the channel is symmetric to inserting data. This situation is too complex 

to describe when Y = F2. However, if model Y = {-1; +1} and Z ⊏ R, then the 

regularity situation is simplified:  

 Z|Y Z|YP (z|1) = P  (-z| - 1), z  Z.   (1.1) 

In the scenario of a low capacity channel C, the highest value of each data symbol 

that delivers codeword Y from codeword Z is known as the channel capacity: 

 Cap (C) = I (Y, Z) (1.2)  (1.2) 

Here, I(Y;Z) signifies the joint data between the Y and Z variables, and conveyed 

data in bits. Shannon demonstrated that at all code rates R < Cap(C), consistent 

broadcast is possible.  

1.3.  Linear Codes  

Binary linear codes are the most demanded channel codes having data values as the 

alphabet and the code word values, in which the alphabet is limited to F2. A dual 

lined coding structure can be seen as a lined plotting from the group of information 

2Fk  to the group of code words C ⊏ 2Fn ; here C formulates a k-dimensional route of 

2Fn . Characteristically, this dimensional route is called code, because it fetches the 

related structure of the coding scheme. This is denoted as (n; k) binary linear code, 

where n is the size and k is the dimension of the code, and its code rate R is distinct 

as k/n, unless stated, all vectors are activated. 

 

Linear codes are defined with a foundation set {g1; g2; : : : ; gk}, where gi ∈ 2Fn , that 

indicate the producer matrix illustration of a lined code. Specifically, an n×k matrix 

G is known as the producer matrix of code C if  

   c ∈ C ⟺∃ x ∈ 2Fk  : Gx = c (1.5) 

It is to be noticed that every matrix that formulates a foundation of C with columns is 

actually a producing matrix of C that offers a simple measurement of plotting data 

over the code words. Eventually, C can be specified ultimately with subspace C 

within 2Fn and its base {h1; h2; …; hn-k}. Given below, the C subspace is shown as 
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  ' '

2 : . 0nC c F c c c C       (1.6) 

Though it is possible to formulate the equality check matrix demonstration of a lined 

code, the A (n-k) ×n matrix H would be the equality check matrix of C if   

c ∈ C ⟺ Hc = 0 

Evidently, a matrix formed by rows based on C⊥ is called the equality check matrix 

of C. The dual subspace C⊥ of a linear (n, k) code C is an additional lined code with 

distance n and measurement n - k, of C. The transferred equivalence check matrix of 

C is the producer matrix of C ⊥ and the converse also holds true 

 

In fountain codes, transactions being performed by the coding system without fix 

percentage a priori.  Every row of the producer matrix produces rapidly and 

considered as an arbitrary variable 2Fk , whereas k is the measurement symbol. Thus, 

instantly j ∈ N, the origin encoder produces a solo encrypted symbol yj = vj and x ∈ 

2Fk , where vj is an arbitrarily selected row vector from 2Fk . In such an arrangement, 

the receiver detects the quantity of conventional word symbols zi1; zi2; :::; zin 

consistent with the transferred symbols yi1; yi2; :::; yin. This shows that the derived 

code (n; k) is binary lined code that is defined by a producer matrix with Vi1; vi2; :::; 

ViN vectors. If decoding of such code fails, the additional encrypted symbols can be 

gathered by a receiver that provides a better distance. 

1.4. Belief Propagation Algorithm (BP) 

The entire problem of linear encoding for BIMS channels is known as NP 

accomplishment [19]. Having an effective and practical method for the encoding of 

BIMS channels is not easy. Therefore, concretely forming a suboptimal repetitive 

approach for a very small subclass of decrypting issues is problematic. In a similar 

way, other approaches to decode lined codes are more complex because they are held 

with customization. Due to the large numbers of code, decoding is no longer easy. 

However, if we categorize this methodology into local functions, for example 

functions described by a group of small divisions all variables, we will obtain a 

starting point to develop new approaches. This complete factorization is typically 

http://www.vocabulary.com/dictionary/contrariwise
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envisioned with a graph known as a factor graph, which actually illustrates an 

association between variables and functions and indicates which variable influences 

which function. These graphs are simple and are general forms of Tanner graphs [20] 

that defines LPDC codes as well. It could be said that a factor graph is a kind of 

graphical model and Bayesian inference [21] can be performed over it easily. 

However, the concept behind this is predictable. An ethical broadcast approach 

merely abuses the factorization of the universal function to competently calculate. 

This theoretical level is similar to the distributive legal calculations [19]. The 

common toy example is about the use of the distributive law in the efficient 

calculation of the function variables f (a, b, c) = AB + AC, whereas it is visibly 

capable of calculating the factored version of the function f (a; b; c) = a (b + c) (one 

addition and one multiplication) than its un-factored version (two multiplications and 

one addition). 

1.5. Decoding Graph 

The most traditional and hands-on performance of linear codes could be the 

Matrices, while Graphs have been demonstrated effective to prove and explore the 

presentation of broadcast decoding with linear codes. Graphic codes include fountain 

codes, turbo codes and LDPC codes. Their decoding matrices are typically signified 

by Tanner graphs suitable for the low density of the matrices. Graphic codes are 

mostly low density, which is why they are called sparse-graph codes. The bareness of 

the decoding graph confirms the low calculation difficulty. Tanner [20] relived 

LDPC codes by recommending Tanner graphs which are capable of recursive. 

1.6. Thesis Outline  

This thesis contains four chapters and these chapters are explained as follows: 

 

Chapter-1 begins with a general introduction about coding theory. Furthermore, this 

chapter presents an introduction to linear code and a brief description of belief 

propagation. A decoding graph is also presented in this chapter. 
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Chapter-2 contains an introduction to rateless code, and Tanner graphs are explained 

in more detail. Furthermore, Low Density Equality Check codes are mentioned with 

specific information. Luby Transform encoding and decoding and normal degree 

distribution are also demonstrated in this Chapter. Finally, Raptor code with two 

types of decoder is explained. 

 

Chapter-3 is dvided into two sections: the first section discusses new degree 

distribution design and the second section deals with simulation results for all codes 

and degree distribution and comparisons made between these degrees. 

  

Chapter-4 consists of a conclusion and a list of future works. 
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CHAPTER 2 

 

RATELESS CODES 

 

2.1. Rateless Encoding Decoding 

In 1998, Byers et al. [22] revealed the “digital fountain method” inspired by 

authentic data delivery to various self-directed customers. Given below is an 

innovative project of broadcast and multicast protocols. A receiver can re-establish 

the source information with encoded symbols arbitrarily composed of a loss channel. 

The channel’s lossy design can even be unidentified and data access starts on 

arbitrary time. While a Tornado code is preferable in order to meet this fundamental 

concept, it should already assess the channel loss rate and essentially allocate a fixed 

code rate R, which is near to the loss rate, and in return it bounds the quantity of user 

knots that is unevenly equal to 1⁄𝑅 [23] [24]. Consequently, the features of digital 

fountains must be: to reliably deliver data in a single transmission, have no response, 

have effective encoding and decoding, have data that should be accessible when 

necessary, and a loss rate that is sufficiently acceptable. At this time, the immense 

image of a theoretical digital fountain over a memoryless removal channel. A 

demanded file is split into k blocks of similar size and each block is encapsulated 

into a packet. Given these k packets, it s possible for the fountain encoder to create a 

boundless stream of self-governing and similarly-scattered encoding packets. These 

encoded packets are conveyed over the deletion channel, but only a fraction of the 

packets is received error free with the remainder either lost or discarded. The 

fountain decoder then, with high likelihood, improves the source packets from any 

subset of established encoded packets of a number equal to, or higher than, k. This 

procedure is usually used as a cup arbitrarily to gather some drops from a fountain 
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and once having accumulated a sufficient number of drops in the cup, thirst will be 

satisfied. 

Fountain codes, also known as rateless code, even though at both the sender and 

receiver knots the code rate is unfixed and can possibly reach zero. Conversely, in 

practice, only one should be asked to reflect any shortened fountain codes. As per the 

requirements of the application, such as the decipher completion rate and calculate 

price, there would be a linked up least number of arrived packets to comply with 

conditions. For example, this least number is n, and the decoder improves the data at 

a rate of 𝑘⁄𝑛 shortened fountain code. For a perfect or optimum fountain code, the 

code rate needs to be 1. When k is somewhat smaller than n, the fountain code is sub-

optimum or nearby optimum. Now we have the two major classes of applied fountain 

codes: Luby Transform (LT) codes and Raptor codes. Both are closer to optimum for 

limited data size. 

2.2. Tanner Graph 

A Tanner graph or dynamic graph [25] is a divided graph which is related to the 

equality check matrix H (N-K*N) or designer matrix G (K*N) where N and K 

correspondingly accomplish the code word size and information length. The divided 

graph contains two kinds of knots, the first being equal to N and achieving the data 

bits. Additionally, it is also called a variable knot. The other knot is equal to N-K and 

shows the equality check bits [26]. Moreover, it is acquainted with check knots. 

Adjustable knots can link up only to see whether that variable is a particular check 

knot. Similar knots cannot associate with each other easily, thereby showing that 

there are no limits among identical knots. 

 

Tanner Graph (Factor) example  

 

Here, the Hamming (7, 4, 3) code with equality check matrix H (3*7) and producer 

matrix G (4*7) is mentioned to prove [27] how a Tanner graph can be constructed. 

Hamming (7,4,3) equality check matrix H code can be define as: 
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1 1 1 0 1 0 0

H 0 1 1 1 0 1 0

1 1 0 1 0 0 1

 
 

  
 
 

 (2.1) 

By detecting  equality  check matrix above, H has found three check knots, mc   

m=1,…, 3 and seven adjustable knots vl , l=1,2,3,…,7. This means each row acts as a 

check knot and each column shows an adjustable knot. The first row of H satisfies 

the equality check equation 11 2 3 5g g g g c     meaning that the variable knots 

{1, 2, 3, 5} attach straight to a check knot via the boundaries as shown in Fig. 1. This 

process recurs every time for each row. Finally, the Tanner graph is visible in Fig. 2. 

Similarly, the columns of H act as incidence vectors in which equality check 

equations contribute to the variable knot. On the other hand, the column of H 

specifies that an adjustable knot is linked to the check knot {1,2,3} 

v1

c1

v3

c1

v2v5

 

Figure 1: Equality check knot 1 linked up with adjustable knots 

 

c1

v1v3

c
1

v2v4v5v6v7

c
1

c
1

c3 c2

Check node

Variable node

 

Figure 2: Tanner graph of the H matrix of the Hamming code 
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The G (4*7) of pretense (7, 4 ,3) equal to: 

 

1 0 0 0 1 0 1

0 1 0 0 1 1 1
G

0 0 1 0 1 1 0

0 0 0 1 0 1 1

 
 
 
 
 
 

 (2.2) 

2.3.  Low Density Equality-Check Code (LDPC) 

Low density equality-check code (LDPC) is basically error linear code, mostly 

utilizing a noisy transmission network to decrease the likelihood of waste of data. 

This likelihood can be decreased with LDPC maximall , hence the data transferred 

percentage can be as close as desired to Shannon’s perimeter. LDPC was originally 

altered by Robert Gallager in his PhD thesis at MIT in 1960 [28] by MIT Press 3 

years after LDPC was published. Because of the restrictions on the mathematical 

potential in examining the encoder and decoder for the given codes and the outline of 

Reed-Solomon codes, LDPC was neglected for almost 30 years. R. Michael Tanner 

defined LDPC code in 1981,  as  the Tanner graph [25]. Since turbo codes had 

become inventive in 1993, the main emphasis was transformed to find low 

multifaceted code which is closer to the Shannon channel size. LDPC was 

rediscovered by Mackay [29], [11] and Luby [30]. Meanwhile, LDPC has also 

established its identity in a few advanced applications such as 10GBase-T Ethernet, 

Wi-Fi, WI-MAX, and Digital Video Broadcasting (DVB, DVBS2). 

 

All lined code has both an equality check matrix and a mutual graph, but not all lined 

code is capable of highlighting a clear image. If the 1 values in any row in an (n× m) 

matrix where weight denoted as wr, and when the 1 values are in any column, the 

column weight is denoted as wc, which is far lower than the measurement (wr << m, 

wc << n). Code characterized by a sparse equality-check matrix is known as low 

density equality check code (LDPC). The sparse characteristics of LDPC encourage 

its mathematical benefits.  
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2.3.1. LDPC encoding 

If the originator matrix G of error altering code is recognized, then the encoding can 

be completed by reproducing the originator matrix G with a group of data. As we can 

say that the encoded vector (c) is equal to the following: 

 *c G m      (2.3) 

m here is the data vector, the number of processes of this technique relies on the 

number of 1’s (Hamming weights) of the base vectors of G. If the vectors are solid, 

the number of processes (cost) of encoding using this process is comparable to n2. 

This cost becomes linear with n if G is sparse. Conversely, by the null space of a 

sparse equality-check matrix H, the LDPC is specified. It is doubtful that the 

originator matrix G will be sparse. For that reason, the unambiguous tactic of 

encoding an LDPC needs number of processes, comparative (cost) to n
2
. This is too 

sluggish for most practical applications. After that, it is suitable to have encoding 

approaches that run on lined time.  

2.3.1.1. Lower triangular modification approach 

Urbanke & Richardson presented an encoding process that possessed proficiently 

lined performance time for some codes with a sparse equality-check matrix. This 

method consists of stages: pre-processing and encoding. In the pre-processing stage, 

H is deployed into the shape as given in Fig. 3 by column and row variations. 
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Figure 3: Equality-check matrix in estimated lower triangular shape 

 

Here T has an inferior three-sided shape with all transverse entrances is equal to 1. 

Subsequently the process is complete by column and row variables and if H is sparse, 

then A, B, C, D, E, T are also sparse. 

 Let the codeword  s  m,  p1,  p2  whereas m is the data bits, p1 and p2 are the 

parity bits, p1 has length g, p2 has length k –  g . 

 

Calculating p1 and p2 as fallow in: 

1. Compute top syndrome of m by using Eq. (2.4). 

 v =AmT

r  (2.4) 

2. Calculate the series of parity bits, 2kA , which assume the top syndrome to 0. 

 
1

2k =T A

rv   

3. Determine  the bottom syndrome of the vector 2[ 0 ]Am k  

 2v =CmT A

b Ek
 (2.5) 

4. Find the parameter Z from Eq. (2.6). 

 
1Z ET B D  

 (2.6) 

After that, the first equality fraction is calculated as in Eq.(2.7).  

 
1

1 bp Z v
 (2.7) 
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5. Comput the new top syndrome in Eq. (2.8) 

 1x rv v Bp 
 (2.8) 

6. In the final, the else sets of equality bits 2kA , can be gained in Eq. (2.9).  

 
1

2 xp v T 
 (2.9) 

By using back- subtraction,
2kA and 2p  in step 2 & 6 can be calculated in linear time. 

Selecting the gap (g) as tiny as possible because the complexity of Eq. (2.9) in step 

six is  2O k . Furthermore, the complexity of computing D at Eq. (2.6) is  3O k and, 

this is computed for one time just previous any message block encoding. 

2.3.2. LDPC soft decoding using belief propagation 

The flexible chosen decoder performed to prepare the data that have a provisional 

probability that the incoming bit is either a 1 or a 0 by given vector y. By letting Pi = 

Pr [ci = 1| y] be the provisional likelihood that ci is a 1 given the value of y, we have 

 Pr [ ci = 0 | y ] = 1-Pi (2.10) 

By letting lqij  be the data sent by data knot ci to check knot fj at round l, then every 

datum contains a pair (0)lqij  and (1)lqij which stands for the “amount of belief” 

that yi is 0 or 1. 

 (0) (1) 1l lqij qij   (2.11) 

Specifically,  (1)j lqi P
i

  and (0) 1qij Pl
i

   

Likewise, we let lrij be the data transfer by check knot fj to data knot ci in round l. 

Each datum comprises a pair (0)lrij and (1)lrij  which stands for the “quantity of 

confidence” that yi is 0 or 1. Here, we obtain 

 (0) (1) 1l lrij rij   (2.12) 

(0)lrij  is a likelihood that there is an even number of 1’s of  on all other data knots 

instead of ci. Initially, let us suppose the likelihood of having an even number of 1’s 

on 2 data knots. Let q1 be the likelihood that there is a 1 at data knot c1 and let q2 be 

the likelihood that there is a 1 at data knot c2. We have 
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 r 1 2 1 2 1 2P [c c 0] (1 ) (1 )q q q q       (2.13) 

 1 2 1 21 2q q q q   
 (2.14) 

 1 2 1 2

1
(2 2 2 4 )

2
q q q q   

 
(2.15) 

 
1

[1 (1 2 )(1 2 )]
1 22

q q q    
 

(2.16) 

Then we assume the likelihood to have an even number of 1’s on 3 data knots, c1, c2 

and c3. Here, notice that 1 – q is the likelihood of having an odd number of 1’s on c1 

and c2. 

 1 2 3

1
[1 (1 2 )(1 2 )(1 2 )]

2
q q q    

 
(2.17) 

Generally 

 r 1

1 1
P [(c c 0] (1 2 )]

2 2 1

n
qn ii

     


 (2.18) 

Consequently, the data that fj transmits to ci at round l is 

 '

'

(l) 1 1
(0) (1 2 (1))]

2 2
j

n

ji i j
i V i

r q
 

  
 

(2.19) 

 
(l) (l)(1) 1 (0)ji jir r 

 
(2.20) 

whereas fj is the group of all data knots linked with the check knot. The data that ci 

transmits to fj at round l is 

 '

'

( ) ( 1)(0) (1 ) (0)

i

n
l l

ji ij i j i
j C j

q k p r 

 

  
 

(2.21) 

 '

'

( ) ( 1)(1) (1)

i

n
l l

ji ij i j i
j C j

q k p r 

 

 
 

(2.22) 

while ci is the combination of all check knots associated with the data knot ci. The 

constant ijk is selected to perform 

 
(l) (l)(0) (1) 1ji jiq q 

 
(2.23) 

At every data knot, the computations given below are completed 

 
( ) ( 1)(0) (1 ) (0)

i

n
l l

i i i ji

j C

Q k p r 



  
 

(2.24) 
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( ) ( 1)(1) (1)

i

n
l l

i i i ji

j C

Q k p r 



 
 

(2.25) 

( )l

iQ  is the efficient likelihood of 0 and 1 at data knot ci at round l. 

If 

  ( ) ( )1 (0)l l

i iQ Q
 

(2.26) 

the assessment at the point where ci = 1, and ci =0. This analysis fulfills the equality-

check equations and then dismisses them. Otherwise, the technique is executed via 

an early decided number of repetitions. 

 

As mentioned earlier, this technique uses many multiplications, which is not feasible 

to deploy. One more method is the logarithmic likelihood percentage as 

 
[ 0 | ] 1

[ 1 | ]

P c y pr i iL
i P c y pr i i

 
 



 
  
   

(2.27) 

 
[ 0 | ]

[ 1 | ]
ln lni i

P c yr i

P c yr i

l L




 
    

   

(2.28) 

Here, Li is the likelihood percentage and li is the log likelihood percentage where the 

data knot is ci. By applying the log percentage, it converts multiplications into 

additions, which uses fewer hardware resources. With a log likelihood percentage, 

we obtain 

 
1

1
i

i

P
L




 
(2.29) 

From Eq. (2.21) and Eq.  (2.22), the data that ci transmits to fj at round l is  

 '

( 1)

i

i

l

i j
j C j

l m 

 

  
 

(2.30) 

 

'

'

( 1)

( )

( )

( )
( 1)

1 1
(1 2 (1))

(0) 2 2
ln ln

1 1(1)
(1 2 (1))

2 2

l

l i j
ji i Mj il

ji l
lji

i j
i Mj i

q
r

m
r

q



 



 

 

 

 




 

(2.31) 
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'

'

'

'

( 1)

( 1)

1 tanh( )
2

ln

1 tanh( )
2

l

i j

i Vj i

l

i j

i Vj i

m

m



 



 










 

(2.32) 

We have (2.30) due to (2.32),  

 
''

'

1 (1)

(1)

i j
m i j

i j

q
e

q




 

(2.33) 

Thus  

 '
'

1
(1)

1 i j
mi j

q
e


  

(2.34) 

And 

 

'
'

'
'

1
1 2 (1) tanh( )

21

i j

i j

m

i j

mi j

me
q

e


  

  

(2.35) 

Eq. (2.24) and Eq. (2.26) fit into 

 

( )
( ) (0) ( )

( )

(0)
ln

(1)
i

l
l li

i i jil
j Ci

Q
l l m

Q 

  
 

(2.36) 

If ( )l

il > 0, then ci=0 else ci=1 

In training, a certain broadcast is performed for the first of either a large number of 

repetitions or until the transmitted probabilities of approaching the belief. As assured 

chance based il   , where Pi =0 for il   and Pi = 1 for il   . 

 

One essential feature of belief propagation is its performance timing, which is linear 

to the code size. The process negotiates among check knots and data knots thereby 

reducing the number of traversals. Furthermore, if the technique performs a steady 

repetition, then every boundary will traverse a fixed number of times, thereby 

showing that a number of processes are stable and only rely upon the number of 

limitations. If we let the number of check knots and data knots grow linearly with the 

code length, the number of processes carried out by belief propagation also rises 

linearly with the code size. 
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2.4. Luby Transformer Code (LT) 

The comprehension of LT codes for a period of removal codes are called common 

removal codes. The symbol size for the codes may be arbitrary, from one-bit binary 

value to general l bit value. It is possible to analyze that value route time in the 

aspect encoding and decoding of symbolic processes, where a v process is either an 

exclusive-or or duplicate of one symbol to another. If the real data  is comprised of k 

input symbols, then every encoded symbol can be produced self-reliantly of all other 

encoded symbols on average by O (ln(k/δ)) symbol processes, and the k real input 

symbols can be improved from any k+O( k ln2(k/δ)) of the encoded symbols with 

likelihood 1 – δ at an average of O(k ln(k/δ)) symbol processes. LT codes are 

rateless. For example, the number of encoded symbols produced from the data would 

be infinite. Likewise, encoded values can be produced rapidly and might be less or 

more as required. Similarly, decoding can improve a quiet same copy of the data 

from any group of the produced encoded symbols that collectively are only 

somewhat lengthier than the data. Therefore, without any doubt the loss model is on 

the erasure channel and encoded symbols can be produced as needed and transmitted 

over the erasure channel until a sufficient number has been reached at the decoder in 

order to repair the data. Meanwhile, the decoder can repair the data from the least 

number possible of encoded symbols, thereby implying that LT codes are near 

optimum with deference to any erasure channel. Additionally, the encoded and 

decoding periods are asymptotically very well-organized as a function of the data 

size. Therefore, LT codes are world demanded in the aspect that they are 

concurrently close optimal for every erasure channel and they are very effectual as 

the data size develops. The analyses of LT codes are more diverse than examinations 

of Tornado codes [31] [32] [33]. In actuality, the study of Tornado codes is only 

appropriate to graphs with constant all-out degree. LT codes use graphs of 

logarithmic solidity, hence the Tornado code analysis does not do so. In addition, the 

investigation of Tornado codes depends on the techniques that respond overhead, 

that is, integrally at least to a constant fraction of the data size, while the evaluation 

of LT codes shows us that the response overhead is an asymptotically disappearing 

fraction of the data size, in spite of being at the price of less advanced asymptotic 
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encoding and decoding times. The key to the design and examination of LT codes is 

to introduce and analyze the LT procedure. This procedure and its analysis are 

innovative simplifications of the traditional procedure and examination of throwing 

balls arbitrarily into baskets and therefore may well be of self-governing attention. 

Provided here is the analysis of the performance of the LT course using initial values 

of likelihood theory, which accurately grab the performance of the data retrieval 

method. The “digital fountain method” idea presented in [34] [35] is similar to 

universal erasure code, with LT codes leading full recognition of this study. 

2.4.1. LT encoder 

The procedure of creating an encoded symbol is theoretically easy to define: 

• Arbitrarily select the degree d of the code symbol from a degree distribution. 

 

• Select consistently at chance based d separate input symbols as the closest of 

the code symbols. 

 

• The value of the code symbol is the exclusive-or of the d fellows. 

These input symbols are known as a neighbor for the particular output code symbol 

and the directories of these fellows is given by the set γ. Stating to Fig.4, we analyze 

that for O0, D = 1 is yielded and the parallel  to arbitrarily selected  input index (or 

the fellows) γ is I k -1. Hence, O0 comprises only Ik-1. For O1, we gain D = 2 and γ = 

{1; 3}, and henceforth we have O1 = I1 XOR I3 etc. 

. 



20 

 

...

D=1 D=2 D=5 D=7 … D=2D=30

O1 O2 O3 … Okrec-1Okrec-2O0

I0

I1
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Figure 4: The LT encoding/decoding process 

 

The inputs I are to the left and the output encoded symbols O at the top. The 

input/output association in reality shows that the circles link to the given input and 

output. 

 

At the end of each column in Fig.4, the total degree D of the output symbol can be 

seen. Similarly, note that the procedure mentioned above is not bound to bits only. 

Bit vectors can be utilized as input symbols and an additional process, then 

substitutes the XOR process for encrypting symbol generation. As analysed, the 

association among the inputs and outputs can be demonstrated again by a 

connectivity matrix (denoted by Hc). Outcomes are characterized again by columns 

and the inputs are shown as rows of Hc. Each time when an input establishes a 

portion of an outcome, the consistent entry in the matrix for the particular row and 

column is marked 1. For example, for Fig.4, the connectivity matrix can be shown as 

in Eq. (2.37): 
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 c

0 0 1 0 1 0

0 1 1 0 0 1

0 0 1 1 0 0

0 1 1 0 1 0
H

1 0 1 0 0 0 1 1

 
 
 
 
 
 
 
 
 
 
 
    

(2.37) 

This matrix needs to be aware of the receiver for suitable deciphering of the inputs. 

And later, the encoding procedure can be mentioned as: 

 O= I × Hc (2.38) 

Where O is of size 1×krec, I is size 1×k and Hc is of size k×krec. While utilizing the 

encoding symbols to retrieve the original input symbols of the data, the decipherer 

requires being familiar with the degree and group of fellows of each code symbol. 

There are various methods of collaborating this data with the decipherer, based on 

the application, including the degree and a list of companion directories which might 

be given openly to the interpreter for each code symbol. In one more example, the 

degree and companion indices of each code symbol can be calculated by the decoder 

indirectly. This is all dependent upon the timing of receiving of the code symbol or 

location of the code symbol as compared to the situations of other code symbols. 

Here is another example where an encoding key may be connected with each code 

symbol and then both the encoder and decoder apply the same purpose of the key in 

order to yield the degree and a group of companions of the code symbol. In this case, 

the encoder may arbitrarily select each key it uses to generate an code symbol and 

keys may be passed to the decoder along with the code symbols. Every key might 

rather be generated such as by a deterministic procedure, for example, where each 

key may be bigger than the previous key. The encoder and decoder may be permitted 

access to the few sets of arbitrary bits, and the key may be utilized as the kernel to a 

pseudo-arbitrary producer that uses these arbitrary bits in order to produce the degree 

and companion of the code symbol. 
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2.4.2. Degree distributions for LT code 

If we repeat each code symbol that has an independently selected degree from a 

degree distribution, the degree dispersal of all d, ρ (d) is the likelihood that an code 

symbol has degree d. Here, we are supposed to create the arbitrary performance of 

the LT procedure which is totally defined by the degree distribution ρ (・), the 

number of code symbols K, and the number of input symbols k. Our objective is to 

design degree distributions that meet the following two design goals. 

 

As few code symbols as possible in the medium are needed to ensure the completion 

of the LT procedure. Repeating the number of code symbols, which ensures success 

of the LT procedure resembles the number of code symbols that assure complete 

recovery of the data. The medium degree of the code symbols is as low as possible. 

The normal degree is the number of a symbol’s processes on average it takes to 

produce an code symbol. The average degree times K is the number of symbol 

processes on average it takes to recuperate the whole data. 

 

Here, we will see how to design ρ (D) to achieve the given conditions. 

2.4.2.1. All-at-once distribution 

For ρ (1) = 1, the degree distribution is named as All-At-Once and every code 

symbol has a degree of accurate 1 and thus krec = K. Henceforth, all the input 

symbols are added to the wave at once. Also, we observe that each symbol has a 

minimal degree of 1, thus the amount of processing of each distinct symbol is 

negligible. Nevertheless, the total number of code symbols required is unnecessarily 

excessive, i.e. k ln(k/δ). Consequently, this kind of delivery is never used in practice. 
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2.4.2.2. Ideal soliton distribution 

The major aim of this delivery is to keep krec as low as possible by following to the 

stated total degree of K. One outcome from being the total of degrees that is at least 

k.ln (k/δ) to conceal all input symbols. This is the traditional approach of ideal 

soliton circulation. It allows to use just above k code symbols with a total degree of 

k.ln(k/δ) in order aptly to cover k input symbols. This will make sure that the whole 

number of code symbols transferred is lowest and also the total processes to decipher 

the incoming vector is also less, for the provided number of input symbols and 

failure likelihood. The Ideal Soliton circulation upholds the wave size through the 

decoding procedures, equal to 1. For example, with each repetitive step one symbol 

is done and precisely one symbol is attached to the wave. This behaviour can be 

expressed by the following equation: 

  
 

1 /          1

   

1 / 1      1, 2, ,

K for d

d

d d for d K







  





  

(2.39) 

2.4.2.3. Robust soliton distribution 

Robust soliton distribution tries to enhance best soliton distribution in this method 

describe a new division which is as follows: 

 R= C. K  .ln (K /δ) (2.40) 

Here C and δ shows two limitations. The mean of degree distribution relies on C 

parameter. That shows the likelihood of low degrees can be upsurge, when we 

choose C as a small value. δ this parameter signifies the failure likelihood of the 

decoder to rebuild the real data. This distribution as follows: 

  
 

1 /          1

   

1 / 1      1, 2, ,

K for d

d

d d for d K







  





  

(2.41) 

  

   

 

/                    1,2,3, / 1

   / /        /

0                          

( )
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

  

 





  

(2.42) 

The standardization factor is: 
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  )
1

( ( )
K

d d
d

   
  

(2.43) 

Then the Robust Soliton Distribution (RSD) is: 

    ( ( ) /)
RSD

d d d       (2.44) 

2.4.2.4. Sparse distribution 

This study presents the possibility to optimize degree distributions by evolutionary 

process. In the optimization framework, the context of enormous search space is a 

key issue. The issue dimensionality is compared to the source data size k since an 

individual should represent the likelihood on each degree from 1 to k. It is not easy to 

manage too many variables even though k reaches into hundreds. Adopting a sparse 

degree delivery is a substitute solution which often used in LT codes optimization. In 

a sparse degree distribution, non-zero likelihoods distribute on only partial degrees, 

which are predefined by a set of tags. The set of tags is a subset of all degrees and 

used to bound the search in a sub-space whose size is much less than full degrees. 

  
2 3 40.008 0.494 0.166 0.073

5 8 9 19 650.083 0.056 0.037  0.056  0.025

x x x x
x

x x x x x

  
 

   

 (2.45) 

The index of x is the degree and the value which is in front of x is the likelihood of 

the degree. 

2.4.3. Decoding of Luby transform (LT) code  

This segment presents two techniques which are used in LT decoding to rebuild the 

data bits. The first is a hard decoding approach and used the data transient technique 

and the second method known as soft decoding process based on likelihood changing 

among variable knot and check knot. 

2.4.3.1. Hard decoding Algorithm  

While introducing the invention of LT codes, Luby presented a data passing 

decrypting process to these erasure codes. The data passing approach is toughest 
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decoding scheme, which can be very fast and effective. We call LT codes with 

Robust soliton distribution under data passing decoding, conventional LT codes or 

Luby’s LT codes. There are two types of data passing decoding with the LT code: 

serial decoding, and parallel decoding. 

2.4.3.1.1. Serial decoding 

The serial decoding procedure of LT codes is as follows: 

 

Step 1: Find one v-knot of degree 1 and allocate its symbol value to its neighboring 

s-knot. The v-knot is now said to have been released, no longer useful and the 

neighboring s-knot is improved. At the same time, the edge incident on this v-knot is 

removed, which is equal to delete a corresponding row from the producer matrix 

reputable by the decoder. 

 

Step 2: The value of the newly reinstated s-knot is XORed to the rest of its 

companions and its edges are then detached from the graph, i.e., the column 

corresponding to the improved source symbols is deleted from the generator matrix. 

 

Step 3: If all the s-knots are recovered, the decoding is done and fruitful. Otherwise, 

repeat from Step 1. If there is no degree-1 v-knot and the decoding is not done, c flag 

failure. 

2.4.3.1.2. Parallel decoding 

Parallel decoding can be employed as easily as a serial technique but with faster 

performance. An example of parallel data passing decoding of an LT code is given in 

Fig.5. The code dimension is 𝑘 = 4 and the number of received packets is 𝑛 = 7, so 

an (𝑛, 𝑘) = (7,4) truncated LT code is measured at the receiver. Suppose the producer 

matrix of the truncated LT code is G given by Eq. (2.46). Because a packet is 

equivalent to a symbol which can be presented with a bit order whose size ranges 

from one bit to multiple bits, for simplicity we set the symbol size to be one bit. Let 

assume the received encrypted symbols are [1 0 1 1 0 1 1]. It takes four iterations to 
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restore the four source symbols [0 0 1 1] in the serial manner, but it needs only two 

iterations to finish the parallel decoding. 

 

1 1 0 1 0 0 0

0 0 1 1 0 0 1

1 0 0 1 1 0 0

0 0 1 0 1 1 1

G

 
 
 
 
 
   

(2.46) 

First iteration 

1 2 3 4

v1 v2 v4 v5 v6 v7v3

0111001

1 2 3 4

v1 v2 v4 v5 v6 v7v3

00 1

1101101

??

Recover s1 and s4 with the values of v2 and v6, 
respectively, whose degrees are 1.

S-node

Update the neighbors of s1 and s4 by XORing 
their values to their neighbors.

S-node

10 ? ?
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their values to it.
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Figure 5: Parallel decoding of LT decoder 

2.4.3.2. Soft decoding algorithm 

Though various distinctive techniques used for the deciphering of block codes can be 

employed for the decoding of LT codes, the well-known belief propagation (BP) 

procedure is most favoured by many researchers [28-33]. The BP approach uses data 

transferring logic between check knots and variable knots in the Tanner graph. Data 

exchanged between check and variable knots in a repetitive process until complete 

deciphering occurs. LDPC codes are signified by Tanner graphs with one class of 

variable knots which represent the data symbols. LT codes, on the other hand, have 
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two classes of variable knots. One of which presents the data symbols and the other 

showing the position of the data symbols, including symbol indices which are used in 

the encoding operation liable on the degree of these symbols. The first one presents 

the data knots and these knots are not communicated, there are no data flows in the 

channel. The second one is delivered over the channel which presents the code 

variable knots. 

 

Let gi,j  be  the value of i row and j column in the generator matrix  G . Some 

parameters of the BP algorithm are as follows: 

 

L(v) ={ l: gv l =1} : the set of code positions that participate in the v-th check 

equation. 

 

V(l) ={ v: gv l =1} : the set of check positions in which code position l participates. 

 

v,

y

lq : The likelihood that the value of variable knot l is y, given the information found 

via the check knots other than check knot v. 

 

,

x

v lr : The likelihood that a check knot v is pleased when variable l is fixed to a value 

y and given the information obtained via the variable knots other than variable knot l. 

In the following, a binary broadcast over an AWGN channel is expected. Moderated 

symbols      are transmitted over an AWGN channel and             

       denote received symbols where n(i) is Gaussian white noise, which is self-

governing and obeys normal distribution η (0,σ
2
 ). 

 

Initialization 

Since the receiver obtains only the encoded variable knots which are communicated 

over the channel, the initial knowledge of source symbols is zero. For l 1, 2 , L ,K , 

initialize the priori probabilities of the knots of source symbols:
 
 

 
1 2 0 1(1/1 exp ( 2 / )) & (1 )p r p p
l l l

      (2.47) 
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For every (l,v) , such that gv,l =1 

 &1 1 0 0
v, v,

q p q p
l l l l
 

 
(2.48) 

Data crossing via the source symbols and encrypting symbols of LT code are 

considered variable knots with which to deal with. 

 

Step 1: Bottom-up (horizontal): For each (l,v), compute 1

, ,&v l v lr r   and 0

,v lr . 

 
1 0(1 ) / 2& (1 ) / 2
, , , ,

r r r r
v l v l v l v l

    
 

(2.48) 

Step 2: Top-down (vertical): For each (l,v), update the values of 1 0

, ,&v l v lq q  and 

normalize: 

 v', v',

1 1 1 0 0 0

, ,

' ( )\ ' ( )\v

&
l lv l l v l l

v V l v v V l

q p r q p r
 

  
 

(2.49) 

 
1 0

, ,1/ ( )v l v lq q 
 

(2.50) 

 
1 1

, , *v l v lq q 
 

(2.51) 

 
0 0

, , *v l v lq q 
 

(2.52) 

For each l, calculate the a posteriori probabilities: 

 v',

1 1 1 0 0 0

( ) ( )
vl ll l l l

v V l v V l

q p r q p r
 

  
 

(2.53) 

Finally, the hard decision approach is used to rebuild the data as follows: 

If 1

lq > 0

lq , the bit is 1 otherwise the bit is zero. 

2.5. Raptor Codes 

A Raptor code [36] is an extension lead of an LT code, but it can accomplish linear 

difficulty with data passing deciphering. Raptor codes have been assumed by The 3
rd

 

Generation Partnership Project (3GPP) , a teamwork contract that was carried out in 

December 1998. Within the framework of 3GPP, Raptors codes are used for 

dependable data delivery in mobile wireless broadcasting and multicasting. 

Moreover, Raptor codes are concatenated codes. 
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2.5.1. Raptor encoding 

Raptor codes are concatenated codes. A diagram of overall Raptor encoding is shown 

in Fig.6. The source data symbols are first pre-coded by an outer code C. The 

outcome symbols of the pre-code are known as midway symbols which are the input 

symbols of an inner LT code. The pre-code is a stable rate erasure code usually with 

a fairly high rate. The pre-code can be multistage, i.e., the pre-code can be a 

concatenation of multiple fixed rate erasure codes. The inner LT code is sometimes 

called a weakened LT code [37]. 

 

Message bits 

Intermediate symbols

Encoded symbols

Pre-coding

LT-encoding

Figure 6: Raptor encoding diagram. 

 

A Raptor code can be signified by (k, C, ρ(𝑥)), where k is the number of source 

symbols and Ω(𝑥) is the polynomial of the encoded symbol degree distribution that 

the inner LT code takes on the intermediate symbols. ρ(𝑥) is specified as 

   ( ) d

dd
d x 

 
                    (2.54) 

where, d is the selected degree of the LT encrypted symbol and ρ 𝑑 is the likelihood 

that the value d is chosen. The average degree of the encoded symbols is equal to

 1 , where 
'( )x is the derivative of ( )x with respect to x. 
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2.5.2. Raptor decoding using belief propagation 

The iterative data passing procedure is executed on two matrices: the producer 

matrix of the inner LT code, and the equality-check matrix of the outer erasure code. 

The intermediate symbols are not only the v-knots of the Tanner graph of the 

equality-check matrix of the pre-code’s, but also the s-knots of the generator matrix 

LT code. The LT decoder passes updated decoding data to the pre-code decoder and 

hard decisions are made on the output of the pre-code decoder. If the highest allotted 

number of iterations ends and if all the interstitial symbols have obtained non-zero 

values, the decoding is successful. There are two types of data-passing approaches 

for Raptor codes [38]. In the first method, the LT decoder applies a data-passing 

algorithm to recover as many intermediate symbols as possible until the LT decoding 

is halted by a stopping set. The values of the recovered intermediate symbols are then 

passed to the v-knots of the Tanner graph of the equality-check matrix of the pre-

code and the outer decoder restores the remaining intermediate symbols. This 

method is a local-iteration scheme. The second method is a global-iteration scheme. 

Each decrypting step consists of two phases: first on the LT code and the other on the 

pre-code. At the end of either stage, the updated values of the intermediate symbols 

are passed to the other decoder. The inventor of Raptor codes, Shokrollahi, stated in 

[36] that the pre-codes for good raptor codes are generally of high rates. The higher 

the pre-code rate, the fewer intermediate symbols are created. Therefore, with an 

identical Raptor code rate, a greater proportion of intermediate symbols can be 

restored by an identical inner LT code and then the error performance is accordingly 

improved. 

2.5.2.1.  Local-iteration decoder 

A local-iteration decoder for binary Raptor codes is shown in Fig 7. At the receiver 

side, the fountain code is a shortened version, i.e., it is a fixed rate code at a time. 

Suppose right now 𝑛 Raptor encoded bits have been composed at a user terminal to 

improve 𝑘 source bits.  
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Figure 7: Raptor local-iteration decoder configuration 

 

The corresponding decoder configuration is represented by Fig 7. The pre-code is 

already known by the decoder, so the Tanner graph of the equality check matrix 𝐇 of 

the pre-code is usually set up in advance. The Tanner graph of the inner weakened 

LT code’s generator matrix 𝐆 can be built on the fly. The incoming output bits 𝑟1,  , 

𝑟𝑛 are associated one-to-one to the c-knots of the LT Tanner graph. The rate 𝑘⁄𝑁 pre-

code C is an LDPC code. The two columns of v-knots 𝑣1,⋯, 𝑣𝑁 and 𝐼1, ⋯ , 𝐼𝑁 are the 

same set of intermediate bits distinctly for the two Tanner graphs. With packet 

erasure fountain code, 𝑣𝑖 hands in its final decoding data (some LLR) 𝑚𝑖 to 𝐼𝑖 once 

the LT decoding is halted by a stopping set. However, for a Raptor code with soft 

decoding over an AWGN channel, 𝑣𝑖 does not pass 𝑚𝑖 to 𝐼𝑖 until the maximum 

allocated number of LT decoding iterations is finished. The LDPC decoder takes the 

decoding data from the LT decoder as observed LLRs. 𝑐1, ⋯ , 𝑐𝑁−𝑘 are the c-knots of 

the Tanner graph of the equality check matrix of the pre-code. The LDPC decoding 

is terminated when a valid code word output from hard decision on 𝐼1, ⋯ , 𝐼𝑁 or the 

maximum assigned number of LDPC decoding iterations are exhausted. Siva 
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Subramanian and Leib [38] introduced a concise and complete algorithm of local-

iteration Raptor decoding. In the Raptor decoder, we denote decoding data by 𝑚 and 

the decoding repetition by the superscript. In the inner LT code, we denote an 

accepted encoded bit by 𝑟 and its LLR value by 𝐿. The LLR data sent from a v-knot 

𝑣 (an intermediate bit) to an encoded bit 𝑟 (a c-knot) is presented by 𝑚𝑣, and 𝑚𝑟, is 

the deciphering data sent from a c-knot to a v-knot 𝑣. The data passed from the LT 

decoder to the LDPC decoder is denoted by 𝑚𝑖 with 1 ≤ 𝑖 ≤ 𝑁. In the pre-code 

decoder, mi,c, is the data sent from the v-knot 𝐼 (the intermediate bit) to the c-knot 𝑐, 

and 𝑚𝑐, is the data sent from the c-knot 𝑐 to the v-knot 𝐼. The local-iteration 

decoding starts with the LT decoder, transmitting the data from the v-knots to the c-

knots and then transferring the data back to the v-knots. At the start of iteration 0, all 

data are originated to zeros, except for the experiential log likelihood ratios on the 

accepted encoded bits. At each iteration step, v-knots send data to c-knots and then c-

knots feedback updated data to v-knots. The on-going LLR information is updated as 

follows [40]: 

 
''
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( 1),

,

0 0

0

l

lv r

r vr r

l
m

m l




 
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                             (2.55) 

And 
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( ) 1 ( )

, ,
2 tanh tanh( / 2) tanh( / 2)l l

r v v rv v
m L m


 
 

 
                (2.56) 

where tanh(∙) and tanh
−1

(∙) are the hyperbolic tangent function and the inverse 

hyperbolic tangent function, '

( 1)

,

l

r v
m   is the LLR data sent to an intermediate bit at the 

already existing repetition from all its surrounding received bits except for 𝑟, and 

( )

,

l

v rm   is the LLR data sent to a received bit from all its surrounding intermediate bits 

except for 𝑣. After the LT decoding is terminated by a preventing set, or the allocated 

number 𝑝 of LT reiterations are ended, the final LLR data of a transitional bit is 

specified as 

 
( )

,

p

i r vr
m m  

(2.57) 

Here 𝑟 is the group of incoming bits surrounding the 𝑖-th transitional bit. Taking 𝑚𝑖 

as observed LLR information from the channel, the LDPC decoder works with 

iteration 0. Similarly to the LT decoder, all data are originated to zeros with 
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exception of the received 𝑚𝑖 from the LT decoder. Each time in the repetitive 

process, the v-knots send data first and then receive rationalized info from c-knots. 

The LDPC decoder acts with given update instructions below [39]: 
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(2.59) 

Where the ( 1)

'
,

l

c I
m   LLR information is transmitted to a transitional bit at the earlier 

repetition from all its surrounding c-knots excluding 𝑐, '

( )

,

l

I c
m  is the LLR info sent to a 

c knot from all its surrounding interstitial bits with the exception of 𝐼. Finally, each 

pre-code repeats the decoding that can make hard choices on the transitional bits. 

With the sign function sgn (∙), the hard decision on the these v knots at repetition 𝑙 is 

provided by the column vector: 

 
( )

,sgn( ) 1 / 2l

i c I ic
w m m       

(2.60) 

It is to be noticed that small bits of 𝒘 may be 0.5’s because the current LLR values 

of these transitional bits are still 0’s. Henceforth, the decrypting still desires to 

remain. While all the entries of 𝒘 are 0’s or 1’s, the result can be confirmed as done. 

 Hw b  (2.61) 

With the packet adjusting fountain code, subsequently the log-likelihood ratio data 

are ±∞ or 0, 𝒘 is surely correct if 𝑤𝑖 ∈ {0,1}. With a lenient decoding fountain code, 

if 𝒃 = 𝟎, 𝒘 is a code word and the decoding of the pre-code endures and ends; if 𝒃 ≠ 

𝟎, the pre-code decoding desires to endure until the repetition threshold 𝑞 is grasped. 

If the decoder cannot output a codeword at the termination reiteration 𝑞, it may 

announce that the decoding is unsuccessful and gather extra encoded bits to endure 

decoding. 

2.5.2.2. Global-iteration decoder 

A global-iteration decoder for binary Raptor codes is shown in Fig.  8. This decoder 

configuration works for both packet erasure correcting and bit error correcting 

fountain codes. The global-iteration decoder is almost identical to the local-iteration 
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decoder. The only difference is that, with the alternating global-iteration scheme, the 

LT decoder and the pre-code decoder hand over their updated LLR data of the 

intermediate bit to each other at the end of every one of their own iterations. These 

exchanged data are also viewed as observed LLR’s for the decoders. 
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Figure 8: Raptor global-iteration decoder configuration 

 

Siva Subramanian and Leib [38] [41] and Huang et al. [42] offered the particulars of 

global-iteration decoding of Raptor codes. Yet again, a rate of 𝑘⁄𝑛 Raptor code at an 

arbitrary station at a rate of 𝑘⁄𝑁 LDPC pre-code is reflected, as presented in Figure 9. 

The measured significations are similar to those used with the local-iteration, 

excluding the data directed from 𝑣𝑖 to 𝐼𝑖, which is signified by ,

i

v Im and the data fed 

back from 𝐼𝑖 to 𝑣𝑖 by ,

i

v Im . In the beginning, all data are originated to zeros, with 

exception of the experiential channel data on the composed encoded bits. The data 

update instructions are assumed as follows: 
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And 
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In this circling procedure, the decoder can make tough decisions on the interstitial 

bits at the end of the pre-code decoder: 
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i c I ic
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(2.68) 

Once more, certain entries of 𝒘 may be 0.5’s, since the consistent transitional bits 

have not acquired non-zero LLR values. Thus, the decoding requests to endure until 

the maximum number of repetitions are drained. The result can still be confirmed 

over Eq. (2.61). 
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CHAPTER 3 

 

NEW DEGREE DISTRIBUTION AND MODELING RESULTS 

 

3.1. New Degree Distribution Implementation 

In this chapter, a new degree distribution is discussed, and the Luby transform (LT) 

codes are implemented for various degree distributions over Preservative White 

Gaussian Noise Channels AWGN. The MATLAB program is used to deploy 

proposed codes and the new degree distribution. A Bit Error Rate (BER) against the 

signal-to-noise ratio (SNR) is accepted to amount the presentation of the Luby 

transform (LT) code with the new degree distribution. 

3.1.1. Exponential distribution 

Here, two independent operations in Fig. 9 are used to perceive the degree of the 

likelihood values. This independent operation presents two levels of likelihood 

values: the first presents a high likelihood level when we compare it with the second. 

To begin, allocating a likelihood of degree one less than the likelihood of degree two 

to confirm low redundant degree packets are sent. This leads to more effective 

communication. After that, we select the likelihood of degree two from the first 

exponential and the likelihood of degree three from the second dependent values 

respectively and repeat this process for all degrees until obtaining all degree 

likelihoods. We can write the dependable degree as in Eq. (3.1) thus 

 

 

(3.1) 

Then, standardization is used to this degree as in Eq. (3.2) as follows: 

 

exp1 (d)        ( ) 2, 4,6,...

    

exp 2( )     ( ) 3,5, , 1

for d even number K

d

d for d odd number K



 


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

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
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K
X d

d
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  

(3.2) 

Finally, the exponential degree distribution is as in Eq. (3.3) follows: 

 ( ) /d X
RD

 
 

(3.3) 

 

Figure 9: Exponential degree distribution 

3.1.2. Random degree distribution 

This degree shows the customization of spars degree distribution. Random degree 

distribution can generate as follows: 

1. In the first, random numbers x are generated with range from 1 to K-1. 

 x 1,2,3,4,5,6, ,K-1   (3.4) 

When K represents the length of message. In ours case K=1000 and this means the 

range of generated numbers is equal to (1-999)  
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2. After that, tags numbers R are selected from x values and these tags are 

chosen as multiples of the number five depends on the next Eq. (3.5). 

  
 ( ) 5 : 5 : K 5

R i        
0

x i i

else

  
 


 (3.5) 

3. The probabilities of these tags rP are computed as Eq. (3.6) follows : 

    rP i R i / K  (3.6) 

4. The probability values of degree one and degree K are calculated in same 

manner  as in ideal soliton distribution algorithm and those degree as follows:   

  r  P 1 1/ K  (3.7) 

    r 1 / 1P K KK   (3.8) 

5.  Normalization factor is used as follows: 

 
1

( )
K

r

i

Z p i


  (3.9) 

6. Finally, calculate the random distribution dsR by using Eq. (3.10) follows: 

 /ds rR P Z  (3.10) 

 

Figure 10: Random degree distribution 
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3.1.3. Gaussian distribution  

A Gaussian degree distribution is presented in Fig. 11. The Gaussian distribution 

curve is attained by using Eq. (3.11). The Gaussian distribution curve is recurrent 

many times with the size of the degree axis. From the modeling outcomes in Fig. 16, 

we observe that when we increase the number of curve repetitions along the degree 

axis, better performance is gained. In contrast, increasing the number of curves 

reiterating means that growth in the mean degree distribution and many bits will take 

high likelihoods. 

 
2 2( ) /(2 )1

( )
2

xf x e  

 

 

 

(3.11) 

Where  is the mean value and 2  presents the variance. In this simulation, we set 

the mean to zero and the variance to 1. 

 

 

Figure 11: Gaussian distribution 
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3.2. Modeling Results 

The employment of a variety of rate-less codes over Additive White Gaussian Noise 

Channels (AWGN) is achieved in this section. Luby transform code (LT) is 

examined with all the new degree distributions which are obtainable in this chapter. 

In this method, we associate the impact of two types of degrees on the performance 

of the LT code. 

3.2.1. Low density equality check code (LDPC) 

Firstly, we present the simulation result for the LDPC code in Fig. 12 which is used 

as a pre-code in a raptor code. 

 

Figure 12: LDPC code performance 

 

Fig. 12 shows an LDPC code presentation with a rate of ½. The size of the code 

word is N=1032 and data bits is K=516 and by using a BPSK modification over the 

AWGN channel, with 20 repetitions and a signal to noise ratio change from 0 to 9. 
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3.2.2. Raptor codes 

In this type of code, two codes are concatenated. The first one involves one stage of 

pre-code (LDPC) and the second one is LT code with two parameters c=0.1, and 

0.05   with robust soliton distribution as already discussed in Chapter 2. The two 

decoding methods are achieved in a raptor code decoder (local-iteration decoder 

and global iteration decoder). The presentation of two decoding schemes is the 

main reason for presenting this chapter with a comparison between the results of 

these methods. 

3.2.2.1. Local-iteration decoder 

 

Figure 13: Raptor code performance using local-iteration decoder 

 

Fig. 13 introduces raptor codes with a local-iteration Decoder with a pre-code LDPC 

at a rate of ½ and an inner Luby transform code (LT). The length of the Raptor 

codeword is N=1416 and message bits is K=516. BPSK modulation over an AWGN 
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channel, in 20 iterations and at a signal-to-noise ratio (SNR) in dB varying from 0 to 

7 is used. 

3.2.2.2. Global-iteration decoder 

Fig. 14 shows the performance of raptor codes with Global-Iteration Decoder with 

pre-code LDPC at a rate of ½ and the internal Luby transform code (LT). The size of 

the raptor codeword is N=1416 and data bits K=516 using a BPSK modulation over 

an AWGN channel, with 20 repetitions and a signal to noise ratio SNR in dB varying 

from 0 to 7. 

. 

 

 

Figure 14: Global-iteration decoder 
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3.3. LT Code Modeling Result 

This section is a review of the Luby transforms code with impacts of various degrees 

and relates these degree impacts on presentation of this code over an AWGN 

channel. 

3.3.1. LT code with robust soliton distribution 

This degree relies on two limitations, c and δ, as explained in Chapter 2. In this 

modeling, we take c=0.1 and δ=0.05. Fig. 17 shows the performance of the LT code 

adapting with robust soliton distribution and a signal-to-noise ratio (SNR) varying 

from 0 to 7 dB. We send 100 frames per SNR and each frame contains upwards of 

1400 bits accepted with BPSK alteration and is transmitted over an AWGN channel. 

3.3.2. LT code with spars degree distribution  

This degree is used to optimize LT code performance. The sparse degree is adapted 

to the LT code Fig. 18 and we can observe the performance of this degree. It reaches  

10
-5

 in signal-to-noise ratio (SNR) equal to 7 dB. This modeling is implemented over 

an AWGN channel and a BPSK modulation is used in this modeling. This degree is 

based on the selection tags from all degrees and this degree is based o on Eq. (2.45) 

3.3.3. LT code with exponential degree 

A dependable degree is accepted to LT code in Fig. 15 and we can analyse the 

process of this degree. It reached 10
-5

 in signal-to-noise ratio (SNR) which is equal to 

6 dB. This imitation is applied over an AWGN channel and a BPSK modulation is 

utilized. 
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Figure 15: LT with exponential degree 

3.3.4. LT code with gaussian degree distribution 

Gaussian degree adapts to LT code in Fig. 16 and we can assume the behavior of this 

degree. It reaches 10
-5

 in signal-to-noise ratio (SNR) equaling 6 dB. This imitation is 

used over the AWGN channel and a BPSK inflection is applied. 
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Figure 16: LT code with Gaussian degree distribution 

3.3.5. Comparative between normal and new degree 

Random degree is accomplished to LT code Fig. 77  where it is assumed that there is 

a difference between the arbitrary degree distribution effects and the robust degree 

distribution effects on LT code performance. The LT code with arbitrary degree 

distribution reaches the value 10
-5

 dB in signal-to-noise ratio (SNR) equalling 6 dB 

and the LT code with the robust soliton distribution reaching the same value in SNR 

which is 7 dB. 
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Figure 17: LT code with random degree and robust soliton distribution 

 

 

Figure 18: LT code with random degree and spars degree distribution 
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Fig. 18 demonstrates the difference between the random degree distribution impact 

and spars degree distribution impact on the LT code presentation. From the result, we 

can see the LT code with an random degree distribution approaching the value 10
-5

 

dB in signal to noise percentage (SNR) equal to 6 dB and LT code with a sparse 

degree distribution approach a similar value in the SNR equal to 7 dB.  
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CHAPTER 4 

 

CONCLUSION AND FUTURE WORKS 

 

4.1. Conclusion 

This thesis focused on noisy decoding of rateless code using hard and soft decision 

decoding methods. Rateless codes were originally invented for binary erasure 

channels. Rateless codes are used in many applications nowadays, particularly in 

broadcast and multicast services or in digital communication. Rateless codes are the 

appropriate choice because they ensure reliable data transmission. The decoder of 

rateless code can reconstruct the source packet without depending on a channel 

coefficient or the manner of this channel. In this thesis, the two rateless code models 

are illustrated in a general form for Raptor codes, LT codes and LDPC codes. We 

tested LDPC code with the effective linear time encoding method (Lower Triangular 

Modification Approach). Two types of decoding algorithm, namely classical belief 

propagation and logarithmic likelihood ratio, are adapted to these codes. We have an 

exhibit Raptor code with one stage of pre-code and use LDPC code as a pre-code. On 

the decoder side, two decoder techniques, namely the local iteration decoder and the 

global iteration decoder, are proposed for the raptor code. We proposed LT code with 

a different degree distribution. In this dissertation, new degrees of Luby Transform 

code distribution are developed after detailed studies with implementation in the 

AWGN channel. Furthermore, comparisons are made between these degree 

distribution effects on the performance of LT code over the AWGN channel in 

Chapter Three. LT code gave better performance when new degree distributions are 

adapted to it. 
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4.2. Future Works 

In this work, we use belief propagation to decode these codes and this method 

sometimes suffers from high error floors at high SNR. The MAP decision algorithm 

is another idea to recover data in the decoder of these codes. Yet another idea would 

be rateless convolutional code, which is block code and its implementation over 

AWGN channels.  

   



R1 

 

 

 

 

REFERENCES 

 

 

 

 

1. Shannon C. E., (1948), “A Mathematical Theory of Communication”, Bell 

System Technical Journal, vol. 27, pp. 623- 637. 

 

 

2. Wozencraft J., Reiffen B., (1961), “Sequential Decoding”, Massachusetts 

Institute of Technology  Press, Cambridge, USA, pp. 130-138. 

 

 

3. Coffey J. T., Goodman R. M., (1990), “Any Code of Which We Cannot 

Think Is Good ”, IEEE Transactions on Information Theory, vol. 36, no. 6, 

pp. 1453-1461. 

 

 

4. Berrou C., Glavieux A., Thitimajshima P., (1993), “Near Shannon Limit 

Error Correcting Coding and Decoding: Turbo-Codes”, in Proceedings IEEE 

International Conference on Communications ICC, vol. 2, pp. 1064-1070. 

 

 

5. Berrou C., Glavieux A., Thitimajshima P., (1996), “Near Optimum Error 

Correcting Coding and Decoding: Turbo-Codes”, IEEE Transactions on 

Communications, vol. 44, no. 10, pp. 1261-1271. 

 

 

6. Burr A., (2001), “Turbo-Codes: The Ultimate Error Control Codes”, 

Electronics and Communication Engineering Journal, vol. 13, no. 4, pp. 155-

165. 

 

 

7. Gracie K., Hamon M. H., (2007), “Turbo and Turbo-Like Codes: Principles 

and Applications in Telecommunications”, Proceedings of the IEEE, vol. 95, 

no. 6, pp. 1228-1254. 

 

 

8. Gallager R., (1963), “Low-Density Parity-Check Codes”, Massachusetts 

Institute of Technology Press, Cambridge, USA, pp. 168-195. 

 

 

http://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
http://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
http://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
http://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology


R2 

 

9. MacKay D. J. C., Neal R. M., (1996), “Near Shannon Limit Performance of 

Low Density Parity Check Codes”, Electronics Letters, vol. 32, no. 18, pp. 

1645-1646. 

 

 

10. MacKay D. J. C., (1997), “Near Shannon Limit Performance of Low Density 

Parity Check Codes”, Electronics Letters, vol. 33, no. 6, pp. 457-458. 

 

 

11. MacKay D. J. C., (1999), “Good Error-Correcting Codes Based on Very 

Sparse Matrices”, IEEE Transactions on Information Theory, vol. 45, no. 2, 

pp. 399-431. 

 

 

12. Wiberg N., Loeliger H. A., Kötter R., (1995), “Codes and Iterative 

Decoding on General Graphs”, Euro. Transactions Telecommunication, vol. 

6, pp. 513-525. 

 

 

13. Wiberg N., (1996), “Codes and Decoding on General Graphs”, 

PHILOSOPHIAE DOCTOR, Department of Electrical Engineering, 

Linköping university, Sweden, pp. 30-50. 

 

 

14. Sipser M., Spielman D. A., (1994), “Expander Codes”, Department of 

Computer Science, IEEE 54
th 

Annual Symposium on Foundations of 

Computer Science, pp. 566-576. 

 

 

15. Sipser M., Spielman D. A., (1996), “Expander Codes”, IEEE Transactions 

on Information Theory, vol. 42, no. 6, pp. 1710-1722. 

 

 

16. Richardson T., Urbanke R., (2008), “Modern Coding Theory”, Cambridge 

University Press, New York, pp. 314- 325. 

 

 

17. Chung S. Y., Forney J., Richardson T., Urbanke R., (2001), “On The 

Design of Low Density Parity-Check Codes Within 0.0045 dB. of The 

Shannon Limit”, IEEE Communications Letters, vol. 5, no. 2, pp. 58-60. 

 

 

18. Richardson T., Urbanke R., (2001), “The Capacity of Low-Density Parity-

Check Codes Under Message-Passing Decoding”, IEEE Transactions on 

Information Theory, vol. 47, no. 2, pp. 599-618. 

 

 



R3 

 

19. Aji S. M., McEliece R. J., (2000), “The Generalized Distributive Law”, 

IEEE Transactions on Information Theory, vol. 46, no. 2, pp. 325-343. 

 

 

20. Tanner R., (1981), “A Recursive Approach to Low Complexity Codes”,  

IEEE Transactions on Information Theory, vol. 27, no. 5, pp. 533-547. 

 

 

21. Bishop C., (2006), “Pattern Recognition and Machine Learning”, 1
st
 Edition, 

Springer, California, pp. 359-422. 

 

 

22. Byers J. W., Luby M., Mitzenmacher M., Rege A., (1998), “A Digital 

Fountain Approach to Reliable Distribution of Bulk Data”, Association for 

Computing Machinery Special Interest Groups Computer Communication, 

vol.28, no. 4, pp. 56-67. 

 

 

23. Mitzenmacher M., (2004), “Digital Fountains: a Survey and Look 

Forward”, IEEE Information Theory Workshop, pp. 271-276. 

 

 

24. Etesami O., Shokrollahi A., (2006), “Raptor Codes on Binary Memoryless 

Symmetric Channels”, IEEE Transactions Information Theory, vol. 52, no. 5, 

pp. 2033-2051. 

 

 

25. Tanner R.  M., (1981), “A Recursive Approach to Low Complexity Codes”, 

Information Theory, IEEE Transactions on, vol. 27, no. 5, pp. 533-547.  

 

 

26. Kschischang, F. R., Frey B. J., Loeliger H. A., (2001), “Factor Graphs and 

The Sum Product Algorithm  Information Theory”, IEEE Transactions, 

vol. 47, no. 2, pp. 498-519.  

 

 

27. Morelos-Zaragoza R. H., (2002), “The Art of Error Correcting Coding”, 1
st
 

Edition, Wiley, England, pp. 172-192. 

 

 

28. Gallager R., (1962), “Low Density Parity-Check Codes”, Institute of Radio 

Engineers Transactions Information Theory, pp. 21-28.  

 

 

29. MacKay D. J., Neal R. M., (1995), “Good Codes Based on Very Sparse 

Matrices”, In Cryptography and Coding, Springer Berlin Heidelberg, pp. 100-

111. 

 

http://en.wikipedia.org/wiki/Category:Association_for_Computing_Machinery_Special_Interest_Groups
http://en.wikipedia.org/wiki/Category:Association_for_Computing_Machinery_Special_Interest_Groups


R4 

 

30. Alon N., Luby M., (2001), “A Linear Time Erasure Resilient Code with 

Nearly Optimal Recovery”, IEEE Transactions Information Theory, vol. 47, 

no. 2, pp. 638-656. 

 

 

31. Luby M., Mitzenmacher M., Shokrollahi A., (1998), “Analysis of Random 

Processes Via and-or Tree Evaluation”, Proceedings of 9th Annual 

Association for Computing Machinery-Society for Industrial and Applied 

Mathematics Symposium on Discrete Algorithms, vol. 98, pp. 364-373. 

 

 

32. Luby M., Mitzenmacher M., Shokrollahi A., Spielman D., Stemann V., 

(1997), “Practical Loss Resilient Codes”, Proceedings of 9th Annual 

Association for Computing Machinery Symposium on Theory of Computing, 

vol. 96, pp. 150-159. 
 

 

33. Luby M., Mitzenmacher M., Shokrollahi A., Spielman D., (2001), 
“Efficient Erasure Correcting Codes”,  IEEE Trans. on Information Theory, 

Special Issue on Codes and Graphs and Iterative Algorithms, vol. 47, no. 2, 

pp. 569-584. 

 

 

34. Xiaojing F., Zhou W., (2009), “Study on Belief Propagation Decoding 

Algorithm of LDPC Codes”, Electronic Test, no.7, pp. 42-43. 

 

 

35. Robert H., Zaragoza M., (2006), “The Art of Error Correcting Coding”, 
Second Edition, John Wiley&Sons, pp. 204-206. 
 

 

36. Shokrollahi  A., (2006), “Raptor Codes”, IEEE Transactions Information 

Theory, vol. 52, no. 6, pp. 2551–2567. 

 

 

37. MacKay D. J. C., (2005), “Fountain Codes”, in Proceedings of IEEE 

Communications, vol. 152, no. 6, pp. 1062-1068. 

 

 

38. Sivasubramanian B. Leib H., (2008), “Fixed-Rate Raptor Codes Over 

Rician Fading Channels”, IEEE Transaction Vehicular Technology, vol. 57, 

no. 6, pp. 3905-3911. 

 

 

39. McEliece R. J., MacKay D. J. C., Cheng J. F., (1998), “Turbo Decoding as 

an Instance of Pearl's Belief Propagation Algorithm”, IEEE Journal on 

Selected Areas in Communications, vol. 16, no. 2, pp. 140-152. 

 



R5 

 

40. Hu X. Y., Eleftheriou E., Arnold D. M., Dholakia A., (2001), “Efficient 

Implementations of The Sum-Product Algorithm for Decoding LDPC Codes”, 

Proceedings IEEE Global Telecommunications Conference, vol. 2001, pp. 

1036–1036E. 

 

 

41. Sivasubramanian B., Leib H., (2007), “Fixed-Rate Raptor Code 

Performance Over Correlated Rayleigh Fading Channels”, Canadian 

Conference on Electrical and Computer Engineering, pp. 912-915. 

 

 

42. Huang W., Li H., Dill J., (2010), “Digital Fountain Codes System Model 

and Performance Over AWGN and Rayleigh Fading Channels”, 

In Proceedings International Conference on Computing, Communications and 

Control Technologies, pp. 1-2. 



 A1 

APPENDICES A 

 

 

CURRICULUM VITAE 

 

 

PERSONAL INFORMATION 

Surname, Name: KADHIM, Omar Raad Kadhim 

Date and Place of Birth: 30 March 1987, Baghdad     

Phone: +90 5312 460 774 

Email: c1282557@student.cankaya.edu.tr 

 

EDUCATION 

 

Degree Institution Year of Graduation 

M.Sc. 
Çankaya Univ., Electronics and 

Communication Engineering 
2014 

B.Sc. 
Baghdad Univ., Electronics and 

Communication Engineering  
2008 

High School Al Markzia School 2004 

 

WORK EXPERIENCE 

 

Year Place Enrollment 

2009- Present 
Ministry of Higher Education. 

Al- Iraqi Univ.  
Specialist 

 

FOREIN LANGUAGES 

Advanced English, Beginner French, Beginner Turkish 

mailto:c1282557@student.cankaya.edu.tr


 A2 

 

PUBLICATIONS 

 

1. Kadhim O., “Degree Distribution Effects on Rateless Codes and Performance 

of These Codes in AWGN Channel”, Progress in URSI Electronic and 

Communication Research, Not Printed, Fırat University, Turkey, (2014). 

 

 

 

HOBBIES 

Football, Travel, Video Games 

 


