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Abstract

Recent studies reveal that mitochondria take substantial responsibility in cellular functions that are 

closely related to aging diseases caused by degeneration of neurons. These studies emphasize that 

the membrane and crista morphology of a mitochondrion should receive attention in order to 

investigate the link between mitochondrial function and its physical structure. Electron microscope 

tomography (EMT) allows analysis of the inner structures of mitochondria by providing highly 

detailed visual data from large volumes. Computerized segmentation of mitochondria with 

minimum manual effort is essential to accelerate the study of mitochondrial structure/function 

relationships. In this work, we improved and extended our previous attempts to detect and segment 

mitochondria from transmission electron microcopy (TEM) images. A parabolic arc model was 

utilized to extract membrane structures. Then, curve energy based active contours were employed 

to obtain roughly outlined candidate mitochondrial regions. Finally, a validation process was 

applied to obtain the final segmentation data. 3D extension of the algorithm is also presented in 

this paper. Our method achieved an average F-score performance of 0.84. Average Dice Similarity 

Coefficient and boundary error were measured as 0.87 and 14 nm respectively.
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1. Introduction

Mitochondrial structural correlates to function are attracting increased attention as the 

relation between mitochondrial function and degenerative disorders related to aging such as 

Alzheimer’s and Parkinson’s diseases is becoming empowered by recent studies (Burté et 

al., 2014; Franco-Iborra et al., 2015; Wang et al., 2014). Three dimensional (3D) 
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visualization of mitochondria is coming into prominence because these studies expose the 

need for detailed analysis of high-resolution physical alterations in mitochondria.

Investigations of subcellular structures are being made more effective by means of advances 

in electron microscopy. The physical formation of mitochondria emerges in detail as new 

imaging techniques have been developed. Serial block-face scanning electron microscopy 

(SBEM) is one of the emerging methods for volumetric mitochondrial imaging that provides 

3D datasets consisting of voxels with a size typically of 5–10 nm in x- and y-axes and 20–80 

nm in z-axis (Chavan et al., 2015; Wanner et al., 2015). Transmission electron microscope 

(TEM) tomography is another powerful technique that renders possible the visualization of 

structures down to a few nm resolution (Davies et al., 2014; Harapin et al., 2013). Such a 

resolution offers a clear separation of the double membrane structure of mitochondria and 

distinctive arrangement of cristae as well as the visualization of other subcellular structures 

such as synaptic vesicles (SV) and the endoplasmic reticulum (ER). Considering that the 

size of mitochondria varies between 0.3 and 10 µm (Scheffler, 2007), large 3D tomographic 

volumes are often required to study the structure of whole mitochondria.

In a study by Perkins et al. (2003) various structural features, such as the width of the 

peripheral inner and outer membranes of mitochondria and cristae, the number of crista 

segments, crista junctions and contact site diameters were measured and hypothesized to 

have potential effect on mitochondrial function. Visualization details depend on the 

resolution of the tomographic volume as well as the structural preservation of the sample. To 

perform a detailed mitochondria segmentation in such volumes, both peripheral and cristae 

membranes are required to have high contrast with respect to the background. By heavy-

metal staining, TEM tomography highlights the two mitochondrial membrane systems. 

Cristae segmentation provides a basis for our motivation to develop an automatized 

segmentation method for mitochondrial boundary to be used in this imaging modality.

Visual investigation of tomographic volumes of mitochondria are currently carried out by 

manual segmentation utilizing specialized software tools such as IMOD (Kremer et al., 

1996) and Amira. However, hand segmentation of features of a volume may produce flawed 

results because of human error even with highly trained segmenters. Because mitochondria 

are pleomorphic and appear in many different forms based on cell type, respiration or 

disease state, and sample preparation, a perfect automated segmentation is still an unsolved 

problem.

Various attempts have been made to automatically segment membranes and mitochondria 

from transmission electron microscope (TEM) tomography images. A confidence-connected 

and level-set based segmentation scheme was realized to extract contours of membranes of 

mitochondria (Bazán et al., 2009). The method produced successful segmentation results. 

However, it requires a manual connected-component removal and clear visualization of 

membranes.

Mitochondria segmentation based on classification of random forest patches and contour 

pairs (Giuly et al., 2012), utilization of supervoxel segmentation (Ghita et al., 2014; Lucchi 

et al., 2012) and spectral clustering techniques (Dietlmeier et al., 2013) which basically use 
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intensity distribution of mitochondria and differentiation from background were also 

asserted. However, these methods are not suitable for specimens specially prepared for 

cristae analysis as mentioned earlier since the differentiation of the intensity distribution is 

lost in the preparation process.

Several generic methods to segment membrane-like thin structures from electron 

tomography images were developed as well. A membrane segmentation method based on 

Hessian-based ridge detection was developed for extraction of membrane-like structures 

such as mitochondria boundary, SV and ER (Martinez-Sanchez et al., 2014, 2013, 2011). 

Bartesaghi et al. (2005) proposed a semi-automated 3D segmentation method based on 

minimal surface of closed geodesic curves. Another approach was introduced by Sandberg 

and Brega (2007) in which a contour tracing mechanism utilized local features extracted by 

line and orientation filter transforms. A bilateral edge filtering method was presented by 

Pantelic et al. (2007) for 2D segmentation of noisy electron microscopy and cryo-electron 

microscopy images. A 3D extension of this method was later proposed by Ali et al. (2012). 

A cascaded hierarchical model (CHM) by Seyedhosseini et al. (2013b) was used for 

membrane segmentation in SBEM and TEM images and provided promising results. 

Another intriguing semi-automated procedure was established by Page et al. (2015) for cell 

segmentation which is based on watersheds exploiting the differentiation of structures inside 

and outside of the cell. Although notable results have been obtained, these proposed 

methods have not been capable of separating mitochondria from each other or from 

membranes of other subcellular structures, or segmenting the more morphologically 

complex mitochondrial inner membrane.

In our previous attempt (Mumcuoglu et al., 2012), we employed a double membrane 

detection based on kernel pairs and an ellipse fitting approach for 2D detection and 

separation of mitochondria followed by active contours and a modified livewire method for 

2D accurate segmentation of mitochondria. This algorithm depends on the successful 

removal of cristae in one of the intermediate steps to locate the peripheral mitochondrial 

membranes. Our current work describes a better mechanism to separate peripheral 

membranes from cristae membranes.

In another study (Seyedhosseini et al., 2013a), algebraic curve based segmentation was 

applied to 2D mitochondrion images which is reasonable to obtain a curve which tracks the 

boundary of a mitochondrion. However, it can easily be attracted by cristae and further, it is 

not sufficient to separate mitochondria from each other.

In our preliminary study (Tasel et al., 2014), a 2D detection method for mitochondria 

performed by active contours using a parabolic arc based membrane detection process was 

proposed. Although the method was tested on a limited dataset, the study revealed that the 

curve based membrane detection approach is useful to extract mid-level features which are 

relatively easy to manage and capable to differentiate mitochondria peripheral membranes 

and cristae membranes.

In this study, we have improved the aforementioned parabolic arc model fitting algorithm 

and presented the separation of the two peripheral membranes and cristae membranes. In our 

Tasel et al. Page 3

J Struct Biol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



new scheme, an active contour model driven by a curve energy image is utilized to obtain 

candidate mitochondrial regions. Finally, a validation process in order to filter false shapes is 

applied by using features extracted from continuity, curvature and signature characteristics 

of boundary and additional curve energy of cristae. Instead of removing cristae (as in our 

previous attempt), we adopted a mechanism which uses existence of cristae as a sign of the 

presence of a mitochondrion, because mitochondria are the only structures inside a cell that 

possess cristae. We have tested our method on a much larger volume of datasets that were 

used in our preliminary study. The major contribution of the work is 3D extension of the 

algorithms. Detection and segmentation performances of 2D and 3D method are also 

compared and discussed.

The subsequent sections of this paper present information about the datasets used, the 

acquisition of ground truth, the proposed methods, experiments and results.

2. Datasets and ground truth

The datasets used for the experiments in this work were collected from the Cell Centered 

Database (CCDB) supported by the National Center for Microscopy and Imaging Research 

(NCMIR) (Martone et al., 2008, 2003, 2002). We chose eight TEM datasets which include 

tomograms having diversity in image contrast and variety in mitochondrial membrane and 

crista characteristics. The collection comprises mitochondria appearing in various shapes 

and sizes. Some properties of the datasets such as image size or voxel size are given in Table 

1.

Ground truth data were prepared via hand segmentation outlining the outer membrane of a 

total of 96 mitochondria appearing in 622 slices by using IMOD software. Since the images 

corresponding to the very top and bottom sections of the volume become very blurry, only 

the useful slices were processed for ground truth. It is noteworthy to emphasize that creating 

such a ground truth database requires considerable amount of human effort and it is a 

considerably time consuming process which justifies that computerized segmentation is 

obligatory to accelerate tomographic analysis.

3. Methods

Our mitochondria detection and segmentation method comprises preprocessing, ridge 

detection, energy mapping, curve fitting and filtering, snake-based shape extraction, 

validation and post-processing steps. A flowchart of the algorithm and sample images 

regarding several intermediate steps is illustrated in Fig. 1.

The following subsections describe each step of the 2D method and extension of the 

algorithm to 3D.

3.1. 2D Method

3.1.1. Preprocessing—The potential effect of contrast and membrane strength 

characteristics of the input image on the output of any further step is handled in the 

preprocessing step. It also deals with the noise of TEM images. Moreover, it dissipates 
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parameter tuning difficulty originating from the difference in pixel size of the datasets. Fig. 

1(b) shows the preprocessed form of the image shown in Fig. 1(a). The preprocessing step 

consists of three parts described below:

i. Auto-contrast adjustment: Reconstructed ET datasets may contain extreme 

values due to the presence of artifacts originating from the gold markers utilized 

or X-rays and other flaws in CCD camera images that produce extreme low or 

high values that skew the contrast. Normalization of gray values for such datasets 

cause a substantial degradation in image contrast. Auto-contrast adjustment re-

normalizes gray values of pixels of the image into a certain range (such as 0–1 or 

0–255) assuming that the gray value distribution has some extreme points. A 

small portion (e.g. 0.5%) from the lowest and highest gray values of the 

histogram area are set to the minimum and the maximum possible value (i.e. 0 

and 255) respectively. The other pixel values are linearly scaled and normalized 

between these maximum and minimum values.

ii. Resampling: In order to ease the parameter tuning, the contrast adjusted images 

are converted to a fixed pixel size by interpolation. Considering that the typical 

membrane thickness of mitochondria is in the range of 4–6 nm (Róg et al., 

2009), interpolating the image to 2 nm pixel size does not generate data loss 

problems for the mitochondrial membrane as we justified in our pilot study 

(Mumcuoglu et al., 2012).

iii. Smoothing: Bilateral filtering (Tomasi and Manduchi, 1998) which is an edge-

preserving smoothing technique is applied as a noise removal process as it is 

recommended for electron microscopy (Bazán et al., 2009; Jiang et al., 2003). In 

bilateral filtering, the contribution of each pixel depends on both the Gaussian 

kernel and the gray value differences of pixels in a neighborhood. This technique 

is able to reduce the effect of the noise as well as the non-membrane-like 

structures while preserving membranes.

3.1.2. Ridge detection—In the ridge detection step, membrane-like structures are 

extracted. Since bright-dark-bright transition occurs in membrane profile, membranes exist 

at the locations where intensity increases in opposite directions and remains stable in 

orthogonal directions. In order to detect membranes, we constructed a Hessian-based ridge 

detector applied to the preprocessed image which is sensitive to valley-like shapes. Let λ1 

and λ2 be eigenvalues of Hessian matrix defined as:

(1)

where Gxx, Gyy, Gxy and Gyx correspond to second order Gaussian derivatives of the image 

intensity with respect to the axis specified by the subscript and the eigenvalues satisfy |λ1| ≥ 

|λ2|. As illustrated in Fig. 2, a valley is obtained at a location where λ1 ≫ |λ2|. On the other 

hand, the shape becomes a gap (i.e. a dark blob) when λ1 ≈ λ2 ≫ 0 as shown in the first 

quadrant of the coordinate system in Fig. 2. In the fourth quadrant, a saddle point on a valley 
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is achieved when λ1 ≫ 0 and λ2 ≪ 0 which corresponds to a relatively weak point on a 

membrane. By considering the potential discontinuity in membranes, we define ridge energy 

as:

(2)

In the above formulation, the ridge energy increases while λ1 is increasing and λ2 is getting 

close to zero when both eigenvalues are positive. In case of discontinuity of the membrane, 

λ2 becomes negative and the energy only depends on the valley depth that is proportional to 

λ1. Hence, it favors objects which are in the form of elongated dark stripes. The ridge 

energy is zero in the second and third quadrant since we are not interested in hill-like (i.e. 

bright) structures. Fig. 1(c) depicts the ridge image in which bright points correspond to the 

locations such as peripheral membrane and crista membrane where the ridge energy is high. 

We also extract ridge direction from the second eigenvector.

3.1.3. Energy mapping—Although the ridge image is useful to detect membrane-like 

structures, it carries local information and is not sufficient to classify mitochondria 

peripheral and cristae membranes. Therefore, we constitute a ridge energy map based on the 

fact that peripheral membranes are longer structures having relatively low curvature in 

general which indicates clues pertaining to the big picture.

A window with a size ω is scanned through each point of the ridge image in order to inspect 

the ridge distribution over a region and avoid misleading local information. To reduce 

computation and provide smoothness to ridges having excessive curvature, the ridge 

direction is quantized to four angles such that the intervals (−π/8, π/8) and (7π/8, 9π/8) are 

assigned to 0; (π/8, 3π/8) and (−5π/8, −7π/8) are assigned to π/4; (3π/8, 5π/8) and (−3π/8, 

−5π/8) are assigned to π/2 and (5π/8, 7π/8) and (−π/8, −3π/8) are assigned to 3π/4. We 

then compute the total ridge energy within the window by using the points having the same 

ridge direction. The process is repeated for all quantized angles. The window is passed 

through all the pixels in the image in order to form the energy map eθ(s) that stores the total 

ridge energy of angle θ around the point s.

Fig. 1(d) and (e) depict ridge energy map images for the same segment of the ridge image by 

adjusting the window size as ω = 30 nm and ω = 8 nm respectively. Dashes indicate the 

major direction which has the maximum energy. Subtle (high frequency) information is 

extracted by using a small value of ω whereas rough structures (low frequency) are provided 

by a large value of ω. In the high frequency ridge energy map (HFREM) (see Fig. 1(e)), both 

cristae and mitochondrion boundary appear in detail. On the other hand, in the low 

frequency ridge energy map (LFREM) (see Fig. 1 (d)), the visualization of the structure of 

the cristae is mostly eliminated due to the use of a large window. On the contrary, 

boundaries of mitochondria are still preserved. Fig. 3 illustrates these two cases by 

delineating the energy map as histogram for two points. A uniform histogram is expected for 

cristae compared to peripheral mitochondrial membranes in the low frequency energy map.
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3.1.4. Parabolic arc model—Peripheral mitochondrial and cristae membranes may be 

represented by a combination of curve segments. In general, the peripheral membranes are 

long and smooth curves whereas cristae membranes are relatively short curves with high 

curvature compared to peripheral membranes. We have adopted a parabolic arc model as 

delineated in Fig. 4 in order to extract membrane-like patterns by utilizing the ridge energy 

maps. A 2D parabolic arc model is represented by two tip points (x1, y1), (x2, y2) and height 

(sagitta length) h.

A parabolic arc passing through the origin of the kt-plane with height h and width (chord 

length) R is given by:

(3)

where  and  with

(4)

and

(5)

Then, a point s on the rotated parabolic arc in xy-plane is given by:

(6)

where  and . The tangential angle φs of the parabola on the point s is 

approximated as:

(7)

where Δt is step size on the t-axis which can be arranged to scan the equidistant points on 

the curve. A smaller step size forms a smoother curve but increases the computation time. In 

order to achieve the same smoothness for curves with different parameters, we use a 

dynamic step size which is given by:

(8)
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where S denotes the desired distance (e.g. 1 pixel) between each consecutive point on the 

curve. In addition to the model described, we also defined a scale invariant curvature of the 

parabolic arc as:

(9)

The next section describes the curve fitting algorithm developed for the parabolic arc model.

3.1.5. Curve fitting and filtering algorithm—In the curve fitting step, membrane-like 

structures are extracted by utilizing the parabolic arc model and ridge energy maps described 

in the previous sections. We define an energy function of the curve as:

(10)

where Ω is the set of points on the parabolic arc obtained by Eq. (6) and φs represents the 

tangential angle of the parabola at the point s. The weight function w is defined as:

(11)

The contribution of the energy associated to the point s in Eq. (10) is controlled by the 

weight function based on proximity of tangential angle of the parabola (φs) and the ridge 

direction (θ). If they are similar (i.e. if the difference is close to zero), the weight function 

gets close to one, thus allows the maximum contribution. If the difference is high (i.e. close 

to ±π/2), it tends to be closer to minus one and causes a negative contribution. Therefore, the 

curve is forced to pass through points where the ridges are strong and have a suitable 

direction in order to gather high energy. According to this framework, the curve fitting 

process becomes an energy maximization problem. A brute-force approach like searching 

for all possible curves is infeasible. Hence, an iterative curve growing method is employed 

in which the candidate curves are initialized as single points on local maxima of the ridge 

energy map where the total ridge energy associated to the major direction is sufficiently high 

(i.e. maxθeθ(s) > Tmap where Tmap is a threshold).

The curve fitting algorithm is summarized below:

I. Initialization: Initialize a curve as a single point for each local maximum of maxθ 
eθ(s) satisfying maxθ eθ (s) > Tmap such that (x1, y1) = (x2, y2) = s and h = 0.

II. Growing phase 1:

i. Let , h(0) = h and i = 0.

ii. Compute E(Ω) by using Eq. (10) for each parameter set candidate: 
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and height h(i+1) ∈ {a|h(i) − τh ≤ a ≤ h(i) + τh} where the set of curve 

points Ω is formed by using Eq. (6) for the current values of parameters 

 and t = 0, Δt, 2Δt, 3Δt, …, R.

Select the parameter set which maximizes E(Ω).

iii. If , increment i and go to step ii.

iv. Set  and h = h(i).

III. Growing phase 2: This phase is the repetition of the first growing phase. 

However, the search operation is done by altering the parameters (x2, y2, h) this 

time and keeping (x1, y1) fixed.

The update parameters τx, τy and τh determine the search neighborhood at each iteration and 

control growing speed. Model parameters (x1, y1), (x2, y2) and h are updated within the 

range specified by the update parameters to maximize the energy iteratively.

The curve fitting process is repeated for two different values of window size ω used in the 

energy mapping step. Hence, two different sets of curve segments are obtained. Fig. 5(a) and 

(b) shows obtained curve segments (in blue) by using LFREM (ω = 30 nm) and HFREM (ω 
= 8 nm) respectively. The curve segments obtained from HFREM appear relatively short in 

general since the parabolic arc model cannot perfectly fit in large-scales. They are 

considered as small-scale curves in this paper. These curves cover all membrane-like 

structures (cristae, boundary etc.). On the other hand, longer curve segments having 

relatively high energy can be acquired by using LFREM. In this case, the curve segments 

generally correspond to the mitochondrion boundary and endoplasmic reticulum and they 

are considered as large-scale curves.

Some of the detected curves are considered as unreliable and thus filtered out in the next 

step. Although a parabolic arc with excessive height does not perfectly fit into the 

mitochondrial membrane, such curve segments can reasonably fit into the energy map. 

Therefore, the curves which unexpectedly have high curvature (i.e. κ > 1 which means |h| > 

R such that the parabola has a sharp bend at the sagitta point) are removed. The curve 

segments initiated at irrelevant locations (e.g. cytoplasm) are not expected to grow and have 

high energy (E(Ω)). Therefore, the curves that are too short and too weak are also 

eliminated. For this purpose, the large- and small-scale curves which have an arc-length 

shorter than 100 nm and 20 nm respectively or which have an average energy less than 30% 

of the maximum energy obtained in the map were removed in our experiments. The removed 

curves are shown in red in Fig. 5(a) and (b).

It is clearly seen that small-scale curves (Fig. 5(b)) cover large-scale curves (Fig. 5(a)). In 

the last step of the curve filtering process, the remaining curve segments are combined on a 

single image by removing small-scale curves which overlap a large-scale curve. We assume 

that a small-scale curve overlaps a large-scale curve if 70% of the former lies within ω 
neighborhood of the latter (ω is the window size of LFREM). As illustrated in Figs. 5(c) and 

1(f), blue curves are large-scale curves which were detected by using LFREM. Such curves 

mostly appear on the boundary of mitochondria and long membrane-like structures. The red 
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ones are the curve segments which can be extracted from only HFREM and usually detected 

on cristae and small scale membrane-like structures.

3.1.6. Snake-based shape extraction—Curve fitting itself is not competent to segment 

mitochondria since they may not appear as fully surrounded by a membrane. Moreover, 

curve fitting may fail as a result of inaccurate ridge detection due to weak appearance of the 

membrane. A curve segment may also overlap multiple mitochondria which reside close to 

each other. Therefore, separation of mitochondrial regions require further processing in 

which the polymorphic characteristic of mitochondria are also taken into consideration.

We employed balloon snake which is a variant of the active contour model in order to 

overcome the challenges encountered in the segmentation problem. Active contour models 

are versatile in segmenting irregular shapes and have a gap filling property (Kass et al., 

1988). Balloon snake has an additional inflation feature to segment the object by 

approaching from the inside. It has been shown that balloon snakes exhibit a significant 

stability when initialized on a plain region where there exists no sufficient nearby contours 

(Cohen, 1991).

The snake method is implemented by energy minimization of the snake model:

(12)

where ν denotes the boundary of the object (i.e. mitochondrion) to be segmented that is 

represented by x and y coordinates of the snake contour along a trajectory t. Eint is a 

smoothness term that consists of the first and second order derivatives of ν:

(13)

where wa controls the contribution of tension on the contour created by the first derivative 

and wb controls the curvature energy generated by the second derivative. Eext is the external 

energy term which motivates the snake towards the boundary to be segmented and Einf 

creates an outwards inflation force. In our snake-based shape extraction scheme, the snake 

contour is driven by an energy image which is constituted by a curve energy function E(Ω) 

composed of average curve energy:

(14)

where x is a point on the image,Ωp is the set of points on the curve segment p and the 

cardinality term |Ωp| gives the number of points on the curve. Eext is defined as the 

accumulation of curve energy images:
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(15)

where wc is the weight parameter to regulate the effect of curves on the snake contour and 

CL denotes the set of large-scale curve segments. The energy function in Eq. (15) is a 

negative valued function since the snake is interested in minimum energy and should 

converge on the points where the curve energy is maximized. Moreover, it depends on the 

total energy so that overlapping curves make the contour stronger.

The snake energy (Eq. (12)) is minimized iteratively by updating the snake contour which is 

initialized as a unit circle near to the vertex of a parabola until it is converged. The snake 

initialization process is discussed in detail in Section 3.2.2. The update equation is defined 

as:

(16)

where γ is step size and should be set to a suitable value (e.g. 1/|∇Esnake|) in order to prevent 

the snake from oversighting the mitochondrion boundary. During the update operations, the 

distance between consecutive points of the snake may become unequal due to the 

arrangement of the vector field formed by ∇Esnake(νi). In order to fix this problem, an 

equidistant correction process is applied in addition to the snake model (Valdés et al., 1996). 

The term ∇Esnake is given by:

(17)

where the internal energy update term can be found as:

(18)

Eq. (18) can be computed numerically by using five consecutive points on the snake contour. 

On the other hand, the term ∇Eext is computed by taking the derivative of Eext with respect 

to the x and y axes individually. The gradients of energy terms can be considered as the 

inversely oriented vectors of the internal and external forces that push the snake to desired 

locations. Accordingly, ∇Einf is defined as the inversely weighted outwards normal vector:

(19)

where N⃗ν is the unit normal vector at the boundary point ν of the snake and wd adjusts the 

magnitude of the inflation force. This force pulls the snake boundary outwards and prevents 

the snake from vanishing in the absence of external forces. Thus, the snake will grow when 
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it is initialized on plain regions far from curves. Besides, the internal and inflation forces 

will cancel out each other and the snake will stay in balance after it grows a while, since the 

internal force increases as the snake is being inflated. Moreover, a strong inflation force can 

make the snake continue to grow when weak external forces are acting on the snake. In this 

respect, the snake may converge into different regions depending on the strength of curves 

surrounding the region and the size of the region. A small value of wd will be sufficient to 

extract the boundary of a small mitochondrion. In case of a large mitochondrion, a relatively 

high of wd is required. If wd is excessively high, the mitochondrion boundary may not hold 

the snake if the curves detected on the boundary are weak. On the other hand, the possibility 

of false-positive large-scale curve detections on cristae must be taken into account. To 

handle such cases, wd should be set to a high value.

We set up the following algorithm in order to extract candidate mitochondrial regions with 

different size, boundary strength and cristae arrangement:

I. Repeat the following sub-steps for each parabolic arc:

i. Initialize wd with a small value.

ii. Initialize the snake nearby the vertex of the parabolic arc as a unit 

circle.

iii. Execute the snake algorithm.

iv. If a different boundary is obtained, save the snake boundary νi.

v. Increase wd.

vi. If wd is smaller than a threshold (Tinf), go to step ii.

II. Use the saved snake boundaries as candidate shapes for the next stage.

The algorithm described above extracts snake boundaries for ascending values of the 

inflation weight parameter wd iteratively. Fig. 6 depicts sample output of the algorithm. The 

whole image is scanned by executing the algorithm for each curve located on different 

regions. Note that weak curve segments should be ignored since misleading initialization 

would occur due to false detection. Hence, curves having sufficiently high energy are 

considered in the process as indicated in the preceding curve filtering step. In case of an 

initialization of a snake outside a mitochondrion, the process would yield a non-

mitochondrial region if the snake encounters appropriate enclosing curves. Therefore, we 

adopt a validation procedure in the next step in which awkward and irrelevant segmentations 

are discarded.

3.1.7. Validator function—A mitochondrion is differentiated from the background by an 

enclosing membrane and cristae inside. Although mitochondria cannot be strictly 

represented by a particular shape, the vast majority appear as a form of distorted, bended or 

laterally compressed form of an ellipsoid (Tasel et al., 2014) as illustrated in Fig. 7. We built 

a validation mechanism for candidate shapes extracted in the previous step in order to sort 

out potential outliers. The validator function F(ν) is a binary valued function that returns a 

decision towards the acceptance or rejection of the shape ν. A set of descriptors and 
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conditions are verified by the validator function. The shape ν is accepted as a mitochondrial 

region if all of the conditions are satisfied. In order to obtain scale-invariant features, 

circumference and area of the shape are used to normalize quantities and denoted by C and 

A respectively in the equations presented in this section. The descriptors involved in F(ν) 

are explained in five categories below:

i. Energy: A shape having strong curves on the boundary and cristae inside 

indicates the presence of a mitochondrion. The average boundary energy of the 

shape ν is given by:

(20)

Note that CL is the set of the large-scale curves. In order to compute the average 

energy corresponding to internal region of a given shape, we can similarly 

arrange Eq. (20) to operate on the small-scale curves. Hence, the average region 

energy is given by:

(21)

where Sν is the set of points lying inside the region formed by ν and CS denotes 

the set of small-scale curves. Thus, the acceptance criteria associated to shape 

energy may be found as Eboundary > Tenergy_b and Ecrista > Tenergy_c where right-

hand side terms denote energy thresholds for boundary and crista respectively.

ii. Area: The area of the candidate shape is used to determine whether the size of 

the shape is acceptable. Therefore, the area is expected to be in a range specified 

by the physical limitations of mitochondria. Although the cross-sectional area of 

a mitochondrion may drop down to zero due to orientation and location of the 

cross-section, extremely small snippets of mitochondria can be unreliable. 

Hence, the corresponding acceptance criterion is Tarea_min < A < Tarea_max.

iii. Discontinuity: The gap filling property of the snake model may lead to a false 

segmentation in which the shape boundary has some large segments on a region 

where the external energy is too weak. In such cases, it is necessary to query 

whether the shape is dependable. We expect the snake boundary to be located 

partially on a gap by considering that the mitochondrion may appear as a roughly 

closed region or it may be located on the image border and seen partially. 

Moreover, no large-scale curve may be detected on the weak boundary. 

Nevertheless, allowing shapes with too large gaps would also increase the false 

positive rate. Therefore, we adopt a gap detection mechanism in order to reject 

the shape according to the gap length. A gap is detected on the boundary point t 
of the candidate shape if the boundary energy measurement ∑p∈CL Ecurve(t, p) is 

too small (i.e. less than a small threshold value Tgap_energy). We measure the total 

Tasel et al. Page 13

J Struct Biol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gap length (Lgap_total), the maximum gap length (Lgap_max), the ratio of the total 

gap length to circumference (Lgap_ratio) and the ratio of the length of the total gap 

on the image border to circumference (Lgap_border). Herewith, four additional 

acceptance criteria associated to boundary continuity descriptors are specified by 

setting an upper limit to each descriptor: (1) Lgap_total < Tgap_total, (2) Lgap_max < 

Tgap_max, (3) Lgap_ratio < Tgap_ratio and finally (4) Lgap_border < Tgap_border. 

Hence, a shape is rejected if one of the gap descriptors indicates extremely high 

discontinuity of shape boundary.

iv. Curvature: The shape boundary is expected to have a reasonable smoothness. In 

this category, local and average curvature of the boundary is investigated. A 

shape is accepted if the curvature is suitable for the contour of a mitochondrion. 

In this sense, sharp or frequent changes in direction of the boundary path is 

inadmissible. The local curvature of a curve is defined as (Stewart, 1998):

(22)

where T⃗ is the unit tangent vector and l denotes the arc length. In the discrete 

case, the local curvature at a sample point of ν(t) can be approximated by using 

the equation below:

(23)

where d(t) = ν(t + 1) − ν(t). The average curvature is given by computing the 

average of Eq. (23) over all boundary points:

(24)

where n is the number of points on the boundary. The acceptance criteria 

concerning curvature descriptors are maxt κL(t) < Tcurv_max and κA(ν) < 

Tcurv_ave. Note that setting up a limitation to the maximum local curvature 

guarantees that smoothness is satisfied by every point whereas restricting average 

curvature precludes tortuosity.

v. Signature: Circular, elliptical or elongated patterns are frequently observed in the 

cross-sections of mitochondria. An example for an elongated shape is 

demonstrated in Fig. 7(c). On the other hand, a mitochondrion appearing like an 

asterisk shape (see Fig. 7(d)) is an unusual case in tomographic images. In order 

to expose such morphologic attributes, we extract indicative features via 

signature functions. The signature function of the boundary point j with respect 
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to reference point i for shape ν is defined as the distance between i and j as 

illustrated in Fig. 7(b) and formulized below:

(25)

Local extrema count Ni pertaining to the signature function is a useful feature to determine 

the extension count of the object. As delineated in Fig. 7(c and d), local extrema count 

(within a single period) of Si(j) is proportional to the extension count (e.g. Ni ≤ 2 for a 

circular object and Ni ≤ 4 for an elliptic object). For the shape given in Fig. 7(d), Ni is equal 

to 6. Note that the number of local extrema depends on the chosen reference point and it 

should be checked for all possible reference points placed on the boundary of the shape. We 

expect that maxi Ni ≤ 4 must be satisfied for a valid mitochondrial shape.

The minimum cross-sectional thickness Lmin (see Fig. 7(a)) is another descriptor which can 

also be extracted from Si(j). Lmin is equal to the least local extrema achievable given by:

(26)

where mk denotes local extrema points. In our validation algorithm, a valid shape is not 

allowed to have too short Lmin. Hence, the acceptance criterion is given by Lmin > Tsig_min. 

We also use major and minor axes’ lengths as two additional descriptors. The length of 

major axis (Lmajor) is given by maxi,jSi(j) and the length of minor axis (Lminor) is determined 

by the width of the bounding rectangle placed along the major axis as shown in Fig. 7(a). 

Lmajor and Lminor are used to inspect whether the size of candidate shapes does not exceed 

the expectations based on the physical limitations of mitochondria. Hence, corresponding 

acceptance criteria are specified as Lmajor < Tmajor and Lminor > Tminor.

3.1.8. Post-processing—A mitochondrion may not be fully segmented using a single 

initialization depending on the false-positive curves detected on cristae and the shape of the 

mitochondrion. For example, narrow and curvy mitochondria create strong internal forces 

that prevent the snake from converging to the correct boundary. Instead, multiple snakes are 

initialized for all the curves which surround the same mitochondrion in our approach. Each 

snake is expected to cover a different portion of the mitochondrial region as it can be seen 

from the image showing validated shapes in Fig. 1(g). In order to achieve a better 

segmentation, the resulting contours after execution of snakes are merged if the ratio of 

overlapping area is greater than a threshold. The merged shapes in Fig. 1(h) were obtained 

by continually joining contours when the area of intersection (with another contour) is larger 

than 30% of the area of the entire shape. The major drawback of such an automatized 

merging mechanism is that it may erroneously join more than one mitochondrion together 

when a snake spreading onto multiple mitochondria due to over-inflation is found to be 

valid. Nevertheless, it can be beneficial when integrated into semi-automatic systems.
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3.2. 3D extension of the algorithm

3.2.1. A 2.5D approach to snake model—The standard 2D snake method involves 

evolution of 2D boundary vertices under the effect of internal, external and inflation forces. 

The 3D extension of the model is achieved by denoting each vertex as a point (x, y, z) in 3D 

space and redefining the active forces in terms of several vectors which are computed along 

the path on both xy-plane and z-axis (Ahlberg, 1996). This scheme allows the forces to shift 

the z-position of the vertices and make the snake boundary grow through the z-axis as well 

as the xy-plane.

In our 2D balloon snake method, the external forces are supplied by the curves detected on 

membranes that appear as elongated ridge structures. Since a membrane that is parallel to 

the xy-plane does not appear as a ridge-like structure in the tomogram, no curve is detected 

for such a membrane and consequently, no force can be created. Therefore, the 

aforementioned method is not directly applicable to our 2D system. Instead, we propose a 

quasi-3D (2.5D) approach in which the snake model is constructed in 3D space as a stack of 

2D snakes. The internal forces acting at vertices on each slice depend on the neighboring 

vertices along the paths on both xy-plane and z-axis as depicted in Fig. 8. However, a vertex 

is not allowed to change its initial z-position. The external forces are obtained in the same 

way as we proposed in the 2D approach.

Let ν(z, t) = (xz,t, yz,t) represent a 2D point on the snake boundary for the slice z. The 

internal energy term is redefined as follows:

(27)

The control parameters wat and waz are weights for tension on the xy-plane and along the z-

axis respectively, wbt and wbz are corresponding weights for curvature. Thus, the internal 

energy term is minimized by using the update vector given by:

(28)

Note that Eq. (28) produces a 2D vector since the vertex ν is defined as a 2D point. Hence, 

each 2D snake is allowed to evolve on its own slice. Considering the contribution of external 

and inflation energy, we can rewrite the boundary update term as below:

(29)

where  is the gradient of external energy image acquired for slice z and ∇Einf is the 

inflation energy update term which is computed on a slice-by-slice basis in a 2D manner. 

These update terms are visualized in Fig. 8 as the forces which are acting on the object and 
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given by inversely oriented vectors (i.e. F⃗ = −∇E). The internal forces F⃗
int_t and F⃗

int_z shown 

in Fig. 8 correspond to the vectors which are formed by the first two and the last two terms 

of Eq. (28) respectively. The internal force emerged from the derivation over z-axis (F⃗
int_z) 

works in favor of aligning points along z-axis. Hence, the evolution of the snake boundary is 

carried out by indirect interaction of forces via minimization of energy among neighboring 

slices.

3.2.2. Snake initialization—In the 2D approach, we adopted an algorithm in which 

snakes are initialized as small circles (e.g. unit circle) near to the curves that are placed on 

several locations and have sufficiently high energy. Although this scheme is useful to scan 

all mitochondria in the image, initialization of the snakes may differ due to displacement of 

curves extracted from the other slices. Furthermore, the output of the algorithm is 

independently evaluated by the validator function with respect to a single slice. 

Consequently, inconsistent contours can be obtained according to the initial locations and 

validation of snakes at each slice. Therefore, 2D initialization is not suitable to produce a 

smooth 3D mesh. In order to reduce the inconsistency problems, we propose a new 

initialization method that uses the curves in multiple slices by considering the possibility of 

movement of membranes and variability in detection. According to our new method, the 

initial locations of snakes are determined by a modified version of Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) algorithm (Ester et al., 1996).

We defined the cue point of a curve segment as the point in the concave side of the parabolic 

arc with distance r in the orthogonal direction to the vertex point as shown in Fig. 9(a). Cue 

points within a particular neighborhood support each other if all of them reside in the 

concave sides of the corresponding parabolic arcs. For example, the points p1 and p2 support 

each other whereas p3 is blackballed as illustrated in Fig. 9(b). Sufficiently populated cluster 

centers which are formed by the supportive cue points within the neighborhood are used as 

actual initial points. Thus, snakes are initialized on the cluster centers as a cylinder (or a 

circle in the 2D case). In order to guarantee to catch the mitochondrion boundary, the 

distance parameter r and diameter of the cylinder should be set to a value smaller than the 

size of minimum cross-sectional thickness of the mitochondrion to be detected. On the other 

hand, height of the cylinder depends on z-thickness of the mitochondrion appearing in the 

volume. A larger height is expected to extract a better surface since more information is 

utilized. However, a snake with a too large height that exceeds the size of the mitochondria 

may not converge successfully. In order to initialize snakes only at reliable locations, the 

clusters having fewer cue points than a threshold are ignored. Hence, the effect of false 

positively detected curves is reduced.

The algorithm that is used to initialize snakes is given below:

i. Determine all of the cue points for each curve which is detected in a given z-

interval.

ii. Find all supportive points for each cue point within ε neighborhood.

iii. Constitute a cluster for each neighborhood having sufficient number of points.
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iv. Initialize a snake as a cylinder at each cluster center (i.e. the center of mass 

formed by the cue point population in the cluster).

Curve segments on a strongly detected membrane overlap each other. Similarly, the curves 

on a strong membrane continuing along the z-axis should appear at close-range. Therefore, 

the cue points are expected to support each other for such curves. Fig. 9(c) portrays every 

cue point gathered from 20 slices of a dataset. The corresponding cluster centers are 

displayed in Fig. 9(d). Since the initialization procedure utilizes each curve from a range of 

tomograms, it is robust against false detection and noise.

The original DBSCAN algorithm is used to create dense clusters satisfying the criterion that 

each point in the cluster is sufficiently close to at least one point in the cluster. This method 

aims to make clusters as wide as possible. However, converting a pervasive distribution to a 

single cluster is not a desired property since a better segmentation could be achieved by 

trying multiple initializations inside the mitochondrion. In our algorithm, the extent of 

clusters is limited to ε neighborhood such that the cluster centers are found to be at least 2ε 
distant.

3.2.3. Adaptation of the validator function—In the 2D method, the validator function 

decides acceptance or rejection of a given 2D snake. Formally, it can be defined as F:ν → 
{0, 1} where ν is a 2D shape. The function returns 1 in case of acceptance and returns 0 

otherwise. In order to validate 2.5D snakes, we extend the definition of the validator 

function to a validity measurement formulated as:

(30)

where νz is a 2D cross section of snake ν at z-level and k is the z-thickness of the snake 

satisfying 1 ≤ z ≤ k. The validity V is a real-valued function which ranges over [0, 1] and 

returns the probability of the shape being valid. In a sense, measurement of validity performs 

a voting process and yields the acceptance rate of all voters. Thus, the snake ν is accepted as 

valid if the validity V(ν) is greater than a threshold (TV) or rejected otherwise.

The 2.5D model may have some cross-sections which appear to be invalid due to a large 

amount of gaps where inflation of the boundary is suppressed despite lack of external energy 

and convergence is enforced by the effect of internal energy along the z-axis that is revealed 

by means of neighboring slices. In such cases, the validity value may be found to be 

unexpectedly low although the mitochondrion seems to be successfully segmented. Fig. 

10(a) depicts an explanatory example in which each cross-section of snake has substantial 

amount of gaps making them invalid. Hence, the validity value of the whole shape is 

reduced. In order to dissipate such a potential problem, a window is passed through the z-

axis and the median filter is applied to the boundary energy measurement ∑p∈CLEcurve(t, p) 

within the window. Therefore, a gap is artificially filled by neighboring slices if there exists 

a sufficient number of neighbors with high boundary energy as shown in Fig. 10(b). 
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Conversely, a false boundary point may become a gap if it is not supported by its neighbors 

along the z-axis.

3.2.4. Adaptation of the post-processing—In the 3D case, the merging operation is 

done considering overlapping volumes of 3D segmented regions. In this manner, valid 2.5D 

snakes are joined iteratively until the ratio of the overlapping volume of no region is greater 

than the threshold.

4. Experimental results

Both 2D and 2.5D algorithms were tested by using every slice of the eight datasets listed in 

Table 1. The parameter sets used in the system are presented in Table 2. Adjustments of 

these parameters are discussed in Section 4.3. The candidate regions obtained from the 2.5D 

snake algorithm were subjected to the validation process with and without the gap filling 

mechanism enabled (as described in Section 3.2.3). The size of the window (Wgap) to fill 

gaps was adjusted as 3, 5, 7 and 9 separately. The z-thickness (k) of the 2.5D snake model 

was set to 10, 20, 30 and full (equal to dataset thickness) separately. The datasets have been 

split into subsections such that each sub-section contains consecutive k slices. For example, 

five sections are obtained for a dataset consisting of 100 slices when k = 20. The 

initialization and execution of snakes have been individually performed in each section. 

Additionally, the snake output has been merged in post-processing if the ratio of overlapping 

area (or volume) to entire region was greater than 30%. Then, the whole process was 

repeated for three different settings of gap parameters given in Table 2.

Comparison of convergence of 2D and 2.5D snakes is illustrated in Fig. 11. Fig. 11(a) 

exhibits that 2D snake may over-inflate due to inaccurate curve detection on membranes. On 

the other hand, the 2.5D model is capable to compensate false-negative error as shown in 

Fig. 11(b). Similarly, the 2D approach may fail to inflate the balloon properly in case of the 

existence of false-positive curves on cristae whereas such problems are eliminated with the 

aid of neighboring slices in the 2.5D model. The 2D model also suffers from instability 

problems among consecutive slices where false-positive and false-negative contours appear 

to be valid. On the contrary, the 2.5D model attains robust results compared to the other 

model.

Another significant issue is the adjustment of z-thickness (k) of the snake. A relatively thin 

snake (having a few slices) does not effectively utilize most of the curves regarding each 

slice. On the other hand, an excessively thick snake partially converges and it is possibly 

rejected by the validator function if the mitochondrion to be segmented does not span the z-

range of the snake. Mitochondria can be segmented in all slices by executing the algorithm 

in all sections individually. Fig. 12(a) demonstrates a sample output for four snakes for k = 

20. A smooth transition among sections may not be observed in some cases due to the 

discontinuity between the bottom and top slices of the sections. In this case, it would be 

better to re-run the snake algorithm with total z-thickness of previously segmented sections 

in order to segment the whole mitochondrion as illustrated in Fig. 12(b). Segmentation 

outputs of several mitochondria which were obtained by using the maximum achievable z-
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thickness are shown in Fig. 12(c). Fig. 13 exhibits segmentation boundaries in sample 

tomograms taken from each dataset.

4.1. Performance evaluation

Precision and recall are two fundamental performance indicators that are used for measuring 

detection accuracy. Precision is the ratio of the detection outcome being correct (true 

positives/all positives). On the other hand, recall gives the ratio of true elements being 

successfully detected (true positives/all true elements). In image segmentation problems in 

which pixels are used as the elements to be detected, precision is given by the ratio of the 

size (i.e. area or volume) of correctly detected regions to the size of all detected regions 

whereas recall is given by the ratio of the size of correctly detected regions to the size of true 

regions according to basic definitions. However, the definition can also be modified 

depending on what is to be detected, nature of the domain and how the results are 

interpreted.

In our preceding studies (Mumcuoglu et al., 2012; Tasel et al., 2014), a region was accepted 

as a correct detection if at least 70% of area of the region overlapped a single mitochondrion. 

Then, precision and recall were defined based on the number of regions (not the size of 

regions). Such a definition ensures an accuracy measurement such that each region is 

evaluated depending on whether it segments a single mitochondrion or not. On the other 

hand, the definition also entails that a region should be accepted as a correct detection even 

if it segments only a small portion of the mitochondrion. Note that the whole mitochondrion 

is assumed to be successfully detected even if it is not covered by multiple regions in this 

scheme. Indeed, even a single small region can make the whole mitochondrion detected 

successfully.

In this study, a new approach has been applied to measure precision and recall by 

considering potential segmentation boundaries among algorithm output and ground truth. In 

the first step, each detected shape is matched to the mitochondrion boundary where the Dice 

Similarity Coefficient (DSC) is maximized. The DSC is defined as:

(31)

where G and S denote the ground truth shape of a mitochondrion and the detected shape 

obtained by the algorithm respectively. The cardinality operator |·| denotes the area of 2D 

shapes and the volume of 3D shapes. Let Si denote the ith detected shape and let Gi denote 

the ground truth of the ith mitochondrion and  denote the best matching ground truth 

region for Si. Then, the precision and recall measurements are formulized as follows:

(32)
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(33)

Note that the numerator of the fractions in Eqs. (32) and (33) focus on the union of 

intersections of each shape with the best matching ground truth shape. Hence, detection 

performance is evaluated by considering the criterion that each shape or union of a set of 

shapes should segment a single mitochondrion. Additionally, recall and precision reflect 

more reasonable values since the area (or volume in the 3D case) of the region of 

intersection proportionally affects the fractions. The performance measurements have also 

been empowered by evaluation of segmentation accuracy. Two metrics have been utilized:

Dice Similarity Coefficient (DSC)—The average DSC (see Eq. (31)) of all of the snakes 

together with corresponding best matching mitochondrion boundary has been computed.

Median Symmetric Boundary Error (MSBE)—The median of the set composed of the 

minimum Euclidean distance from each snake boundary point to mitochondrion boundary 

and from each mitochondrion boundary point to the snake boundary has been computed. 

The formulation is given below:

(34)

where Ĝ(j) and Ŝ(i) are boundary points, N and M are the number of points on the boundary 

of ground truth and snake output respectively.

4.2. Quantitative results

The precision and recall values have been calculated for every possible validity threshold 

(TV). The recall has been presented for fully seen mitochondria and all of the mitochondria 

separately. DSC and MSBE have been measured for both original snake output and merged 

snake-output. Additionally, we utilized F-scores in order to facilitate the comparison of 

algorithm performance. The F-score is equal to the harmonic mean of precision and recall. It 

provides a balanced measurement considering both precision and recall (Powers, 2011).

Table 3 contains snake and validation parameters, corresponding average precision and 

recall that maximize F-score. Precision of the 2D method is 0.71 whereas the 2.5D method 

achieves a value up to 0.81. A slight improvement was also obtained for the recall value that 

was calculated for fully seen mitochondria. The recall was found as 0.84 for 2D method and 

raised up to 0.87 by the 2.5D approach. The best results were obtained when the snake 

thickness (k) was 20 and the validity threshold (TV) was 0.75. Henceforth, the best-case 
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results of the 2D and 2.5D methods with respect to k and TV are presented and discussed 

below unless stated otherwise.

Fig. 14(a) demonstrates the precision-recall graph with respect to TV. The precision 

increases and the recall decreases while TV is increasing. In other words, the voting process 

is more reliable when consensus achieved is stronger. However, precise decisions lead to 

loss of some of the correct detections (false negative error). Fig. 14(b) shows the F-score 

versus TV graph and the achievement border of the 2D method. It is observed that the 2.5D 

method provides better results for a wide range of TV.

Table 4 compares the detection performance of 2D and 2.5D methods in eight datasets. Both 

methods fail in the dataset “mac_serial_sub” due to lack of accurate ridge detection since the 

mitochondria boundaries do not appear as ridge structures. Cristae and separation of 

peripheral membranes are not clearly visible since this particular dataset contains condensed 

mitochondria. As this is not a rare case, datasets which can be used for cristae segmentation 

are expected to have high contrast between membranes and background. Considering the 

failure in this dataset, the average precision and recall are given when it is both included and 

excluded. When the failed dataset is ignored, an improvement of 10% in precision and 3% in 

recall was observed on average with respect to the 2D model by utilizing the 2.5D approach. 

In the datasets “od_sub” and “6_22.sub”, the 2D method appears to produce a better recall 

compared to the 2.5D method. However, the 2D algorithm performance was measured on a 

slice-by-slice basis due to the nature of the algorithm where the segmentation of each slice is 

independently performed. Particularly, 2D snake boundaries that were successfully extracted 

from the slices where the 2.5D method failed led to an illusory increase in recall value. In 

such cases, boundaries of 2D snakes extracted from the consecutive slices are 

unconformable and the segmentation result is not continuous along the z-direction. Note that 

a high recall value does not mean a useful 3D segmentation in the 2D approach. On the other 

hand, a considerable amount of eligible slices must be segmented to obtain a valid snake in 

the 2.5D method. Otherwise, the validation process would be inclined to reject the shape in 

order to avoid reduction in precision. Furthermore, it is always possible to tune the algorithm 

behavior by adjusting the TV parameter (see Fig. 14(a)).

The effect of window size (Wgap) of the gap filling mechanism to detection performance is 

given in Table 5. The gap filling mechanism decreases precision but increases recall. 

Specifically, a larger window causes a larger decrease in precision and a larger increase in 

recall. Since the gain in recall is more than the loss in precision, it is reasonable to activate 

the gap filling mechanism. Experiments show that setting Wgap = 5 (in terms of the number 

of slices) is usually a good choice.

Table 6 lists the segmentation accuracy measured by two metrics (DSC and MSBE) with 

respect to the snake thickness (k). MSBE values are given in nanometers. The original and 

merged forms of snake outputs have been evaluated separately. The best results have been 

obtained for the 2D snake with the 2nd gap setting and for the 2.5D snake with the 3rd gap 

setting when k = 20, Wgap = 5 and TV = 0.75 (see Table 2 for the used parameter list). The 

average DSC was found as 0.79 for the 2D method and 0.84 for the 2.5D method. The 

merged snakes usually performed finer segmentation since segmentation of some of the 
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mitochondria was achieved by the union of snakes. Note that multiple mitochondria may 

also be accidentally merged which causes a false detection. Considering such cases, falsely 

merged snakes were removed for the measurement of segmentation accuracy. The average of 

MSBE indicates that boundary segmentation is not as accurate as in the previous study 

(Mumcuoglu et al., 2012) since the double membrane tracing process has not been applied. 

Nevertheless, it is sufficient to extract rough annotations of mitochondria considering that 

total thickness of the double membrane of the vast majority of mitochondria is about 18–48 

nm.

Table 7 presents average execution durations of major steps in our system. Computations 

and measurements were made on a computer with Intel Core 2.4 GHz microprocessor by 

using a single thread. The implementation was realized by using C++ programming 

language and OpenCV library. The 2.5D snake algorithm utilizes approximately 33% less 

CPU time compared to the 2D method since the new initialization procedure is capable of 

performing even better segmentation by using 33% less initial points. Although the 2.5D 

method requires additional computation, no significant change in CPU time per snake slice 

was attained.

4.3. Parameter analysis

The response of the algorithms to different parameter values were investigated and discussed 

for each step below:

Preprocessing—The specified values of preprocessing parameters in Table 2 were tested 

with both low and high contrast tomograms and provided good and stable results. The auto-

contrast histogram cut parameter should be kept as small as possible to eliminate only 

extreme gray values. High values may cause data loss in the intensity distribution. 

Resampling of the image to a fixed pixel size is useful for the parameter tuning process 

(especially for validator function parameters) and a 2 nm pixel size is adequate to visualize 

membranes. In our experiments, the bilateral filtering was capable of reducing the noise and 

the effect of non-membrane ridges without losing weak membrane structures when the 

spatial kernel size was set to a value between 30 and 60 nm. However, values lower than 30 

nm precipitated detection of false positive large-scale curves on cristae. Conversely, true 

curves were lost when excessively large kernels were used. The gray sigma parameter 

provided suitable smoothing of membranes and background when it was set to 0.1–0.2 

assuming that the gray value ranges between 0 and 1. Values greater than 0.2 give rise to 

smoothing of the edges (between membrane and background).

Ridge detection—The sigma parameter of Gaussian derivatives controls the expected 

thickness of membranes to be detected as ridges. This value is adjusted in conformity with 

the membrane thickness of mitochondria (4–6 nm). Experimental results show that relatively 

strong ridges are obtained when the sigma value is set to 2–3 nm.

Energy mapping—Peripheral membranes of mitochondria can be discriminated from 

cristae when the energy mapping window covers the double membrane structure of 

mitochondrion. Since total energy is expected to be doubled, the ω parameter can be set to 
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the maximum thickness of the double membrane (~48 nm). Considering the distance among 

cristae membranes, we preferred to use the average double membrane thickness (~30 nm). If 

crista detection is desired, the window size is arranged in order to cover a single membrane 

(>6 nm). Note that it should be kept below the minimum double membrane thickness (<18 

nm) to avoid the effect of a double membrane.

Curve fitting—Our experiments show that using local maxima points in LFREM/HFREM 

which have at least 30–50% of the maximum energy provides a good curve extraction 

covering both peripheral and crista membranes and avoiding initialization on non-membrane 

regions. The update parameters τx, τy and τh should be set to a reasonably high value in 

order to avoid local maxima of the energy function E(Ω) where a better curve is available in 

a small neighborhood in the model parameter space (x1, y1, x2, y2, h). On the other hand, 

excessively high values can make the curve span disjoint membranes. Suitable curves were 

obtained for a range of 4–8 nm.

Curve filtering—Curve filtering parameters (arc-length and curve energy thresholds) were 

adjusted empirically such that large-scale curves were preserved at the peripheral membrane 

of mitochondria and similarly, small-scale curves were preserved at both peripheral and 

crista membranes whereas a considerable amount of undesired curves at irrelevant locations 

were eliminated. Note that the expected curve energy and length are affected by the window 

size (ω) of the energy map. Therefore, we recommend to search these thresholds by starting 

from linearly scaled values with respect to ω when it is necessary to tune thresholds 

empirically. These parameters introduced acceptable results within a range of ±70%.

Snake-based shape extraction—The behavior of the system is not sensitive to small 

changes in energy weights of the snake model (wa, wat, wb, wbt, wc, wd, waz, wbz). Our 

parameter settings do not require further tuning according to the input dataset or shape of 

mitochondria. Nonetheless, the ratio of parameters with respect to each other has some 

significance. We preferred to set the tension weights (wa, wat) to a fixed value (i.e. 1.0) and 

tune other parameters accordingly. Our experiments showed that strong stiffness increased 

stability and the capability of gap filling and tolerance to false positive large-scale curves. 

Therefore, we adopted a strategy to set the curvature weights to a value satisfying wb, wbt ≫ 
wc, wd. The external energy weight (wc) was doubled for 2.5D snakes considering the effect 

of internal energy on the xy-plane and along the z-axis. The inflation weight (wd) should 

scan a wide range of values (i.e. 0.5, 1.0, 1.5…3.0) due to the presence of false-positive 

large-scale curves and diverse membrane strength. However, the step size can be further 

decreased to provide more robustness to membrane weakness at the expense of increased 

computation time. Since the z-thickness of the 2.5D snake is much shorter than its 

circumference on the xy-plane, tension and curvature weights along the z-axis (waz, wbz) 

were set to a higher value than wat and wbt in order to boost the effect of neighboring slices.

Snake initialization—The snake initialization may be unstable if the snake is initialized at 

a location too close to the vertex point of arc due to failure of proper inflation under the 

strong effect of external forces. The distance between the initial location and the arc (r) can 

be adjusted according to snake weight parameters. The snake boundary usually progressed 
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without problems while r > 20 nm with our weight settings. The upper bound of r and the 

cluster neighborhood size (ε) can be adjusted according to the minimum expected diameter 

of mitochondria (~250 nm). In order to create at least one cluster in such a small 

mitochondrion, ε was set to 100 nm. Larger values may make the cluster be affected by 

nearby cue points which are located outside of the mitochondrion. We specified the 

threshold concerning the minimum number of elements in each cluster with respect to the z-

thickness of the snake. Small numbers indirectly improve recall by increasing the number of 

initializations. On the other hand, the clusters supported by more cue points are expected to 

be more reliable. We obtained acceptable results when this number was 1.0–2.0 times the z-

thickness.

Validator function—Validator function parameters were roughly tuned according to the 

morphology of mitochondria. Determination of the parameters Tmajor, Tminor, Tarea_min, 

Tarea_max are conducted by the range of physical size of mitochondria and arranged to 

establish a coarse restriction for candidate shapes. However, they can be refined when it is 

necessary to segment mitochondria of a particular size. Similarly, the curvature parameters 

(Tcurv_max and Tcurv_ave) are upper-bounds for radial movement of the peripheral membrane 

in terms of the radius of a circle (used to estimate the degree of curvature). These parameters 

serve to regulate the amount of exclusion of false positive detections and can be decreased to 

improve precision if required. The energy constraints (Tenergy_b and Tenergy_c) were adjusted 

to a value as small as possible to cover mitochondria which exhibit low-contrast peripheral 

membranes and vaguely appearing cristae. Since the refinement of such parameters may 

vary with respect to the input dataset, they must be altered by taking potential overfitting 

problems into consideration. The validation step is further discussed in Section 6.

Post-processing—In our experiments, feasible results were obtained when the merging 

threshold is set to a value between 15% and 35%. Separate mitochondria may be 

erroneously merged if the value is too low. On the contrary, snakes lying inside a single 

mitochondrion may not be merged for high threshold values.

5. Conclusion

In this study, we focused on detection and segmentation of both fully and partially seen 

mitochondria from 2D and 3D transmission electron microscopy images. Our segmentation 

method can be used to outline the peripheral membrane of mitochondria. The first step in the 

system is preprocessing. In this step, the image is resampled, smoothed and its contrast is 

adjusted. Then, membrane strength is measured by a Hessian-based ridge detection method. 

The local energy sums within two different neighborhoods are computed to create energy 

maps. The next step is the curve extraction process which utilizes the energy maps to locate 

peripheral membranes and cristae of mitochondria. Then, a snake algorithm driven by the 

extracted curves is employed. Finally, a validator function is used to refine the results.

Despite the various computerized segmentation attempts for mitochondria, this problem 

does not seem satisfactorily solved yet since the appearance of mitochondria is multifarious 

depending on cell type, condition and preparation of specimens. Considering that the 

subsequent problem is to deal with demands for high throughput automatic cristae 
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segmentation, we preferred to use mostly datasets with clear settlement of cristae (as well as 

the mitochondrial boundary membranes). We want to remind the readers that for the other 

types of images (which exhibit dark blob-like mitochondrial regions), the problem of 

automatic detection and segmentation of mitochondria is a much simpler problem (using 

intensity-based features) which has been mostly successfully solved by the previous studies.

6. Discussion

A manual effort is still needed to obtain a flawless segmentation. Thus, designing some user-

interaction tools to augment the automatic tools developed here will replace the hard work 

required by the user for the full hand-segmentation. These tools include validation, rejection, 

merging, splitting and dragging operations (Cocelli, 2015). False-negative error can be 

reduced by validating snakes that have been erroneously labeled as invalid under the control 

of the user. Similarly, a faulty portion of redundantly auto-merged shapes can be rejected by 

the user to deal with a false-positive error. Since such tools work on pre-determined snakes, 

the interaction with the user can be realized in real-time. Merging and splitting operations 

can be also used to fix auto-merging errors. In case of insufficient snake detection, these 

tools also allow the user to run the snake algorithm at a proper location. A partially 

consistent segmentation may also be corrected by dragging the defective boundary to the 

correct location.

The current implementation has not been fully optimized yet. Hence, it is not capable of 

responding to users’ needs in real time. Fortunately, the algorithms developed are highly 

parallelizable and adaptable to be run on a GPU in order to gain a tremendous speedup. GPU 

parallelization of curve fitting and snake algorithms are in our future plans. The current 

software is planned to be made available by the end of the second quarter of 2016. 

Additionally, we will build an easy to use application as soon as we complete optimization 

and parallelization of algorithms.

Since the Hessian ridge detector is not sufficiently capable of detecting peripheral and crista 

membranes of condensed mitochondria (see Fig. 13(h)), one can replace the Hessian matrix 

(Eq. (1)) with an appropriate tensor matrix based on the first derivative to extract edges 

instead of ridges. Besides, it is advantageous to take this approach since the first derivative is 

less sensitive to noise.

The snake contours produced by the proposed snake algorithm tend to pass through mid-

points of double membrane structure of mitochondria since the external energy formulation 

is based on LFREM. This energy map indicates the total ridge energy within a large 

neighborhood (30 nm) which usually covers both membranes. Hence, the energy is 

maximized between membranes. Since the snake algorithm in our system utilizes parabolic 

arcs based on the energy maps, a perfect segmentation is not expected. However, the 

accuracy can be significantly increased by refining techniques described in a study by 

Jorstad and Fua (Jorstad and Fua, 2015) or a modified live-wire algorithm proposed in our 

previous study (Mumcuoglu et al., 2012).
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We tested our system under different signal-to-noise ratio (SNR) conditions by using a 

mitochondrion phantom (see Fig. S1) taken from Fig. 7 in (Fernández et al., 2002). Note that 

the phantom was not sufficiently elaborated in order to test the whole system. Nevertheless, 

we ran our algorithm to see how the curves and snakes fit into the synthetic boundary. Fig. 

S2 depicts a sample tomogram of the phantom with additive Gaussian noise having different 

SNR values (∞, 20, 10, 4, 2, 1.33, 1.0, 0.80, 0.66 and 0.5). Fig. S3 shows curve fitting 

results for the same tomogram. For SNR ≥ 4, there was no curve extracted from HFREM 

(red curves/small-scale curves). The reason is that the phantom does not have realistic curvy 

cristae structures. For SNR ≤ 2, some false-positive curves were detected. The curves 

extracted from LFREM (blue curves/large-scale curves) covered the whole boundary in each 

tomogram for SNR ≥ 0.80. However, small-scale curves were too few to validate the 

segmented boundary. In order to see the final results, we lowered the minimum average 

region energy threshold (Tenergy_c) to zero (i.e. disabled its effect) while leaving the 

remaining parameters values unchanged. For SNR = 0.66, the boundary was partially 

detected. The large-scale curves were usually lost due to very weak ridge response for SNR 

= 0.5. In Fig. S4, the initial points of snakes were illustrated. No initial points were located 

outside of the mitochondrion. The algorithm failed for SNR = 0.5, since there were not 

enough large-scale curves detected in the volume. Fig. S5 exhibits the segmentation results. 

For SNR ≥ 0.80, we obtained good results. However, we noticed very small (a few pixels) 

fluctuations on the boundary along the z-direction for SNR ≤ 1. For SNR = 0.66, all of the 

candidate shapes were refused by the validator function due to weak boundary energy. 

However, as shown in Fig. S6, the obtained snake boundary was actually useful. To handle 

such cases, the user can be oriented to use the method with a parameter set which is 

arranged for low SNR conditions.

Although our method is specialized for mitochondria detection, it involves a Hessian-based 

membrane detection step which can be compared to generic methods used for membrane 

detection (aforementioned in Section 1). According to our elementary experiments, our 

simple ridge detector shows considerable success when compared to generic methods. 

Furthermore, our method can be integrated with membrane detection methods in order to 

increase accuracy.

We additionally tested our algorithm on a cryotomography (cryoET) dataset (ID: 6471) in 

EMDataBank (Wang et al., 2015). This dataset is quite large and has very low SNR. We 

cropped small sections (consisting of 20 tomograms with a size of 500 × 500). A tomogram 

(slice #: 310) from the dataset is provided in Fig. S7. Fig. S8(a) shows the snake initial 

points, Fig. S8(b) shows the curve fitting results obtained from LFREM (blue) and HFREM 

(red) and Fig. S8(c) shows the final segmentation result. Our method managed to locate and 

segment the mitochondrion with the same parameter sets given in Table 2. However, such 

datasets (not being plentifully populated by mitochondria) may require an additional 

preprocessing step that highlights the double membrane structure in order to attain a good 

detection performance. Parameter sets can be additionally revised for cryoET datasets. In the 

current form of the method, the most of the segmented regions are expected to be invalidated 

by the validator function due to weak ridge response. One example is given in Fig. S9. In 

this example, a candidate shape was extracted successfully but rejected by the validator 
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function since the no strong small-scale curve was detected inside the candidate shape (low 

Ecrista).

The validation scheme in our system corresponds to a dichotomy in pattern classification 

problems. Hence, each valid snake can be considered as a point in a hyper-rectangular 

region. For future work, we are planning to build an improved validation function in which 

supervised learning techniques are utilized based on the validation descriptors in order to 

achieve better filtering results. In addition, integration of our system into a semiautomatic 

segmentation software package through the implementation of the aforementioned tools and 

the development of automatic cristae segmentation methods are also among the items 

considered for our future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flowchart of the mitochondria detection and segmentation algorithm (top) and sample 

images (a–g) showing the output of intermediate steps: (a) input image; (b) preprocessed and 

(c) ridge energy image; (d) low frequency ridge energy map (LFREM) image and (e) high 

frequency ridge energy map (HFREM) image for the region indicated by the red square 

shown in (c); (f) Detected curves after filtering (blue: large-scale curves, red: small-scale 

curves); (g) Validated snake output; (h) Output boundary after post-processing.

Tasel et al. Page 31

J Struct Biol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Topographic shapes to be detected with respect to eigenvalues of Hessian matrix and 

assigned ridge energy.
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Fig. 3. 
Sample points A and B on the ridge image (left); corresponding windows placed on A and B 

(right); energy maps (eθ(A) and eθ(B)) (bottom-right). Each point on the energy map 

corresponds to a histogram indicating the total ridge energy with respect to each ridge angle 

within the window.
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Fig. 4. 
A Parabolic arc model represented by two tip points (x1, y1), (x2, y2) and height h.
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Fig. 5. 
Curve segments obtained by using low frequency energy map (a); high frequency energy 

map (b) and filtered curves (c). In (a) and (b), blue curves show successful detections and 

red curves are eliminated curves due to weakness and shortness. In (c), blue and red curves 

show the accepted detections in (a) and the obtained curves from (b) respectively after the 

elimination and filtering process are applied; (d), (e) and (f) are close-up images taken from 

the yellow region placed on (a), (b) and (c) respectively.
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Fig. 6. 
Sample output of the shape extraction algorithm: (a) 1st iteration; (b) 2nd iteration and (c) 

3rd iteration.
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Fig. 7. 
(a) Major axis length (Lmajor), minor axis length (Lminor) of a shape and the minimum 

thickness (Lmin); (b) Signature function Si(j) from the reference point i to boundary point j; 
(c and d) The reference point i and local extremum points mj on the shape boundary and 

sketch of corresponding signature function.
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Fig. 8. 
A stack of snakes and acting forces on a vertex of the snake.
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Fig. 9. 
(a) A cue point p of a curve segment and (b) a cluster formed by the cue points; (c) Cue 

points extracted from the dataset “od_sub” (slice range: 70–89) and (d) corresponding 

cluster centers.

Tasel et al. Page 39

J Struct Biol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
(a) A 2.5D snake is assumed to have gaps where boundary energy is weak; (b) gap filling 

mechanism.
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Fig. 11. 
Boundary of an identically initialized (a) 2D snake output (performed in slice-by-slice 

manner) and (b) 2.5D snake output for the dataset “bclpb-d.sub” (slice range: 20–39).
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Fig. 12. 
A sample merged shape with (a) k = 20 and (b) k = 80; (c) Merged shape samples for 

maximum valid n. The outputs were visualized by MeshLab tool (Cignoni et al., 2008).
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Fig. 13. 
Mitochondria segmentation results (Image basename and slice number): (a) cone.sub (slice 

#: 40); (b) gap18_sub (slice #: 35); (c) 6_22.sub (slice #: 120); (d) spherule24mos1 (slice #: 

45); (e) od.sub (slice #: 70); (f) pedicle (slice #: 40); (g) bclpb-d.sub (slice #: 50); (h) 

mac_serial_sub (slice #: 20).
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Fig. 14. 
(a) The detection performance of 2.5D snake (k = 20; Wgap = 5; gap setting: 3rd) and 

comparison with 2D snake (gap setting: 2nd): (a) precision-recall (fully seen) vs. validity 

threshold (TV) graph; (b) F-score (fully seen) vs. validity threshold (TV) graph.
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Table 2

List of parameters and settings used in the proposed system.

Parameter description Used setting

Preprocessing parameters

Auto-contrast histogram cut 0.5%

Resampling pixel-size 2 nm

Bilateral filtering spatial kernel size 60 nm

Bilateral filtering gray sigma 0.2

Ridge detection parameter

Gaussian derivative sigma 3 nm

Energy mapping parameter

Window size (ω) 30 nm (LFREM)

8 nm (HFREM)

Curve fitting parameters

Threshold energy (Tmap) for initialization 40% of max eθ(s)

Curve update parameters (τx, τy, τh) 8 nm

Curve filtering parameters

Max. allowed value for curvature (κ) 1

Min. arc length 100 nm (large-scale curves)

20 nm (small-scale curves)

Min. average energy 30% of max eθ(s)

Shape extraction/snake parameters

Tension weight (wa, wat) 1.0

Curvature weight (wb, wbt) 200

External energy weight (wc) 0.5 (2D)

1.0 (2.5D)

Inflation weights (wd) 0.5, 1.0, 1.5 … 3.0

Tension weight along z-axis (waz) 5.0

Curvature weight along z-axis (wbz) 5.0

z-thickness (k) 1 (2D), 10, 20, 30, max

Snake initialization parameters

Distance to the vertex point of arc (r) 40 nm

Cluster neighborhood (ε) 100 nm

Min. cluster size [1.5xz – thickness]

Validator function parameters

Min. average boundary energy (Tenergy_b) 20

Min. average region energy (Tenergy_c) 0.1

Max. local curvature (Tcurv_max) 1/45 nm−1

Max. average curvature (Tcurv_ave) 1/180 nm−1

Max. number of local extrema of the signature
  function (maxiNi)

4
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Parameter description Used setting

Min. thickness (Tsig_min) 70 nm

Max. major axis length (Tmajor) 2000 nm

Min. minor axis length (Tminor) 140 nm

Min. area (Tarea_min) 0.02 µm2

Max. area (Tarea_max) 0.7 µm2

Gap-filling window size (Wgap) 3, 5, 7, 9

1st
setting

2nd
setting

3rd
setting

Boundary energy measurement threshold
  (Tgap_energy)

5 10 15

Total gap length (Tgap_total) 500 nm 500 nm 600 nm

Max. gap length (Tgap_max) 400 nm 400 nm 600 nm

Max. gap ratio (Tgap_ratio) 0.4 0.4 0.4

Max. gap ratio on border (Tgap_border) 0.3 0.3 0.4

Post-processing parameter

Merging threshold 30% of area (or volume)
overlapped
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Table 5

The detection performance of 2.5D snake (k = 20; gap setting: 3rd; TV = 0.75) with respect to different values 

of gap window size (Wgap).

Gap window size (Wgap) Precision Recall F-score

Fully seen All Fully seen All

Disabled 0.82 0.75 0.59 0.78 0.68

3 0.81 0.82 0.66 0.82 0.73

5 0.81 0.87 0.71 0.84 0.76

7 0.78 0.87 0.71 0.82 0.75

9 0.77 0.88 0.72 0.82 0.75
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Table 6

Segmentation accuracy of 2D snake (gap setting: 2nd) and 2.5D snake (k = 20; Wgap = 5; gap setting: 3rd; TV 

= 0.75) algorithms for different thickness values and datasets.

Metric DSC

Snake state
Dataset

Original
Snake thickness (k)

Merged
Snake thickness (k)

1 (2D) 10 20 30 Full 1 (2D) 10 20 30 Full

6_22.sub 0.68 0.68 0.72 0.74 0.73 0.72 0.76 0.75 0.77 0.82

bclpb-d.sub 0.85 0.89 0.92 0.92 0.91 0.86 0.90 0.91 0.91 0.89

cone.sub 0.86 0.86 0.93 0.93 0.94 0.88 0.87 0.90 0.90 0.90

gap18_sub 0.82 0.84 0.82 0.82 0.85 0.85 0.89 0.87 0.86 0.87

mac_serial_sub 0.68 0.71 0.73 0.77 0.35 0.65 0.69 0.70 0.77 0.35

od.sub 0.75 0.77 0.78 0.78 0.75 0.70 0.73 0.77 0.76 0.72

pedicle 0.73 0.72 0.79 0.77 0.74 0.78 0.78 0.91 0.83 0.84

spherule24mos1_ 0.85 0.82 0.92 0.87 0.98 0.92 0.95 0.97 0.97 0.97

Average 0.78 0.79 0.83 0.82 0.78 0.79 0.82 0.85 0.85 0.80

Average (excluding mac_serial_sub) 0.79 0.80 0.84 0.83 0.84 0.81 0.84 0.87 0.86 0.86

Metric MSBE (in nanometers)

Snake state
Dataset

Original
Snake thickness (k)

Merged
Snake thickness (k)

1 (2D) 10 20 30 Full 1 (2D) 10 20 30 Full

6_22.sub 33 30 24 24 18 32 23 32 34 14

bclpb-d.sub 16 11 8 10 9 17 11 9 11 9

cone.sub 18 17 10 10 9 14 14 10 10 10

gap18_sub 12 9 9 8 9 12 9 9 9 10

mac_serial_sub 26 19 28 21 110 31 23 42 21 110

od.sub 20 19 18 18 22 31 26 22 24 31

pedicle 48 49 41 49 50 32 32 11 21 21

spherule24mos1_ 30 31 18 28 8 15 9 7 7 8

Average 25 23 20 21 29 23 18 18 17 27

Average (excluding mac_serial_sub) 25 24 18 21 18 22 18 14 17 15
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Table 7

Average execution time of major steps in the system.

Step name Scale Duration (s)

Preprocessing Per slice 0.6

Curve detection Per slice 18.1

Snake algorithm (2D) Per slice 293.7

Per snake-slice 0.5

Snake algorithm (2.5D) Per slice 194.1

Per snake-slice 0.5
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