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Background
Artificial neural networks (ANNs) are mathematical or computational models based on 
biological neural networks. Neural networks consist of universal approximation poten-
tiality, and they function best when the system has a high endurance to error when used 
to model. Recently, there have been rapid growth of ANNs which was utilized in various 
fields (Abbasbandy and Otadi 2006; Chen and Zhang 2009; Guo and Qin 2009; Jafarian 
and Jafari 2012; Jafarian et al. 2015a, b; Jafarian and Measoomynia 2011, 2012; Song et al. 
2013; Wai and Lin 2013). One of the vital roles of ANN is finding FIPs as it proposed in 
this research.

Interpolation theory is one of the basic tool in applied and numerical mathematics. 
Interpolation has been used extensively, because it is one of the noteworthy techniques 
of function approximation (Boffi and Gastaldi 2006; Mastylo 2010; Rajan and Chaud-
huri 2001). Using Newton’s divided difference scheme, a new technique was estab-
lished in Schroeder et al. (1991) for polynomial interpolation. The problem related to 
multivariate interpolation has grabbed the attention of researchers world wide (Nei-
dinger 2009; Olver 2006). There are various multivariate interpolation methods. In 
Olver (2006) they used a multivariate Vandermode matrix and its LU factorization, 
and Neidinger (2009) utilized the Newton-form interpolation. We recall that sparse 
grid interpolation is a further technique. In recent years this procedure is widely exe-
cuted for the provision of an average approximation to a smooth function  (Xiu and 
Hesthaven 2005). Utilizing the Lagrange interpolating polynomials, this approach 

Abstract 

This paper build a structure of fuzzy neural network, which is well sufficient to 
gain a fuzzy interpolation polynomial of the form yp = anx

n
p + · · · + a1xp + a0 

where aj is crisp number (for j = 0, . . . , n), which interpolates the fuzzy data 
(xj , yj) (for j = 0, . . . , n). Thus, a gradient descent algorithm is constructed to train the 
neural network in such a way that the unknown coefficients of fuzzy polynomial are 
estimated by the neural network. The numeral experimentations portray that the pre-
sent interpolation methodology is reliable and efficient.

Keywords:  Fuzzy neural networks, Fuzzy interpolation polynomial, Cost function, 
Learning algorithm

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Jafarian et al. SpringerPlus  (2016) 5:1428 
DOI 10.1186/s40064-016-3077-5

*Correspondence:  
jafarian5594@yahoo.com 
1 Department 
of Mathematics, Urmia 
Branch, Islamic Azad 
University, Urmia, Iran
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3077-5&domain=pdf


Page 2 of 11Jafarian et al. SpringerPlus  (2016) 5:1428 

introduces a polynomial interpolant on the basis of amounts of the function at the 
points in an amalgamation of product grids of minute dimension (Barthelmann et al. 
2000). Existing trends on interpolation networks, have been revealed in Llanas and 
Sainz (2006), Sontag (1992). Numerable proof based on the notation that single hid-
den layer FNNs taking into account m+ 1 neurons, is able to learn m+ 1 isolated data 
(xi, fi) (for i = 0, . . . ,m) with zero error has been established in Ito (2001). The detailed 
introduction and survey of major results can be extracted from Refs. Szabados and 
Vertesi (1990), Tikhomirov (1990).

This paper is inclined to the motive in order to deliver a fuzzy modeling technique by 
the utilization of FNNs for finding a FIP of the form

where aj ǫ R (for j = 0, . . . , n), which interpolates the fuzzy data (xj , yj) (for j = 0, . . . , n). 
The proposed network is a formation, abiding of three layers whereas the extension prin-
ciple of Zadeh (2005) elaborately describes the input-output connection of each unit. In 
the latest model, the unrevealed coefficients of fuzzy polynomial can be approximated 
by employing a cost function. Moreover, a learning technique which is associated with 
gradient decent procedure is formulated for the adjustment of connection weights to 
any achievable degree of precision.

This paper starts with a summary explanation of fuzzy numbers and fuzzy interpola-
tion, then we provide the method of FNN for finding the crisp solution of the FIP. Two 
numerical examples are proposed to establish the validity and performance of the justi-
fied approach in “Numerical examples” section. Finally, “Concluding remarks” section 
presents the conclusions.

Method description
Basically, the interpolation theory has a wide range of applications in mathematical anal-
ysis. In numerical analysis, the interpolation is a method or operation of finding from 
a few given terms of a series, as of numbers or observations, other intermediate terms 
in conformity with the law of the series. Generally, the interpolation techniques are in 
phase with elementary model of an interpolating function which can be stated as:

with the basis function φj(x) : R → R that elates in interpolation criteria:

Suppose that x̂1, . . . , x̂n be n fuzzy points in En whereas, a fuzzy number ŷj ∈ E is in 
direct relation with each x̂j for j = 1, . . . , n. The sought function can be portrayed as 
follows:

(1)yp = anx
n
p + · · · + a1xp + a0,

(2)

s : R → R,

s(x) =
n

∑

j=1

yj · φj(x),

φj(xk) =
{

1, for k = j,
0, for k �= j.

(3)ŝ : En → E : ŝ
(

x̂
)

=
n

∑

j=1

ŷj · φ̂j
(

x̂
)

,
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where the φ̂j : En → E for j = 1, . . . , n exhibit fuzzy functions that compensate the stip-
ulation of interpolation:

Fuzzy interpolation polynomial

The interested are vested in finding FIP of the form

where aj ǫ R (for j = 0, . . . , n), that interpolates the fuzzy data (xj , yj) (for j = 0, . . . , n) . 
Taking into account a three layer FNN construction which is displayed by Fig.  1. The 
input-output connection of each unit of the offered neural network can be portrayed 
as mentioned below, when the α-level sets of the fuzzy input xp is nonnegative, i.e., 
0 ≤ [xp]αl ≤ [xp]αu:

• • Input unit

• • Hidden units

• • Output unit

We have 

 and 

 where M = {aj ≥ 0},C = {aj < 0} and M ∪ C = {1, . . . , n}.

φ̂j
(

x̂k
)

=
{

1, for k = j,
0, for k �= j.

(4)yp = anx
n
p + · · · + a1xp + a0,

(5)[o]α =
[

[xp]αl , [xp]αu
]

, p = 0, . . . , n.

(6)[Oj]α = f
([

[netj]αl , [netj]αu
])

=
(

(

[o]αl
)j
,
(

[o]αu
)j
)

, j = 1, . . . , n.

(7)

[yp]α = F
(

[Net]αl + a0, [Net]αu + a0
)

=
(

[Net]αl + a0, [Net]αu + a0
)

, p = 0, . . . , n,

[Net]αl =
∑

jǫM

[Oj]αl · aj +
∑

jǫC

[Oj]αu · aj ,

[Net]αu =
∑

jǫM

[Oj]αu · aj +
∑

jǫC

[Oj]αl · aj ,

Fig. 1  Fuzzy neural network equivalent to fuzzy interpolation polynomial
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Cost function

The input signals xp (for p = 0, . . . , n) are represented to the network and then 
yn(xp) which is an representing the network output upon the presentation of 
aj (for j = 0, . . . , n) , is calculated. Defining of cost function over the model parameters 
makes it a good forecaster. The mean squared error is termed to be as one of the vastly 
popular usable cost function. Now, let the α-level sets of the fuzzy target output dp are 
exhibited as:

A cost function which is required to be diminished is stated for each α-level sets as 
depicted:

where

Generally the summed up error of the suggested neural network is extracted by:

Obviously, e −→ 0 means [yp]α −→ [dp]α.

Fuzzy neural network learning approach

Suppose connection weights aj (for j = 0, . . . , n) are randomly actuated by crisp num-
bers. Now tweaked rule is illustrated as (Ishibuchi et al. 1995):

where t denotes the number of moderation, η signifies the rate of learning and γ implies 
as the stationary momentum term. We calculate ∂ep(α)

∂aj
 as follows:

Hence complexities lies in the calculation of the derivatives ∂e
l
p(α)

∂aj
 and ∂e

u
p(α)

∂aj
. So we 

have:

[dp]α =
[

[dp]αl , [dp]αu
]

, α ∈ [0, 1],

(8)ep(α) = elp(α)+ eup(α), p = 0, . . . , n,

(9)elp(α) = α ·
(

[dp]αl − [yp]αl
)2

2
,

(10)eup(α) = α ·
(

[dp]αu − [yp]αu
)2

2
.

(11)e =
∑

α

n
∑

p=0

ep(α).

(12)

aj(t + 1) = aj(t)+∆aj(t),

∆aj(t) = − η · ∂ep(α)
∂aj

+ γ ·∆aj(t − 1),

(13)
∂ep(α)

∂aj
=

∂elp(α)

∂aj
+

∂eup(α)

∂aj
.
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and

where

also we have

and

where

Upper bound approximation

Theorem  1  Suppose p : R → R is a continuous function, hence for each com-
pact set ϑ ⊂ E0 (the set of all the bounded fuzzy set), and ψ > 0, there are m ∈ N , and 
a0, ai ∈ R, i = 1, 2, . . . ,m, which imply

where ψ is a finite number.

Proof  The proof of theorem can be followed from the below results. � �

∂elp(α)

∂aj
=

∂elp(α)

∂[yp]αl
·
∂[yp]αl
∂[Net]αl

·
∂[Net]αl
∂aj

= − α ·
(

[dp]lα − [yp]lα
)

.
∂[Net]αl
∂aj

, j = 1, . . . , n,

∂elp(α)

∂aj
=

∂elp(α)

∂[yp]αl
·
∂[yp]αl
∂aj

= −α ·
(

[dp]lα − [yp]lα
)

, j = 0,

∂[Net]αl
∂aj

=







[Oj]αl , aj ≥ 0,

[Oj]αu , aj < 0,

∂eup(α)

∂aj
=

∂eup(α)

∂[yp]αu
· ∂[yp]αu
∂[Net]αu

· ∂[Net]
α
u

∂aj

= − α ·
(

[dp]uα − [yp]uα
)

· ∂[Net]
α
u

∂aj
, j = 1, . . . , n,

∂eup(α)

∂aj
=

∂eup(α)

∂[yp]αu
· ∂[yp]

α
u

∂aj
= −α ·

(

[dp]uα − [yp]uα
)

, j = 0,

∂[Net]αu
∂aj

=







[Oj]αu , aj ≥ 0,

[Oj]αl , , aj < 0,

(14)∀x̂ ∈ ϑ and ∀x̆ ∈ R, d

(

p
(

x̆
)

,

m
∑

i=1

pi
(

x̂
)

ai + a0

)

< ψ ,
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If p : R → R, by applying the methodology of the extension principle, p can be extended 
to the fuzzy function that denotes by p : E0 → E as follows:

p is termed as expanded function. Also, cc(R) implies the bounded set of closed intervals 
of R. clearly

Moreover

Henceforth, we let

Theorem 2  Suppose p : R → R is a continuous function, hence for each compact set 
ϑ ⊂ E0, ̺ > 0 and arbitrary ε > 0, exist m ∈ N , and a0, ai ∈ R, i = 1, 2, . . . ,m, implicate

where  ̺is a finite number. The bottom and top bounds of the α-level set of fuzzy function 
diminish to ̺, but the center goes to ε.

Proof  Because ϑ ⊂ E0 is a compact set, and so by Lemma 3, it can be supposed that 
V ⊂ R be the compact set associated to ϑ .∀ε > 0, therefore by the final outcome in 
Cybenko (1989), exist m ∈ N , and a0, ai ∈ R, i = 1, 2, . . . ,m, which imply

holds. Let q(x̂) =
∑m

i=1 pi(x̂)ai + a0, x̂ ∈ R, then

Theorem 4 implies the validity of (19). � �

Lemma 3  If ϑ ⊂ E0 be a compact set, hence ϑ is uniformly support-bounded, i.e. exists a 
compact set V ⊂ R, implicates ∀u ∈ ϑ , Supp(u) ⊂ V .

Theorem 4  Supposing ϑ ⊂ E0 be compact, V the corresponding compact set of ϑ , and 
p, q : R → R are the continuous functions that compensate the relation mentioned 
below

Then ∀u ∈ ϑ , d(p(u)− q(u)) ≤ k .

(15)
∀u ∈ E0, p(u)(y) =

∨

p(x̂)=y

{

u
(

x̂
)}

y ∈ R,

(16)u ∈ E0 =⇒ ∀α ∈ (0, 1], [u]α ∈ cc(R).

(17)Supp(u) ∈ cc(R).

(18)Supp(u) = [s1(u), s2(u)].

(19)∀x̂ ∈ ϑ , d

(

p
(

x̂
)

,

m
∑

i=1

pi
(

x̂
)

ai + a0

)

< ̺,

(20)∀x̂ ∈ V ,

∣

∣

∣

∣

∣

p(x̂)−
m
∑

i=1

pi(x̂)ai + a0

∣

∣

∣

∣

∣

< ε,

(21)∀x̂ ∈ V ,
∣

∣p
(

x̂
)

− q
(

x̂
)∣

∣ < ε.

(22)∀x̂ ∈ V ,
∣

∣p
(

x̂
)

− q
(

x̂
)∣

∣ < k , k > 0.
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Proof  See Liu (2000). � �

Numerical examples
The following examples has been used to narrate the methodology proposed in this 
paper.

Example 5  The connection between three tanks and pipeline which is denoted by a 
constant H is represented by Fig. 2. It is a requirement to pump water in order to trans-
fer it from one tank to the further two tanks. The mentioned system suffice the relation 
mentioned below

here F1 =
√
2x, F2 = x

√
x, F3 = x3 are considered to be the flow quantity, where 

x is taken to be the elapsed time. The height of the pipe is mentioned by the term 
H ,A0,A1,A2 and A3 are the pump characteristic coefficients, to be mentioned

In below, four real uncertain data have been mentioned

The iteration of data is continued for 19 times.

We use x0 = 5, x1 = 7, x2 = 6, x3 = 8, η = 1× 10−2 and γ = 1× 10−2 for FNN. 
The approximation results are depicted in Table 1. The precision level of the solutions 
x0(t), x1(t), x2(t) and x3(t) are shown in Fig. 3, t implies the iterative numbers. It is emi-
nent that by incrementing the iterations, the cost function diminishes to zero. The con-
vergency criteria of the approximated solutions are portrayed using Figs. 4, 5, 6 and 7. 
For the purpose of attaining the exact solutions, the iterations in the figures have to be 
increased.

H = A0 ⊕ A1F1 ⊕ A2F2 ⊕ A3F3

A0 = 2, A1 = 4, A2 = 3, A3 = 5

x = {6, (1, 3, 4), 3, (2, 3, 4, 6)}

H = {1139.9472, (15.6568, 162.3859, 357.3137),
162.3893, (58.4852, 162.3859, 357.3137, 1139.9456)}

P

1

2

3

J

Fig. 2  Pumping of water in order to transfer it from one tank to the further two tanks
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Table 1  Neural network approximation for the coefficients

t x0(t) x1(t) x2(t) x3(t) Error for FNN

1 4.9018 6.9215 5.9307 7.9121 58,756.65

2 4.5321 6.6450 5.5480 7.6010 6479.790

3 4.0231 6.2056 5.1250 7.2212 1741.483

4 3.6850 5.8401 4.7851 6.7945 577.7597

5 3.2032 5.4001 4.3365 6.3330 210.8822
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
15 2.0008 4.0007 3.0008 5.0006 0.366883

16 2.0007 4.0005 3.0006 5.0005 0.151818

17 2.0005 4.0004 3.0005 5.0003 0.062895

18 2.0004 4.0003 3.0004 5.0002 0.026075

19 2.0003 4.0002 3.0003 5.0001 0.010815
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Fig. 3  The error between the approximate solution and the exact solution
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Fig. 4  The approximated solution approaches to the exact one
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Example 6  Contemplate the sequential interpolation points:

((1, 2, 3); (−54,−29,−12)), ((3, 4, 6); (−177,−87,−54)),

((2, 3, 5); (−128,−54,−29))

0 2 4 6 8 10 12 14 16 18

4

4.5

5

5.5

6

6.5

7

Number of iterations

C
on

ve
rg

en
ce

 a
na

lis
ys

 fo
r a

1

x
1
(t)

4 11

4.1

4.4

Fig. 5  The approximated solution approaches to the exact one
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Fig. 6  The approximated solution approaches to the exact one
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Fig. 7  The approximated solution approaches to the exact one
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The exact solution for the given problem can be stated as:

This constrained is resolved by utilizing the technique of neural network sug-
gested in this context, assuming x0 = −0.5, x1 = −2.5, x2 = −1.5, η = 3× 10−2 and 
γ = 3× 10−2 .

The approximation results are depicted in Table 2. The precision level of the solutions 
x0(t), x1(t) and x2(t) are shown in Fig. 8, t implies the number of iterations.

Concluding remarks
This research introduces a new methodology in order to find a FIP which interpolates 
the fuzzy data (xj , yj) (for j = 0, . . . , n). To achieve this goal, a FNN equivalent to FIP was 
built, and a fast learning algorithm was defined for approximating the crisp unknown 
coefficients of the given polynomial. The proposed method was based on approximating 
FNN and the MATLAB software is used for the simulations. The innovative method was 
validated with two examples. The simulation results clearly illustrated the efficiency and 
computational advantages of the proposed technique. In particular, the error of approxi-
mation is minute.

y = −4x2 − 5x − 3.

Table 2  Neural network approximation for the coefficients

t x0(t) x1(t) x2(t) Error for FNN

1 −0.5915 −2.5895 −1.5784 2330.5296

2 −0.9910 −2.9033 −1.9664 1896.6752

3 −1.3356 −3.3346 −2.3696 999.56201

4 −1.8050 −3.8798 −2.7561 401.56201

5 −2.2257 −4.1035 −3.1100 95.188500
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

13 −2.9996 −4.9995 −3.9996 0.86688366

14 −2.9998 −4.9996 −3.9998 0.54635274

15 −2.9999 −4.9998 −3.9999 0.23614301

16 −3.0000 −4.9999 −4.0000 0.06896850

17 −3.0000 −5.0000 −4.0000 0.02003805
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0

500

1000

1500

2000

2500

Number of iterations

Th
e 

co
st

 fu
nc

tio
n

Error

5 9

500

1500

Fig. 8  The error between the approximate solution and the exact solution
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