
A novel computational approach
to approximate fuzzy interpolation polynomials
Ahmad Jafarian1*, Raheleh Jafari2, Maysaa Mohamed Al Qurashi3 and Dumitru Baleanu4,5

Background
Artificial neural networks (ANNs) are mathematical or computational models based on
biological neural networks. Neural networks consist of universal approximation poten-
tiality, and they function best when the system has a high endurance to error when used
to model. Recently, there have been rapid growth of ANNs which was utilized in various
fields (Abbasbandy and Otadi 2006; Chen and Zhang 2009; Guo and Qin 2009; Jafarian
and Jafari 2012; Jafarian et al. 2015a, b; Jafarian and Measoomynia 2011, 2012; Song et al.
2013; Wai and Lin 2013). One of the vital roles of ANN is finding FIPs as it proposed in
this research.

Interpolation theory is one of the basic tool in applied and numerical mathematics.
Interpolation has been used extensively, because it is one of the noteworthy techniques
of function approximation (Boffi and Gastaldi 2006; Mastylo 2010; Rajan and Chaud-
huri 2001). Using Newton’s divided difference scheme, a new technique was estab-
lished in Schroeder et al. (1991) for polynomial interpolation. The problem related to
multivariate interpolation has grabbed the attention of researchers world wide (Nei-
dinger 2009; Olver 2006). There are various multivariate interpolation methods. In
Olver (2006) they used a multivariate Vandermode matrix and its LU factorization,
and Neidinger (2009) utilized the Newton-form interpolation. We recall that sparse
grid interpolation is a further technique. In recent years this procedure is widely exe-
cuted for the provision of an average approximation to a smooth function (Xiu and
Hesthaven 2005). Utilizing the Lagrange interpolating polynomials, this approach

Abstract 

This paper build a structure of fuzzy neural network, which is well sufficient to
gain a fuzzy interpolation polynomial of the form yp = anx

n
p + · · · + a1xp + a0

where aj is crisp number (for j = 0, . . . , n), which interpolates the fuzzy data
(xj , yj) (for j = 0, . . . , n). Thus, a gradient descent algorithm is constructed to train the
neural network in such a way that the unknown coefficients of fuzzy polynomial are
estimated by the neural network. The numeral experimentations portray that the pre-
sent interpolation methodology is reliable and efficient.

Keywords:  Fuzzy neural networks, Fuzzy interpolation polynomial, Cost function,
Learning algorithm

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Jafarian et al. SpringerPlus (2016) 5:1428
DOI 10.1186/s40064-016-3077-5

*Correspondence:
jafarian5594@yahoo.com
1 Department
of Mathematics, Urmia
Branch, Islamic Azad
University, Urmia, Iran
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3077-5&domain=pdf

Page 2 of 11Jafarian et al. SpringerPlus (2016) 5:1428

introduces a polynomial interpolant on the basis of amounts of the function at the
points in an amalgamation of product grids of minute dimension (Barthelmann et al.
2000). Existing trends on interpolation networks, have been revealed in Llanas and
Sainz (2006), Sontag (1992). Numerable proof based on the notation that single hid-
den layer FNNs taking into account m+ 1 neurons, is able to learn m+ 1 isolated data
(xi, fi) (for i = 0, . . . ,m) with zero error has been established in Ito (2001). The detailed
introduction and survey of major results can be extracted from Refs. Szabados and
Vertesi (1990), Tikhomirov (1990).

This paper is inclined to the motive in order to deliver a fuzzy modeling technique by
the utilization of FNNs for finding a FIP of the form

where aj ǫ R (for j = 0, . . . , n), which interpolates the fuzzy data (xj , yj) (for j = 0, . . . , n).
The proposed network is a formation, abiding of three layers whereas the extension prin-
ciple of Zadeh (2005) elaborately describes the input-output connection of each unit. In
the latest model, the unrevealed coefficients of fuzzy polynomial can be approximated
by employing a cost function. Moreover, a learning technique which is associated with
gradient decent procedure is formulated for the adjustment of connection weights to
any achievable degree of precision.

This paper starts with a summary explanation of fuzzy numbers and fuzzy interpola-
tion, then we provide the method of FNN for finding the crisp solution of the FIP. Two
numerical examples are proposed to establish the validity and performance of the justi-
fied approach in “Numerical examples” section. Finally, “Concluding remarks” section
presents the conclusions.

Method description
Basically, the interpolation theory has a wide range of applications in mathematical anal-
ysis. In numerical analysis, the interpolation is a method or operation of finding from
a few given terms of a series, as of numbers or observations, other intermediate terms
in conformity with the law of the series. Generally, the interpolation techniques are in
phase with elementary model of an interpolating function which can be stated as:

with the basis function φj(x) : R → R that elates in interpolation criteria:

Suppose that x̂1, . . . , x̂n be n fuzzy points in En whereas, a fuzzy number ŷj ∈ E is in
direct relation with each x̂j for j = 1, . . . , n. The sought function can be portrayed as
follows:

(1)yp = anx
n
p + · · · + a1xp + a0,

(2)

s : R → R,

s(x) =
n

∑

j=1

yj · φj(x),

φj(xk) =
{

1, for k = j,
0, for k �= j.

(3)ŝ : En → E : ŝ
(

x̂
)

=
n

∑

j=1

ŷj · φ̂j
(

x̂
)

,

Page 3 of 11Jafarian et al. SpringerPlus (2016) 5:1428

where the φ̂j : En → E for j = 1, . . . , n exhibit fuzzy functions that compensate the stip-
ulation of interpolation:

Fuzzy interpolation polynomial

The interested are vested in finding FIP of the form

where aj ǫ R (for j = 0, . . . , n), that interpolates the fuzzy data (xj , yj) (for j = 0, . . . , n) .
Taking into account a three layer FNN construction which is displayed by Fig. 1. The
input-output connection of each unit of the offered neural network can be portrayed
as mentioned below, when the α-level sets of the fuzzy input xp is nonnegative, i.e.,
0 ≤ [xp]αl ≤ [xp]αu:

• • Input unit

• • Hidden units

• • Output unit

We have

 and

 where M = {aj ≥ 0},C = {aj < 0} and M ∪ C = {1, . . . , n}.

φ̂j
(

x̂k
)

=
{

1, for k = j,
0, for k �= j.

(4)yp = anx
n
p + · · · + a1xp + a0,

(5)[o]α =
[

[xp]αl , [xp]αu
]

, p = 0, . . . , n.

(6)[Oj]α = f
([

[netj]αl , [netj]αu
])

=
(

(

[o]αl
)j
,
(

[o]αu
)j
)

, j = 1, . . . , n.

(7)

[yp]α = F
(

[Net]αl + a0, [Net]αu + a0
)

=
(

[Net]αl + a0, [Net]αu + a0
)

, p = 0, . . . , n,

[Net]αl =
∑

jǫM

[Oj]αl · aj +
∑

jǫC

[Oj]αu · aj ,

[Net]αu =
∑

jǫM

[Oj]αu · aj +
∑

jǫC

[Oj]αl · aj ,

Fig. 1  Fuzzy neural network equivalent to fuzzy interpolation polynomial

Page 4 of 11Jafarian et al. SpringerPlus (2016) 5:1428

Cost function

The input signals xp (for p = 0, . . . , n) are represented to the network and then
yn(xp) which is an representing the network output upon the presentation of
aj (for j = 0, . . . , n) , is calculated. Defining of cost function over the model parameters
makes it a good forecaster. The mean squared error is termed to be as one of the vastly
popular usable cost function. Now, let the α-level sets of the fuzzy target output dp are
exhibited as:

A cost function which is required to be diminished is stated for each α-level sets as
depicted:

where

Generally the summed up error of the suggested neural network is extracted by:

Obviously, e −→ 0 means [yp]α −→ [dp]α.

Fuzzy neural network learning approach

Suppose connection weights aj (for j = 0, . . . , n) are randomly actuated by crisp num-
bers. Now tweaked rule is illustrated as (Ishibuchi et al. 1995):

where t denotes the number of moderation, η signifies the rate of learning and γ implies
as the stationary momentum term. We calculate ∂ep(α)

∂aj
 as follows:

Hence complexities lies in the calculation of the derivatives ∂e
l
p(α)

∂aj
 and ∂e

u
p(α)

∂aj
. So we

have:

[dp]α =
[

[dp]αl , [dp]αu
]

, α ∈ [0, 1],

(8)ep(α) = elp(α)+ eup(α), p = 0, . . . , n,

(9)elp(α) = α ·
(

[dp]αl − [yp]αl
)2

2
,

(10)eup(α) = α ·
(

[dp]αu − [yp]αu
)2

2
.

(11)e =
∑

α

n
∑

p=0

ep(α).

(12)

aj(t + 1) = aj(t)+∆aj(t),

∆aj(t) = − η · ∂ep(α)
∂aj

+ γ ·∆aj(t − 1),

(13)
∂ep(α)

∂aj
=

∂elp(α)

∂aj
+

∂eup(α)

∂aj
.

Page 5 of 11Jafarian et al. SpringerPlus (2016) 5:1428

and

where

also we have

and

where

Upper bound approximation

Theorem 1  Suppose p : R → R is a continuous function, hence for each com-
pact set ϑ ⊂ E0 (the set of all the bounded fuzzy set), and ψ > 0, there are m ∈ N , and
a0, ai ∈ R, i = 1, 2, . . . ,m, which imply

where ψ is a finite number.

Proof  The proof of theorem can be followed from the below results. � �

∂elp(α)

∂aj
=

∂elp(α)

∂[yp]αl
·
∂[yp]αl
∂[Net]αl

·
∂[Net]αl
∂aj

= − α ·
(

[dp]lα − [yp]lα
)

.
∂[Net]αl
∂aj

, j = 1, . . . , n,

∂elp(α)

∂aj
=

∂elp(α)

∂[yp]αl
·
∂[yp]αl
∂aj

= −α ·
(

[dp]lα − [yp]lα
)

, j = 0,

∂[Net]αl
∂aj

=







[Oj]αl , aj ≥ 0,

[Oj]αu , aj < 0,

∂eup(α)

∂aj
=

∂eup(α)

∂[yp]αu
· ∂[yp]αu
∂[Net]αu

· ∂[Net]
α
u

∂aj

= − α ·
(

[dp]uα − [yp]uα
)

· ∂[Net]
α
u

∂aj
, j = 1, . . . , n,

∂eup(α)

∂aj
=

∂eup(α)

∂[yp]αu
· ∂[yp]

α
u

∂aj
= −α ·

(

[dp]uα − [yp]uα
)

, j = 0,

∂[Net]αu
∂aj

=







[Oj]αu , aj ≥ 0,

[Oj]αl , , aj < 0,

(14)∀x̂ ∈ ϑ and ∀x̆ ∈ R, d

(

p
(

x̆
)

,

m
∑

i=1

pi
(

x̂
)

ai + a0

)

< ψ ,

Page 6 of 11Jafarian et al. SpringerPlus (2016) 5:1428

If p : R → R, by applying the methodology of the extension principle, p can be extended
to the fuzzy function that denotes by p : E0 → E as follows:

p is termed as expanded function. Also, cc(R) implies the bounded set of closed intervals
of R. clearly

Moreover

Henceforth, we let

Theorem 2  Suppose p : R → R is a continuous function, hence for each compact set
ϑ ⊂ E0, ̺ > 0 and arbitrary ε > 0, exist m ∈ N , and a0, ai ∈ R, i = 1, 2, . . . ,m, implicate

where ̺is a finite number. The bottom and top bounds of the α-level set of fuzzy function
diminish to ̺, but the center goes to ε.

Proof  Because ϑ ⊂ E0 is a compact set, and so by Lemma 3, it can be supposed that
V ⊂ R be the compact set associated to ϑ .∀ε > 0, therefore by the final outcome in
Cybenko (1989), exist m ∈ N , and a0, ai ∈ R, i = 1, 2, . . . ,m, which imply

holds. Let q(x̂) =
∑m

i=1 pi(x̂)ai + a0, x̂ ∈ R, then

Theorem 4 implies the validity of (19). � �

Lemma 3  If ϑ ⊂ E0 be a compact set, hence ϑ is uniformly support-bounded, i.e. exists a
compact set V ⊂ R, implicates ∀u ∈ ϑ , Supp(u) ⊂ V .

Theorem 4  Supposing ϑ ⊂ E0 be compact, V the corresponding compact set of ϑ , and
p, q : R → R are the continuous functions that compensate the relation mentioned
below

Then ∀u ∈ ϑ , d(p(u)− q(u)) ≤ k .

(15)
∀u ∈ E0, p(u)(y) =

∨

p(x̂)=y

{

u
(

x̂
)}

y ∈ R,

(16)u ∈ E0 =⇒ ∀α ∈ (0, 1], [u]α ∈ cc(R).

(17)Supp(u) ∈ cc(R).

(18)Supp(u) = [s1(u), s2(u)].

(19)∀x̂ ∈ ϑ , d

(

p
(

x̂
)

,

m
∑

i=1

pi
(

x̂
)

ai + a0

)

< ̺,

(20)∀x̂ ∈ V ,

∣

∣

∣

∣

∣

p(x̂)−
m
∑

i=1

pi(x̂)ai + a0

∣

∣

∣

∣

∣

< ε,

(21)∀x̂ ∈ V ,
∣

∣p
(

x̂
)

− q
(

x̂
)∣

∣ < ε.

(22)∀x̂ ∈ V ,
∣

∣p
(

x̂
)

− q
(

x̂
)∣

∣ < k , k > 0.

Page 7 of 11Jafarian et al. SpringerPlus (2016) 5:1428

Proof  See Liu (2000). � �

Numerical examples
The following examples has been used to narrate the methodology proposed in this
paper.

Example 5  The connection between three tanks and pipeline which is denoted by a
constant H is represented by Fig. 2. It is a requirement to pump water in order to trans-
fer it from one tank to the further two tanks. The mentioned system suffice the relation
mentioned below

here F1 =
√
2x, F2 = x

√
x, F3 = x3 are considered to be the flow quantity, where

x is taken to be the elapsed time. The height of the pipe is mentioned by the term
H ,A0,A1,A2 and A3 are the pump characteristic coefficients, to be mentioned

In below, four real uncertain data have been mentioned

The iteration of data is continued for 19 times.

We use x0 = 5, x1 = 7, x2 = 6, x3 = 8, η = 1× 10−2 and γ = 1× 10−2 for FNN.
The approximation results are depicted in Table 1. The precision level of the solutions
x0(t), x1(t), x2(t) and x3(t) are shown in Fig. 3, t implies the iterative numbers. It is emi-
nent that by incrementing the iterations, the cost function diminishes to zero. The con-
vergency criteria of the approximated solutions are portrayed using Figs. 4, 5, 6 and 7.
For the purpose of attaining the exact solutions, the iterations in the figures have to be
increased.

H = A0 ⊕ A1F1 ⊕ A2F2 ⊕ A3F3

A0 = 2, A1 = 4, A2 = 3, A3 = 5

x = {6, (1, 3, 4), 3, (2, 3, 4, 6)}

H = {1139.9472, (15.6568, 162.3859, 357.3137),
162.3893, (58.4852, 162.3859, 357.3137, 1139.9456)}

P

1

2

3

J

Fig. 2  Pumping of water in order to transfer it from one tank to the further two tanks

Page 8 of 11Jafarian et al. SpringerPlus (2016) 5:1428

Table 1  Neural network approximation for the coefficients

t x0(t) x1(t) x2(t) x3(t) Error for FNN

1 4.9018 6.9215 5.9307 7.9121 58,756.65

2 4.5321 6.6450 5.5480 7.6010 6479.790

3 4.0231 6.2056 5.1250 7.2212 1741.483

4 3.6850 5.8401 4.7851 6.7945 577.7597

5 3.2032 5.4001 4.3365 6.3330 210.8822
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
15 2.0008 4.0007 3.0008 5.0006 0.366883

16 2.0007 4.0005 3.0006 5.0005 0.151818

17 2.0005 4.0004 3.0005 5.0003 0.062895

18 2.0004 4.0003 3.0004 5.0002 0.026075

19 2.0003 4.0002 3.0003 5.0001 0.010815

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6
x 10

4

Number of iterations

Th
e

co
st

 fu
nc

tio
n

Error

4 11

500

1500

Fig. 3  The error between the approximate solution and the exact solution

0 2 4 6 8 10 12 14 16 18

2

2.5

3

3.5

4

4.5

5

Number of iterations

C
on

ve
rg

en
ce

 a
na

lis
ys

 fo
r a

0

x
0
(t)

4 11

2.1

2.4

Fig. 4  The approximated solution approaches to the exact one

Page 9 of 11Jafarian et al. SpringerPlus (2016) 5:1428

Example 6  Contemplate the sequential interpolation points:

((1, 2, 3); (−54,−29,−12)), ((3, 4, 6); (−177,−87,−54)),

((2, 3, 5); (−128,−54,−29))

0 2 4 6 8 10 12 14 16 18

4

4.5

5

5.5

6

6.5

7

Number of iterations

C
on

ve
rg

en
ce

 a
na

lis
ys

 fo
r a

1

x
1
(t)

4 11

4.1

4.4

Fig. 5  The approximated solution approaches to the exact one

0 2 4 6 8 10 12 14 16 18

3

3.5

4

4.5

5

5.5

6

Number of iterations

C
on

ve
rg

en
ce

 a
na

lis
ys

 fo
r a

2

x
2
(t)

4 11

3.2

3.8

Fig. 6  The approximated solution approaches to the exact one

0 2 4 6 8 10 12 14 16 18

5

5.5

6

6.5

7

7.5

8

Number of iterations

C
on

ve
rg

en
ce

 a
na

lis
ys

 fo
r a

3

x
3
(t)

4 11

5.1

5.5

Fig. 7  The approximated solution approaches to the exact one

Page 10 of 11Jafarian et al. SpringerPlus (2016) 5:1428

The exact solution for the given problem can be stated as:

This constrained is resolved by utilizing the technique of neural network sug-
gested in this context, assuming x0 = −0.5, x1 = −2.5, x2 = −1.5, η = 3× 10−2 and
γ = 3× 10−2 .

The approximation results are depicted in Table 2. The precision level of the solutions
x0(t), x1(t) and x2(t) are shown in Fig. 8, t implies the number of iterations.

Concluding remarks
This research introduces a new methodology in order to find a FIP which interpolates
the fuzzy data (xj , yj) (for j = 0, . . . , n). To achieve this goal, a FNN equivalent to FIP was
built, and a fast learning algorithm was defined for approximating the crisp unknown
coefficients of the given polynomial. The proposed method was based on approximating
FNN and the MATLAB software is used for the simulations. The innovative method was
validated with two examples. The simulation results clearly illustrated the efficiency and
computational advantages of the proposed technique. In particular, the error of approxi-
mation is minute.

y = −4x2 − 5x − 3.

Table 2  Neural network approximation for the coefficients

t x0(t) x1(t) x2(t) Error for FNN

1 −0.5915 −2.5895 −1.5784 2330.5296

2 −0.9910 −2.9033 −1.9664 1896.6752

3 −1.3356 −3.3346 −2.3696 999.56201

4 −1.8050 −3.8798 −2.7561 401.56201

5 −2.2257 −4.1035 −3.1100 95.188500
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

13 −2.9996 −4.9995 −3.9996 0.86688366

14 −2.9998 −4.9996 −3.9998 0.54635274

15 −2.9999 −4.9998 −3.9999 0.23614301

16 −3.0000 −4.9999 −4.0000 0.06896850

17 −3.0000 −5.0000 −4.0000 0.02003805

0 2 4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

Number of iterations

Th
e

co
st

 fu
nc

tio
n

Error

5 9

500

1500

Fig. 8  The error between the approximate solution and the exact solution

Page 11 of 11Jafarian et al. SpringerPlus (2016) 5:1428

Authors’ contributions
All authors contributed equally to this work. All authors read and approve the final manuscript.

Author details
1 Department of Mathematics, Urmia Branch, Islamic Azad University, Urmia, Iran. 2 Departamento de Control
Automático, CINVESTAV-IPN (National Polytechnic Institute), Mexico City, Mexico. 3 Department of Mathematics, King
Saud University, Riyadh 11495, Saudi Arabia. 4 Department of Mathematics, Faculty of Art and Sciences, Cankaya Univer-
sity, 06530 Balgat, Ankara, Turkey. 5 Institute of Space Sciences, Magurele‑Bucharest, Romania.

Acknowledgements
The research is supported by a grant from the “Research Center of the Center for Female Scientific and Medical Colleges”,
Deanship of Scientific Research, King Saud University. The authors are also thankful to visiting professor program at King
Saud University for support.

Competing interests
The authors declare that they have no competing interests.

Received: 20 June 2016 Accepted: 15 August 2016

References
Abbasbandy S, Otadi M (2006) Numerical solution of fuzzy polynomials by fuzzy neural network. Appl Math Comput

181:1084–1089
Barthelmann V, Novak E, Ritter K (2000) High dimensional polynomial interpolation on sparse grids. Adv Comput Math

12:273–288
Boffi D, Gastaldi L (2006) Interpolation estimates for edge finite elements and application to band gap computation.

Appl Numer Math 56:1283–1292
Chen Lh, Zhang Xy (2009) Application of artificial neural networks to classify water quality of the yellow river. Fuzzy Inf

Eng 9:15–23
Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2:303–314
Guo B, Qin L (2009) Tactile sensor signal processing with artificial neural networks. Fuzzy Inf Eng 54:54–62
Ishibuchi H, Kwon K, Tanaka H (1995) A learning of fuzzy neural networks with triangular fuzzy weghts. Fuzzy Sets Syst

71:277–293
Ito Y (2001) Independence of unscaled basis functions and finite mappings by neural networks. Math Sci 26:117–126
Jafarian A, Measoomynia S (2011) Solving fuzzy polynomials using neural nets with a new learning algorithm. Appl Math

Sci 5:2295–2301
Jafarian A, Jafari R (2012) Approximate solutions of dual fuzzy polynomials by feed-back neural networks. J Soft Comput

Appl. doi:10.5899/2012/jsca-00005
Jafarian A, Measoomynia S (2012) Utilizing feed-back neural network approach for solving linear Fredholm integral equa-

tions system. Appl Math Model. doi:10.1016/j.apm
Jafarian A, Jafari R, Khalili A, Baleanud D (2015a) Solving fully fuzzy polynomials using feedback neural networks. Int J

Comput Math 92:742–755
Jafarian A, Measoomy S, Abbasbandy S (2015b) Artificial neural networks based modeling for solving Volterra integral

equations system. Appl Soft Comput 27:391–398
Liu P (2000) Analyses of regular fuzzy neural networks for approximation capabilities. Fuzzy Sets Syst 114:329–338
Llanas B, Sainz FJ (2006) Constructive approximate interpolation by neural networks. J Comput Appl Math 188:283–308
Mastylo M (2010) Interpolation estimates for entropy numbers with applications to non-convex bodies. J Approx Theory

162:10–23
Neidinger RD (2009) Multivariable interpolating polynomials in newton forms. In: Joint mathematics meetings, Washing-

ton, DC, pp 5–8
Olver PJ (2006) On multivariate interpolation. Stud Appl Math 116:201–240
Rajan D, Chaudhuri S (2001) Generalized interpolation and its application in super-resolution imaging. Image Vis Comput

19:957–969
Schroeder H, Murthy VK, Krishnamurthy EV (1991) Systolic algorithm for polynomial interpolation and related problems.

Parallel Comput 17:493–503
Song Q, Zhao Z, Yang J (2013) Passivity and passification for stochastic TakagiSugeno fuzzy systems with mixed time-

varying delays. Neurocomputing 122:330–337
Sontag ED (1992) Feedforward nets for interpolation and classification. J Comput Syst Sci 45:20–48
Szabados J, Vertesi P (1990) Interpolation of functions. World Scientific, Singapore
Tikhomirov VM (1990) Approximation theory, analysis II. In: Gamkrelidze RV (ed) Encyclopaedia of mathematical sciences,

vol 14. Springer, Berlin
Wai RJ, Lin YW (2013) Adaptive moving-target tracking control of a vision-based mobile robot via a dynamic petri recur-

rent fuzzy neural network. IEEE Trans Fuzzy Syst 21:688–701
Xiu D, Hesthaven JS (2005) High-order collocation methods for differential equations with random inputs. SIAM J Sci

Comput 27:18–39
Zadeh LA (2005) Toward a generalized theory of uncertainty (GTU) an outline. Inf Sci 172:1–40

http://dx.doi.org/10.5899/2012/jsca-00005
http://dx.doi.org/10.1016/j.apm

	A novel computational approach to approximate fuzzy interpolation polynomials
	Abstract
	Background
	Method description
	Fuzzy interpolation polynomial
	Cost function
	Fuzzy neural network learning approach
	Upper bound approximation

	Numerical examples
	Concluding remarks
	Authors’ contributions
	References

