
i 
 

 

 

 

 

 

 

 

 

 

 

ÇANKAYA UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

ELECTRONIC AND COMMUNICATION ENGINEERING 

 

MASTER THESIS 

 

 

 

 

 

 

COMPARISON OF BEAM PROFILES FROM ANALYTIC  

SOLUTION AND COMPUTATIONAL MODELS 

 

 

 

 

 

 

 

ÖMER KEMAL ÇATMAKAŞ 

 

 

 

 

 

JANUARY 2014 

 

 

 

 

 

 

 

 

http://www.cankaya.edu.tr/akademik_birimler/fenbilimleri/matematik/index_en.php




User
Stamp



iv 
 

ABSTRACT 

 

 

COMPARISON OF BEAM PROFILES FROM ANALYTIC 

SOLUTION AND COMPUTATIONAL MODELS 

 

ÇATMAKAŞ, Ömer Kemal 

M.S., Department of Electronic and Communication Engineering 

Supervisor: Prof.Dr. Halil Tanyer EYYUBOĞLU 

January 2014, 78 pages 

 

In this thesis, we have compared the receiver plane beam profiles  by computing the 

Huygens-Fresnel integral as convolution integral and Fourier integral operator and the 

results obtained from analytic derivation.  The comparisons made on different beam 

types such as Gaussian, Annular-Gaussian, Sine-Gaussian, Sinh-Gaussian, Cos-

Gaussian, Cosh-Gaussian beams. To make computations and comparisons we have 

developed a Matlab code, this code formulates the field expression for beam types on 

source plane, computes the receiver plane intensity distribution for three approaches of 

Huygens-Fresnel diffraction integral, and compares the results. Using this code, for the 

mentioned beam types, receiver beam profiles are computed and compared against 

different propagation distances and different beam parameters in free space. 

 

Keywords: Free Space Optics, Diffraction, Angular Spectrum 
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ÖZ 

 

 

IŞIK HÜZME PROFİLLERİNİN ANALİTİK ÇÖZÜMÜ İLE 

HESAPLANABİLİR MODELLERİNİN KIYASLANMASI 

 

ÇATMAKAŞ, Ömer Kemal 

Yüksek Lisans, Elektronik ve Haberleşme Anabilim Dalı 

Tez Yöneticisi: Prof.Dr. Halil Tanyer EYYUBOĞLU 

Ocak 2014, 78 sayfa 

 

Bu tezde, Huygens-Fresnel entegralini, büklüm entegrali ve Fourier dönüşüm entegrali 

olarak hesaplayıp elde edilen ışık huzme profillerini, Huygens-Fresnel entegralinin 

analitik çözümünden elde edilen sonuçlarla kıyasladık . Kıyaslamalar Gaussian, Cos-

Gaussian, Cosh-Gaussian, Sine-Gaussian, Sinh-Gaussian ve Annular gibi değişik ışık 

huzme tipleri üzerinde  yapıldı. Kıyaslamaları yapmak için bir matlab kodu geliştirdik, 

bu kod kaynak düzlemede ışık huzmelerini oluşturabilmekte ve yoğunluklarını 

çizebilmekte, alıcı düzlemi için Huygens-Fresnel dağılma entegralinin her üç 

yaklaşımını hesaplayabilmekte, ve elde edilen sonuçları kıyaslayabilmektedir. Bu kod 

kullanılarak bahsi geçen ışık huzme tipleri için. alıcı düzlemde ki ışık yoğunlukları 

serbest uzayda, farklı yayılma mesafelerinde ve değişik huzme parametreleri ile 

hesaplanmış analitik çözüm ile farkları hesaplanmıştır. 

Anahtar Kelimeler: Serbest Uzay Optiği, Dağılma, Açısal Spektrum 
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Background Information 

 

 The concept of Free Space Optics (FSO) technology or optical wireless 

technology depends on transmitting modulated data by using both visible or infrared 

(IR) light beams. Unlike traditional communication techniques, such as, copper wire or 

fiber-optics which transmits laser beam into a glass fiber, FSO sends laser beams 

through the air.  

 

FSO communication systems uses optical amplifiers and telescopic lens system to send 

and receive optical signals both on transmitter and receiver sides. Engineering task of 

FSO system includes not only design of these amplification or telescopic systems but 

also computing the propagation of light beams.  

 

The propagation behavior of an optical wave is fundamentally governed by paraxial 

wave equation. Another solution for propagation of light is Huygens-Fresnel integral. 

Analytically solving this integral expression is difficult for many optical waves but a 

few simple models[1]. In this case instead of trying to solve this integral analytically, 

computing it as convolution integral or as Fourier integral operator which are called 

computational models are very sufficient methods.  
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1.2 Fourier Transform 

 

Fourier transform is a mathematical operation that transforms signals between time (or 

spatial) and frequency domain. Fourier transform is a reversible operation. Application 

of Fourier transform in optics often includes 2 spatial dimensions [2] and also called 

angular spectrum of 2D signal. Analytic expression of Fourier transform of function g 

with two spatial variable x and y given in Eq. (1.1) 

 

  
 2

( , ) ( , )
x yj f x f y

x yG f f g x y e dxdy


 
  
 

 

   .                                       (1.1) 

 

where ( , )x yG f f  is the transform result and 
xf  and 

yf  are independent frequency 

variables associated with x and y. Short notation of Fourier transform is 

 ( , ) ( , )x yF g x y G f f   and  1 ( , ) ( , )x yF G f f g x y   is short notation of inverse 

Fourier transform, the analytic inverse Fourier transform is given in Eq.  (1.2) 

 

 2
( , ) ( , )

x yj f x f y

x y x yg x y G f f e df df


 
 
 

 

   .                                        (1.2) 

 

1.3 Convolution Theorem 

 

Convolution is a mathematical operation that takes two functions of time or space and 

gives an output as overlapped area of these two functions while one of them is inverted 

according to origin and overlapping into non-inverted one, while shifting along their 

mutual axis. The operation of convolution is denoted with  . Convolution integral in 

two dimensions is given in Eq.  (1.3) 
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              ( , ) ( , ) ( , ) ( , )g x y h x y g h x y d d     
 

 

                                (1.3) 

 

Convolution theorem and Fourier transform have pointwise product relationship. Such 

that computing convolution of two functions gives the same result by taking the Fourier 

transform of these two  functions separately then multiply them and taking the inverse 

Fourier transform of the result. The relationship shown in Eq.  (1.4)  

 

    1( , ) ( , ) ( , ) ( , )g x y h x y F F g x y F h x y  .                              (1.4) 

 

1.4 Optical Propagation 

 

In all FSO applications it is necessary to know the propagation characteristic of light 

beam. Light has both particle and wave properties. Particle like properties of light are 

emission, absorption etc., wave like properties of light are propagation, interference, 

diffraction etc. In free space light propagates with a constant speed which denoted as 

"c" and the value of c is approximately       m/s. The range of optical wavelength 

domain starts from 10 nm and extends up to 1 mm. This domain includes three bands 

which are Ultraviolet(10nm to 390 nm), Visible(390nm to 760nm), and Infrared(760nm 

to 1mm) [3].  Electromagnetic spectrum [4] given in figure 1.1. 
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Figure 1.1 Electromagnetic Spectrum 

 

Propagation can be defined as relocation of an optical field from one position to 

another.  An optical field denoted by ( , )u r t  which is a function of position ( , , )r x y z  

and time t. This field mathematically satisfies the wave equation which is given in 

Eq.(1.5) 

 

2

2 2

1 u
u

c t

 
 


      (1.5) 

 

where c is the speed of light and   represents the Laplacian operator. In rectangular 

coordinates Laplacian operator defined in Eq. (1.6) 

 

2 2 2

2 2 2

u u u
u

x y z

   
   

  
               (1.6) 
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If the time variations in the optical field  is harmonic(i.e. Sinusoidal) ( , )u r t can be 

denoted in the form ( , ) ( ) j tu r t u r e  , where  is the angular frequency, 1j    and 

( )u r is the complex amplitude of wave, and Eq. (1.5) can be reduced into time 

independent form of wave equation which is called Helmholtz Equation and shown in  

Eq. (1.7) 

 

2 0u k u             (1.7) 

 

If we consider propagation is nearly parallel to the axis z, we can write the time 

independent optical field as in Eq. (1.8) 

 

( , , ) ( , ) jkL

r x yu x y z L u r r e            (1.8) 

 

where k is the wave number and   is optical wavelength which is 2 / k  . 

Substituting (1.8) into Helmholtz's Eq.  (1.7) we obtain Eq. (1.9) 

 

2 2 2
2 2

2 2 2
2 0jkL jkLr r r r

r r

u u u u
jk k u e k u e

x y z z

     
      

    
                        (1.9) 

 

The paraxial approximation neglects 2 2/ru z  since 
ru  is assumed to vary slowly with 

z, and cancels jkLe  term. This yields the paraxial wave equation [5], shown in Eq.  

(1.10) 

2 2

2 2
2 0r r ru u u

jk
x y z

  
  

  
                                            (1.10) 
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Solving paraxial wave equation  is very easy by computing its two dimensional Fourier 

transform. Let Fourier transform of ( , )ru x y  be ( , )r x yU f f , and since 

 
   2

n
n

x xn

d f x
F jf F f

dx


 
 

 

 Eq. (1.10) transforms into Eq.  (1.11) 

 

   
22

2 2 2 0r
x r y r

U
j f U j f U jk

z
 


  


                                     (1.11) 

 

After arrangement of Eq.  (1.11) we obtain Eq. (1.12); 

 

 
2

2 22r
x y r

U
f f U

z jk

 
  

  
                                                    (1.12) 

  

Eq.  (1.12) may be integrated directly; 

 

 
2

2 22

( , ) ( , )
x yf f L

jk

r x y s x yU f f U f f e

 
 

                                           (1.13) 

 

since the inverse Fourier transform of 
 

2
2 22

x yf f L
jk

e

 
 

    is  
 2 2

21
,

x y

jk
r r

L

x yh r r e
j L

 
 

   [6] we 

can obtain the inverse Fourier transform (1.13) by the help of convolution relationship 

(1.14a), and Eq.  (1.14b)  is the convolution in full form. 

 

    , ,z x y s x yu r r u h r r                                                 (1.14a) 



 

7 
 

   
   

22

21
, ,

x x y y

jk
r s r s

L

r x y s x y x yu r r u s s e ds ds
j L

          

 

                      (1.14b) 

 

Eq.  (1.14b) is called the paraxial diffraction integral, solution of this integral for a 

given field 
su  at L=0 as source plane with coordinates  ,x ys s  gives (

ru ) at L distance 

away with receiver coordinates of  ,x yr r . Whenever this integral is valid, the receiver 

plane is said to be in the Fresnel Region. Huygens-Fresnel approximation of this 

integral adds back jkLe  term to both sides, adding this term we get Huygens-Fresnel 

integral, at Eq.  (1.15)  and Free space propagation geometry is given in Figure 1.2 [17] 

 

   
   

22

2, , ,
2

x x y y

jkjkL r s r s
z

r x y s x y x y

jke
u r r L u s s e ds ds

L

           

 


                               (1.15) 

 

 

Figure 1.2 Propagation Geometry 
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CHAPTER 2 

 

 

METHODS AND EXPERIMENTS 

 

2.1 Gaussian Beam Optics 

 

 

 In  most optical applications, lasers emit beams with a Gaussian profile. The 

Gaussian beam is a Transverse Electromagnetic(TEM) mode wave [7]. Gaussian beam 

waves mostly used in lowest order transverse electromagnetic mode in the other words 

fundamental transverse mode and it is denoted by 
00TEM . 

 

For theoretical study of optical wave propagation, Gaussian beam is more sufficient 

than plane wave or spherical wave when focusing and diverging parameters are 

important[8]. At a propagation distance L, lowest order transverse electromagnetic wave 

Gaussian beam wave formulation [9] in cylindrical coordinates with amplitude 

coefficient 
cA  is given in Eq.  (2.1) 

 

 
2

( , , ) exp exp
1 2 1 2

cA k r
u r L jkL

j L j L




 

 
  

  
   (2.1) 
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On source plane (at L=0) Gaussian source field can expressed in Eq.  (2.2); 

 

2( , , 0) exp( )s s cu s L A k s        (2.2) 

 

where 
2

1

2s s

j

kW F
    , 

sW  (in m) refers to radial Gaussian source size (beam waist) 

and 
sF  refers to focusing parameter. Beam waist (

sW ) denotes when the radius is equal 

to 1/ e as shown in fig. (2-1) 

 

 

Figure 2-1 Amplitude profile of a Gaussian beam. 

 

Travelling Gaussian beam in Eq. (2.1) is a solution for paraxial wave equation [3],  for 

propagation of an optical field, another solution is called Huygens-Fresnel integral. 

With the help of this integral, it is possible to find the received field from a given source 

field. For inconvenience in Eq. (2.3a) and Eq. (2.3b) the expression of this integrals are 

given respectively for cylindrical and Cartesian coordinates. 
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 
 

  2 2
exp

, , , exp 2 cos( )
2 2

r r s s s r s

jk jkL jk
u r L dsd u s rs s r

L L
    



 

 

  
       

 
    (2.3a) 

 
 

   

   

 
 

     

 

22

22

exp
, exp      

2 2

 with    ,   ,   ,

exp
, , , exp

2 2

exp
                  = ,

2

r s

x y x y

r x y x y s x y x x y y

x y s x

jk jkL jk
u L d u

L L

s s r r

jk jkL jk
u r r L ds ds u s s r s r s

L L

jk jkL
ds ds u s

L







 

 

 

 

  
  

 

 

          



 

 

r s s r s

s r

 

2 2 2 2exp 2 2        
2

y

x x y y x y x y

s

jk
s r s r s s r r

L

 

 

 
        

 

 

    (2.3b) 

 

2.2 Computing Huygens-Fresnel Integral as Fourier Integral and Convolution 

Integral 

  

 Huygens-Fresnel integral in Cartesian coordinates is given in Eq.  (2.3b). To 

obtain Fourier transform integral from Fresnel diffraction integral, the last exponential 

term need to be splitted as shown in Eq.  (2.4). 

 

 
 

 

2 2

2 2

exp
, , exp ( )

2 2

, exp ( ) exp ( )
2

r x y x y

x y s x y x y x x y y

jk jkL jk
u r r L r r

L L

jk jk
ds ds u s s s s s r s r

L L


 

 

  
  

 

   
    

   
 

                (2.4) 

 

If the Eq.  (2.4) is analyzed, it is seen that, there is a Fourier transform relationship 

between s (source)and r (receiver) planes . The last exponential term in Eq. (2.4) 

behaves like Fourier integral operator and can expressed like in Eq.  (2.5); 
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 
 

 2 2 2 2
exp

, , exp ( ) , exp ( )
2 2 2

r x y x y s x y x y

jk jkL jk jk
u r r L r r F u s s s s

L L L

     
      

    
      (2.5) 

 

where F{} indicates the Fourier transform operator in Eq.  (2.5). Direct application of 

this form of the integral in propagation simulation is possible if and only if coordinates 

of source and receiver plane are identical [10]. Otherwise a scaling parameter between 

source and receiver plane need to be integrated into formulation. To introduce the 

scaling parameter it is needed to go back to Eq.  (2.4) and that 
fr m s  where r and s 

respectively indicates receiver and source plane coordinates and 
fm  is multiplying 

factor. Tyler and Fried [11] discussed how to approach the scaling parameter, and using 

their approach we can rearrange the exponential  and with the introduction of this 

scaling term  
2

r s  inside the diffraction exponential will become in Eq.  (2.6); 

 

   

2

2 2 2
1

1                                         (2.6)
f

f

f f

m
m mf

m m

   
           

   

r
r s s r s  

 

Inserting Eq.  (2.6) into Eq.  (2.4) we get Eq.  (2.7a) and Eq. (2.7b) 

 

 

 

2

2

2 2
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2

1
exp 1

2

r s

f

f

f f
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L

mjk
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

 

 




     
                  

 r s

r
s r s

      (2.7a) 

2 2

2

2

1exp
( , ) exp ( )

2 2

exp exp 1
2 2

f
r s

f

f
f

mjk jkL jk
u L d s

L L m

jk jk
m mf

L m L

u


r r s

r
s ( )s

      (2.7b) 
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By introducing Eq.  (2.8) 

 

      2

1

1
exp 1

2
s s f

f

jk
u u m

m L

 
  

 
s s s                                   (2.8) 

 

Eq.  (2.7b) turns into Eq.  (2.9) 

 

2

2 2
1

exp 1
( , ) exp exp

2 2 2

f f
r s f

f f

jkm jkL mjk jk
u L d m

L L m L m
u



r
r r s s s     (2.9) 

 

Now by introducing and applying new scaling terms 1 1/ ,  /f fm L L mr r  ,Eq.  (2.9) 

will become Eq. (2.10); 

 

2 2 2
1 1

1 1

1exp
( , ) exp ( )exp ( )

2 2 2

f
r s

f

mjk jkL jk jk
u L d m

L L m L
u


r r s s r s      (2.10) 

 

Eq.  (2.10) is in the form of convolution integral as written in Eq. (2.11); 

 

       2 2

1 1

1
, exp exp  

2

f

r s

f

mjk
u L jkL d u h

L m

 

 

  
    

   
 r r s s r s      (2.11) 

 

where the transfer function  1h r s  is in Eq. (2.12); 
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   
2

1 1

1 1

exp
2 2

jk jk
h

L L

 
   

 
r s r s     (2.12) 

 

Taking the Fourier transform of transfer function, we get Eq. (2.13) 

 

     
2

2 2 2

1 1

2
exp exp exp  

f f

L j L
H h j L j

m m k


 

   
                 

   

f F r s f f f           (2.13) 

 

Finally Huygens-Fresnel integral can be shown as in Eq. (2.14); 

 

       2

1 1

1
, exp exp

2

f

r s

f

mjk
u L jkL u h

L m

  
    

   

r r s r                            (2.14) 

  

With help of the pointwise product relationship of Eq. (2.14) will become as shown in 

Eq. (2.15a), Eq. (2.15b), and Eq. (2.15c)  

 

        2 1

1 1

1
, exp exp

2

f
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f
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u L jkL u h
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
  

           
   
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2.3 Beam Types 

 

In this thesis we make comparisons among Gaussian beam, Cos-Gaussian beam, Cosh-

Gaussian beam, Sine-Gaussian beam, Sinh-Gaussian beam, Annular Gaussian beam, 

and we chose these beams because of their analytic solutions are already obtained. Eq.  

(2.16) is used to obtain the different beam types on source plane[12-13]  and Eq.  (2.17) 

is the analytical expression of propagated beams on receiver plane[13-14-15] .  

 

2
2 2

1

( , ) exp 0.5 ( ) s x y x x y y x x y yu s s A k s s D s D s                                (2.16) 
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Table 2.1 Parameters for different beam types 

Beam Type / 

Parameter 

Displacement 

Parameter 1 

Displacement 

Parameter 2 

Amplitude 

Coefficient 

Beam Waist 

Gaussian 

Beam 

(0,0) (0,0) (
1CA ,0) ( ,0Ws ) 

Cos-Gaussian 

Beam 

(-j
1D ,-j

1D ) (j
2D ,j

2D ) (
1CA ,

2CA ) (
1 2Ws Ws ) 

Cosh-

Gaussian  

Beam 

(
1D ,

1D ) (-
2D ,-

2D ) (
1CA ,

2CA ) (
1 2Ws Ws ) 

Sine-

Gaussian  

Beam 

(-j
1D ,-j*

1D ) (j
2D ,j

2D ) (j
1CA ,-j

2CA ) (
1 2Ws Ws ) 

Sinh-

Gaussian 

Beam 

(-
1D ,-

1D ) (
2D ,

2D ) (
1CA ,-

2CA ) (
1 2Ws Ws ) 

Annular 

Gaussian 

Beam 

(0,0) (0,0) (
1CA ,-

2CA ) (
1 2Ws Ws ) 

 

where 
1 1 1x yD D D  ,

2 2 2x yD D D  , and 
1CA , 

2CA , 
1D , 

2D are positive quantities. 

 

2.4 Optical Intensity 

 

The optical intensity I(r) is defined as the optical power per unit area units of watt/   is 

given in Eq. (2.18) 

    ( ) ( ) *( )I r u r u r      (2.18) 

where * denotes complex conjugate.  
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2.5 Comparison Technique 

 

To make comparisons firstly received beam profiles are normalized with respect to 

received intensity of analytical solution. Then  two received beam intensities are 

subtracted from each other along the number of grid spaces element by element and 

absolute difference is summed. Finally this sum is divided by square of grid spaces and 

multiplied with 100 to have percentage of difference. Comparison method is shown in 

Eq.  (2.19), this method is a similar form of the one used in [16] 

 

       2

0, 0

100 , , / max max ,
x y

N

rcm x y ras x y ras x y

r r

D abs I r r I r r N I r r
 

   
                 (2.19) 

 

where N is the number of grids, 
rcmI is received intensity from computational models 

and 
rasI is received intensity from analytic solution. 

 

2.6 Computing Multiplying Factor 

 

Correct multiplication factor is achieved by demanding the power of beam on different 

observation (receiver) planes remain the same as source beam power. For the 

propagation distances lower than 500 m multiplication factor is taken as unity. For 

propagation distances beyond 500 m, multiplication factor is set to L/500. To calculate 

power of beam Eq.  (2.20) formula is used. 

 

        
/ 2 / 2

2

/ 2 / 2

, /
x y

N N

rcm x y

r N r N

P I r r N
 

                             (2.20) 
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2.7 Sample Comparisons 

 

 2.7.1 Gaussian Beam 

 

Fig. (2-2) shows the intensity distribution of Gaussian beam on the source plane and the 

receiver plane. Receiver plane intensity distributions obtained respectively by analytic 

expression, Fourier integral operator and convolution integral. The propagation distance 

between source and receiver plane is L=2 km . Multiplying factor is 4fm  . The 

Gaussian beam parameters are 1.55 m  , 
1 1s sW W cm  , 

1 1cA  , 
2 0cA  . 

 

 

Figure 2-2 Intensity distributions of Gaussian beam . 

 

Total received intensity difference between analytic expression and Fourier integral 

operator is 8.5502x     %, difference between analytic expression and convolution 

integral is 0.1105 %.  Fig. (2-3) shows the difference between the received beam 

intensities which are obtained from analytic expression and Fourier integral operator.  



 

18 
 

 

Figure 2-3 Received intensity difference of Gaussian beam between analytic expression and 

Fourier integral operation . 

 

Fig. (2-4) shows the difference between the received beam intensities which are 

obtained from analytic expression and convolution integral.  

 

 

Figure. 2-4 Received intensity difference of Gaussian beam between analytic expression and 

Convolution integral. 
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 2.7.2 Cos-Gaussian Beam 

 

Fig. (2-5) shows the intensity distribution of Cos-Gaussian beam on the source plane 

and the receiver plane. Receiver plane intensity distributions obtained respectively by 

analytic expression, Fourier integral operator and convolution integral. The propagation 

distance between source and receiver plane is L=2 km . Multiplying factor is 4fm  . 

The beam parameters are 1.55 m  , 
1 2 1s sW W cm  , 

1 0.5Ac  , 
2 0.5Ac  , 

1

1 1 200x yD D j m   , 
1

2 2 200x yD D j m   

 

 

Figure 2-5 Intensity distributions of Cos-Gaussian beam. 

 

Total received intensity difference between analytic expression and Fourier integral 

operator is 0.0481 %, difference between analytic expression and convolution integral is 

1.1669 %. Fig. (2-6) shows the difference between the received beam intensities which 

are obtained from analytic expression and Fourier integral operator.  
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 Figure 2-6 Received intensity difference of cos-Gaussian beam between analytic expression 

and Fourier integral operation . 

  

Fig. (2-7) shows the difference between the received beam intensities which are 

obtained from analytic expression and Fourier integral operator.  

 

 

Figure 2-7 Received intensity difference of Cos-Gaussian beam between analytic expression 

and convolution integral. 
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 2.7.3 Cosh-Gaussian Beam 

 

Fig. (2-8) shows the intensity distribution of Cosh-Gaussian beam on source plane and 

receiver plane. Receiver plane intensity distributions obtained respectively by analytic 

expression, Fourier integral operator and convolution integral. The propagation distance 

between source and receiver plane is L=2 km . Multiplying factor is 4fm  . The 

Gaussian beam parameters are 1.55 m  , 
1 2 1s sW W cm  , 

1 0.5cA  , 
2 0.5cA  , 

1

1 1 200x yD D m  , 
1

2 2 200x yD D m    

 

 

Figure 2-8 Intensity distributions of Cosh-Gaussian beam. 

 

Total received intensity difference between analytic expression and Fourier integral 

operator is 0.0134 %, difference between analytic expression and convolution integral is 

0.4084 %. Fig. (2-9) shows the difference between the received beam intensities which 

are obtained from analytic expression and Fourier integral operator.  
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Figure 2-9 Received intensity difference of Cosh-Gaussian beam between analytic expression 

and Fourier integral operator . 

 

Fig. (2-10) shows the difference between the received beam intensities which are 

obtained from analytic expression and Fourier integral operator.  

 

 

Figure 2-10 Received intensity difference of  Cosh-Gaussian beam between analytic expression 

and convolution integral. 
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 2.7.4 Sine-Gaussian Beam 

 

Fig. (2-11) shows the intensity distribution of Sine-Gaussian beam on source plane and 

receiver plane. Receiver plane intensity distributions obtained respectively by analytic 

expression, Fourier integral operator and convolution integral. The propagation distance 

between source and receiver plane is L=2 km . Multiplying factor is 4fm  . The 

Gaussian beam parameters are 1.55 m  , 
1 2 1s sW W cm  , 

1 0.5cA j , 
2 0.5cA j  , 

1

1 1 200x yD D j m   , 
1

2 2 200x yD D j m   

 

 

Figure 2-11 Intensity distributions of a Sine-Gaussian beam. 

 

Total received intensity difference between analytic expression and Fourier integral 

operator is 0.0483 %, difference between analytic expression and convolution integral is 

1.1671 %. Fig. (2-12) shows the difference between the received beam intensities which 

are obtained from analytic expression and Fourier integral operator.  
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Figure 2-12 Received intensity difference of Sine-Gaussian beam between analytic expression 

and Fourier integral operator . 

 

Fig. (2-13) shows the difference between the received beam intensities which are 

obtained from analytic expression and Fourier integral operator.  

 

 

Figure 2-13 Received intensity difference of Sine-Gaussian beam between analytic expression 

and convolution integral. 
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 2.7.5 Sinh-Gaussian Beam 

 

Fig. (2-14) shows the intensity distribution of Sinh-Gaussian beam on source plane and 

receiver plane. Receiver plane intensity distributions obtained respectively by analytic 

expression, Fourier integral operator and Convolution integral. The propagation 

distance between source and receiver plane is L=2 km . Multiplying factor is 4fm  . 

The Gaussian beam parameters are 1.55 m  , 
1 2 1s sW W cm  , 

1 0.5cA  , 

2 0.5cA   , 
1

1 1 200x yD D m   , 
1

2 2 200x yD D m   

 

 

Figure 2-14 Intensity distributions of Sinh-Gaussian beam. 

 

Total received intensity difference between analytic expression and Fourier integral 

operator is 0.0172 %, difference between analytic expression and convolution integral is 

0.4981 %. Fig. (2-15) shows the difference between the received beam intensities which 

are obtained from analytic expression and Fourier integral operator.  
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Figure 2-15 Received intensity difference of Sinh-Gaussian beam between analytic expression 

and Fourier integral operator . 

 

Fig. (2-16) shows the difference between the received beam intensities which are 

obtained from analytic expression and Fourier integral operator.  

 

 

Figure 2-16 Received intensity difference of Sinh-Gaussian beam between analytic expression 

and convolution integral. 
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 2.7.6 Annular Gaussian Beam 

 

Fig. (2-17) shows the intensity distribution of Annular beam on source plane and 

receiver plane. Receiver plane intensity distributions obtained respectively by analytic 

expression, Fourier integral operator and Convolution integral. The propagation 

distance between source and receiver plane is L=2 km . Multiplying factor is 4fm  . 

The beam parameters are 1.55 m  , 
1 2sW cm , 

2 1sW cm  
1 0.5cA  , 

2 0.5cA   , 

1

1 1 0x yD D m  , 
1

2 2 0x yD D m   

 

 

Figure 2-17 Intensity distributions of Annular Gaussian beam. 

 

Total received intensity difference between analytic expression and Fourier integral 

operator is 0.0606%, difference between analytic expression and convolution integral is 

0.2116%. Fig. (2-18) shows the difference between the received beam intensities which 

are obtained from analytic expression and Fourier integral operator.  
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Figure 2-18 Received intensity difference of Annular Gaussian beam between analytic 

expression and Fourier integral operator . 

 

Fig. (2-19) shows the difference between the received beam intensities which are 

obtained from analytic expression and Fourier integral operator.  

 

 

Figure 2-19 Received intensity difference of Annular Gaussian beam between analytic 

expression and convolution integral. 
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CHAPTER 3 

 

 

RESULTS AND DISCUSSIONS 

 

 In this section received intensity profiles from Fourier integral operation and 

convolution integral are compared with the results which are obtained from analytic 

solution. The comparisons are made and tabulated in appendix B at different beam types 

and beam parameters such as wavelength ( ) in nm, amplitude coefficient ( Ac ) in 

Volt/m or Ampere/m, beam waist (Ws ) in cm, different number of grids (N)  and 

different distances (L) in km with related multiplying factor (
fm ). In appendix B 

detailed measurements and beam parameters are available and DFA refers to difference 

between Fourier integral operator and analytic solution, and DCA refers to difference 

between convolution integral and analytic solution, both comparisons made in 

percentage (%) form. 

 

3.1 Received Field Comparisons According to Wavelength 

 

We have calculated the received beam intensities from computational models and 

analytic results, then we make the comparisons at different wavelengths. The 

wavelength range starts from the beginning of visible spectrum and ends at middle 

infrared wavelengths. The comparisons according to wavelengths with detailed 

parameters are tabulated in appendix B.1 to B.6, within the order of Gaussian beam, 

Cos-Gaussian beam, Cosh-Gaussian beam, Sine-Gaussian beam, Sinh-Gaussian beam   

and Annular Gaussian beam. In Figs (3.1) and (3.2) beam profile comparisons are 

shown with difference ratios. 
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Figure 3-1 Comparison of beam profiles from analytic solution and Fourier integral operation  

according to wavelength 

 

Figure (3-1) and Tables B.1 to B.6 in appendix B show that all beam profiles have 

increasing difference against wavelength increases. Annular beam has highest 

difference percentage and Gaussian beam has the lowest difference percentage for all 

wavelengths. Cos-Gaussian and Sine-Gaussian beams has lower difference percentage 

than their related hyperbolic Gaussian beams but after 1250 nm Cos-Gaussian and Sine-

Gaussian beams' difference percentage became higher than hyperbolic ones.  The 

average difference between Fourier integral operation and analytic solution is less than 

1/10000 which is an acceptable ratio for Matlab's correlation tool. 
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Figure 3-2 Comparison of Beam profiles from analytic solution and convolution 

 integral  according to wavelength 

 

Figure (3-2) and Tables B.1 to B.6 in appendix B show that all beam profiles has an 

increasing difference while wavelength increases. In this case Gaussian beam has the 

lowest difference ratio for all wavelengths but hyperbolic beams has the highest 

difference ratio for visible spectrum, and for infrared wavelengths Cos-Gaussian and 

Sine-Gaussian beams has the highest. When two computational models are compared in 

wavelength category convolution integral has 10 times bigger averaged ratio than 

Fourier integral operation. 

 

3.2 Received Field Comparisons According to Number of Grids 

 

Grid spacing represents step sizes in source and receiver planes. It can be predicted that 

bigger step size gives lower difference ratio, in analytic calculations grid spacing 

accepted as zero, but in discrete calculations in Matlab grid spacing should be chosen as 

a finite value. We have calculated the received beam intensities from computational 

models and analytic results, then we make the comparisons at 5 different number of 
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grids. The grid spacing range starts from 32 and gets double of previous one until we 

reach 512. The comparisons according to number of grids are shown in Tables B.7 to 

B.12 in appendix B, within the order of Gaussian beam, Cos-Gaussian beam, Cosh-

Gaussian beam, Sine-Gaussian beam, Sinh-Gaussian beam and Annular Gaussian beam. 

In figs (3-3) and (3-4) beam profile comparisons are shown. 

 

 

Figure 3-3 Comparison of beam profiles from analytic solution and Fourier integral operation  

according to grid spacing 
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Figure 3.4 Comparison of beam profiles from analytic solution and convolution 

integral  according to grid spacing 

 

In this part, since the calculations made in 1550nm wavelength, comparing the effect of 

grid spacing is more logical than comparing the beam profiles. Figs (3.3) and (3.4), and 

Tables B.7 to B.12 in appendix B shows that when the grid spacing increases the 

difference ratio decreases. For both computational models it shows that almost there is 

no difference between 256 and 512 grid points, so for computation times and effort of 

computer it is more convenient to choose 256 spaces. 

 

3.3 Received Field Comparisons According to Beam Waist 

 

In this section received beam profiles are compared with respect to beam waist. The 

beam waist variation starts at 0.5 cm and ends at 2 cm. For Annular Gaussian beam 

second beam waist is always taken half of first one. 
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Figure 3.5 Comparison of beam profiles from analytic solution and Fourier integral operation  

according to beam waist 

 

 

Figure 3-6 Comparison of beam profiles from analytic solution and convolution integral 

according to beam waist 

 

Figs (3-5), and (3-6) and Tables B.13 to B.18 in  appendix B show that Gaussian beam 

has very low difference ratio. Hyperbolic beams has no exact solution for the beam 

waists are higher than 1 cm. The reason of that hyperbolic beams become very large in 
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source plane, in the contrary sine and cosine Gaussian beams has a decreasing 

difference ratio while beam waist increases. This can be explained by the fact that while 

hyperbolic beams propagates they turn into their sinusoidal forms and vice versa [17]. 

Difference ratio of Annular Gaussian beam firstly decreases then increases. If fig (3.6) 

is analyzed attentively it is seen that whilst the beam waist is 0.5 cm all beam types has 

the lowest difference ratio except Gaussian beam. 

. 

Received Field Comparisons According to Propagation Distance and Related 

Multiplying factor 

 

In Chapter 2 we mentioned that the relation between propagation distance (in meters), 

and multiplying factor (
fm ), has 1/500 ratio only if the propagation ratio is more than 

500 m, otherwise multiplying factor is taken as 1. In this section we computed the 

received intensity difference in various propagation distances with related multiplying 

factors, propagation distances start from 100m and extend to 100km and multiplying 

factor range is starts from 1 and extends to 200.  

 

 

Figure 3-7 Comparison of beam profiles from analytic solution and Fourier integral operation  

according distances from 100 m to 2 km and related multiplying factor 
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Figure 3-8 Comparison of beam profiles from analytic solution and convolution  integral  

according distances from 100 m to 2 km and related multiplying factor 

 

 

Figure 3-9 Comparison of beam profiles from analytic solution and Fourier integral operation  

according distances from 5 km to 100 km and related multiplying factor 
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Figure 3-10 Comparison of beam profiles from analytic solution and convolution  integral  

according distances from 5 km to 100 km and related multiplying factor 

 

For making comparisons, distance is the most important parameter for obtaining 

multiplying factor. Figures (3-7) and (3-8) shows differences for distances from 100 m 

to 2 km and figs (3-9) and (3-10) shows differences for distances from 5 km to 100 km. 

From figures it is seen that for short propagation distances, the difference ratio is higher 

than longer distances especially for 500 m all beam types have their maximum 

difference ratio. For all beam types, it is observed that while the distance increases the 

difference ratio decreases, which is an expected result because while beams are 

propagation they lose the their power it means for higher propagation distances total 

power of beam converges to so for all solution comparing very little amount of 

intensities gives us very little differences. For all distances Gaussian beam difference 

ratio is too small that can be acceptable as zero for both computational models. Annular 

Gaussian beam has lower than 0.1% difference ratio for Fourier transform operation and  

has a little bit higher than 0.1% for convolution method. Cos-Gaussian and Sine-

Gaussian beams has almost same difference ratios after 500 m, it is around 0.01% for 

Fourier transform operation and 1% for convolution method. The reason of that similar 

difference ratio is propagation characteristics of these two beams are same, on source 

plane they both placed on center, and while propagation, they start to move away from 

the center. Cosh-Gaussian and Sinh-Gaussian also have similar difference ratios since 
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their propagation characteristic are similar to each other and opposite to their non-

hyperbolic beams, for Fourier integral operation the distances shorter than 2 km the 

average difference ratio is 0.1% and for longer propagation distances the ratio decreases 

to 0.04%, for convolution operation in short distances difference average difference 

ratio is around %1 for longer distances it becomes 0.35%. 
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CHAPTER 4 

 

 

CONCLUSIONS 

 

 

 In this study , to make comparisons we have taken computational model solution 

of Huygens-Fresnel integral and compared it to its analytic solution. These comparisons 

show that Fourier integral operation has lower difference ratio than convolution 

theorem, the reason of that difference is convolution theorem solution gives over-

propagated form of beam it can be seen exactly in figs (2-11) and (2-13). For analytic 

solution we assumed source plane and receiver are infinite but for computational modes 

we have limited source plane in other words the output of resonator as 10cm, and it 

behaved like a rectangular aperture. This aperture added a sinc function diffraction 

effect in propagation simulations, but for Fourier integral operation it is very small that 

can be neglected, in contrary for convolution theorem the diffraction effect of this 

aperture is  more obvious.  
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APPENDIX A 

 

 

MATLAB CODE 

 

 

% This program compares the free space intensities of hyp / sino beams  

% from analytic derivation, FT and angular spectrum methods  

function computeandcompare 

clear;clc;clf;warning off all;close all;format short 

Lmax = 2; 

  

%%% Source beam parameters 

ALarr = [1 0;0.5 0.5;0.5 0.5;0.5*j -0.5*j;0.5 -0.5;0.5 -0.5];  % Amplitude Matrix 

Dmat = [0 25 50 100 200 400];% Displacement parameter matrix 

  

%Beam waist matrices 

alfasxarr = [1e-2 1e-2;1e-2 1e-2;1e-2 1e-2;1e-2 1e-2;1e-2 1e-2;2e-2 1e-2]; 

alfasxarr = alfasxarr*1.0; 

  

alfasyarr = [1e-2 1e-2;1e-2 1e-2;1e-2 1e-2;1e-2 1e-2;1e-2 1e-2;2e-2 1e-2]; 

alfasyarr = alfasyarr*1.0; 

  

ibmax = 1; %%% Choosing beam type 1 for Gaussian, 2 for Cos-Gaussian,  

%3 for Cosh-Gaussian, 4 for Sine-Gaussian, 5 for Sinh-Gaussian, 6 for Annular 

beam 

  

N = 256; %Number of grids 

SL=10e-2; %Source Length 
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d1 = SL/N;   

L = 2e3; %Propagation distance 

lamda = 1550e-9; %Wavelength 

k = 2*pi/lamda; 

mf =4; %Multiplying factor 

d2 = mf*d1; 

  

Dsarr = [j*Dmat(1) -j*Dmat(1);-j*Dmat(5) j*Dmat(5); 

             Dmat(5) -Dmat(5);-j*Dmat(5) j*Dmat(5); 

            -Dmat(5) Dmat(5) ;1*Dmat(1) -1*Dmat(1)]; 

Fsarr = [5e15 5e15;5e15 5e15;5e15 5e15;5e15 5e15;5e15 5e15;5e15 5e15]; 

alfaxarr = 1./(k*alfasxarr.^2) + j./(2*Fsarr); 

alfayarr = 1./(k*alfasyarr.^2) + j./(2*Fsarr); 

  

[nx ny ] = meshgrid(-N/2 : N/2-1); 

sx = nx*d1; 

sy = ny*d1; 

rx = nx*d2; 

ry = ny*d2; 

  

s=-SL/2:d1:SL/2-d1; 

r=mf*s; 

  

%Generating Beams 

for ib = ibmax  

    uran = zeros(N, N); 

    for LL = 1:Lmax 

    alfax = alfaxarr(ib,LL); 

    alfay = alfayarr(ib,LL); 

    Dx = Dsarr(ib,LL) 

    Dy = Dsarr(ib,LL) 

    AL = ALarr(ib,LL) 
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 us1 = AL*exp(-0.5*k*sx.^2*alfax - 0.5*k*sy.^2*alfay + Dx*sx + Dy*sy);   

us = us + us1; 

uran1 = AL/sqrt(1 + j*alfax*L)/sqrt(1 + j*alfay*L)*exp(-0.5*k*alfax*rx.^2/(1 + 

j*alfax*L)).* .... 

    exp(rx*Dx/(1 + j*alfax*L)).*exp(j*0.5*Dx^2*L/k/(1 + j*alfax*L)).* .... 

    exp(-0.5*k*alfay*ry.^2/(1 + j*alfay*L)).*exp(ry*Dy/(1 + 

j*alfay*L)).*exp(j*0.5*Dy^2*L/k/(1 + j*alfay*L)); 

uran = uran1 + uran;end;end 

Is = us.*conj(us); 

Iran = uran.*conj(uran); 

 %%%%%% Fourier Transform Method 

df1 = 1/(N*d1);[fx fy] = meshgrid((-N/2 : N/2-1) * df1); 

urft = exp(j*k/2*(mf - 1)/(mf*L)*(rx.^2 + ry.^2)).*ift2(exp(-j*pi^2*2*L/mf/k*(fx.^2 

+ fy.^2)).*ft2(us.*exp(j*k*(1 - mf)/(2*L)*(sx.^2 + sy.^2))/mf,d1),df1); 

Irft = urft.*conj(urft); 

 %%%%%% Convolution  Method 

hsxsy = exp(j*k/(2*L)*mf*(sx.^2 + sy.^2)); 

us1 = us.*exp(j*k*(1- mf)*(sx.^2 + sy.^2)/(2*L)); 

urcm = -j*k/(2*pi*L)*exp(j*k*L)*exp(j*k*(mf - 1)*(rx.^2 + 

ry.^2)/(2*L*mf)).*conv2(us1,hsxsy,'same')*d1^2; 

Ircm = urcm.*conj(urcm); 

  

if ibmax==3||5    %to normalize the hyperbolic beams 

    Iran=Iran/max(max(Is)); 

    Irft =Irft/max(max(Is)); 

    Ircm = Ircm/max(max(Is)); 

    Is=Is/max(max(Is)); 

else 

    Is=Is; 

    Iran=Iran; 

    Irft=Irft; 

    Ircm=Ircm; 
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end 

  

figure(1)%3d plots 

subplot(2,2,1) 

meshc(sx/1e-2,sy/1e-2,Is);view([40 35]);colormap([0 0 0]); 

title('Source Beam ', 'Fontsize',16');set(gcf,'Color',[1 1 1]);set(gca,'FontSize',14) 

xlabel('Sx  in cm','FontSize',10,'FontWeight','bold','Rotation',-14); 

ylabel('Sy in cm','FontSize',10,'FontWeight','bold','Rotation',25) 

zlabel('Is ','FontSize',12,'FontWeight','bold')    

  

subplot(2,2,2) 

meshc(rx/1e-2,ry/1e-2,Iran);view([40 35]);colormap([0 0 0]); 

title('Received beam intensity from analytic expression ', 

'Fontsize',16');set(gcf,'Color',[1 1 1]);set(gca,'FontSize',14) 

xlabel('Rx  in cm','FontSize',10,'FontWeight','bold','Rotation',-15); 

ylabel('Ry in cm','FontSize',10,'FontWeight','bold','Rotation',25) 

zlabel('Ir ','FontSize',12,'FontWeight','bold')  

  

subplot(2,2,3) 

meshc(rx/1e-2,ry/1e-2,Irft);view([40 35]);colormap([0 0 0]); 

title('Received beam intensity from Fourier integral operator ', 

'Fontsize',16');set(gcf,'Color',[1 1 1]);set(gca,'FontSize',14) 

xlabel('Rx  in cm','FontSize',10,'FontWeight','bold','Rotation',-15); 

ylabel('Ry in cm','FontSize',10,'FontWeight','bold','Rotation',25) 

zlabel('Ir ','FontSize',12,'FontWeight','bold')  

  

subplot(2,2,4) 

meshc(rx/1e-2,ry/1e-2,Ircm);view([40 35]);colormap([0 0 0]); 

title('Received beam intensity from convolution integral ', 

'Fontsize',16');set(gcf,'Color',[1 1 1]);set(gca,'FontSize',14) 

xlabel('Rx  in cm','FontSize',10,'FontWeight','bold','Rotation',-15); 

ylabel('Ry in cm','FontSize',10,'FontWeight','bold','Rotation',25) 
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zlabel('Ir ','FontSize',12,'FontWeight','bold')  

  

% %%%%%%%2D Plots%%%%% 

% figure(2) 

% subplot(2,2,1) 

% imagesc(s/1e-2,s/1e-2,Is); 

% title('Source Beam ', 'Fontsize',16');colormap('gray');set(gca,'FontSize',14) 

% xlabel('Sx  in cm','FontSize',10,'FontWeight','bold'); 

% ylabel('Sy in cm','FontSize',10,'FontWeight','bold') 

%    

% subplot(2,2,2) 

% imagesc(r/1e-2,r/1e-2,Iran); 

% title('Received beam intensity from analytic expression ', 

'Fontsize',16');set(gcf,'Color',[1 1 1]);set(gca,'FontSize',14) 

% xlabel('Rx  in cm','FontSize',10,'FontWeight','bold'); 

% ylabel('Ry in cm','FontSize',10,'FontWeight','bold'); 

%  

 

% subplot(2,2,3) 

% imagesc(r/1e-2,r/1e-2,Irft); 

% title('Received beam intensity from Fourier integral operator ', 

'Fontsize',16');set(gcf,'Color',[1 1 1]);set(gca,'FontSize',14) 

% xlabel('Rx  in cm','FontSize',10,'FontWeight','bold'); 

% ylabel('Ry in cm','FontSize',10,'FontWeight','bold') ; 

%  

% subplot(2,2,4) 

% imagesc(r/1e-2,r/1e-2,Ircm); 

% title('Received beam intensity from convolution integral ', 

'Fontsize',16');set(gcf,'Color',[1 1 1]);set(gca,'FontSize',14) 

% xlabel('Rx  in cm','FontSize',10,'FontWeight','bold'); 

% ylabel('Ry in cm','FontSize',10,'FontWeight','bold'); 
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% Making Comparison 

Irand=Iran./max(max(Iran)); 

Ircmd=Ircm./max(max(Iran)); 

Idiff = zeros(N, N); 

for l=1:N 

    for k=1:N 

        Idiff(l,k)=abs(Irand(l,k)-Ircmd(l,k)); 

    end;end; 

  

Idiffav=0; 

for l=1:N 

    for k=1:N 

        Idiffav=Idiffav+Idiff(l,k); 

    end;end; 

Idiffav=100*Idiffav/N^2; 

Idiffcm=Idiffav 

 

 % Plotting difference matrix 

 

figure(3) 

imagesc(r/1e-2,r/1e-2,Idiff); 

title('Received beam intensity differance between analytic expression and 

convolution integral ', 'Fontsize',16');set(gca,'FontSize',14); 

colormap('gray'); 

xlabel('Rx  in cm','FontSize',10,'FontWeight','bold'); 

ylabel('Ry in cm','FontSize',10,'FontWeight','bold') ; 

axis xy; 

  

 

 

Irftd=Irft./max(max(Iran)); 

Idiff2 = zeros(N, N); 
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for m=1:N 

    for n=1:N 

        Idiff2(m,n)=abs(Irand(m,n)-Irftd(m,n)); 

    end;end; 

 Idiff2av=0; 

for l=1:N 

    for k=1:N 

        Idiff2av=Idiff2av+Idiff2(l,k); 

    end;end; 

Idiff2av=100*Idiff2av/N^2; 

Idiffft=Idiff2av 

   

% Plotting difference matrix 

 

figure(4) 

imagesc(r/1e-2,r/1e-2,Idiff2); 

title('Received beam intensity differance between analytic expression and Fourier 

integral operator ', 'Fontsize',16');set(gca,'FontSize',14); 

colormap('gray'); 

xlabel('Rx  in cm','FontSize',10,'FontWeight','bold'); 

ylabel('Ry in cm','FontSize',10,'FontWeight','bold') ; 

axis xy; 

  

%%%% fft and ifft functions used 

function G = ft2(g, delta) 

G = fftshift(fft2(fftshift(g))) * delta^2;   

function g = ift2(G, delta_f) 

  N = size(G, 1); 

  g = ifftshift(ifft2(ifftshift(G))) * (N * delta_f)^2; 
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APPENDIX B 

 

 

DETAILED RECEIVED INTENSITY DIFFERANCE TABLES 

 

 

3.1 Received Field Tables According to Wavelength 

 

Table B.1 Gaussian beam received intensity differences according to wavelength 

1cA

  

2cA

  

1sW

  

2sW

  

1D  2D    L 

 

fm

 

N DFA 

      

DCA 

 

1 0 1 1 0 0 390 2 4 256 3.2887 0.0025 

1 0 1 1 0 0 450 2 4 256 6.6043 0.0034 

1 0 1 1 0 0 495 2 4 256 3.7210 0.0043 

1 0 1 1 0 0 570 2 4 256 7.6234 0.0061 

1 0 1 1 0 0 590 2 4 256 9.6302 0.0066 

1 0 1 1 0 0 620 2 4 256 12.148 0.0075 

1 0 1 1 0 0 760 2 4 256 9.8670 0.0130 

1 0 1 1 0 0 1000 2 4 256 26.454 0.0284 

1 0 1 1 0 0 1250 2 4 256 56.948 0.0562 

1 0 1 1 0 0 1550 2 4 256 85.502 0.1105 
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Table B.2 Cos-Gaussian beam received intensity differences according to wavelength 

1cA

  

2cA   1sW

  

2sW

  

1D  2D    L 

 

fm

 

N DFA 

      

DCA 

 

0.5 -0.5 1 1 200j -200j 390 2 4 256 0.6837 0.0053 

0.5 -0.5 1 1 200j -200j 450 2 4 256 1.4293 0.0075 

0.5 -0.5 1 1 200j -200j 495 2 4 256 1.0716 0.0096 

0.5 -0.5 1 1 200j -200j 570 2 4 256 1.4790 0.0143 

0.5 -0.5 1 1 200j -200j 590 2 4 256 1.8137 0.0158 

0.5 -0.5 1 1 200j -200j 620 2 4 256 2.3755 0.0184 

0.5 -0.5 1 1 200j -200j 760 2 4 256 2.7400 0.0375 

0.5 -0.5 1 1 200j -200j 1000 2 4 256 4.8096 0.1004 

0.5 -0.5 1 1 200j -200j 1250 2 4 256 255.32 0.6056 

0.5 -0.5 1 1 200j -200j 1550 2 4 256 48083 1.1669 

 

Table B.3 Cosh-Gaussian beam received intensity differences according to wavelength 

1cA

  

2cA   1sW

  

2sW

  

1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 0.5 1 1 200 -200 390 2 4 256 0.0031 0.0137 

0.5 0.5 1 1 200 -200 450 2 4 256 0.0039 0.0192 

0.5 0.5 1 1 200 -200 495 2 4 256 0.0044 0.0245 

0.5 0.5 1 1 200 -200 570 2 4 256 0.0053 0.0354 

0.5 0.5 1 1 200 -200 590 2 4 256 0.0056 0.0387 

0.5 0.5 1 1 200 -200 620 2 4 256 0.0061 0.0440 

0.5 0.5 1 1 200 -200 760 2 4 256 0.0071 0.0729 

0.5 0.5 1 1 200 -200 1000 2 4 256 0.0081 0.1157 

0.5 0.5 1 1 200 -200 1250 2 4 256 0.0102 0.2000 

0.5 0.5 1 1 200 -200 1550 2 4 256 0.0134 0.4084 
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Table B.4 Sine-Gaussian beam received intensity differences according to wavelength 

1cA   2cA   1sW

  

2sW

  

1D  2D    L 

 

fm

 

N DFA 

      

DCA 

 

0.5j -0.5j 1 1 200j -200j 390 2 4 256 0.6721 0.0053 

0.5j -0.5j 1 1 200j -200j 450 2 4 256 1.4403 0.0075 

0.5j -0.5j 1 1 200j -200j 495 2 4 256 1.0612 0.0096 

0.5j -0.5j 1 1 200j -200j 570 2 4 256 1.4640 0.0143 

0.5j -0.5j 1 1 200j -200j 590 2 4 256 1.8068 0.0158 

0.5j -0.5j 1 1 200j -200j 620 2 4 256 2.3805 0.0184 

0.5j -0.5j 1 1 200j -200j 760 2 4 256 2.7450 0.0375 

0.5j -0.5j 1 1 200j -200j 1000 2 4 256 4.7374 0.1000 

0.5j -0.5j 1 1 200j -200j 1250 2 4 256 257.16 0.6057 

0.5j -0.5j 1 1 200j -200j 1550 2 4 256 48294 1.1671 

 

Table B.5 Sinh-Gaussian beam received intensity differences according to wavelength 

1cA   2cA   1sW

  

2sW

  

1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 -0.5 1 1 -200 200 390 2 4 256 0.0032 0.0136 

0.5 -0.5 1 1 -200 200 450 2 4 256 0.0037 0.0190 

0.5 -0.5 1 1 -200 200 495 2 4 256 0.0045 0.0249 

0.5 -0.5 1 1 -200 200 570 2 4 256 0.0059 0.0385 

0.5 -0.5 1 1 -200 200 590 2 4 256 0.0065 0.0427 

0.5 -0.5 1 1 -200 200 620 2 4 256 0.0071 0.0496 

0.5 -0.5 1 1 -200 200 760 2 4 256 0.0063 0.0707 

0.5 -0.5 1 1 -200 200 1000 2 4 256 0.0091 0.1266 

0.5 -0.5 1 1 -200 200 1250 2 4 256 0.0133 0.2405 

0.5 -0.5 1 1 -200 200 1550 2 4 256 0.0172 0.4981 
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Table B.6 Annular Gaussian beam received intensity differences according to wavelength 

1cA

  

2cA   1sW

  

2sW   1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 -0.5 2 1 0 0 390 2 4 256 0.0275 0.0412 

0.5 -0.5 2 1 0 0 450 2 4 256 0.0295 0.0465 

0.5 -0.5 2 1 0 0 495 2 4 256 0.0249 0.0459 

0.5 -0.5 2 1 0 0 570 2 4 256 0.0279 0.0444 

0.5 -0.5 2 1 0 0 590 2 4 256 0.0288 0.0431 

0.5 -0.5 2 1 0 0 620 2 4 256 0.0295 0.0442 

0.5 -0.5 2 1 0 0 760 2 4 256 0.0303 0.0648 

0.5 -0.5 2 1 0 0 1000 2 4 256 0.0322 0.0669 

0.5 -0.5 2 1 0 0 1250 2 4 256 0.0517 0.1046 

0.5 -0.5 2 1 0 0 1550 2 4 256 0.0606 0.2116 

 

3.2 Received Field Tables According to Number of grids 

 

Table 3.7 Gaussian beam received intensity differences according to number of grids 

1cA   2cA   1sW   2sW   1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

1 0 1 1 0 0 1550 2 4 32 1.1986 

      

0.1212 

1 0 1 1 0 0 1550 2 4 64 0.9600 

      

0.1130 

1 0 1 1 0 0 1550 2 4 128 0.8742 

      

0.1110 

1 0 1 1 0 0 1550 2 4 256 0.8550 

      

0.1105 

1 0 1 1 0 0 1550 2 4 512 0.8494 

      

0.1103 
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Table B.8 Cos-Gaussian beam received intensity differences according to number of grids  

1cA

  

2cA   1sW

  

2sW   1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 -0.5 1 1 200j -200j 1550 2 4 32 0.0519 1.1770 

0.5 -0.5 1 1 200j -200j 1550 2 4 64 0.0491 1.1700 

0.5 -0.5 1 1 200j -200j 1550 2 4 128 0.0483 1.1687 

0.5 -0.5 1 1 200j -200j 1550 2 4 256 0.0481 1.1669 

0.5 -0.5 1 1 200j -200j 1550 2 4 512 0.0480 1.1669 

 

Table B.9 Cosh-Gaussian beam received intensity differences according to number of grids  

1cA   2cA

  

1sW

  

2sW   1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 0.5 1 1 200 -200 1550 2 4 32 0.0146 0.4197 

0.5 0.5 1 1 200 -200 1550 2 4 64 0.0139 0.4110 

0.5 0.5 1 1 200 -200 1550 2 4 128 0.0135 0.4089 

0.5 0.5 1 1 200 -200 1550 2 4 256 0.0134 0.4084 

0.5 0.5 1 1 200 -200 1550 2 4 512 0.0134 0.4083 

 

Table B.10 Sine-Gaussian beam received intensity differences according to number of grids 

1cA   2cA   1sW

  

2sW

  

1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5j -0.5j 1 1 200j -200j 1550 2 4 32 0.0519 1.1784 

0.5j -0.5j 1 1 200j -200j 1550 2 4 64 0.0492 1.1704 

0.5j -0.5j 1 1 200j -200j 1550 2 4 128 0.0485 1.1689 

0.5j -0.5j 1 1 200j -200j 1550 2 4 256 0.0483 1.1671 

0.5j -0.5j 1 1 200j -200j 1550 2 4 512 0.0482 1.1669 
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Table B.11 Sinh-Gaussian beam received intensity differences according to number of grids  

1cA

  

2cA   1sW

  

2sW

  

1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 -0.5 1 1 -200 200 1550 2 4 32 0.0189 0.5303 

0.5 -0.5 1 1 -200 200 1550 2 4 64 0.0179 0.5018 

0.5 -0.5 1 1 -200 200 1550 2 4 128 0.0172 0.4988 

0.5 -0.5 1 1 -200 200 1550 2 4 256 0.0172 0.4981 

0.5 -0.5 1 1 -200 200 1550 2 4 512 0.0171 0.4976 

 

Table B.12Annular Gaussian beam Received intensity differences according to number of 

grids 

 

1cA

  

2cA   1sW

  

2sW

  

1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 -0.5 2 1 0 0 1550 2 4 32 0.0667 0.2136 

0.5 -0.5 2 1 0 0 1550 2 4 64 0.0617 0.2123 

0.5 -0.5 2 1 0 0 1550 2 4 128 0.0608 0.2117 

0.5 -0.5 2 1 0 0 1550 2 4 256 0.0606 0.2116 

0.5 -0.5 2 1 0 0 1550 2 4 512 0.0606 0.2115 
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3.3 Received Field Tables According to Beam Waist 

 

Table B.13 Gaussian beam received intensity differences according to beam waist 

1cA

  

2cA

  

1sW   2sW   1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

1 0 0.5 0.5 0 0 1550 2 4 256 0.7716 0.8261 

1 0 0.75 0.75 0 0 1550 2 4 256 0.0025 0.2407 

1 0 1 1 0 0 1550 2 4 256 8.5502 

      

0.1105 

1 0 1.5 1.5 0 0 1550 2 4 256 0.0045 0.0802 

1 0 2 2 0 0 1550 2 4 256 0.0487 0.1381 

 

Table B.14 Cos-Gaussian beam received intensity differences according to beam waist 

1cA

  

2cA   1sW   2sW   1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 -0.5 0.5 0.5 200j -200j 1550 2 4 256 9.8421 0.9410 

0.5 -0.5 0.75 0.75 200j -200j 1550 2 4 256 0.7127 0.7448 

0.5 -0.5 1 1 200j -200j 1550 2 4 256 0.0481 1.1669 

0.5 -0.5 1.5 1.5 200j -200j 1550 2 4 256 0.0102 1.1383 

0.5 -0.5 2 2 200j -200j 1550 2 4 256 0.1035 1.1335 

 

 

 

 

 

 

 



 

56 
 

Table B.15 Cosh-Gaussian beam received intensity differences according to beam waist 

1cA

  

2cA   1sW   2sW   1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 0.5 0.5 0.5 200 -200 1550 2 4 256 0.2814 0.3828 

0.5 0.5 0.75 0.75 200 -200 1550 2 4 256 0.0018 0.2526 

0.5 0.5 1 1 200 -200 1550 2 4 256 0.0134 0.4084 

0.5 0.5 1.5 1.5 200 -200 1550 2 4 256 NaN NaN 

0.5 0.5 2 2 200 -200 1550 2 4 256 NaN NaN 

 

Table B.16 Sine-Gaussian beam received intensity differences according to beam waist 

1cA   2cA   1sW   2sW   1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5j -0.5j 0.5 0.5 200j -200j 1550 2 4 256 9.4294 1.3328 

0.5j -0.5j 0.75 0.75 200j -200j 1550 2 4 256 0.7124 0.7396 

0.5j -0.5j 1 1 200j -200j 1550 2 4 256 0.0483 1.1671 

0.5j -0.5j 1.5 1.5 200j -200j 1550 2 4 256 0.0102 1.1385 

0.5j -0.5j 2 2 200j -200j 1550 2 4 256 0.1034 1.1367 

 

Table B.17 Sinh-Gaussian beam received intensity differences according to beam waist 

1cA   2cA   1sW   2sW   1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 -0.5 0.5 0.5 -200 200 1550 2 4 256 0.8249 1.1519 

0.5 -0.5 0.75 0.75 -200 200 1550 2 4 256 0.0028 0.3334 

0.5 -0.5 1 1 -200 200 1550 2 4 256 0.0172 0.4981 

0.5 -0.5 1.5 1.5 -200 200 1550 2 4 256 NaN NaN 

0.5 -0.5 2 2 -200 200 1550 2 4 256 NaN NaN 
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Table B.18Annular Gaussian beam received intensity differences according to beam waist 

1cA   2cA   1sW   2sW   1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 -0.5 0.5 0.25 0 0 1550 2 4 256 4.1069 0.4743 

0.5 -0.5 0.75 0.375 0 0 1550 2 4 256 0.5990 0.1538 

0.5 -0.5 1 0.5 0 0 1550 2 4 256 0.0788 0.1416 

0.5 -0.5 1.5 0.75 0 0 1550 2 4 256 0.0058 0.1720 

0.5 -0.5 2 1 0 0 1550 2 4 256 0.0606 0.2116 
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Received Field Tables According to Propagation Distance and Related 

Multiplying factor 

 

Table B.19 Gaussian beam received intensity differences according to Distance and related 

multiplying factor 

1cA

  

2cA

  

1sW

  

2sW   1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

1 0 1 1 0 0 1550 0.1 1 256 1.1882 

      

0.0121 

1 0 1 1 0 0 1550 0.2 1 256 3.3623 

      

0.0286 

1 0 1 1 0 0 1550 0.5 1 256 0.0011 0.1260 

1 0 1 1 0 0 1550 1 2 256 14.072 

      

0.0968 

1 0 1 1 0 0 1550 2 4 256 8.5502 

      

0.1105 

1 0 1 1 0 0 1550 5 10 256 7.9428 

      

0.1144 

1 0 1 1 0 0 1550 10 20 256 10.004 

      

0.1156 

1 0 1 1 0 0 1550 20 40 256 10.170 

      

0.1162 

1 0 1 1 0 0 1550 50 100 256 9.9743 

      

0.1166 

1 0 1 1 0 0 1550 100 200 256 9.8605 

      

0.1167 
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Table B.20 Cos-Gaussian beam received intensity differences according to Distance and 

related multiplying factor 

1cA

  

2cA   1sW

  

2sW

  

1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 -0.5 1 1 200j -200j 1550 0.1 1 256 1.9299 

      

0.0120 

0.5 -0.5 1 1 200j -200j 1550 0.2 1 256 18.330 

      

0.0956 

0.5 -0.5 1 1 200j -200j 1550 0.5 1 256 0.4952 2.7852 

0.5 -0.5 1 1 200j -200j 1550 1 2 256 0.0893 1.6194 

0.5 -0.5 1 1 200j -200j 1550 2 4 256 0.0481 1.1669 

0.5 -0.5 1 1 200j -200j 1550 5 10 256 0.0396 0.9715 

0.5 -0.5 1 1 200j -200j 1550 10 20 256 0.0385 0.9185 

0.5 -0.5 1 1 200j -200j 1550 20 40 256 0.0382 0.8941 

0.5 -0.5 1 1 200j -200j 1550 50 100 256 0.0381 0.8802 

0.5 -0.5 1 1 200j -200j 1550 100 200 256 0.0381 0.8757 

 

Table B.21 Cosh-Gaussian beam received intensity differences according to Distance and 

related multiplying factor 

1cA

  

2cA   1sW

  

2sW

  

1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 0.5 1 1 200 -200 1550 0.1 1 256 0.0158 0.0505 

0.5 0.5 1 1 200 -200 1550 0.2 1 256 0.0250 0.1202 

0.5 0.5 1 1 200 -200 1550 0.5 1 256 0.2604 1.0339 

0.5 0.5 1 1 200 -200 1550 1 2 256 0.0365 0.8285 

0.5 0.5 1 1 200 -200 1550 2 4 256 0.0134 0.4084 

0.5 0.5 1 1 200 -200 1550 5 10 256 0.0087 0.3180 

0.5 0.5 1 1 200 -200 1550 10 20 256 0.0098 0.3049 

0.5 0.5 1 1 200 -200 1550 20 40 256 0.0103 0.3007 

0.5 0.5 1 1 200 -200 1550 50 100 256 0.0104 0.2989 

0.5 0.5 1 1 200 -200 1550 100 200 256 0.0104 0.2984 
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Table B.22 Sine-Gaussian beam received intensity differences according to Distance and 

related multiplying factor 

1cA   2cA   1sW

  

2sW

  

1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5j -0.5j 1 1 -200j 200j 1550 0.1 1 256 2.2375 

      

0.0141 

0.5j -0.5j 1 1 -200j 200j 1550 0.2 1 256 0.5041 2.7831 

0.5j -0.5j 1 1 -200j 200j 1550 0.5 1 256 0.5041 2.7831 

0.5j -0.5j 1 1 -200j 200j 1550 1 2 256 0.0903 1.6176 

0.5j -0.5j 1 1 -200j 200j 1550 2 4 256 0.0483 1.1671 

0.5j -0.5j 1 1 -200j 200j 1550 5 10 256 0.0396 0.9742 

0.5j -0.5j 1 1 -200j 200j 1550 10 20 256 0.0384 0.9224 

0.5j -0.5j 1 1 -200j 200j 1550 20 40 256 0.0381 0.8987 

0.5j -0.5j 1 1 -200j 200j 1550 50 100 256 0.0380 0.8851 

0.5j -0.5j 1 1 -200j 200j 1550 100 200 256 0.0380 0.8807 

 

Table B.23 Sinh-Gaussian beam received intensity differences according to Distance and 

related multiplying factor 

1cA   2cA   1sW

  

2sW

  

1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 -0.5 1 1 -200 200 1550 0.1 1 256 0.0360 0.0159 

0.5 -0.5 1 1 -200 200 1550 0.2 1 256 0.0246  0.0731 

0.5 -0.5 1 1 -200 200 1550 0.5 1 256 0.2435 0.6502 

0.5 -0.5 1 1 -200 200 1550 1 2 256 0.0325 0.7245 

0.5 -0.5 1 1 -200 200 1550 2 4 256 0.0172 0.4981 

0.5 -0.5 1 1 -200 200 1550 5 10 256 0.0109 0.4098 

0.5 -0.5 1 1 -200 200 1550 10 20 256 0.0131 0.3968 

0.5 -0.5 1 1 -200 200 1550 20 40 256 0.0139 0.3930 

0.5 -0.5 1 1 -200 200 1550 50 100 256 0.0142 0.3911 

0.5 -0.5 1 1 -200 200 1550 100 200 256 0.0143 0.3905 
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Table B.24Annular Gaussian beam received intensity differences according to Distance and 

related multiplying factor 

1cA   2cA   1sW

  

2sW

  

1D  2D    L 

 

fm

 

N DFA 

 

DCA 

 

0.5 -0.5 2 1 0 0 1550 0.1 1 256 0.1419 1.0331 

0.5 -0.5 2 1 0 0 1550 0.2 1 256 5.4615 

      

0.0333 

0.5 -0.5 2 1 0 0 1550 0.5 1 256 0.7270 1.1485 

0.5 -0.5 2 1 0 0 1550 1 2 256 0.1105 0.2867 

0.5 -0.5 2 1 0 0 1550 2 4 256 0.0606 0.2116 

0.5 -0.5 2 1 0 0 1550 5 10 256 0.0322 0.1344 

0.5 -0.5 2 1 0 0 1550 10 20 256 0.0734 0.1260 

0.5 -0.5 2 1 0 0 1550 20 40 256 0.0732 0.1247 

0.5 -0.5 2 1 0 0 1550 50 100 256 0.0732 0.1240 

0.5 -0.5 2 1 0 0 1550 100 200 256 0.0732 0.1238 
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