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ABSTRACT

COMPARISON OF BEAM PROFILES FROM ANALYTIC
SOLUTION AND COMPUTATIONAL MODELS

CATMAKAS, Omer Kemal
M.S., Department of Electronic and Communication Engineering
Supervisor: Prof.Dr. Halil Tanyer EYYUBOGLU

January 2014, 78 pages

In this thesis, we have compared the receiver plane beam profiles by computing the
Huygens-Fresnel integral as convolution integral and Fourier integral operator and the
results obtained from analytic derivation. The comparisons made on different beam
types such as Gaussian, Annular-Gaussian, Sine-Gaussian, Sinh-Gaussian, Cos-
Gaussian, Cosh-Gaussian beams. To make computations and comparisons we have
developed a Matlab code, this code formulates the field expression for beam types on
source plane, computes the receiver plane intensity distribution for three approaches of
Huygens-Fresnel diffraction integral, and compares the results. Using this code, for the
mentioned beam types, receiver beam profiles are computed and compared against

different propagation distances and different beam parameters in free space.

Keywords: Free Space Optics, Diffraction, Angular Spectrum



0z

ISIK HUZME PROFILLERININ ANALITIiK COZUMU iLE
HESAPLANABILIR MODELLERININ KIYASLANMASI

CATMAKAS, Omer Kemal
Yiiksek Lisans, Elektronik ve Haberlesme Anabilim Dal1
Tez Yoéneticisi: Prof.Dr. Halil Tanyer EYYUBOGLU

Ocak 2014, 78 sayfa

Bu tezde, Huygens-Fresnel entegralini, biikliim entegrali ve Fourier doniisiim entegrali
olarak hesaplayip elde edilen 1sik huzme profillerini, Huygens-Fresnel entegralinin
analitik ¢oziimiinden elde edilen sonuglarla kiyasladik . Kiyaslamalar Gaussian, Cos-
Gaussian, Cosh-Gaussian, Sine-Gaussian, Sinh-Gaussian ve Annular gibi degisik 151k
huzme tipleri lizerinde yapildi. Kiyaslamalari yapmak igin bir matlab kodu gelistirdik,
bu kod kaynak diizlemede 151k huzmelerini olusturabilmekte ve yogunluklarini
cizebilmekte, alici diizlemi i¢in Huygens-Fresnel dagilma entegralinin her g
yaklagimini hesaplayabilmekte, ve elde edilen sonuclar1 kiyaslayabilmektedir. Bu kod
kullanilarak bahsi gegen 151k huzme tipleri i¢in. alici diizlemde ki 151k yogunluklari
serbest uzayda, farkli yayilma mesafelerinde ve degisik huzme parametreleri ile

hesaplanmis analitik ¢6ziim ile farklar1 hesaplanmistir.

Anahtar Kelimeler: Serbest Uzay Optigi, Dagilma, A¢isal Spektrum
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CHAPTER 1

INTRODUCTION

1.1 Background Information

The concept of Free Space Optics (FSO) technology or optical wireless
technology depends on transmitting modulated data by using both visible or infrared
(IR) light beams. Unlike traditional communication techniques, such as, copper wire or
fiber-optics which transmits laser beam into a glass fiber, FSO sends laser beams

through the air.

FSO communication systems uses optical amplifiers and telescopic lens system to send
and receive optical signals both on transmitter and receiver sides. Engineering task of
FSO system includes not only design of these amplification or telescopic systems but
also computing the propagation of light beams.

The propagation behavior of an optical wave is fundamentally governed by paraxial
wave equation. Another solution for propagation of light is Huygens-Fresnel integral.
Analytically solving this integral expression is difficult for many optical waves but a
few simple models[1]. In this case instead of trying to solve this integral analytically,
computing it as convolution integral or as Fourier integral operator which are called

computational models are very sufficient methods.



1.2 Fourier Transform

Fourier transform is a mathematical operation that transforms signals between time (or
spatial) and frequency domain. Fourier transform is a reversible operation. Application
of Fourier transform in optics often includes 2 spatial dimensions [2] and also called
angular spectrum of 2D signal. Analytic expression of Fourier transform of function g

with two spatial variable x and y given in Eq. (1.1)

6t 1) = [ [ gty ey (L1)

—00 —00

where G(f,, f,) is the transform result and f and f are independent frequency
variables associated with x and y. Short notation of Fourier transform is
F{g(x.y)}=G(f,.f,) and F*{G(f,f)}=g(xy) is short notation of inverse

Fourier transform, the analytic inverse Fourier transform is given in Eq. (1.2)

g(x,y) = j TG(fX, £ el gt g (1.2)

—00 —00

1.3 Convolution Theorem

Convolution is a mathematical operation that takes two functions of time or space and
gives an output as overlapped area of these two functions while one of them is inverted
according to origin and overlapping into non-inverted one, while shifting along their
mutual axis. The operation of convolution is denoted with ® . Convolution integral in

two dimensions is given in Eq. (1.3)



906 ON(xY) = | [ 9(EN(x—&,y—c)d&de 13)

—00 —00

Convolution theorem and Fourier transform have pointwise product relationship. Such
that computing convolution of two functions gives the same result by taking the Fourier
transform of these two functions separately then multiply them and taking the inverse

Fourier transform of the result. The relationship shown in Eq. (1.4)
g(x, Y)®h(x,y) = F{F {g(x, y)} F {h(x, )}}. (1.4)

1.4 Optical Propagation

In all FSO applications it is necessary to know the propagation characteristic of light
beam. Light has both particle and wave properties. Particle like properties of light are
emission, absorption etc., wave like properties of light are propagation, interference,
diffraction etc. In free space light propagates with a constant speed which denoted as
"c" and the value of c is approximately 3x108 m/s. The range of optical wavelength
domain starts from 10 nm and extends up to 1 mm. This domain includes three bands
which are Ultraviolet(10nm to 390 nm), Visible(390nm to 760nm), and Infrared(760nm

to 1mm) [3]. Electromagnetic spectrum [4] given in figure 1.1.
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Figure 1.1 Electromagnetic Spectrum

Propagation can be defined as relocation of an optical field from one position to
another. An optical field denoted by u(r,t) which is a function of position r =(x,y, z)
and time t. This field mathematically satisfies the wave equation which is given in
Eq.(1.5)

1

2
vV 0

(1.5)

where c is the speed of light and V* represents the Laplacian operator. In rectangular

coordinates Laplacian operator defined in Eq. (1.6)

2 2 2
Vzu:ag+ag+ag (1.6)
oxZ oy




If the time variations in the optical field is harmonic(i.e. Sinusoidal) u(r,t)can be

denoted in the form u(r,t) =u(r)e **, where wis the angular frequency, j =+/~1 and
u(r)is the complex amplitude of wave, and Eq. (1.5) can be reduced into time

independent form of wave equation which is called Helmholtz Equation and shown in
Eq. (1.7)

Viu+kiu=0 (1.7)

If we consider propagation is nearly parallel to the axis z, we can write the time

independent optical field as in Eq. (1.8)

u(x,y,z=L)=u(r,r,)e (1.8)

where k is the wave number and A is optical wavelength which is 2=2z/k.
Substituting (1.8) into Helmholtz's Eq. (1.7) we obtain Eqg. (1.9)

vy
oz

r r

+ +
ox* oy ozt

2 2 2
{a T kzw}e"kL +k?ue =0 (1.9)

The paraxial approximation neglects o°u, /6z%since u, is assumed to vary slowly with

z, and cancels e term. This yields the paraxial wave equation [5], shown in Eq.
(1.10)
o°u, o ou,

L+—+2]k
ox> oy’ e

=0 (1.10)



Solving paraxial wave equation is very easy by computing its two dimensional Fourier

transform.  Let Fourier transform of wu (x,y) be U(f,,f), and since

FLd df EX)J =(2ﬁjfx)” F(f,) Eq. (1.10) transforms into Eq. (1.11)
X

(j27rfx)2U,+(j27zfy)2Ur+2jk86Ur -0 (1.12)
z
After arrangement of Eq. (1.11) we obtain Eqg. (1.12);
ouU 27°
L= f2+f2)U 1.12
Rty @12
Eqg. (1.12) may be integrated directly;
{%( f2+ fyz)L:‘
U, (f,, f,)=U(f,, f)e"’ (1.13)
. . ] {% fxz+fy2 L} 1 [ﬁ(rxzﬁyz)}
since the inverse Fourier transform of e’ is h(rx, ry):ﬁe 2t [6] we
J

can obtain the inverse Fourier transform (1.13) by the help of convolution relationship
(1.14a), and Eqg. (1.14b) is the convolution in full form.

u, (1.1, )=u, ®h(r,r,) (1.14a)



u,(r.r,)= L T T u, (sx,sy)e[ZL((rxSX)Z+(rySY)ZHdstsy (1.14b)

Eq. (1.14b) is called the paraxial diffraction integral, solution of this integral for a

given field u, at L=0 as source plane with coordinates ( o y) gives (u,) at L distance

away with receiver coordinates of (rx, ry). Whenever this integral is valid, the receiver

plane is said to be in the Fresnel Region. Huygens-Fresnel approximation of this

integral adds back e ' term to both sides, adding this term we get Huygens-Fresnel

integral, at Eq. (1.15) and Free space propagation geometry is given in Figure 1.2 [17]

u (r.r,.L)= ~ ke ™ T Tus A y)Hds ds, (1.15)

27l

—00 —00

Propagation
Axis

Figure 1.2 Propagation Geometry



CHAPTER 2

METHODS AND EXPERIMENTS

2.1 Gaussian Beam Optics

In most optical applications, lasers emit beams with a Gaussian profile. The
Gaussian beam is a Transverse Electromagnetic(TEM) mode wave [7]. Gaussian beam
waves mostly used in lowest order transverse electromagnetic mode in the other words

fundamental transverse mode and it is denoted by TEM .

For theoretical study of optical wave propagation, Gaussian beam is more sufficient
than plane wave or spherical wave when focusing and diverging parameters are
important[8]. At a propagation distance L, lowest order transverse electromagnetic wave
Gaussian beam wave formulation [9] in cylindrical coordinates with amplitude

coefficient A, is givenin Eq. (2.1)

2

A —kar ,
u(r, 4, L)_1+2jaLeXp(1+2jaLJeXp(JkL) (2.1)




On source plane (at L=0) Gaussian source field can expressed in Eq. (2.2);

u, (s, 4., L =0) = A exp(—kas?) (2.2)

+i , W_ (in m) refers to radial Gaussian source size (beam waist)
kw?  2F °

S

where o =

and F, refers to focusing parameter. Beam waist (W,) denotes when the radius is equal

to 1/eas shown in fig. (2-1)

Gaussian Source Field
1 T ~ T
Y :

08 / _ \ ,

exp(-s2 / Wsz)
\\
7

: AN

T
N

Figure 2-1 Amplitude profile of a Gaussian beam.

Travelling Gaussian beam in Eq. (2.1) is a solution for paraxial wave equation [3], for
propagation of an optical field, another solution is called Huygens-Fresnel integral.
With the help of this integral, it is possible to find the received field from a given source
field. For inconvenience in Eq. (2.3a) and Eq. (2.3b) the expression of this integrals are

given respectively for cylindrical and Cartesian coordinates.



—jkexp(jkL) %

U (rdiL)= 2L

jjdsdqﬁsus (s, ¢)exp{lk[ 2rscos(¢r—¢s)+sz+rzﬂ (2.3a)

—00 —00

u,(r,L)= JI(Lp(]kl'“'dzsu exp[Jt(r—S)z}

27l

—00 —00

with (X, y) , :( ,ry)

ur(rx,ry,L) JkeZX:LJkL TTds ds, u, exp{jt[(rx—sx)2+(ry—sy)2}} (2.3b)

—jkexp( jkL)
Té]jdsdsu(x, s,)

—00 —00

exp {Zj—t[—ZSXrX —2s,1, + s2 + sj +r7+ ry2 ]}

2.2 Computing Huygens-Fresnel Integral as Fourier Integral and Convolution

Integral

Huygens-Fresnel integral in Cartesian coordinates is given in Eg. (2.3b). To
obtain Fourier transform integral from Fresnel diffraction integral, the last exponential

term need to be splitted as shown in Eq. (2.4).

Ur(rx,ry,L)Z_Jkezx—plfjkl_)exp|:1_k(rx2+ry2):|
2.4)

_|. J.ds ds, ug exp[J (s2+s )}exp[ Ek (sxrx+syry)}

—00 —00

If the Eq. (2.4) is analyzed, it is seen that, there is a Fourier transform relationship
between s (source)and r (receiver) planes . The last exponential term in Eq. (2.4)

behaves like Fourier integral operator and can expressed like in Eq. (2.5);

10



2L

ur(rx’ry,L):Mexp{%(rf+ryz)}F{us( y y)exp{J (s’ +s )}} (2.5)

where F{} indicates the Fourier transform operator in Eq. (2.5). Direct application of
this form of the integral in propagation simulation is possible if and only if coordinates
of source and receiver plane are identical [10]. Otherwise a scaling parameter between
source and receiver plane need to be integrated into formulation. To introduce the

scaling parameter it is needed to go back to Eq. (2.4) and that r=m,s where r and s
respectively indicates receiver and source plane coordinates and m, is multiplying

factor. Tyler and Fried [11] discussed how to approach the scaling parameter, and using
their approach we can rearrange the exponential and with the introduction of this

scaling term (r—s)2 inside the diffraction exponential will become in Eq. (2.6);

(r—s)’ =m, {L_SJ —[1_mf Jrz +(1-mf )s? (2.6)

Inserting Eg. (2.6) into Eq. (2.4) we get Eg. (2.7a) and Eq. (2.7b)

Jkexp jkL )
Ur(r, L) T:[O_J;d Su (S)
2 0 (2.7a)
i —m
exp[Jk [mf [L_s} —[ f}r%(lmf)szﬂ
2L m, m,
—jkexp jkL jk[I=me | LT T 2
Ur(I’,L):Texp Z T r _\{;_-[;d SUS(S)
o (2.7b)
jk r ’ jk 2
LS L L
exp 2me m s] exp 2|_(1 mf )s

11



By introducing Eqg. (2.8)

Uy (s) =mius (s)exp{%(l—mf )sz} (2.8)

f

Eqg. (2.7b) turns into Eq. (2.9)

—jkm; exp JkL
2zl

ik [1—m
expj—k f

2L

u(r,L)= r? (2.9)

. 2
[ [ d%ug s exp Ik m—rf—s]

—m
o d oL T

my

Now by introducing and applying new scaling terms r,=r/m;, L =L/m; ,Eq. (2.9)

will become Eg. (2.10);

_ —ikexp jkL L jk(1=me ) o1 T LSPFRY 2.10
u, (r, L)_—ZnLl ex o r iid smug, (s)exp 20 (rp—9) (2.10)
Eqg. (2.10) is in the form of convolution integral as written in Eq. (2.11);
u, (r,L)=exp( jkL)exp JkfLmm r? Tszsul(s) h(r,-s) (2.11)
2L mf —00 —0 )

where the transfer function h(r, —s) is in Eq. (2.12);

12



h(rl—s)zﬁexp{%(rl—s)z} (2.12)

Taking the Fourier transform of transfer function, we get Eq. (2.13)

H(f)= F[h(r1 —s)] = exp(—jzr}tLifz) = exp{—jmmifzj = exp(— Zj”;LfZJ (2.13)

f f

Finally Huygens-Fresnel integral can be shown as in Eq. (2.14);

M

u, (r,L)=exp( jkL)exp{%(l_mf Jrz}uﬂ(s)@h(rl) (2.14)

With help of the pointwise product relationship of Eq. (2.14) will become as shown in
Eg. (2.15a), Eq. (2.15b), and Eqg. (2.15c)

u, (r,L)=exp( jkL)exp %(1;“% ]rz F‘l{F[usl(s)]F[h(rl)]} (2.15a)
u, (r,L)=exp( jkL)exp %ﬁnmf Jrz FH{F[ug (s) JH (F)} (2.15b)
u, (r,L)=exp( jkL)exp %[iqu Jrz

(2.15¢)

13



2.3 Beam Types

In this thesis we make comparisons among Gaussian beam, Cos-Gaussian beam, Cosh-
Gaussian beam, Sine-Gaussian beam, Sinh-Gaussian beam, Annular Gaussian beam,
and we chose these beams because of their analytic solutions are already obtained. Eq.
(2.16) is used to obtain the different beam types on source plane[12-13] and Eq. (2.17)

is the analytical expression of propagated beams on receiver plane[13-14-15] .

2
Uy(S,,8,) = Y A exp[—0.5K (0, S+, 57) + D,S, + D3, (2.16)
(=1
2
u, r,r,L = exp jkL > A 0.5ker, 17 D,r,
(=1 . 0.5 . 0.5 exp a1 ex P
1+ joy, L °° 1+ joy, L 1+ joy, L 1+ jo, L
exp 05]D3(L ex 70.5k.ay(ry2
K@+ jo,,L) 1+ jo,L
D,r 0.5jD? L
exp| —X~—|exp # (2.17)
1+ je, L k@+ ja,L)

14



Table 2.1 Parameters for different beam types

Beam Type /

Parameter

Displacement

Parameter 1

Displacement

Parameter 2

Amplitude
Coefficient

Beam Waist

Gaussian

Beam

(0,0)

(0,0)

(Ac..0)

(Ws,0)

Cos-Gaussian
Beam

('j D1 "j Dl)

(D,.D,)

(Acts Acz)

(Ws, =Ws, )

Cosh-
Gaussian

Beam

(Dl’Dl)

(' Dz " Dz)

(Aot Acs)

(Ws1 =Ws, )

Sine-
Gaussian

Beam

('j D1 "j* Dl)

(1 D;.1D,)

(j A:l’-j Acz)

(Ws, =Ws,)

Sinh-
Gaussian

Beam

(' D1 " Dl)

(D2’D2)

(AcirmAcs)

(Wsl =Ws, )

Annular
Gaussian

Beam

(0,0)

(0,0)

(A\:l" Abz)

(Ws, >Ws,)

where D, =D, =D,,,D,=D,, =D,,,and A, A.,, D,, D,are positive quantities.

y1’

2.4 Optical Intensity

The optical intensity I(r) is defined as the optical power per unit area units of watt/m? is

given in Eq. (2.18)
1(r)=u(r)u*(r) (2.18)

where * denotes complex conjugate.

15



2.5 Comparison Technique

To make comparisons firstly received beam profiles are normalized with respect to
received intensity of analytical solution. Then two received beam intensities are
subtracted from each other along the number of grid spaces element by element and
absolute difference is summed. Finally this sum is divided by square of grid spaces and
multiplied with 100 to have percentage of difference. Comparison method is shown in

Eqg. (2.19), this method is a similar form of the one used in [16]

N

D=100 > abs[l,cm(rx,ry)— Iras(rx,ry)]/[N2 max(max(lras(rx,ry))ﬂ (2.19)

r,=0,r,=0

where N is the number of grids, 1, is received intensity from computational models

and | is received intensity from analytic solution.

2.6 Computing Multiplying Factor

Correct multiplication factor is achieved by demanding the power of beam on different
observation (receiver) planes remain the same as source beam power. For the
propagation distances lower than 500 m multiplication factor is taken as unity. For
propagation distances beyond 500 m, multiplication factor is set to L/500. To calculate

power of beam Eq. (2.20) formula is used.

N/2 N/2

P=> > la(r.r)/N° (2.20)

r,=—N/2 ry:—N/2
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2.7 Sample Comparisons

2.7.1 Gaussian Beam

Fig. (2-2) shows the intensity distribution of Gaussian beam on the source plane and the
receiver plane. Receiver plane intensity distributions obtained respectively by analytic
expression, Fourier integral operator and convolution integral. The propagation distance

between source and receiver plane is L=2 km . Multiplying factor is m, =4. The

Gaussian beam parameters are 4 =1.55um, W, =W, =lcm, A, =1, A, =0.

Source Beam Received beam intensity from analytic expression

» 0.5- —~ 0.02

&o

20

0

5 -5 sym om

0
) ) 20 -20 in o™
sx n e, L nem, ‘v'

Received beam intensity from Fourier integral operation Received beam intensity from convolution integral

0

¥ - 20 -20 < in o™
x cm y

Figure 2-2 Intensity distributions of Gaussian beam .

Total received intensity difference between analytic expression and Fourier integral
operator is 8.5502x107° %, difference between analytic expression and convolution
integral is 0.1105 %. Fig. (2-3) shows the difference between the received beam

intensities which are obtained from analytic expression and Fourier integral operator.
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DFA in (%)
2.2

Received beam intensity differance between analytic expression and Fourier integral operation

“20 -15 -10 -5 0 5 10 15
r incm

Figure 2-3 Received intensity difference of Gaussian beam between analytic expression and

Fourier integral operation .

Fig. (2-4) shows the difference between the received beam intensities which are

obtained from analytic expression and convolution integral.

Received beam intensity differance between analytic expression and convolution integral DCA in (%)

“20 -15 -10 -5 0 5 10 15

r_incm
X

Figure. 2-4 Received intensity difference of Gaussian beam between analytic expression and

Convolution integral.
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2.7.2 Cos-Gaussian Beam

Fig. (2-5) shows the intensity distribution of Cos-Gaussian beam on the source plane
and the receiver plane. Receiver plane intensity distributions obtained respectively by
analytic expression, Fourier integral operator and convolution integral. The propagation

distance between source and receiver plane is L=2 km . Multiplying factor is m, =4.
The beam parameters are A=155um, W, =W, =1cm, Ac, =05, Ac,=05,

D, =D,, =—j200m™, D, =D, = j200m™

Source Beam Received beam intensity from analytic expression

1 0.01
w 05 —~ 0.005

& 28
0 0 0

5 -5 . o™ B 20 -20 < in @
¥ x ' cp, ¥

8
x ey,

Received beam intensity from Fourier integral operation Received beam intensity from convolution integral

0

¥ 20 -20 < in o™
x e, ¥

Figure 2-5 Intensity distributions of Cos-Gaussian beam.

Total received intensity difference between analytic expression and Fourier integral
operator is 0.0481 %, difference between analytic expression and convolution integral is
1.1669 %. Fig. (2-6) shows the difference between the received beam intensities which

are obtained from analytic expression and Fourier integral operator.
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DFA in (%)

Received beam intensity differance between analytic expression and Fourier integral operation

-20 -15 -10 -5 0 5 10 15
. incm

Figure 2-6 Received intensity difference of cos-Gaussian beam between analytic expression
and Fourier integral operation .

Fig. (2-7) shows the difference between the received beam intensities which are

obtained from analytic expression and Fourier integral operator.

DCA in (%)

Received beam intensity differance between analytic expression and convolution integral

40.08
40.07

r 40.06

F 40.05

0.04

-20 -15 -10 -5 0 5 10 15

r_incm
X

Figure 2-7 Received intensity difference of Cos-Gaussian beam between analytic expression

and convolution integral.
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2.7.3 Cosh-Gaussian Beam

Fig. (2-8) shows the intensity distribution of Cosh-Gaussian beam on source plane and
receiver plane. Receiver plane intensity distributions obtained respectively by analytic
expression, Fourier integral operator and convolution integral. The propagation distance

between source and receiver plane is L=2 km . Multiplying factor is m, =4. The
Gaussian beam parameters are A=155um, W, =W, =1cm, A,=05, A,=05,

D, =D,, =200m™, D,, =D,, =—200m™

Source Beam Received beam intensity from analytic expression

1 0.2

w05 ~ 01

28

20

0

0
20 -20 ¢ in ot

5 -5 o™

sx n cm 5‘1 rx n cm
Received beam intensity from Fourier integral operation Received beam intensity from convolution integral
0.2
0.2
—~ 01 01
a 20 20
-20 0
0 0 0 i\
- 20 -20 (i cm P 20 -20 (. in®
x ey, y x " ep, y

Figure 2-8 Intensity distributions of Cosh-Gaussian beam.

Total received intensity difference between analytic expression and Fourier integral
operator is 0.0134 %, difference between analytic expression and convolution integral is
0.4084 %. Fig. (2-9) shows the difference between the received beam intensities which

are obtained from analytic expression and Fourier integral operator.
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DFA in (%)

Received beam intensity differance between analytic expression and Fourier integral operation

Figure 2-9 Received intensity difference of Cosh-Gaussian beam between analytic expression
and Fourier integral operator .

Fig. (2-10) shows the difference between the received beam intensities which are

obtained from analytic expression and Fourier integral operator.

DCA in (%)

Received beam intensity differance between analytic expression and convolution integral
r 10.04
r 10.035
r 10.03

F 40.025

0.02

0.015

0.01

0.005

Figure 2-10 Received intensity difference of Cosh-Gaussian beam between analytic expression

and convolution integral.
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2.7.4 Sine-Gaussian Beam

Fig. (2-11) shows the intensity distribution of Sine-Gaussian beam on source plane and
receiver plane. Receiver plane intensity distributions obtained respectively by analytic
expression, Fourier integral operator and convolution integral. The propagation distance

between source and receiver plane is L=2 km . Multiplying factor is m, =4. The
Gaussian beam parameters are A=1.55um, W, =W,, =lcm, A, =0.5j, A,=-0.5]j,

D, =D,, =—j200m™, D, =D, = j200m™

Source Beam Received beam intensity from analytic expression
1 0.02
_» 05 —~ 0.01
0
3 5 20
o ° m 0 ° L
) 5 -5 in © . 20 -20 in®
s, B 5“\ r Do ‘vl

Received beam intensity from Fourier integral operation Received beam intensity from convolution integral

- 20 20 jpe ¥ o 20 20 "
x 0 ey, y x Mem, Y

Figure 2-11 Intensity distributions of a Sine-Gaussian beam.

Total received intensity difference between analytic expression and Fourier integral
operator is 0.0483 %, difference between analytic expression and convolution integral is
1.1671 %. Fig. (2-12) shows the difference between the received beam intensities which

are obtained from analytic expression and Fourier integral operator.
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DFA in (%)

Received beam intensity differance between analytic expression and Fourier integral operation
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Figure 2-12 Received intensity difference of Sine-Gaussian beam between analytic expression
and Fourier integral operator .

Fig. (2-13) shows the difference between the received beam intensities which are

obtained from analytic expression and Fourier integral operator.

DCA in (%)

Received beam intensity differance between analytic expression and convolution integral

40.08
40.07

r 40.06

F 40.05

0.04

0

r_incm
X

Figure 2-13 Received intensity difference of Sine-Gaussian beam between analytic expression

and convolution integral.
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2.7.5 Sinh-Gaussian Beam

Fig. (2-14) shows the intensity distribution of Sinh-Gaussian beam on source plane and
receiver plane. Receiver plane intensity distributions obtained respectively by analytic
expression, Fourier integral operator and Convolution integral. The propagation

distance between source and receiver plane is L=2 km . Multiplying factor is m, =4.
The Gaussian beam parameters are A=155um, W, =W, =1cm, A, =05,

A,=-05, D, =D, =-200m™, D,, =D, = 200m™

, =

Source Beam Received beam intensity from analytic expression

1 0.1

» 05 —~ 0.05

5 29 20
0 0

0

i 5 5 jn o ) 20 20 in o™
s.\r n e, 5“‘ r‘\' N em, ‘Yl
Received beam intensity from Fourier integral operation Received beam intensity from convolution integral
0.1
0.1
_~ 005 —~0.05
20
0
.20 20 20 0
0 0 0 i\
r 20 -20 (i o o 20 -20 ¢ in®
x M em, y x em, ¥

Figure 2-14 Intensity distributions of Sinh-Gaussian beam.

Total received intensity difference between analytic expression and Fourier integral
operator is 0.0172 %, difference between analytic expression and convolution integral is
0.4981 %. Fig. (2-15) shows the difference between the received beam intensities which

are obtained from analytic expression and Fourier integral operator.
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DFA in (%)
F6

Received beam intensity differance between analytic expression and Fourier integral operation

Figure 2-15 Received intensity difference of Sinh-Gaussian beam between analytic expression
and Fourier integral operator .

Fig. (2-16) shows the difference between the received beam intensities which are

obtained from analytic expression and Fourier integral operator.

DCA in (%)
F0.04

Received beam intensity differance between analytic expression and convolution integral

r 10.035

0.015

0.01

0.005

Figure 2-16 Received intensity difference of Sinh-Gaussian beam between analytic expression

and convolution integral.
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2.7.6 Annular Gaussian Beam

Fig. (2-17) shows the intensity distribution of Annular beam on source plane and
receiver plane. Receiver plane intensity distributions obtained respectively by analytic
expression, Fourier integral operator and Convolution integral. The propagation

distance between source and receiver plane is L=2 km . Multiplying factor is m, =4.
The beam parameters are A =1.55pm, W, =2cm, W, =1cm A, =05, A,=-05,

D,=D,,=0m", D,=D,=0m"

Source Beam Received beam intensity from analytic expression

1

v 0.5- ~ 05

20

&o

0

' 0
i 5 5 in o™ ) 20 -20 in o™
sX n cm 5‘1 ,:\' n cm “1
Received beam intensity from Fourier integral operation Received beam intensity from convolution integral

r 20 -20 < ino™
X "C[,; ¥

Figure 2-17 Intensity distributions of Annular Gaussian beam.

Total received intensity difference between analytic expression and Fourier integral
operator is 0.0606%, difference between analytic expression and convolution integral is
0.2116%. Fig. (2-18) shows the difference between the received beam intensities which

are obtained from analytic expression and Fourier integral operator.
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Figure 2-18 Received intensity difference of Annular Gaussian beam between analytic

expression and Fourier integral operator .

Fig. (2-19) shows the difference between the received beam intensities which are

obtained from analytic expression and Fourier integral operator.

DCA in (%)
F40.055

Received beam intensity differance between analytic expression and convolution integral

40.06
+0.045
r 10.04

F +0.035
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Figure 2-19 Received intensity difference of Annular Gaussian beam between analytic

expression and convolution integral.
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CHAPTER 3

RESULTS AND DISCUSSIONS

In this section received intensity profiles from Fourier integral operation and
convolution integral are compared with the results which are obtained from analytic
solution. The comparisons are made and tabulated in appendix B at different beam types
and beam parameters such as wavelength (4) in nm, amplitude coefficient (Ac) in
Volt/m or Ampere/m, beam waist (ws) in cm, different number of grids (N) and

different distances (L) in km with related multiplying factor (m,). In appendix B

detailed measurements and beam parameters are available and DFA refers to difference
between Fourier integral operator and analytic solution, and DCA refers to difference
between convolution integral and analytic solution, both comparisons made in

percentage (%) form.

3.1 Received Field Comparisons According to Wavelength

We have calculated the received beam intensities from computational models and
analytic results, then we make the comparisons at different wavelengths. The
wavelength range starts from the beginning of visible spectrum and ends at middle
infrared wavelengths. The comparisons according to wavelengths with detailed
parameters are tabulated in appendix B.1 to B.6, within the order of Gaussian beam,
Cos-Gaussian beam, Cosh-Gaussian beam, Sine-Gaussian beam, Sinh-Gaussian beam
and Annular Gaussian beam. In Figs (3.1) and (3.2) beam profile comparisons are

shown with difference ratios.
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Comparison of Beam Profiles According to Wavelength
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Figure 3-1 Comparison of beam profiles from analytic solution and Fourier integral operation
according to wavelength

Figure (3-1) and Tables B.1 to B.6 in appendix B show that all beam profiles have
increasing difference against wavelength increases. Annular beam has highest
difference percentage and Gaussian beam has the lowest difference percentage for all
wavelengths. Cos-Gaussian and Sine-Gaussian beams has lower difference percentage
than their related hyperbolic Gaussian beams but after 1250 nm Cos-Gaussian and Sine-
Gaussian beams' difference percentage became higher than hyperbolic ones. The
average difference between Fourier integral operation and analytic solution is less than

1/10000 which is an acceptable ratio for Matlab's correlation tool.
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Comparison of Beam Profiles According to Wavelength
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Figure 3-2 Comparison of Beam profiles from analytic solution and convolution

integral according to wavelength

Figure (3-2) and Tables B.1 to B.6 in appendix B show that all beam profiles has an
increasing difference while wavelength increases. In this case Gaussian beam has the
lowest difference ratio for all wavelengths but hyperbolic beams has the highest
difference ratio for visible spectrum, and for infrared wavelengths Cos-Gaussian and
Sine-Gaussian beams has the highest. When two computational models are compared in
wavelength category convolution integral has 10 times bigger averaged ratio than

Fourier integral operation.

3.2 Received Field Comparisons According to Number of Grids

Grid spacing represents step sizes in source and receiver planes. It can be predicted that
bigger step size gives lower difference ratio, in analytic calculations grid spacing
accepted as zero, but in discrete calculations in Matlab grid spacing should be chosen as
a finite value. We have calculated the received beam intensities from computational

models and analytic results, then we make the comparisons at 5 different number of
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grids. The grid spacing range starts from 32 and gets double of previous one until we
reach 512. The comparisons according to number of grids are shown in Tables B.7 to
B.12 in appendix B, within the order of Gaussian beam, Cos-Gaussian beam, Cosh-
Gaussian beam, Sine-Gaussian beam, Sinh-Gaussian beam and Annular Gaussian beam.

In figs (3-3) and (3-4) beam profile comparisons are shown.

Comparison of Beam Profiles According to Number of Grids

0.07 : .
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Figure 3-3 Comparison of beam profiles from analytic solution and Fourier integral operation

according to grid spacing
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Comparison of Beam Profiles According to Number of Grids

-
ES

T T T T
—& —Gaussian Beam

-+ -Cos-Gaussian Beam
1.2H Cosh-Gaussian Beam

Sine-Gaussian Beam | -
—& -Sinh-Gaussian Beam
=& Annular Beam

0.8 B

0.4 .

0.2 O G O O ¢ O )

Difference between analytic solution and convelution integral in (%)

32 64 128 256 512
Number of Grids

Figure 3.4 Comparison of beam profiles from analytic solution and convolution

integral according to grid spacing

In this part, since the calculations made in 1550nm wavelength, comparing the effect of
grid spacing is more logical than comparing the beam profiles. Figs (3.3) and (3.4), and
Tables B.7 to B.12 in appendix B shows that when the grid spacing increases the
difference ratio decreases. For both computational models it shows that almost there is
no difference between 256 and 512 grid points, so for computation times and effort of

computer it is more convenient to choose 256 spaces.

3.3 Received Field Comparisons According to Beam Waist

In this section received beam profiles are compared with respect to beam waist. The
beam waist variation starts at 0.5 cm and ends at 2 cm. For Annular Gaussian beam

second beam waist is always taken half of first one.
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Comparison of Beam Profiles According to Beam Waist
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Figure 3.5 Comparison of beam profiles from analytic solution and Fourier integral operation

according to beam waist
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Figure 3-6 Comparison of beam profiles from analytic solution and convolution integral

according to beam waist

Figs (3-5), and (3-6) and Tables B.13 to B.18 in appendix B show that Gaussian beam
has very low difference ratio. Hyperbolic beams has no exact solution for the beam
waists are higher than 1 cm. The reason of that hyperbolic beams become very large in
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source plane, in the contrary sine and cosine Gaussian beams has a decreasing
difference ratio while beam waist increases. This can be explained by the fact that while
hyperbolic beams propagates they turn into their sinusoidal forms and vice versa [17].
Difference ratio of Annular Gaussian beam firstly decreases then increases. If fig (3.6)
Is analyzed attentively it is seen that whilst the beam waist is 0.5 cm all beam types has
the lowest difference ratio except Gaussian beam.

Received Field Comparisons According to Propagation Distance and Related
Multiplying factor

In Chapter 2 we mentioned that the relation between propagation distance (in meters),

and multiplying factor (m, ), has 1/500 ratio only if the propagation ratio is more than

500 m, otherwise multiplying factor is taken as 1. In this section we computed the
received intensity difference in various propagation distances with related multiplying
factors, propagation distances start from 100m and extend to 100km and multiplying

factor range is starts from 1 and extends to 200.
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Figure 3-7 Comparison of beam profiles from analytic solution and Fourier integral operation

according distances from 100 m to 2 km and related multiplying factor
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Comparison of Beam Profiles According to Propagation Distance
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Figure 3-8 Comparison of beam profiles from analytic solution and convolution integral
according distances from 100 m to 2 km and related multiplying factor
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Figure 3-9 Comparison of beam profiles from analytic solution and Fourier integral operation

according distances from 5 km to 100 km and related multiplying factor
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Comparison of Beam Profiles According to Propagation Distance
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Figure 3-10 Comparison of beam profiles from analytic solution and convolution integral
according distances from 5 km to 100 km and related multiplying factor

For making comparisons, distance is the most important parameter for obtaining
multiplying factor. Figures (3-7) and (3-8) shows differences for distances from 100 m
to 2 km and figs (3-9) and (3-10) shows differences for distances from 5 km to 100 km.
From figures it is seen that for short propagation distances, the difference ratio is higher
than longer distances especially for 500 m all beam types have their maximum
difference ratio. For all beam types, it is observed that while the distance increases the
difference ratio decreases, which is an expected result because while beams are
propagation they lose the their power it means for higher propagation distances total
power of beam converges to so for all solution comparing very little amount of
intensities gives us very little differences. For all distances Gaussian beam difference
ratio is too small that can be acceptable as zero for both computational models. Annular
Gaussian beam has lower than 0.1% difference ratio for Fourier transform operation and
has a little bit higher than 0.1% for convolution method. Cos-Gaussian and Sine-
Gaussian beams has almost same difference ratios after 500 m, it is around 0.01% for
Fourier transform operation and 1% for convolution method. The reason of that similar
difference ratio is propagation characteristics of these two beams are same, on source
plane they both placed on center, and while propagation, they start to move away from

the center. Cosh-Gaussian and Sinh-Gaussian also have similar difference ratios since
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their propagation characteristic are similar to each other and opposite to their non-
hyperbolic beams, for Fourier integral operation the distances shorter than 2 km the
average difference ratio is 0.1% and for longer propagation distances the ratio decreases
to 0.04%, for convolution operation in short distances difference average difference

ratio is around %1 for longer distances it becomes 0.35%.
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CHAPTER 4

CONCLUSIONS

In this study , to make comparisons we have taken computational model solution
of Huygens-Fresnel integral and compared it to its analytic solution. These comparisons
show that Fourier integral operation has lower difference ratio than convolution
theorem, the reason of that difference is convolution theorem solution gives over-
propagated form of beam it can be seen exactly in figs (2-11) and (2-13). For analytic
solution we assumed source plane and receiver are infinite but for computational modes
we have limited source plane in other words the output of resonator as 10cm, and it
behaved like a rectangular aperture. This aperture added a sinc function diffraction
effect in propagation simulations, but for Fourier integral operation it is very small that
can be neglected, in contrary for convolution theorem the diffraction effect of this

aperture is more obvious.
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APPENDIX A

MATLAB CODE

% This program compares the free space intensities of hyp / sino beams
% from analytic derivation, FT and angular spectrum methods

function computeandcompare

clear;clc;clf;warning off all;close all;format short

Lmax = 2;

%%% Source beam parameters
AlLarr =[10;0.50.5;0.5 0.5;0.5*j -0.5*};0.5 -0.5;0.5 -0.5]; % Amplitude Matrix
Dmat = [0 25 50 100 200 400];% Displacement parameter matrix

%Beam waist matrices
alfasxarr = [1e-2 1e-2;1e-2 le-2;1e-2 1e-2;1e-2 le-2;1e-2 1e-2;2e-2 le-2];

alfasxarr = alfasxarr*1.0;

alfasyarr = [1e-2 1e-2;1e-2 le-2;1e-2 1e-2;1e-2 le-2;1e-2 1e-2;2e-2 1le-2];

alfasyarr = alfasyarr*1.0;

ibmax = 1; %%% Choosing beam type 1 for Gaussian, 2 for Cos-Gaussian,
%3 for Cosh-Gaussian, 4 for Sine-Gaussian, 5 for Sinh-Gaussian, 6 for Annular

beam

N = 256; %Number of grids
SL=10e-2; %Source Length
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dl = SL/N;

L = 2e3; %Propagation distance
lamda = 1550e-9; %Wavelength
k = 2*pi/lamda;

mf =4; %Multiplying factor

d2 = mf*d1;

Dsarr = [j*Dmat(1) -j*Dmat(1);-j*Dmat(5) j*Dmat(5);

Dmat(5) -Dmat(5);-j*Dmat(5) j*Dmat(5);

-Dmat(5) Dmat(5) ;1*Dmat(1) -1*Dmat(1)];
Fsarr = [5e15 5e15;5e15 5e15;5e15 5e15;5e15 5e15;5e15 5e15;5e15 5e15];
alfaxarr = 1./(k*alfasxarr.”2) + j./(2*Fsarr);

alfayarr = 1./(k*alfasyarr.”2) + j./(2*Fsarr);

[nx ny ] = meshgrid(-N/2 : N/2-1);
sx = nx*d1,;
sy = ny*dil;
rx = nx*dz;
ry = ny*d2;

s=-SL/2:d1:SL/2-d1;

r=mf*s;

%Generating Beams
for ib = ibmax
uran = zeros(N, N);
for LL = 1:Lmax
alfax = alfaxarr(ib,LL);
alfay = alfayarr(ib,LL);
Dx = Dsarr(ib,LL)
Dy = Dsarr(ib,LL)
AL = AlLarr(ib,LL)
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usl = AL*exp(-0.5*k*sx.A2*alfax - 0.5*k*sy.~2*alfay + Dx*sx + Dy*sy);

us = us + usl;

uranl = AL/sqrt(1 + j*alfax*L)/sqrt(1 + j*alfay*L)*exp(-0.5*k*alfax*rx.~2/(1 +

j*alfax*L)).* ....
exp(rx*Dx/(1 + j*alfax*L)).*exp(j*0.5*Dx"2*L/k/(1 + j*alfax*L)).* ....
exp(-0.5*k*alfay*ry.”2/(1 + j*alfay*L)).*exp(ry*Dy/(1 +

j*alfay*L)).*exp(j*0.5*Dy"2*L/k/(1 + j*alfay*L));

uran = uranl + uran;end;end

Is = us.*conj(us);

Iran = uran.*conj(uran);

%%%%%% Fourier Transform Method

dfl = 1/(N*d1);[fx fy] = meshgrid((-N/2 : N/2-1) * dfl);

urft = exp(j*k/2*(mf - 1)/(mf*L)*(rx."2 + ry.~2)).*ift2(exp(-j*pi*2*2*L/mf/k*(fx."2

+ fy.~2)). *ft2(us. *exp(j*k*(1 - mf)/(2*L)*(sx."2 + sy.”2))/mf,d1),df1);

Irft = urft.*conj(urft);

%%%%%% Convolution Method

hsxsy = exp(j*k/(2*L)*mf*(sx."2 + sy."2));

usl = us.*exp(j*k*(1- mf)*(sx."2 + sy.”2)/(2*L));

urcm = -j*k/(2*pi*L)*exp(j*k*L)*exp(j*k*(mf - 1)*(rx."2 +

ry.~2)/(2*L*mf)).*conv2(usl,hsxsy, same’)*d1°2;

Ircm = urcm.*conj(urcm);

if ibmax==3||5 %to normalize the hyperbolic beams
Iran=Iran/max(max(ls));
Irft =Irft/max(max(ls));
Ircm = Ircm/max(max(ls));
Is=Is/max(max(ls));
else
Is=Is;
Iran=Iran;
Irft=Irft;

Ircm=Ircm;
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end

figure(1)%3d plots

subplot(2,2,1)

meshc(sx/le-2,sy/1e-2,1s);view([40 35]);colormap([0 0 0]);

title('Source Beam ', 'Fontsize',16");set(gcf,'Color',[1 1 1]);set(gca,'FontSize',14)
xlabel('Sx in cm','FontSize',10,'FontWeight','bold’,'Rotation’,-14);

ylabel('Sy in cm','FontSize',10,'FontWeight','bold’,'Rotation’,25)

zlabel('ls ','FontSize',12,'FontWeight','bold")

subplot(2,2,2)

meshc(rx/1le-2,ry/1e-2,Iran);view([40 35]);colormap([0 0 0]);
title('Received beam intensity from analytic expression ',
'Fontsize',16");set(gcf,'Color',[1 1 1]);set(gca, FontSize',14)
xlabel('Rx in cm','FontSize',10,'FontWeight','bold’,'Rotation’,-15);
ylabel('Ry in cm','FontSize',10,'FontWeight','bold’,'Rotation’,25)
zlabel('lr ','FontSize',12,'FontWeight','bold’)

subplot(2,2,3)

meshc(rx/1e-2,ry/1e-2,Irft);view([40 35]);colormap([0 0 0]);
title('Received beam intensity from Fourier integral operator ',
'Fontsize',16");set(gcf,'Color',[1 1 1]);set(gca, FontSize',14)
xlabel('Rx in cm',FontSize',10,'FontWeight','bold’,'Rotation’,-15);
ylabel('Ry in cm','FontSize',10,'FontWeight','bold’,'Rotation’,25)
zlabel('lr ','FontSize',12,'FontWeight','bold")

subplot(2,2,4)

meshc(rx/1le-2,ry/le-2,lrcm);view([40 35]);colormap([0 0 0));
title('Received beam intensity from convolution integral ',
'Fontsize',16");set(gcf,'Color',[1 1 1]);set(gca, FontSize',14)
xlabel('Rx in cm','FontSize',10,'FontWeight','bold’,'Rotation’,-15);
ylabel('Ry in cm','FontSize',10,'FontWeight','bold’,'Rotation’,25)
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zlabel('lr ','FontSize',12,'FontWeight','bold")

% %%%%%%%2D Plots%%%%%

% figure(2)

% subplot(2,2,1)

% imagesc(s/le-2,s/1e-2,ls);

% title("Source Beam ', 'Fontsize',16");colormap(‘gray');set(gca, FontSize',14)
% xlabel('Sx in cm','FontSize’,10,'FontWeight','bold");

% ylabel('Sy in cm','FontSize',10,'FontWeight','bold")

%

% subplot(2,2,2)

% imagesc(r/le-2,r/1e-2,lIran);

% title('Received beam intensity from analytic expression ',
'Fontsize',16");set(gcf,'Color',[1 1 1]);set(gca,'FontSize',14)
% xlabel('Rx in cm','FontSize',10,'FontWeight','bold");

% ylabel('Ry in cm','FontSize',10,'FontWeight','bold");

%

% subplot(2,2,3)

% imagesc(r/le-2,r/1e-2,Irft);

% title('Received beam intensity from Fourier integral operator ',
'Fontsize',16");set(gcf,'Color',[1 1 1]);set(gca, FontSize',14)
% xlabel('Rx in cm','FontSize',10, FontWeight','bold’);

% ylabel('Ry in cm','FontSize',10,'FontWeight','bold") ;

%

% subplot(2,2,4)

% imagesc(r/le-2,r/1e-2,lrcm);

% title('Received beam intensity from convolution integral ',
'Fontsize',16");set(gcf,'Color',[1 1 1]);set(gca,'FontSize',14)
% xlabel('Rx in cm','FontSize',10, FontWeight','bold’);

% ylabel('Ry in cm','FontSize’,10,'FontWeight','bold");
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% Making Comparison
Irand=Iran./max(max(lran));
Ircmd=Ircm./max(max(lran));
Idiff = zeros(N, N);
for I=1:N
for k=1:N
Idiff(l,k)=abs(Irand(l,k)-Ircmd(1,k));

end:;end;

Idiffav=0;
for [I=1:N
for k=1:N
Idiffav=Idiffav+Idiff(l,k);
end;end,
Idiffav=100*Idiffav/N"2;
Idiffcm=Idiffav

% Plotting difference matrix

figure(3)

imagesc(r/1e-2,r/1e-2,1diff);

title('Received beam intensity differance between analytic expression and
convolution integral ', 'Fontsize',16");set(gca, FontSize',14);
colormap(‘gray");

xlabel('Rx in cm','FontSize',10,'FontWeight','bold");

ylabel('Ry in cm’,'FontSize',10,'FontWeight','bold’) ;

axis xy;

Irftd=Irft./max(max(Iran));
Idiff2 = zeros(N, N);
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for m=1:N
for n=1:N
Idiff2(m,n)=abs(Irand(m,n)-Irftd(m,n));
end;end,;
Idiff2av=0;
for I=1:N
for k=1:N
Idiff2av=Idiff2av+Idiff2(l,k);
end;end,
Idiff2av=100*Idiff2av/N"2;
Idiffft=Idiff2av

% Plotting difference matrix

figure(4)

imagesc(r/le-2,r/1e-2,1diff2);

title('Received beam intensity differance between analytic expression and Fourier
integral operator ', 'Fontsize',16");set(gca, FontSize',14);

colormap(‘gray");

xlabel('Rx in cm','FontSize',10,'FontWeight','bold");

ylabel('Ry in cm','FontSize',10,'FontWeight','bold") ;

axis xy;

%%%% fft and ifft functions used
function G = ft2(g, delta)
G = fftshift(fft2(fftshift(g))) * delta™2;
function g = ift2(G, delta_f)
N =size(G, 1);
g = ifftshift(ifft2(ifftshift(G))) * (N * delta_f)"2;
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APPENDIX B

DETAILED RECEIVED INTENSITY DIFFERANCE TABLES

3.1 Received Field Tables According to Wavelength

Table B.1 Gaussian beam received intensity differences according to wavelength

Al A, | W, | W,| D D, A Lim, | N DFA DCA
x1077
1 0 1 1 0 0 390 | 2 4 | 256 | 3.2887 0.0025
1 0 1 1 0 0 450 | 2 4 1256 | 6.6043 0.0034
1 0 1 1 0 0 495 | 2 4 1256 | 3.7210 0.0043
1 0 1 1 0 0 570 | 2 4 | 256 | 7.6234 0.0061
1 0 1 1 0 0 590 | 2 4 1256 | 9.6302 0.0066
1 0 1 1 0 0 620 | 2 4 1256 | 12.148 0.0075
1 0 1 1 0 0 760 | 2 4 1256 | 9.8670 0.0130
1 0 1 1 0 0 1000 | 2 4 | 256 | 26.454 0.0284
1 0 1 1 0 0 1250 | 2 4 | 256 | 56.948 0.0562
1 0 1 1 0 0 1550 | 2 4 | 256 | 85.502 0.1105
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Table B.2 Cos-Gaussian beam received intensity differences according to wavelength

Al A, W, |W,| D D, A | L|m|N DFA DCA
x1076
05[-05| 1 | 1 |200j|-200j | 390 | 2 | 4 |256| 0.6837 | 0.0053
05[-05| 1 | 1 |200j|-200j | 450 | 2 | 4 |256| 1.4293 | 0.0075
05|-05| 1 | 1 |[200j|-200j | 495 | 2 | 4 |256| 1.0716 | 0.0096
05[-05| 1 | 1 [200j|-200j | 570 | 2 | 4 |256| 1.4790 | 0.0143
05|-05| 1 | 1 |200j|-200j |59 | 2 | 4 [256| 1.8137 | 0.0158
05| 05| 1 | 1 [200j|-200j | 620 | 2 | 4 |256| 2.3755 | 0.0184
05[-05| 1 | 1 |200j|-200j | 760 | 2 | 4 |256| 2.7400 | 0.0375
05| 05| 1 | 1 |[200j|-200j |1000| 2 | 4 |256| 4.8096 | 0.1004
05[-05| 1 | 1 [200j|-200j 1250 | 2 | 4 |256| 255.32 | 0.6056
05| 05| 1 | 1 |200j|-200j [1550| 2 | 4 |256| 48083 | 1.1669

Table B.3 Cosh-Gaussian beam

received intensity differences according to wavelength

Ag| A | Wy | W, | D D, A L | m, N DFA DCA

05| 05 1 1 | 200 | -200 | 390 | 2 4 256 | 0.0031 | 0.0137
05| 05 1 1 | 200 | -200 | 450 | 2 4 256 | 0.0039 | 0.0192
05| 05 1 1 | 200 | -200 | 495 | 2 4 256 | 0.0044 | 0.0245
05| 05 1 1 | 200 | -200 | 570 | 2 4 256 | 0.0053 | 0.0354
05| 05 1 1 | 200 | -200 | 590 | 2 4 256 | 0.0056 | 0.0387
05| 05 1 1 | 200 | -200 | 620 | 2 4 256 | 0.0061 | 0.0440
05| 05 1 1 | 200 | -200 | 760 | 2 4 256 | 0.0071 | 0.0729
05| 05 1 1 | 200 | -200 | 1000 | 2 4 256 | 0.0081 | 0.1157
05| 05 1 1 | 200 | -200 | 1250 | 2 4 256 | 0.0102 | 0.2000
05| 05 1 1 | 200 | -200 | 1550 | 2 4 256 | 0.0134 | 0.4084
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Table B.4 Sine-Gaussian beam received intensity differences according to wavelength

Al A, [ W, | W, D D, A L {m]| N DFA DCA
x107°
05 |-05)| 1 | 1 | 200j | -200j | 390 | 2 | 4 | 256 | 0.6721 | 0.0053
05j | -05j| 1 | 1 | 200j | -200j | 450 | 2 | 4 | 256 | 1.4403 | 0.0075
05j | -05j| 1 | 1 | 200j | -200j | 495 | 2 | 4 |256 | 1.0612 | 0.0096
05 |-05)| 1 | 1 | 200j | -200j | 570 | 2 | 4 | 256 | 1.4640 | 0.0143
05 |-05)| 1 | 1 | 200j | -200j | 590 | 2 | 4 | 256 | 1.8068 | 0.0158
05) |-05)| 1 | 1 | 200j | -200j | 620 | 2 | 4 | 256 | 2.3805 | 0.0184
05) |-05)| 1 | 1 | 200j | -200j | 760 | 2 | 4 | 256 | 2.7450 | 0.0375
05 |-05)| 1 | 1 | 200j | -200j | 1000 | 2 | 4 | 256 | 4.7374 | 0.1000
05j | -05j| 1 | 1 | 200j | -200j | 1250 | 2 | 4 | 256 | 257.16 | 0.6057
05 |-05)| 1 | 1 | 200j | -200j | 1550 | 2 | 4 | 256 | 48294 | 1.1671

Table B.5 Sinh-Gaussian beam received intensity differences according to wavelength

A, | A, Iw, Iw,] o [ b [ 4 [L][m]N] DFA | DCA
05 | 05| 1 | 1 | -200 | 200 | 390 | 2 | 4 | 256 | 0.0032 | 0.0136
05 | 05| 1 | 1 | -200 | 200 | 450 | 2 | 4 | 256 | 0.0037 | 0.0190
05 | 05| 1 | 1 | -200 | 200 | 495 | 2 | 4 | 256 | 0.0045 | 0.0249
05 | 05| 1 | 1 | 200 | 200 | 570 | 2 | 4 | 256 | 0.0059 | 0.0385
05 | 05| 1 | 1 | 200 | 200 | 590 | 2 | 4 | 256 | 0.0065 | 0.0427
05 | 05| 1 | 1 | -200 | 200 | 620 | 2 | 4 | 256 | 0.0071 | 0.0496
05 | 05| 1 | 1 | 200 | 200 | 760 | 2 | 4 | 256 | 0.0063 | 0.0707
05 | 05| 1 | 1 | -200 | 200 |1000| 2 | 4 | 256 | 0.0091 | 0.1266
05 | 05| 1 | 1 | 200 | 200 |1250| 2 | 4 | 256 | 0.0133 | 0.2405
05 | 05| 1 | 1 | 200 | 200 |1550| 2 | 4 | 256 | 0.0172 | 0.4981
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Table B.6 Annular Gaussian beam received intensity differences according to wavelength

Ag| Ar | Wy | W, D, D, A L |mg N DFA DCA
05| -05| 2 1 0 0 390 2 | 4 |256 | 0.0275 | 0.0412
05| -05| 2 1 0 0 450 2 | 4 125 | 0.0295 | 0.0465
05| -05| 2 1 0 0 495 2 | 4 |25 | 0.0249 | 0.0459
05| -05| 2 1 0 0 570 2 | 4 25 | 0.0279 | 0.0444
05| -05| 2 1 0 0 590 2 | 4 |25 | 0.0288 | 0.0431
05| -05| 2 1 0 0 620 2 | 4 | 256 | 0.0295 | 0.0442
05| -05| 2 1 0 0 760 2 | 4 |25 | 0.0303 | 0.0648
05| -05| 2 1 0 0 1000 | 2 | 4 | 256 | 0.0322 | 0.0669
05| -05 | 2 1 0 0 1250 | 2 | 4 | 256 | 0.0517 | 0.1046
05| -05 | 2 1 0 0 1550 | 2 | 4 | 256 | 0.0606 | 0.2116

3.2 Received Field Tables According to Number of grids

Table 3.7 Gaussian beam received intensity differences according to number of grids

Al A, | W, |W,| D | D A L | m,/] N[ DFA DCA

1 0 1 1 0 0 |[1550 | 2 | 4 | 32 | 1.1986 | 0.1212
x107°

1 0 1 1 0 0 | 1550 | 2 | 4 | 64 | 0.9600 | 0.1130
x1073

1 0 1 1 0 0 | 1550 | 2 | 4 |128] 0.8742 | 0.1110
x1073

1 0 1 1 0 O | 1550 | 2 | 4 | 256 | 0.8550 | 0.1105
x107°

1 0 1 1 0 0 | 1550 | 2 | 4 |512| 0.8494 | 0.1103
x1073
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Table B.8 Cos-Gaussian beam received intensity differences according to number of grids

AT A, W, w,[ b | b, | 24 [L[m|[NJ DFA | DCA
05| -05| 1 | 1 |200j|-200j | 1550 | 2 | 4 | 32 | 0.0519 | 1.1770
05| 05| 1 | 1 [200j|-200j | 1550 | 2 | 4 | 64 | 0.0491 | 1.1700
05| 05| 1 | 1 |200|-200j | 1550 | 2 | 4 | 128 0.0483 | 1.1687
05| 05| 1 | 1 |200|-200j | 1550 | 2 | 4 | 256 | 0.0481 | 1.1669
05| -05| 1 | 1 |200j|-200j | 1550 | 2 | 4 |512| 0.0480 | 1.1669

Table B.9 Cosh-Gaussian beam received intensity differences according to number of grids

A, A, W, Jw, | D [ b, [ 4 [L[m]N] DFA | DCA
05 05| 1 | 1 | 200 | 200 | 1550 | 2 | 4 | 32 | 0.0146 | 0.4197
05 |05| 1 | 1 | 200 | 200 | 1550 | 2 | 4 | 64 | 0.0139 | 0.4110
05 |05| 1 | 1 | 200 | -200 | 1550 | 2 | 4 | 128 | 0.0135 | 0.4089
05 05| 1 | 1 | 200 | 200 | 1550 | 2 | 4 | 256 | 0.0134 | 0.4084
05 05| 1 | 1 | 200 | -200 | 1550 | 2 | 4 | 512 | 0.0134 | 0.4083

Table B.10 Sine-Gaussian beam received intensity differences according to number of grids

Ap | A [ Wy | W,| D D, A L |m N DFA DCA
05 | -05) | 1 | 1 | 200j | -200j | 1550 | 2 | 4 | 32 | 0.0519 | 1.1784
05 | 05 | 1 | 1 | 200j | -200j | 1550 | 2 | 4 | 64 | 0.0492 | 1.1704
05 | -05] | 1 | 1 |200j | -200j | 1550 | 2 | 4 | 128 | 0.0485 | 1.1689
05 | -05] | 1 | 1 |200j | -200j | 1550 | 2 | 4 | 256 | 0.0483 | 1.1671
05 | -05/ | 1 | 1 | 200j | -200j | 1550 | 2 | 4 |512| 0.0482 | 1.1669
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Table B.11 Sinh-Gaussian beam received intensity differences according to number of grids

Acl Acz Wsl Wsz D1 Dz A L m N DFA DCA
05]-05| 1 1 | -200 | 200 | 1550 | 2 | 4 | 32 | 0.0189 | 0.5303
05| 05| 1 1 | -200 | 200 | 1550 | 2 | 4 | 64 | 0.0179 | 0.5018
05| 05| 1 1 | -200 | 200 | 1550 | 2 | 4 | 128 | 0.0172 | 0.4988
05| 05| 1 1 | -200 | 200 | 1550 | 2 | 4 | 256 | 0.0172 | 0.4981
05]-05| 1 1 | -200 | 200 | 1550 | 2 | 4 | 512 | 0.0171 | 0.4976
Table B.12Annular Gaussian beam Received intensity differences according to number of
grids
Acl ACZ Wsl Wsz Dl D2 A L m f N DFA DCA
05| -05| 2 1 0 0 1550 | 2 | 4 | 32 | 0.0667 | 0.2136
05| -05| 2 1 0 0 1550 | 2 | 4 | 64 | 0.0617 | 0.2123
05| -05| 2 1 0 0 1550 | 2 | 4 | 128 | 0.0608 | 0.2117
05| 05| 2 1 0 0 1550 | 2 | 4 | 256 | 0.0606 | 0.2116
05| 05| 2 1 0 0 1550 | 2 | 4 | 512 | 0.0606 | 0.2115
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3.3 Received Field Tables According to Beam Waist

Table B.13 Gaussian beam received intensity differences according to beam waist

Al ALl W, | W, D, D, A L im/| N DFA DCA
1 0 05 | 05 0 0 1550 | 2 | 4 | 256 | 0.7716 | 0.8261
1 0 | 075 | 0.75 0 0 1550 | 2 | 4 | 256 | 0.0025 | 0.2407
1 0 1 1 0 0 1550 | 2 | 4 | 256 | 8.5502 | 0.1105

x1076
1 0 15 | 15 0 0 1550 | 2 | 4 | 256 | 0.0045 | 0.0802
1 0 2 2 0 0 1550 | 2 | 4 | 256 | 0.0487 | 0.1381

Table B.14 Cos-Gaussian beam received intensity differences according to beam waist

A TA, [W,[w,[ D [ D [ 4 ]L[m][NJ DFA [ DCA
05| -05| 05 | 05 | 200j | -200j | 1550 | 2 | 4 |256 | 9.8421 | 0.9410
05| -05 | 0.75 | 0.75 | 200j | -200j | 1550 | 2 | 4 |256 | 0.7127 | 0.7448
05| -05| 1 | 1 |200j|-200j |[1550 | 2 | 4 |256 | 0.0481 | 1.1669
05| -05| 1.5 | 1.5 | 200j | -200j | 1550 | 2 | 4 |256 | 0.0102 | 1.1383
05| 05| 2 | 2 |200j | 200] [1550 | 2 | 4 |256 | 0.1035 | 1.1335
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Table B.15 Cosh-Gaussian beam received intensity differences according to beam waist

A TA, [W,[w,[ D [ D [ 4 ]L[m][NJ DFA [ DCA
05| 05 | 05 | 05 | 200 | 200 | 1550 | 2 | 4 |256 | 0.2814 | 0.3828
05| 05 [0.75 [ 0.75 | 200 | -200 | 1550 | 2 | 4 |256 | 0.0018 | 0.2526
05| 05 | 1 | 1 | 200 -200 [1550 | 2 | 4 |256| 0.0134 | 0.4084
05| 05 | 15 | 1.5 | 200 | 200 | 1550 | 2 | 4 |256| NaN | NaN
05| 05 | 2 | 2 [ 200 | 200 [1550 | 2 | 4 [256| NaN | NaN

Table B.16 Sine-Gaussian beam received intensity differences according to beam waist

A, | A, IW, [w,[ D [ D, | 2 [L][m|[N] DFA | DCA
05) | -05] | 05 | 0.5 | 200j | -200j | 1550 | 2 | 4 | 256 | 9.4294 | 1.3328
05j | -0.5j | 0.75 | 0.75 | 200j | -200j | 1550 | 2 | 4 | 256 | 0.7124 | 0.7396
05 | -05] | 1 | 1 | 200j| -200j | 1550 | 2 | 4 | 256 | 0.0483 | 1.1671
05 | -05) | 1.5 | 1.5 | 200j | -200j | 1550 | 2 | 4 | 256 | 0.0102 | 1.1385
05 | -05] | 2 | 2 | 200j| -200j | 1550 | 2 | 4 | 256 | 0.1034 | 1.1367

Table B.17 Sinh-Gaussian beam received intensity differences according to beam waist

A, | A, [W,[w,[ D [ D, | 4 [L]m[N] DFA | DCA
05 | -05 | 05 | 05 | -200 | 200 | 1550 | 2 | 4 | 256 | 0.8249 | 1.1519
05 | -05 | 0.75 | 0.75 | -200 | 200 | 1550 | 2 | 4 | 256 | 0.0028 | 0.3334
05 | -05| 1 | 1 |-200| 200 | 1550 | 2 | 4 | 256 | 0.0172 | 0.4981
05 | -05 | 15 | 1.5 | -200 | 200 | 1550 | 2 | 4 |256| NaN | NaN
05 |-05| 2 | 2 |-200] 200 | 1550 | 2 | 4 |256| NaN | NaN
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Table B.18Annular Gaussian beam received intensity differences according to beam waist

A, | A, IW,[w, DD, | 4 [L]m][N] DFA | DCA
05 | -05|05 025 | 0| O |1550 |2 | 4 |256| 41069 | 0.4743
05 | -05[075[0375| 0 | O | 1550 | 2 | 4 |256 | 05990 | 0.1538
05 05| 1 | 05 | 0| O |1550 |2 | 4 [256| 0.0788 | 0.1416
05 |05 15075 | 0| 0 |1550 |2 | 4 [256| 0.0058 | 0.1720
05 | 05| 2 1 [ 0] 0 [1550 | 2 | 4 |256| 0.0606 | 0.2116
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Received Field Tables According to Propagation Distance and Related
Multiplying factor

Table B.19 Gaussian beam received intensity differences according to Distance and related
multiplying factor

AC]. AC2 Wsl Wsz Dl D2 A‘ L mf N DFA DCA

1 0 1 1 0 0 1550 | 0.1 1 | 256 1.1882 0.0121
x107°

1 0 1 1 0 0 1550 | 0.2 1 | 256 3.3623 0.0286
x107°

1 0 1 1 0 0 |1550 | 0.5 1 | 256 0.0011 0.1260

1 0 1 1 0 0 1550 | 1 2 | 256 14.072 0.0968

x107°

1 0 1 1 0 0 1550 2 4 | 256 8.5502 0.1105
x107°

1 0 1 1 0 0 1550 5 10 | 256 7.9428 0.1144
x107°

1 0 1 1 0 0 1550 | 10 20 | 256 10.004 0.1156
x107°

1 0 1 1 0 0 1550 | 20 40 | 256 10.170 0.1162
x107°

1 0 1 1 0 0 1550 | 50 | 100 | 256 9.9743 0.1166
x107°

1 0 1 1 0 0 1550 | 100 | 200 | 256 9.8605 0.1167
x107°
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Table B.20 Cos-Gaussian beam received intensity differences according to Distance and

related multiplying factor

Al A, W, [W,| D, | D, A L [m, [ N[ DFA DCA
05| 05| 1 1 | 200j | -200j | 1550 | 0.1 | 1 |[256| 1.9299 | 0.0120
x107°
051]-05| 1 1 | 200j | -200j | 1550 | 0.2 | 1 |256 | 18.330 | 0.0956
x107°
051]-05| 1 1 | 200j | -200j | 1550 | 0.5 | 1 |256 | 0.4952 | 2.7852
05| -05 1 1 | 200j | -200j | 1550 1 2 | 256 | 0.0893 1.6194
05| -05 1 1 | 200j | -200j | 1550 2 4 | 256 | 0.0481 1.1669
05| 05| 1 1 |200j | -200j | 1550 | 5 10 | 256 | 0.0396 | 0.9715
05| 05| 1 1 | 200j | -200j | 1550 | 10 | 20 | 256 | 0.0385 | 0.9185
05| 05| 1 1 | 200j | -200j | 1550 | 20 | 40 | 256 | 0.0382 | 0.8941
05| -05 1 1 | 200j | -200j | 1550 | 50 | 100 | 256 | 0.0381 0.8802
05| -05 1 1 | 200j | -200j | 1550 | 100 | 200 | 256 | 0.0381 0.8757
Table B.21 Cosh-Gaussian beam received intensity differences according to Distance and
related multiplying factor
Ay A, W, | W,, D, D, A L m N DFA DCA
05| 05 1 1 200 | -200 | 1550 | 0.1 1 256 | 0.0158 | 0.0505
05| 05 1 1 200 | -200 | 1550 | 0.2 1 256 | 0.0250 | 0.1202
05| 05 1 1 200 | -200 | 1550 | 0.5 1 256 | 0.2604 | 1.0339
05| 05 | 1 1 | 200 | -200 | 1550 | 1 2 | 256 | 0.0365 | 0.8285
05| 05 | 1 1 | 200 | -200 | 1550 | 2 4 | 256 | 0.0134 | 0.4084
05| 05 | 1 1 | 200 | -200 | 1550 | 5 10 | 256 | 0.0087 | 0.3180
05| 05 | 1 1 | 200 | -200 | 1550 | 10 | 20 | 256 | 0.0098 | 0.3049
05| 05 1 1 200 | -200 | 1550 | 20 40 | 256 | 0.0103 | 0.3007
05| 05 1 1 200 | -200 | 1550 | 50 | 100 | 256 | 0.0104 | 0.2989
05| 05 1 1 200 | -200 | 1550 | 100 | 200 | 256 | 0.0104 | 0.2984
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Table B.22 Sine-Gaussian beam received intensity differences according to Distance and

related multiplying factor

A, | A, |WJW,| D D, A L {m, | N DFA DCA
05 |-05 | 1| 1 |-200j | 200j | 1550 | 0.1 | 1 |256 | 2.2375 | 0.0141
x107°

05 |05 | 1| 1 |-200j | 200j [1550| 0.2 | 1 |256 | 0.5041 | 2.7831
05 |-05 | 1| 1 |-200j | 200j | 1550 | 0.5 | 1 |256 | 0.5041 | 2.7831
055 |-05 | 1| 1 |-200j | 200j | 1550 | 1 2 | 256 | 0.0903 | 1.6176
05 |-05 | 1| 1 |-200j | 200j | 1550 | 2 4 | 256 | 0.0483 | 1.1671
05 | 05| 1| 1 |-200j | 200j (1550 | 5 | 10 | 256 | 0.0396 | 0.9742
05 | 05| 1| 1 | -200j | 200j | 1550 | 10 | 20 | 256 | 0.0384 | 0.9224
05 | 05| 1| 1 |-200j | 200j |1550| 20 | 40 | 256 | 0.0381 | 0.8987
05 | 05| 1| 1 | -200j | 200j | 1550 | 50 | 100 | 256 | 0.0380 | 0.8851
05 |05 | 1| 1 | -200j | 200j | 1550 | 100 | 200 | 256 | 0.0380 | 0.8807

Table B.23 Sinh-Gaussian beam received intensity differences according to Distance and

related multiplying factor

Ay | Ap [ Wy W, | D D, A L |m| N DFA DCA
05 | -05|1 |1 -200 200 | 1550 | 0.1 | 1 |256 | 0.0360 | 0.0159
05 | -05|1 |1 -200 200 | 1550 | 0.2 | 1 | 256 | 0.0246 0.0731
05 | -05|1 |1 -200 200 | 1550 | 05| 1 |256 | 0.2435 | 0.6502
05 05|11 -200 200 | 1550 | 1 2 |25 | 0.0325 | 0.7245
05 05|11 -200 200 | 1550 | 2 4 | 256 | 0.0172 | 0.4981
05 05|11 -200 200 | 1550 | 5 | 10 | 256 | 0.0109 | 0.4098
05 05|11 -200 200 | 1550 | 10 | 20 | 256 | 0.0131 | 0.3968
05 | -05|1 |1 -200 200 | 1550 | 20 | 40 | 256 | 0.0139 | 0.3930
05 | -05|1 |1 -200 200 | 1550 | 50 | 100 | 256 | 0.0142 | 0.3911
05 | -05|1 |1 -200 200 | 1550 | 100 | 200 | 256 | 0.0143 | 0.3905
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Table B.24Annular Gaussian beam received intensity differences according to Distance and

related multiplying factor

A, | A, |WJW,| D D, A L {m, | N DFA DCA

05 | -05]|2 |1 0 0 1550 | 0.1 | 1 | 256 | 0.1419 | 1.0331
05 | -05]|2 |1 0 0 1550 | 0.2 | 1 | 256 | 5.4615 | 0.0333

x107°

05 | -05]|2 |1 0 0 1550 | 05| 1 | 256 | 0.7270 | 1.1485
05 | -05]|2 |1 0 0 1550 | 1 2 | 256 | 0.1105 | 0.2867
05 | -05]|2 |1 0 0 1550 | 2 4 | 256 | 0.0606 | 0.2116
05 | -05]|2 |1 0 0 1550 | 5 | 10 | 256 | 0.0322 | 0.1344
05 | -05]|2 |1 0 0 1550 | 10 | 20 | 256 | 0.0734 | 0.1260
05 | -05|2 |1 0 0 1550 | 20 | 40 | 256 | 0.0732 | 0.1247
05 | -05|2 |1 0 0 1550 | 50 | 100 | 256 | 0.0732 | 0.1240
05 | -05]|2 |1 0 0 1550 | 100 | 200 | 256 | 0.0732 | 0.1238
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