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Abstract:  In a turbulent atmosphere, starting with a cos-Gaussian 
excitation at the source plane, the average intensity profile at the receiver 
plane is formulated. This average intensity profile is evaluated against the 
variations of link lengths, turbulence levels, two frequently used free-space 
optics wavelengths, and beam displacement parameters. We show that a 
cos-Gaussian beam, following a natural diffraction, is eventually 
transformed into a cosh-Gaussian beam. Combining our earlier results with 
the current findings, we conclude that cos-Gaussian and cosh-Gaussian 
beams act in a reciprocal manner after propagation in turbulence. The rates 
(paces) of conversion in the two directions are not the same. Although the 
conversion of cos-Gaussian beams to cosh-Gaussian beams can happen over 
a wide range of turbulence levels (low to moderate to high), the conversion 
of cosh-Gaussian beams to cos-Gaussian beams is pronounced under 
relatively stronger turbulence conditions. Source and propagation 
parameters that affect this reciprocity have been analyzed. 

©2004 Optical Society of America  
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1. Introduction 

Production and propagation in free space (i.e., in the absence of turbulence) of general 
Hermite-sinusoidal-Gaussian (HSG) laser beams are studied 1 and applied to complex optical 
systems.2  HSG beams cover a broad range of special cases of beams such as cosh-Gaussian 
and cos-Gaussian types. One of the easiest methods for the generation of such special cases is 
to use an ordinary Gaussian beam as an incident beam on an appropriate transmission or 
reflection aperture. If a cosh-Gaussian beam is to be generated, a Gaussian beam is made 
incident on an aperture that has a cosh-Gaussian transmission function. These beams are used 
in applications for which efficient extraction of energy is required. For example, cosh-
Gaussian dependence exhibits a concentration of energy in the outer lobes of a beam that can 
be used in the space diversity applications in free-space optic (FSO) systems. Also, 
considerable studies are being made to search for applications of HSG beams by use of  
ABCD optical systems. Propagation in free space of special cases of HSG beams such as cosh-
Gaussian beams,3 off-axial Hermite-cosh-Gaussian beams,4 elegant Hermite-cosh-Gaussian 
beams,5 and sinh-Gaussian pulses6 are investigated. Hermite-cos-Gaussian beams that pass 
through a paraxial optical ABCD system with a hard-edge aperture are also examined.7 An 
optical resonator with cosh-Gaussian modes is presented.8   In the presence of atmospheric 
turbulence, second-order effects exist for Gaussian,9–12 multimode,13 and higher-order 
beams.14 The correlation and structure functions of HSG laser beams in a turbulent 
atmosphere were recently formulated,15 and we found the average intensity and spreading of 
cosh-Gaussian laser beams in atmospheric turbulence.16      

Atmospheric turbulence plays a significant role in the performance of FSO links that have 
become competitive in the broadband access networks in recent years. In general, we are 
interested in investigating the effect of turbulence when different forms of excitation are used. 
Our main motivation is to understand whether the use of some special form of HSG laser 
beams in FSO access communication systems will improve system performance. The first step 
is to determine the received intensity profile that will affect the receiver design. We are also 
studying the fourth-order effects of HSG beams such as scintillation, but here we report only 
the second-order results. Specifically we are concerned with determining how the average 
intensity profile of a cos-Gaussian beam is altered during propagation in practical FSO links. 
For this purpose, the source plane excitation is described by a cos-Gaussian laser beam.  We 
derived the average intensity profile of this beam at the receiver plane after it has passed 
through a turbulent atmosphere.   

The limiting cases of our formulation are compared with the known Gaussian beam wave 
solution in the turbulent atmosphere and cos-Gaussian beam solution in free space (i.e., in the 
absence of turbulence), and we found that there is exact conformity to these limiting cases.  

Numerical evaluations are made at various link lengths, turbulence levels, beam 
displacement parameters, and at the most frequently used FSO wavelengths of 0.85 and 1.55 
µm. We observed that a cos-Gaussian beam, following the natural diffraction, is eventually 
transformed into a cosh-Gaussian beam. We recently formulated16 the average received 
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intensity profile and the spreading of cosh-Gaussian laser beams in a turbulent medium.  
Combining our earlier results16 with the present findings, we conclude that cos-Gaussian and 
cosh-Gaussian beams act in a reciprocal manner after propagation in turbulence. Source and 
propagation parameters that affect this reciprocity have been analyzed. 

2. Propagation of a cos-Gaussian beam in a turbulent atmosphere  

Figure 1 supplies the propagation geometry. The source plane is located at the coordinate 
( , 0)z =s , location ( , )z L=p  refers to the receiver plane, z  is the propagation axis, and L  

is the link length. The sets ( , )
x y

s ss =  and ( , )
x y

p pp =  are the transverse source and 

receiver coordinates, respectively.  
 

 
Fig. 1.   Propagation geometry. 

 

The sinusoidal-Gaussian beam wave field at the source plane ( 0)z = , which is essentially a 

Gaussian beam with complex displacement parameters of ,  
x xr xi x xr xi

V V iV Y Y iY= + = +  along  

the 
x

s direction and ,  
y yr yi y yr yi

V V iV Y Y iY= + = +  along the ys  direction, is written as  

( )
[ ] [ ]{ }

2 2 2 2
0.5 exp( ) exp 0.5

                                 exp ( ) exp ( ) (1)

( , , 0) / /

                          

ys x x sx y sy

x x y y x x y y

i

i i

A

V V Y Y

u s s z s s

s s s s

φ α α−

+ + +

== − +  

X 
 

where A is the amplitude of the field at the origin of the source plane (i.e., at 0
x y

s s z= = = ); 

φ  is the constant phase factor, ( )1 / 2

1i = − ; 
sx

α and 
sy

α are the respective source sizes of the 

Gaussian beam in the x
s and 

y
s directions;  ,  

xr xi
V V  denote the real and imaginary 

components of 
x

V  ; and  ,  
yr yi

V V  denote the real and imaginary components of 
y

V .  Likewise, 

 ,  
xr xi

Y Y  are the real and imaginary components of 
x

Y  , whereas  ,  
yr yi

Y Y  refer to the real and 

imaginary components of 
y

Y .  Here, focal lengths along both 
x

s and y
s are taken to be 

infinite. 

A cos-Gaussian laser beam is generated by choosing x x xrV Y V− −= =  and 

y y yrV Y V− −= = . Similarly, one can obtain a cosh-Gaussian laser beam by setting 

x x xiV Y iV−= = and y y yiV Y iV−= = . Thus, use of Eq. (1) with 1A = , the intensity distribution 

of the cos-Gaussian beam at the exit plane of the laser is  
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( ) ( )2 2 2 2 2( , , 0) exp / / cos                        (2)
s x y x sx y sy xr x yr y

I s s z s s V s V sα α= = − + +       

                           

At the receiver plane ( )z L= , we represented field ( ), ,u L tp  by applying the Huygens–

Fresnel  principle as follows:  

( ) ( ) ( )

( ) ( ) ( )2

, , exp( ) / 2

exp / 2 2                                 (3)                

s
u L t k ikL iL u

ik - L , i ft

π

ψ π

∞ ∞

−∞ −∞

=

+ −  

∫ ∫
2p d s s

p s s pX 

  

where k  is the wave number; ( )su s  is the field of a cos-Gaussian beam at the source 

plane ( )0z = as provided by Eq. (1); ( , )ψ s p is the solution to the Rytov method that 

represents the random part of the complex phase of a spherical wave that propagates from the 
source point ( , 0)z =s to the receiver point ( , )z L=p ; f  is the frequency; and t  denotes 
time.  

The average intensity at the receiver plane is ( ) ( ) ( ), , , * , ,I L u L t u L t< >=< >p p p  

where the *  represents the complex conjugate and the < > indicate the ensemble average over 
the medium statistics covering the log-amplitude and phase fluctuations due to the 
atmospheric turbulence. With this definition, Eq. (3) is transformed into 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( )

2 2 22 *

1 2 1 2 1 2

*

1 2

, / 2 exp / 2

                      exp                                                                     (4)

2 2

s s
I L k L u u ik - - L

, ,

π

ψ ψ

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

< >= −

< + >

  

  

∫ ∫ ∫ ∫

X  

p d s d s s s p s p s

s p s p

 

     The ensemble average term within the integrand of Eq. (4) is 12  

 

( ) ( ) ( ) ( )1 2 1 2 1 2

2* 2
0exp exp 0.5 exp                    (5), , Dψψ ψ ρ −    < + >= − − = − −    

s p s p s s s s

                 

where ( )1 2
Dψ −s s is the wave structure function, and ( ) 3 / 52 2

0
0.545 

n
C k Lρ

−
= is the coherence 

length of a spherical wave that propagates in the turbulent medium, with 2

n
C  being the 

constant of the structure.  Here we state that the Rytov method is known to be valid in weak 
turbulence, especially when fourth-order moments such as scintillations are considered. 
Customarily, weak turbulence is associated with Rytov log amplitude variance 

2 7 / 6 11/ 60.307
n

C k L , which is quite smaller than unity. However, here we study the second-order 

moment by utilizing the wave structure function that is approximated by the phase structure 
function. Rytov’s phase structure function usually accepted to be valid not only for the case of 
“weak fluctuations”, but for the case of “strong fluctuations” as well 17, i.e., when 

2 7 / 6 11 / 60.307 0.5
n

C k L > . For completeness and clarity, we note that in order to obtain simpler 

and viewable analytical results, we have also employed a quadratic approximation 12 for the 
Rytov’s phase structure function. 
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Substituting Eqs. (1) and (5) into Eq. (4) and expanding the transverse source and 
transverse receiver coordinates into their corresponding x and y components, the average 
intensity at the receiver plane becomes  

( ) ( ) ( ) ( )

( ) ( )[ ] ( ) ( )[ ]

22 2 2 2 2 2 2

1 1 2 2 1 2 1 2

1 2 1 2 1 2 1 2

, 0.25 / 2 exp 0.5 / 0.5 /

                       exp + exp

                      exp

{

x y x y x x sx y y sy

xr x x yr y y xr x x yr y y

I L k L ds ds ds ds s s s s

iV s s iV s s iV s s iV s s

iV

π α α
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

< >= − + − +

+ + + − + − +

  

+

∫ ∫ ∫ ∫p

X

( ) ( )[ ] ( ) ( )[ ]
( )( )

( )

1 2 1 2 1 2 1 2

2 2 2 2

1 1 2 2 1 1 2 2

2 2 2 2 2

0 1 1 2 2 1 1 2 2

+ exp

exp 0.5 / 2 2 2 2

exp 2 2

}
xr x x yr y y xr x x yr y y

x x x x x x y y y y y y

x x x x y y y y

s s iV s s iV s s iV s s

ik L s p s s p s s p s s p s

s s s s s s s sρ−

− + − − − − −

− − + + − − +

− − + + − +

  



                   X  

                   X                                                     (6)
  

By following the steps outlined in Appendix A, the average intensity at the receiver plane is  

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }(

( )

2 4 1 / 2 4 2 2 2 2 2 2

0 0

2 2 2 2 2 2 2 2 2

0 0 0

4 2 2

0

, 0.5 / ( ) exp / / /

                     exp 2 4 / 4 /

                       cos 2 / / /

sx sy x sx sx y sy sy

xr sx sx sx yr sy sy sy

xr x sx yr y s

I L k L D D k L p D p D

V D V D

k L V p D V p D

ρ ρ α α

ρ ρ α α ρ α α

ρ

−< >= − +

− + + +

+

  

  

p

X 

X ( )
( ) ( ){ }

( ) ( ) ( ){ })

4 2 2 2 2

0

4 2 2

0

exp / /

                      cosh 2 / / / (7)

                 

y

xr sx sx yr sy sy

xr x sx sx yr y sy sy

V D V D

k L V p D V p D

ρ α α

ρ α α

− +

+

  

  

  

+
X               

 

where the parameters that appear in Eq. (7) are thoroughly defined in Appendix A. Because of 
the nature of Eq. (7), the average intensity profile of the receiver plane is initially cos, but 
source and propagation parameters eventually force it to change to a cosh type. To consider 
the conditions under which this happens, we compare the cos and cosh terms that include the 

accompanying exponential factors.  Since for all cases of interest 1 1and/or  
sx xr sy yr

V Vα α− −> > , 

the cos term becomes quite negligible when 
2 2

0 0
/ 1, / 1 and ,  

sx sy sx sy
k L k L∼ ∼ ∼ ∼α α α ρ α ρ< < > > . 

3. Limiting cases 

Here Eq. (7) is checked and was determined to reduce to the following limiting cases 
correctly. Here we note that, although Eq. (7) is considered in the following several limiting 
cases for which there are already some available results, this kind of testing might be 
necessary but not sufficient to prove the accuracy of our formulation.  We should establish 
this accuracy by comparing our numerical results with the experimental work.  However, to 
our knowledge no experimental work exists in the literature to compare and validate Eq. (7) 
for all cases.   

3.1. The average intensity distribution at the receiver plane defined by Eq. (7) is evaluated at 
zero link length, i.e., for 0L = . Within this limit, Eq. (7) was found to reduce to the intensity 

at the source plane as expressed by Eq. (2). In approaching the source plane
x

p and
y

p should 

consecutively be replaced by
x

s and 
y

s . 
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3.2. To determine the limit of a Gaussian beam in free space, we evaluated Eq. (7) with 
2 0
n

C =  (or alternatively
0

ρ → ∞ ) and 0
xr yr

V V= = . A symmetrical beam was taken by 

choosing 
sx sy s

α α α= = . Then the average intensity in Eq. (7) simplified to   

( ) ( ) ( ){ }2 4 2 2 4 2 2 2 2 4 2 2( , ) / exp /                (8)
s s s s x y

I L k L k k L k p pα α α α= + − + +      p   

Equation (8) matches the free-space propagation limit examined in Ref. 14. The precise 
correspondence of Eq. (8) in this paper with Eq. (5) of Ref. 14 is accomplished by noting that 

( )2 2 2 2 4 2 0.5/ 2 / ,  2 ,  ,  and 
s s s 0 x y

k L k W W p x p yα α α+ = = = = . 

3.3. Next, our formula in Eq. (7) is checked against the existing result of a Gaussian beam in 

turbulence. To achieve this, we selected 0
xr yr

V V= =  and also constituted symmetry in the x 

and y directions so that 
sx sy s

α α α= = . With these conditions, Eq. (7) becomes  

( ) ( ) ( ) ( )2 4 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 4 2

0 0 0 0 0 0
, / 4 exp / 4         (9)

s s s s x x s s
I L k L L k k p p L L kα ρ ρ α α ρ α ρ ρ α α ρ< >= + + − + + +      p

 

Equation (9) agrees with Eq. (12) of Ref. 12. To establish this agreement, we adapted the 
parameters in Eq. (12) of Ref. [12] as 

 2 2 2

0
0,  ,  ,  0,  1,  and 

d c x y o s
p p p p F Aζ α α= = + = ∞ = = = .  

3.4. Here we compare our results with the cos-Gaussian beam formulation in free space (in the 

absence of turbulence). For this purpose, we set 2 0
n

C = , thus the average intensity in Eq. (7) 

leads to 

( ) { } { }

{ } { }( )

2 2 2 0.5 0.5 2 2 2 2 2 2 2 2 2 2

2 4 4 2 2

, 0.5 exp exp

                     cos 2 cosh 2    (10)

sx sy x y sx x x sy y y sx xr x sy yr y

sx xr x x sy yr y y sx xr x x sy yr y y

I L k g g k g p g p L V g V g

k V g p V g p kL V g p V g p

α α α α α α

α α α α

= − + − +

+ + +

      

      

p

X  

 

where ( ) ( )1 12 2 4 2 2 4 and 
x sx y sy

g L k g L kα α
− −

= + = +  .  After reverting to a single coordinate 

system in the sense that 0.5 0.5 0.5
/ 2 ,  / 2 ,  / 2

sx sy o x y xr yr o
w p p x V Vα α= = = = = = Ω , Eq. (10) 

becomes identical to the intensity equivalent of the field expression of Eq. (14) in Ref. 7 
(when the free-space unapertured option is chosen). 

3.5. Here we consider the average intensity distribution at the receiver plane as given in Eq. 
(7) with the limit of L  being too large, i.e., L → ∞ . In this case, since the argument of the 
cosh term is proportional to 1 / L , it becomes the dominating part, hence the entire cos term, 
together with its accompanying exponential, virtually drop out of the equation. In this limit 
Eq. (7) scales down to 
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( ) ( ) ( ) ( ) ( ){ }
( ) ( ){ }

( ) ( )

2 4 1/ 2 4 2 2 2 2 2 2

0 0

4 2 2 2 2

0

4 2 2

0

, 0.5 / ( ) exp / / /

exp / /

cosh 2 / / /

sx sy x sx sx y sy sy

xr sx sx yr sy sy

xr x sx sx yr y sy

I L k L D D k L p D p D

V D V D

k L V p D V p

ρ ρ α α

ρ α α

ρ α α

−< → ∞ >= − +

− +

+

  

  

p

                           X  

                           X ( ){ } (11)
sy

D                 
By taking /

x
p∂ ∂ and /

y
p∂ ∂ of Eq. (11) and setting them independently to zero, we found the 

peak locations to be fixed at /
xp xr

p V L k=  and /
yp yr

p V L k= .  Equation (11) can be viewed as 

the expression of a cosh-Gaussian converted cos-Gaussian beam after having traveled 
sufficiently along the propagation axis. But this conversion will also occur because of other 
parameters in question. To this end we introduce I0 as the ratio of average intensities at two 
locations on the receiver plane 

0 ( , , ) / ( , , )                   (12)0 0
x xp y yp x y

I I p p p p z L I p p z L< = > < = >= = = = =  

Here the average intensities in both  the numerator and the denominator are those of Eq. (11). 
We can then relate the source and link parameters of a cosh-Gaussian converted cos-Gaussian 
beam to this ratio in the following manner: 

4 2 2 24 2 2 2
00

0 04 2 2 2 2 4 2 4 4 2 2 2 2 4 2 4
0 0 0 0 0 0

0.5 (2 ) ,  0.5 (2 )       (13)
4 4

yr syxr sx

sx sx sy sy

V LV L
n I n I

L L k L L k
� �

ρ αρ α

ρ ρ α ρ α ρ ρ α ρ α
= =

+ + + +

  

4.  Results 

Although our formulation is applicable to cos-Gaussian beams that can have asymmetrical 
attributes along the x and y directions, here we report only the results of symmetrical beams, 

i.e.,   and 
sx sy xr yr

V Vα α= = .  When dominant, the existence of a cos term in the cos-Gaussian 

beam dictates that the intensity will peak at 0.5 / and 0.5 /  
x xr y yr

s n V s n Vπ π= = , where n is an 

integer starting from zero. Hence we define normalized intensity at the source plane as 
follows: 

( , , 0) ( , , 0) / ( 0)                                (14)
sN x y s x y s x y

I s s z I s s z I s s z= = = = = =  

A three-dimensional view of ( , , 0)
sN x y

I s s z =  is presented in Fig. 2(a) for a cos-Gaussian 

beam with typical source parameters. Figure 2(b), on the other hand, displays a contour plot of 
the same beam. From Fig. 2(a) we note that a cos-Gaussian beam appears as a Gaussian beam 
modulated with a cos function, where the summits of the successive lobes are aligned in the 
direction of the slanted axis. Hence for better assessment, the subsequent plots, where the 
vertical axis refers to intensity distribution, are drawn as side views cut along the slanted axis.  
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Fig. 2. (a)  Normalized intensity of a cos-Gaussian beam  at the source plane and (b) contour 
plots of the same cos-Gaussian beam. 

The normalized average intensity at receiver plane ( , , )
rN x y

I p p z L=  is defined as 

( , , ) ( , , ) / ( 0)                                              (15)
rN x y x y s x y

I p p z L I p p z L I s s z= =< = > = = =                            
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The normalized intensity at source plane ( , , 0)
sN x y

I s s z =  and the normalized average 

intensity at receiver plane ( , , )
rN x y

I p p z L=  versus the slanted axis are shown together in 

Fig. 3(a) for a single cos-Gaussian beam. For cos-Gaussian beam excitation, the beam 
spreading and the gradual concentration of power within two outer lobes, i.e., the cosh-
Gaussian shape, can clearly be identified in Fig. 3(a) for the selected parameters of source size 

sx
α =

sy
α = 5 cm, link length L = 5 km, wavelength λ = 1.55 µm, the real components of the 

complex displacement parameters associated with the Gaussian part of the beam in the 

,  
x y

s s directions, 55
xr yr

V V= = m-1, and the structure constant 2

n
C  = 1 x 10 -15 m-2/3.  Figure 

3(b) shows a contour plot of the same ( , , 0)
sN x y

I s s z =  and ( , , )
rN x y

I p p z L= shown in Fig. 

3(a).  
For proper investigation of the dependence of average intensity profile on the propagation 

distance, the real part of complex displacement parameters, turbulence levels, and wavelength 
of operation, we normalized each profile with respect to its own peak. Normalized average 

intensity 
0
( , , )

r x y
I p p z L= as defined in this way is 

0
( , , ) ( , , ) / ( ( , , )                                (16)

r x y x y x y
I p p z L I p p z L Max I p p z L= =< = > < = >  
 

We note that, after having transformed into a distinct cosh-Gaussian beam,  and 
x y

p p in the 

argument of the intensity function in the denominator of Eq. (16) well approximates 

 and 
xp yp

p p derived in Subsection 3.5.  Figure 4 displays the variation of 
0
( , , )

r x y
I p p z L= for 

link lengths L = 0, 2, 10, 20 km. Here the source plane intensity (L = 0) is included and retains 
the normalization described by Eq. (14).  In line with the predictions discussed in Subsection 
3.5 and Eq. (11), Fig. 4 confirms, while initially managing to preserve its profile, that the cos-
Gaussian beam eventually changes into a cosh-Gaussian beam whose lobe peaks become 
spaced further apart from the origin in direct proportion to the increasing values of L. 
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Fig. 3.  (a)  Normalized intensity at the source plane and the normalized average intensity at the 
receiver plane for a typical cos-Gaussian beam and (b) contour plots for  the same cos-
Gaussian beam. 

In Fig. 5 we illustrate the variation of 
0
( , , )

r x y
I p p z L= against the different values of the 

real components of complex displacement parameters  and 
xr yr

V V . Figure 5 demonstrates  that 
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the increases in  and 
xr yr

V V serve to accelerate the formation of a cosh-Gaussian beam. This 

means that for such cases of cos-Gaussian beam excitation, the transformation into a cosh-
Gaussian beam occurs at earlier propagation distances.  

Figure 6 provides the variation of 
0
( , , )

r x y
I p p z L=  at 1.55 µm and 0.85 µmλ λ= =  in 

the absence of ( 2

n
C = 0 m-2/3) and in the presence of ( 2

n
C = 1 x 10-14 m-2/3 ) turbulence.  Here we 

observe that the presence of turbulence retards the formation of a cosh-Gaussian beam that 
originates from cos-Gaussian beam excitation. Lowering the wavelength of operation 
basically has a similar effect.  

By considering all the plots in Figs. 4– 6 and Eq. (13), we were able to specify the precise 
source and propagation conditions that govern the course of conversion from a cos-Gaussian 
beam into a cosh-Gaussian beam. For example, to accelerate the transformation from a cos-
Gaussian beam into a cosh-Gaussian beam, we require  

• smaller source sizes 
sx

α and 
sy

α , 

• larger beam displacement parameters  and 
xr yr

V V , 

• lower structure constants 2

n
C , 

• higher wavelengths λ , 
• longer link lengths L. 
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Fig. 4. Dependence of normalized average intensity at the receiver plane on link length. 
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Fig. 5. Dependence of normalized average intensity at the receiver plane on the real part of  a 
complex displacement parameter. 
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Fig. 6. Dependence of normalized average intensity at the receiver plane on turbulence level 
and wavelength of operation. 

To make comparisons in the reverse direction of reciprocity, i.e., cosh-Gaussian beam 
changing into a cos-Gaussian beam after propagation in turbulence, we used Eq. (17) from 
Ref. 16 to provide equivalent graphs of Figs. 4–6 for a cosh-Gaussian source plane excitation.  
These are Figs. 7–9, where we plotted Ir0 versus the variations in link length, displacement 
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parameters, turbulence levels, and wavelengths of operation. In compliance with the findings 
of Ref. [16], Figs. 7–9 reflect the concrete process of cosh to cos conversion as well as its 
dependence on link length, displacement parameters, turbulence levels, and wavelengths of 
operation. Note that a numerically different source and propagation parameters must be used 
in Figs. 7–9 from those used in Figs. 4–6  to emphasize the conversion from a cosh-Gausssian 
beam into a cos-Gaussian beam more clearly. From a collective assessment of Figs. 4–9, we 
can assert that the conversion from a cosh-Gaussian beam to a cos-Gaussian beam runs at a 
different pace from that of the conversion from a cos-Gaussian beam to a cosh-Gaussian 
beam. More specifically, the proportionality of factors that accelerate the transformation from 
a cosh-Gaussian beam into a cos-Gaussian beam is now somewhat modified and can be listed 
as follows:  

• smaller source sizes 
sx

α and 
sy

α , 

• smaller displacement parameters  and 
xr yr

V V , 

• higher structure constants 2

n
C , 

• lower wavelengths λ , 
• longer link lengths L. 
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Fig. 7. Dependence of normalized average intensity at the receiver plane on link length (cosh-
Gaussian source excitation case). 
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Fig. 8. Dependence of normalized average intensity at the receiver plane on the real part of  a 
complex displacement parameter (cosh-Gaussian source excitation case). 

 

-20 -15 -10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Slanted axis in cm

I r0

              C
n
2 = 0 m-2/3 

 
              C

n
2 = 1 x 10 -14 m-2/3 

 
              λλλλ  = 1.55 µµµµm

              C
n
2 = 0 m-2/3 

 
              C

n
2 = 1 x 10 -14 m-2/3 

 
              λλλλ  = 0.85 µµµµm

 αααα sx
 = 1.0 cm

 
 L = 3 km
 
 Vxi  = 500 m-1 

 
Fig. 9. Dependence of normalized average intensity at the receiver plane on turbulence level 
and wavelength of operation (cosh-Gaussian source excitation case). 
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5. Concluding remarks 

The average intensity profile of a cos-Gaussian beam in a turbulent atmosphere has been 
formulated and numerically evaluated. We determined that our average intensity formulation 
correctly reduces to the existing Gaussian beam wave result in turbulence and the cos-
Gaussian beam result in free space (i.e., the absence of turbulence). This formulation further 
stipulates that a cos-Gaussian beam loses its original shape more rapidly, finally turning into a 
pure cosh-Gaussian beam with an increase in propagation distance, a real part of the complex 
displacement parameter and wavelength of operation, and with a decrease in turbulence levels 
and source sizes. This analytic observation is also supported by the related intensity plots.   

Combined with the findings of our earlier research,16 we assert that cos-Gaussian and 
cosh-Gaussian beams act in a reciprocal manner in propagation. This means that given the 
right set of source and propagation parameters, a cos-Gaussian beam at the source plane will 
lead to a cosh-Gaussian beam at the receiver plane, whereas a cosh-Gaussian source plane 
beam excitation will arrive as a cos-Gaussian beam at the receiver plane. We refer to this 
property as the reciprocity of cos-Gaussian and cosh-Gaussian laser beams in a turbulent 
atmosphere. The same reciprocity phenomenon is also applicable in the absence of turbulence. 
Transformation from a cos-Gaussian beam into a cosh-Gaussian beam in turbulence is found 
to accelerate for smaller source sizes, larger beam displacement parameters, lower structure 
constants, higher wavelengths, and longer link lengths. However, transformation from a cosh-
Gaussian beam into a cos-Gaussian beam in turbulence is accelerated for smaller source sizes, 
smaller beam displacement parameters, higher structure constants, lower wavelengths, and 
longer link lengths. 

Appendix A 

Here we give a more extensive explanation of the algebra leading from Eq. (6) to Eq. (7), 
along with a detailed physical description of the terms that appear in the expression for the 
averaged intensity profile. Equation (6) contains four separate exponential terms within the 

braces. These are basically the same terms and differ only in signs of 
2 2

, ,  and 
x y xr yr

s s V V . 

Hence, once the integration has been performed for one exponential, the rest can simply be 
obtained by analogy. Moreover we note that there is no coupling between the x and the y 

indices, which means that the integrations with respect to 
1 2

 and 
y y

s s are replicas of the 

integrations with respect to 
1x

s .and 
2 x

s . Consider the first exponential term within braces in 

Eq. (6) and the integration with respect to 
1 2

,
x x

s s only. By excluding the terms outside the 

main integral and the terms associated with the 
1 2

 and 
y y

s s  variables, the remainder of the  

integral in Eq. (6)  that we refer to as I1x  appears as 

( ) ( )[ ]

( )( ) ( )

( )

2 2 2

1 1 2 1 2 1 2

2 2 2 2 2

1 1 2 2 1 1 2 2 0

2 2 2

1 0 1

exp 0.5 / exp

exp 0.5 / 2 2 exp 2

      =  exp 0.5 / 2 1/ / 2

/

x x x x x sx xr x x

x x x x x x x x x x

x sx x xr x

I ds ds s s iV s s

ik L s p s s p s s s s s

ds jk L s iV jkp L s

α

ρ

α ρ

∞ ∞

−∞ −∞

∞

−∞

= − + +

− − + − − +

− + − + − +

  

      

  

∫ ∫

∫

   X        

[ ]{ }

( ) ( )

( )( ) ( )

2 1

2 2

2 2 2

2 2 2 2 2

2 2 2 1 1 2 2 0
                        

 

        exp 0.5 / exp  

         exp 0.5 / 2 exp 2 / (A1)

x x

x x sx xr x

x x x x y y y y

s

ds s iV s

ik L s p s s s s s s

α

ρ

∞

−∞

−

− + − + − +      

∫ X  

X  
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The isolated 
1x

ds integral on the third line of Eq. (A1) is in the form of Eq. 3.323.2 of  Ref. 18, 

i.e., in the form of 
 

( ) ( ) ( )2 2 0.5 2 2exp / exp / 4  (A2)                      dx p x qx p q p∓ π

∞

−∞

− =

 
 ∫  

After performing the integration over 
1x

ds  and the resultant is combined with the other terms 

inside the 
2 x

ds , integral I1x   becomes 

( )

( ) ( ){ }( )
( ) ( ){ }( )

2 2

1 0 2

2 2 4 2 2 2

0 0 0 2

2 2 2

0 0 2

0.50.5

             

0.5 1/ / 2

exp 0.5 1/ / 2 / 0.5 1/ / 2  

          exp / / / 0.5 1/ / 2 (A3)

/
x sx x

sx sx x

xr x xr x sx x

I jk L ds

jk L jk L s

iV ikp L iV ikp L jk L s

π α ρ

α ρ ρ α ρ

ρ α ρ

∞

−∞

−

−

= + −

+ + − + +

+ + − + −

  

  

  

∫

   X   

X

      

 
Equation (A3) is again in the form of Eq. (A2). Thus, by similarly performing the integration 

over 
2 x

ds  and benefiting from the properties explained in the first paragraph before Eq. (A1) 

of this Appendix A, we finally arrive at the average intensity at the receiver plane given by 

Eq. (7), where ( ),
x y

p pp = is the transverse receiver coordinate; k  is the wave number; L  

is the link length; ( ) 3 / 52 2

0
0.545 

n
C k Lρ

−
=  is the coherence length of a spherical wave that 

propagates in the turbulent medium; 2

n
C  is the structure constant; 

sx
α and 

sy
α are the 

respective source sizes of the Gaussian beam in the x
s and 

y
s directions; and 

xr
V  and 

yr
V denote the real components of 

x
V  and 

y
V . Here 

x
V  and 

y
V are the complex displacement 

parameters along the 
x

s  and ys  directions.  ( ) ( )4 2 2 2 2 4 2 4 4 2

0 0 0
4 /

sx sx sx sx
D L L k Lρ ρ α ρ α α= + + , 

( ) ( )4 2 2 2 2 4 2 4 4 2

0 0 0
4 /

sy sy sy sy
D L L k Lρ ρ α ρ α α= + + can be interpreted as parameters related to the 

beam spread in the xp , yp directions, respectively.  
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