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Abstract:  A new procedure for calculating the scattered fields from a 
perfectly conducting body is introduced. The method is defined by 
considering three assumptions. The reflection angle is taken as a function of 
integral variables, a new unit vector, dividing the angle between incident 
and reflected rays into two equal parts is evaluated and the perfectly 
conducting (PEC) surface is considered with the aperture part, together. 
This integral is named as Modified Theory of Physical Optics (MTPO) 
integral. The method is applied to the reflection and edge diffraction from a 
perfectly conducting half plane problem. The reflected, reflected diffracted, 
incident and incident diffracted fields are evaluated by stationary phase 
method and edge point technique, asymptotically. MTPO integral is 
compared with the exact solution and PO integral for the problem of 
scattering from a perfectly conducting half plane, numerically. It is observed 
that MTPO integral gives the total field that agrees with the exact solution 
and the result is more reliable than that of classical PO integral.     
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1. Introduction 

The geometrical theory of diffraction (GTD), first introduced by Keller [1] for two canonical 
problems of plane wave diffraction from a perfectly conducting (PEC) half plane and cylinder 
[2,3], is a high frequency asymptotic ray technique. The method is developed from the known 
solutions of simple shapes, named as canonical problems [4]. GTD has a few limitations one 
of which is the infinite fields which are occurring at shadow boundaries. Uniform asymptotic 
theory (UAT) and uniform theory of diffraction (UTD) are developed to overcome this 
difficulty and used with success for a wide variety of problems [5]. In spite of their 
usefulness, these theories fail near caustics and focal points. Another defect of GTD appears 
at the limited range of problems to which it can be applied. The ray techniques (GTD, UAT, 
UTD) need the appropriate diffraction coefficients, found from the exact solution of 
Helmholtz equation, but it is not able to find rigorous solutions to all canonical problems [6]. 
For example a GTD formulation for the impedance half plane problem could be constructed 
only after the works of Senior and Maliuzhinets [8-10]. Some physical optics (PO) based 
techniques are developed to find approximated diffraction coefficients for GTD [6,7].  

PO is a high frequency technique, which determines reflected fields and uses an 
approximation of the induced surface current density on a perfectly conducting surface in 
proportion to the tangential incident magnetic field [11], but fails in evaluating the edge 
diffracted fields [4,12]. In order to correct the PO surface field approximation, the Physical 
Theory of Diffraction (PTD) was developed by Ufimtsev [13]. PTD uses additional current 
components, called residual or fringe current. Michaeli developed equivalent edge currents 
that allow the evaluation of the far diffracted field for directions not on the Keller cone 
[14,15]. Michaeli also introduced Extended Physical Theory of Diffraction (EPTD), as an 
extension to Ufimtsev’s theory to aperture integration, by formulating in terms of incremental 
diffraction coefficients (IDC) [16]. These two methods are used frequently for the analysis of 
reflectors and backscattering from complex objects [17,18].  

There are two deficiencies in PO theory. First of all, only the perfectly conducting surface 
(or the scatter surface) is considered in forming the scattering integral and the aperture part is 
omitted. As a result of this negligence, the reflected and reflected diffracted fields can be 
evaluated, but there will be no information about incident and incident diffracted waves. A 
second restriction is the acceptance of the discontinuous surface as a continuous surface and 
taking the reflection angle equal to the incidence angle, when evaluating the PO current. This 
acceptance fails at the edge discontinuity.      
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It is the aim of this paper to correct the deficiencies of PO theory and obtain the exact 
solution of edge diffraction problems for various geometries. Three axioms are introduced 
with this purpose. The aperture and scatter surfaces are considered, the reflection and 
transmission angles are taken as variables of the scatter and aperture coordinates, and a new 
unit vector, which divides the angle between the incident and reflected (transmitted) rays into 
two equal parts, is defined. This new theory is named as Exact Theory of Physical Optics 
(MTPO). It is important to note that changing the scatterer coordinates is analogous to the 
method of Modified Edge Representation (MER), in which the edge of the scatterer is 
replaced with a modified one, defining a new unit vector that satisfies the diffraction law at 
each point [19,20]. This method is introduced in order to overcome the false singularities in 
equivalent edge currents for PO and GTD. Defining a new direction for the unit vector was 
also offered in the literature, in order to improve PO [21].  

Asymptotic evaluation of MTPO integral gives the exact edge diffraction coefficient. One 
of the original points of this paper is the expression of the phase function of the MTPO 
integral by a new form [22]. The new method is applied to a well known canonical problem of 
half plane in order to examine its validity. The exact edge diffracted fields can be found 
without considering additional fringe waves or equivalent currents for a wide spectrum of 
problems for scattering from perfectly conducting bodies with MTPO integral method. The 
method can also be applied to the geometries where the radius of curvature is a function of 
angle, like parabolic and hyperbolic reflectors. 

GTD and PTD need the diffraction coefficients, found from the solution of canonical 
problems, in order to construct high frequency asymptotic fields for more complicated 
geometries. For this reason their applicability is limited with the number of solved basic 
problems as mentioned before. In contrary, exact edge diffracted fields can be evaluated 
directly from the asymptotic evaluation of the MTPO integral. Half plane problem, solved in 
Section 3, can be considered with this aim. GTD uses directly the edge diffraction coefficient 
found by Sommerfeld [23] and can only define the behavior of edge diffracted fields with the 
existence of this coefficient, but exact edge diffracted fields and the related coefficient are 
found from the asymptotic evaluation of the MTPO integral, constructed by using the 
geometry.      

A time factor jwte  is assumed and suppressed throughout the paper. 

2. Exact theory of physical optics 

The geometry in Fig. 1 is considered. 1S  is the perfectly conducting surface and 2S  is the 
aperture part.  

A general procedure will be given in order to find the total diffracted fields by taking into 
account these two surfaces. Three axioms can be introduced as 

1. Scattering fields from 1S  and 2S  surfaces are considered. The incident waves induce a 

surface current on 1S  and integration of this current gives the reflected and reflected 
diffracted fields as in classical PO theory, but this solution will not include information about 
incident diffracted fields. For this reason, 2S  surface must be considered. Equivalent currents 
can be defined on the aperture according to the Equivalent Source Theorem and radiated field 
can be obtained by integrating the related currents on 2S . Radiated fields contain the data 
about incident and incident diffracted waves. This approach is analogous to the solution of 
aperture antenna problems with Equivalent Source Theorem. A surface current can be defined 
for 1S  as 

                                                             
1

1
S

tes HnJ
�

�

�

×=                                                         (1) 

where tH
�

 is the total magnetic field on the perfectly conducting surface. Equivalent Source 

Theorem can be applied to 2S  and equivalent surface currents can be defined as 
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,  are the incident fields on the aperture. 
 

Fig. 1.  Scattered fields from a perfectly conducting surface and an aperture continuation 
 

2. The reflection and transmission angles ( β ) are variables which depend on the surface 

( 21 SS + ) coordinates. 

3. A new unit vector ( 1n
�

, 2n
�

), which divides the angle between the reflected (or 

transmitted) and the incident rays into two equal parts, can be defined. 1n
�

 can be written as 

                                                nutun
�

�
�

)sin()cos(1 αα +++=                                            (3) 

for 1S  and 

                                                nvtvn
�

�
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)sin()cos(2 αα +−+=                                            (4)  

for 2S  where α is the angle of incidence, t
�

and n
�

 are the actual tangential and normal unit 
vectors of the surface, respectively. The boundary conditions in Eqs. (1) and (2) will be 

evaluated according these new unit vectors. u and v are equal to 
22

βαπ +− . The total 

scattered electric field can be defined as 
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and 
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for an electric polarized incident wave. The total scattered magnetic field can be written as 
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and 
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for a magnetic polarized incident wave. It is important to note that the rotational operation in 
Eqs. (6), (9) and (10) is applied according to the coordinates of the observation point. Here 

rsE
�

 ( rsH
�

) and isE
�

 ( isH
�

) denote the reflected scattered and incident scattered fields, 
respectively.  

3. Scattering from a perfectly conducting half plane: MTPO approach 

The geometry in Fig. 2 is considered. An electric polarized (electrical field is parallel to the 
surface) plane wave is illuminating the half plane.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2   Reflection geometry from a perfectly conducting half plane 
 
Exact Theory of Physical Optics will be applied to this problem in order to evaluate 

scattered fields. The magnetic field of the plane wave can be written as 
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where 0φ  is the angle of incidence. The method, given in the previous part, will be applied to 
this problem. As can be seen from Fig. 2, there are two scattered ray paths. One belongs to the 
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reflected (for 00 φπφ −≤≤ ) and reflected diffracted (for πφ 20 ≤≤ ) rays and the second is 

the incident (for 0φπφπ +≤≤ ) and the incident diffracted (for πφ 20 ≤≤ ) rays. The 
integrals of Eqs. (6) and (7) will be considered. Reflected plane wave can be written as 

                                                       )sincos( ββ yxjk
rzr eEeE −= �

�

                                               (12) 

where β  is a variable angle which is the function of surface coordinates. The amplitude of 
the electric field can be found as 

                                                      )cos(cos' 0 βφ −−= jkx

ir eEE                                                   (13) 

by using the boundary condition of ( ) 0
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surface current can be evaluated as 
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1  at the perfectly conducting half plane. The classical 

PO surface current component is equal to 
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for this problem. The trigonometric expression in Eq. (14) can be evaluated by using the 
geometry in Fig. 2. As a result one obtains 
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for the MTPO surface current. The current that will flow on the surface for a magnetic 
polarized incident wave is calculated and compared with PO surface current in the Appendix 
section. The scattered electrical field can be written as 
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by using Eq. (7). Here 1R  is equal to 

                                               ( )222

1 ')'( zzyxxR −++−= .                                       (18)  

'z  part of Eq. (17) gives a Hankel function a 

                                                    )()2(

0 kRH
j

de
C

jkch παα =∫
−                                              (19)  

by using the variable change of αshRzz =− )'(  where R  is equal to ( ) 22' yxx +− . As a 

result one obtains  
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for the reflected scattered wave.  The incident scattered field can be found by considering Fig. 
3 and Eq. (7). The image of the incident field is considered. The reflected waves for 

( ]0,' ∞−∈x  is equal to the transmitted incident field for this region. The equivalent image 
field can be written as 

                                                    ( )00 sincos φφ yxjk

izieq eEeE −−=
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and magnetic field is found to be 
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for the plane waves illuminating the upper part of the plane. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Transmission geometry for the modified theory of physical optics  
 

The reflected electric and magnetic fields can be evaluated by following the steps between 
Eqs. (12) and (13). The equivalent surface current is found to be 
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where 2n
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 is equal to yx evev
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)sin()cos( 00 φφ +−+  for the aperture surface and 
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for the incident scattered wave. The total scattered electric field can be written as 
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denoting the reflected scattered field found from Eq. (20) by using the Debye asymptotic 
expansion of )( 1

)2(

0 kRH . The integrals of Eqs. (24) and (26) denote the scattered fields from 
the half plane. Eq. (26) gives the reflected and reflected diffracted waves. Eq. (24) consists of 
incident field for πφ ≥  and incident diffracted wave for [ ]πφ 2,0∈ . 

4. Asymptotic evaluation of scattering integrals 

The incident, reflected and diffracted fields will be evaluated asymptotically by the method of 
stationary phase and edge point technique [4,23] for k→∞. The total electric field can be 
obtained as  
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by combining Eqs. (24) and (26). The phase functions of the integrals in Eq. (27) can be 
written as 

                                           )cos(cos'cos)'( 0φβγρ −+= xxg                                      (28) 

for the geometry in Figs. 2 and 3. The first derivative of the Eq. (28) can be expressed as 
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where γ  is equal to  

                                                             φβπγ ∓−=                                                      (30)    

according to the geometry in Figs. 2 and 3. One obtains 
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by using sine relations and the derivative of Eq. (30) according to 'x . As a result one obtains 
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which denotes the reflection law by considering 
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at the stationary phase point. The second derivative of Eq. (28) can be evaluated as 
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where l can be expressed as 
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denoting the ray path of the reflected and incident fields. sγ  is equal to φφπ +− 0  for the 

incident wave and φφπ −− 0  for the reflected wave. The phase function of Eq. (28) can be 
expanded for the first three terms as 
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and the amplitude function is evaluated for the first term of Taylor series as 
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where it can be seen that the trigonometric parts of the MTPO current reduces to the PO 
current. The integrals in Eqs. (24) and (26) can be written as   
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and can be evaluated easily by considering the integral of 
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As a result, one obtains 
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for the reflected fields from the half plane. The radiated wave from the aperture can be written 
as 

                                                          )cos( 0φφρ −≈ jk

ii eEE                                                     (41) 

from the stationary point contribution. The edge diffracted fields can be evaluated by using 
the formula 
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where )0(f  and )0(g  denote the values of the amplitude and the phase functions of Eqs. (24) 
and (26) at the edge point, respectively [4,24]. The plus sign in Eq. (42) is used when the edge 
point is the lower value of the integral, and minus sign is used for the upper limit. )0('g  is the 
value of the first derivative of the phase function at the edge point. The related phase and 
amplitude quantities for Eq. (26) can be written as 

                                                                   ρ=)0(g ,                                                      (43) 
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for 0' =ex , φπβ −=e  as the edge coordinates for the half plane. One obtains 
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for the reflected edge diffracted field. Reflected edge diffraction coefficient can be written as 
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for the MTPO integral. The phase and the amplitude functions of Eq. (24) can be expressed as 

                                                                 ρ=)0(g ,                                                        (48) 

                                                     ( )0coscos)0(' φφ +−=g                                              (49) 

and 
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for 0' =ex , πφβ −=e  as the edge coordinates for the aperture integral. The incident edge 

diffracted field can be evaluated as 
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by using Eqs. (48), (49) and (50) in Eq. (42). The incident edge diffraction coefficient can be 
written as 
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and one obtains 
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for the total edge diffraction coefficient of MTPO integral. 

5. Numerical results 

MTPO integral for scattering from a perfectly conducting half plane will be compared with 
the classical PO approach, MTPO integral for 0φβ =  and exact solution. Equation (27) is 
valid for this case and it represents the total scattered field (incident, reflected and edge 
diffracted). The total field, calculated by the physical optics theory, is given by  
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for a plane wave illuminated perfectly conducting half plane [12]. The case of 0φβ =  will 
also be plotted and compared numerically as  
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with the series expression of Eq. (58). The first integral in Eq. (55) represents the radiated 
field and the second one is the physical optics integral. The incident field will be added to the 
PO integral for πφ 20 ≤≤  and the geometrical optics fields (incident and reflected) will be 
considered for the radiated wave in the interval of [ ]πφ ,0∈ . The total fields, obtained by the 
mentioned procedure, must be divided by two, because the value of the field is doubled for all 
values of φ. The total field can be written as 
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where RE  is the radiated field. The unit step function in Eq. (56) can be defined as 

                                                       




≥
≤

=−
πφ
πφ

φπ
,0

,1
)(u                                                  (57) 

in order to express the addition of total geometrical optics fields (reflected and incident) for 
[ ]πφ ,0∈ .    
The exact solution of a half plane problem can be given as 
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for an electric polarized incident plane wave [25]. The MTPO integral can be written as 
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for the half plane problem. The first integral represents the incident field for 0φπφπ +≤≤  

and incident diffracted waves for πφ 20 ≤≤ . The second integral in Eq. (59) consists of the 
reflected and reflected diffracted fields.   
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Fig. 4. Regions for scattered fields in a perfectly conducting half plane 

The half plane geometry is divided into three regions as shown in Fig. 4. The geometrical 
optics and edge diffracted fields are plotted by considering this geometry. In Region I, it is 
apparent that there will be incident ( iu ), reflected ( ru ) and diffracted fields ( drdi uu + ). In 
Region II, there are incident and diffracted fields. There are only diffracted fields in Region 
III. Since PO integral consists of reflected and reflected diffracted fields, the incident field is 
added to Eq. (54) for all values of φ. The incident field is added to the integrals in Eq. (59) for 

πφ ≤ . The figures are plotted for 40
πφ =  and λρ 6= . 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

Fig. 5. Reflected and diffracted fields from perfectly conducting half plane (PO and exact 
solution) 
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Fig. 6. Reflected and diffracted fields from perfectly conducting half plane [MTPO ( )0φβ =  

and exact solution] 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. Reflected and diffracted fields from perfectly conducting half plane (MTPO and exact 
solution) 

 
Figure 5 shows the variation of Eqs. (54) and (58) versus observation angle. It can be 

seen that PO integral deviates from the exact asymptotic solution after 0φπφ += , since the 
edge diffraction field, found from the PO phase contribution, is not the exact field.  Incident 
field is added to Eq. (54) for all values of φ.  

Figure 6 depicts the variation of MTPO ( 0φβ = ) field and the exact scattered fields in 
Eqs. (56) and Eq. (58) versus the observation angle. It is observed that the MTPO integral, 
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written for a constant reflection and transmission angle, is harmonious with the exact waves 
for all values of φ.  

In Fig. 7, the integral in Eq. (59) is compared with Eq. (58). It can be seen that the fields 
are compatible. 

7. Conclusion   

In this work, a new approach to Physical Optics concept is introduced by defining three 
axioms. This method is named as Exact Theory of Physical Optics (MTPO). The introduced 
procedure is applied to a well known problem of perfectly conducting half plane and exact 
scattered fields (reflected and edge diffracted) and also incident field for 0φπφπ +≤≤  is 
evaluated by using asymptotic methods. Numerical results show that MTPO integral gives the 
exact fields harmonious with the exact series solution of Helmholtz equation. It is important to 
note that the integral, related with the reflected field, gives the reflected diffracted fields and 
the incident diffracted waves are evaluated from the integral, written for the aperture.  

8. Appendix 

MTPO current for a magnetic polarized incident wave will be evaluated. Figure 2 can also be 
considered for a magnetic polarized illumination. Magnetic field of the incident wave can be 
written as 
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and electric field can be found as 
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by using the Maxwell-Ampere equation. Reflected plane wave can be written as 
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where β  is a variable angle which is the function of surface coordinates, as in Eq. (12). The 
reflected electric field can be found as 
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by considering Maxwell-ampere equation. One obtains 
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)sin()cos( 001 φφ +++= . The MTPO surface current can be evaluated as 
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which is equal to ( ) MTPO
S

ri JHHn
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1  on the perfectly conducting half plane. The classical 

PO surface current component is equal to 
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for this problem. It is apparent that, the current, given in Eq. (65) is equal to POJ
�

 for 0φβ = .   
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