

INVESTIGATING END USER ERRORS IN OIL AND GAS

 CRITICAL CONTROL SYSTEMS

 LAYTH NABEEL ALRAWI

JUNE 2019

INVESTIGATING END USER ERRORS IN OIL AND GAS

 CRITICAL CONTROL SYSTEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

LAYTH NABEEL ALRAWI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF COMPUTER ENGINEERING

INFORMATION TECHNOLOGY PROGRAM

JUNE 2019

Title of the Thesis: Investigating End User Errors in Oil and Gas

Critical Control Systems

Submitted By Layth Nabeel ALRAWI

Approval of the Graduate School of Natural and Applied Sciences, Çankaya

University.

 Prof. Dr. Can ÇOĞUN

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Prof. Dr. Erdoğan DOĞDU

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Ö. Tolga PUSATLI

 Supervisor

Examination Date: 26.June.2019

Examining Committee Members

Assoc. Prof. Dr. Murat KOYUNCU Atılım Univ. ________________

Assoc. Prof. Dr. Hakan MARAŞ Çankaya Univ. ________________

Assoc. Prof. Dr. Ö. Tolga PUSATLI Çankaya Univ. ________________

iii

STATEMENT OF NON-PLAGIARISM PAGE

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

 Name, Last Name: Layth Nabeel ALRAWI

 Signature:

 Date: 26.July.2019

iv

ABSTRACT

INVESTIGATING END USER ERRORS IN OIL AND GAS

 CRITICAL CONTROL SYSTEMS

ALRAWI, Layth Nabeel

M.Sc., Department of Computer Engineering

Information Technology Program

Supervisor: Assoc. Prof. Dr. Ö. Tolga PUSATLI

JUNE 2019, 84 pages

System availability and efficiency are critical aspects in the oil and gas sector; as any

fault affecting those systems may cause operations to shut down; which will

negatively impact operation resources as well as costs, human resources and time.

Therefore, it became important to investigate the reasons of such errors. In this study,

software errors and maintenance are studied. End user errors are targeted after

finding that is the number of these errors is projected to increase. The factors that

affect end user behavior in oil and gas systems are also investigated and the relation

between system availability and end user behavior are evaluated.

An investigation has been performed following the descriptive methodology in order

to gain insights into the human error factor encountered by various international oil

and gas companies around the Middle East and North Africa. This was conducted by

distributing a questionnaire to 120 employees of the companies in this study; 81 had

responded. The questionnaire contained questions related to software/hardware errors

and errors due to the end user.

In short, the study shows that there is a relation between end user behavior and

system availability and efficiency. Factors including training, experience, education,

work shifts, system interface and I/O devices were identified in the study as factors

affecting end user behavior. Moreover, the study contributes new knowledge by

v

identifying a new factor that leads to system unavailability, namely memory sticks.

This thesis presents a valuable knowledge that explains how errors occur and the

reasons for their occurrence.

Major limitations of this research include company policies, legal issues and

information resources.

Keywords: Software errors, Faults, Failure, Oil and gas, Human error, Human

mistake, End user error, Copy-paste error, Torque turn system, Tubular running

services, Casing Running tools, Critical control systems, casing and tubing.

vi

ÖZ

PETROL VE GAZ KRİTİK SİSTEMLERİNDE SON KULLANICI

HATALARININ ARAŞTIRILMASI

ALRAWI, Layth Nabeel

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Bilgi Teknolojileri Programı

Tez Yöneticisi: Doç. Dr. Ö. Tolga PUSATLI

Haziran 2019, 84 sayfa

Sistem kullanılabilirliği ve verimliliği petrol ve gaz endüstrisinin kritik parçalarıdır.

Bu sistemleri etkileyecek herhangibir hata, operasyonları durdurabilir ki bu da para,

insan ve zaman kaynaklarını boşa harcatır. Bu nedenle, bu hataların sebeplerinin

incelenmesi önemdir. Bu çalışmada, yazılım hataları ve bakım işlenmiştir. Bu

hataların arttığının görülmesinden sonra da son kullanıcılar incelenmeye

başlanmıştır. Petrol ve gaz sistemlerindeki son kullanıcı davranışlarını etkileyen

faktörler de araştırılmış ve sistem kullnılabilirliği ve son kullanıcı davranışları

ilişkileri değerlendirilmiştir.

Ortadoğu ve Kuzey Afkika'da çeşitli uluslararası şirketlerde rastlanan insan hatası

faktörünü anlamak için betimsel araştırma yöntemi kullanılmıştır. Burada, 81'nin geri

dönüş yaptığı 120 çalışanla anket çalışması yapılmıştır. Ankette, yazılım, donanım ve

son kullanıcı hatalarını içeren sorular bulunmaktadır.

Kısaca, çalışma, son kullanıcı davranışıyla sistem kullanılabilirliği ve verimliliği

arasında bir bağ olduğunu göstermiştir. İş eğitimi, deneyim, eğitim, çalışma

zamanları, sistem arayüzü ve girdi/çıktı donanımlarını içeren etkenlerin, son kullanıcı

davranışlarını etkilediği saptanmıştır. Buna ek olarak, bellek çubuklarının da sistem

bozulmalarında etkin olduğu yeni bir bilgi olarak bulunmuştur. Bu tez, hataların nasıl

ve neden oluştuğunu açıklayan bilgiler sunmaktadır.

Şirket politikaları, yasalar ve edililen bilgilerin kaynakları, araştırmanın kısıtlamaları

sayılabilir.

vii

Anahtar Kelimeler : Yazılım hataları, arıza, bozukluk, petrol ve gaz, insan hatası,

son kullanıcı hatası, kopyala-yapıştır hatası, tork çevirme sistemi, tork dönüş sistemi,

boru indirme servisi

viii

ACKNOWLEDGEMENTS

First, I wish to express my thanks and gratitude to Allah, the most Gracious, and the

most merciful for uncountable help guidance. Then, I would like to pay tribute to my

supervisor Assoc. Prof. Dr. Ö. Tolga PUSATLI for his guiding hand throughout the

duration of my study. His patience, motivation, enthusiasm, immense knowledge,

guidance, professionalism, charm and reasonableness helped me overcome

seemingly insurmountable obstacles along the way. You are a role model to follow.

From Cankaya University, thanks are due to Prof. Dr. Mahir Nakip for his advises

throughout the analysis period.

From Oil and Gas sector, thanks are due to Mr. Nameer Khalil Ibrahim and Mr. Ali

Nabeel Khalil for their support throughout the validation of questionnaire questions.

I extend my acknowledgement and heartfelt love to my mother, brothers, sister and

wife, for continuous supporting along the period of my study.

Last but not the least; I dedicate this thesis to the memory and soul of my father

(Nabeel Khalil Al-Rawi) and my uncle (the Colonel Martyr: Ibrahim Khalil Al-

Rawi). They are a role model to follow.

ix

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM PAGE .. iii

ABSTRACT ... iv

ÖZ ... vi

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF FIGURES ... xii

LIST OF TABLES .. xiii

LIST OF ABBREVIATIONS .. xiv

1. INTRODUCTION .. 1

1.1. Researcher Motivation .. 1

1.2. Purpose of the Study ... 2

1.3. Scope of the Study .. 2

1.4. Research Question ... 3

1.5. Research Methods ... 3

1.6. Thesis Outlines .. 3

2. BACKGROUND AND LITERATURE REVIEW .. 5

2.1. Errors and Their Causes .. 5

2.1.1. Software Errors ... 5

2.1.2. Classifications of Software Errors .. 6

2.1.3. Software Error Categories ... 6

2.1.3.1. Persistent and Transient Errors 7

2.1.3.2. Performance Errors .. 8

2.1.3.3. Design Erosion .. 9

2.1.3.4. Software aging ... 10

2.1.3.5. User Mistake and Human Errors..............................11

2.1.3.6. Copy-Paste Errors .. 13

2.1.4. Software maintenance ... 13

x

2.1.5. Software Maintenance Categories .. 15

2.1.5.1. Corrective Maintenance ... 15

2.1.5.2. Adaptive Maintenance ... 16

2.1.5.3. Perfective Maintenance ... 18

2.1.6. Software Rejuvenation ... 19

2.2. Major works on errors and how to handle them 20

2.2.1. Software Errors ... 20

2.2.2. Software Maintenance .. 37

2.2.3. Human Error ... 38

2.3. Discussion ... 52

3. OIL AND GAS WELL SITE OPERATIONS AND WORK FORCE 54

3.1. Introduction ... 54

3.2. Human Role in Torque Turn System .. 55

3.3. Discussion ... 59

4. ANALYSIS AND RESULTS ... 60

4.1. Introduction ... 60

4.2. Interview Questions .. 60

4.3. Results ... 62

4.4. Data Analysis .. 65

4.4.1. Data set .. 65

4.4.2. Statistical Analysis .. 67

5. FINDINGS AND FUTURE WORK ... 69

5.1. Findings ... 69

5.2. Research Limitations ... 71

5.3. Future Work .. 72

5.4. Conclusion .. 73

REFERENCES ... 74

APPENDIX ... 85

xi

xii

LIST OF FIGURES

Figure 1: Software failure life cycle ... 5

Figure 2: Numbers of persistent and transient errors .. 8

Figure 3: Stages of software aging .. 11

Figure 4: Software maintenance life cycle with countermeasures against software

decay .. 17

Figure 5: Relationship between human error, operator experience and complexity of

a task... 47

Figure 6: Casual factors that influence human behavior ... 50

Figure 7: Model of human error .. 50

Figure 8: Casing and tubing joints with coupling ... 54

Figure 9: Running result as shown on TTS screen, Figure shown casing or tubing

running graph ... 56

Figure 10: Torque Turn System Use Case Diagram ... 58

Figure 11: Results of the relation between human factors and the number of

respondents on each relations, after analysis ... 64

Figure 12: Respondents’ experience level ... 65

Figure 13: Respondents’ educational level ... 66

Figure 14: Respondents’ working period .. 66

Figure 15: Attendance of periodic assessment and training 67

xiii

LIST OF TABLES

Table 1: Examples of error categories and specific error types used to classify

potential human errors.. 42

Table 2: Internal Performance Shaping Factors .. 45

Table 3: Two groups of characteristics of External Performance Shaping Factors ... 45

Table 4: Psychological and physiological stressors .. 46

Table 5: The factors that have an impact on the occurrences of human error 48

Table 6: P-Value of analysis relations ... 68

xiv

LIST OF ABBREVIATIONS

BGDU Bar Graph Display Unit

CRT Casing Running Tools

DumpT Dump Torque

EOK Enhanced Oil Recovery

GUI Graphical User Interface

High ShT High Shoulder Torque

HPT Hydraulic Power Tong

HPU Hydraulic Power Unit

Low ShT Low Shoulder Torque

MaxT Maximum Torque

MENA Middle East and North Africa

MinT Minimum Torque

MWD Measurement While Drilling

NOV National Oil Varco

O&G Oil and Gas

optT Optimum Torque

R Relation

refT Reference Torque

TTS Torque Turn System

TTT Torque Turn Technician

https://en.wikipedia.org/wiki/Measurement_while_drilling

1

CHAPTER ONE

INTRODUCTION

It is well-known that in this era, software is used in many sectors, including sectors

such as oil and gas, military, business, financial, and health. Software products are

usually accompanied by various types of error making our life continually hazardous.

Studies show that 50% to 70% of projects are fails, and if we were to assume that

only 5% of projects fail, it would mean billions of dollars being wasted every

year [5]. Any computing system may encounter errors, such as inappropriate requests

from supported applications, or unexpected behavior from malfunctioning or

misconfigured hardware. If a system’s software does not recover from these errors

correctly, more serious failures may occur, including crashes or vulnerability to

attack by malicious users [104].

1.1 Researcher Motivation

The researcher is an oil and gas sector employee with long experience in maintaining

and operating oil and gas infrastructure systems, especially torque turn systems. The

researcher is also interested in the errors and faults that occur over operational time

as such problems can increase the cost of operations, create unavailability of systems

and risk of operational delays. These errors may lead to shutting down operations.

The researcher has experienced a number of faults some of which are due to

technicians’ and operators’ typos. Meanwhile, some other faults may occur due to

operating system, hardware and/or software errors. Therefore, it is important to

investigate the factors that cause such errors, especially user faults and to provide

solutions for oil and gas firms to break down those faults in order to increase the

availability of the systems.

Before we proceed, providing basic information on an operation site would increase

readability of the dissertation.

2

The oil and gas world is broad and complex. In order to drill an oil or gas well,

various types of services and people are needed. Drilling rigs start drilling operations

from scratch and move through many stages using various services, such as drilling,

well constructions, logging, cementing, chemicals, completion and production, until

such time that the well is created and starts pumping oil for export or for storage

lines. These services can be performed using various types of equipment, including

hydraulic, mechanical, electrical and so on. Moreover, these services are required for

various types of critical infrastructure systems in addition to experts in each type of

service.

1.2 Purpose of the Study

The primary aim of this thesis is to identify and investigate the key factors

slowing/interrupting the operations of Torque Turn Systems and leading those

systems to failure. We focus especially on the factors which occur due to the end

user, i.e., operators and technicians are investigated. We aim to understand how they

are doing their jobs and their behavior toward the systems in terms of ease of use,

working faster and making fewer errors. This thesis aims to provide suggestions to

assist oil and gas firms to break down the faults that occur in their torque turn

systems due to end users, thereby improving quality by providing key performance

factors such as periodic training and certification for technicians.

1.3 Scope of the Study

As a case study, we selected multinational TTS technicians around MENA in

addition to various types of torque turn systems related to different international oil

and gas firms which usually work on updating their systems and trying to have

properties to reduce the risk of faults and avoid the costs of interruptions.

The scope of the study includes a review about and investigation into the potential

faults that critical oil and gas infrastructure systems may encounter during times of

operation, especially torque turn systems, in addition to investigating faults that can

occur due to human users, especially the end user.

3

1.4 Research Question

“Can end user behavior influence oil & gas operations availability and efficiency in

TTS?”

1.5 Research Methods

As the study aims to clarify user behaviors and how users perform their tasks, we

have chosen to collect information from end users directly. On our method, we

prepared structured questionnaires to be completed by the users in our study. The

questions have emerged from the surveyed literature both on failures due to

hardware/software errors and human factors.

There are similar works to ours presented in Chapter II, however, none of them, to

our knowledge, has the survey questions suitable for our field. On the other hand, we

have benefitted from the literature to investigate and formulate the questions thanks

to the experience of the researcher.

This research can be identified as a descriptive study in which we are endeavoring to

determine the profile of end-users, their intentions hence behaviors in performing

their tasks. Because the researcher is already employed in the field, we had the

opportunity of benefitting from the researcher’s experience. This is termed as

participant observation in the literature [105]. As the name implies, the researcher

personally participates in the events and fields that are being investigated.

Finally, this research is supported by the literature, end-users’ feedback and the

researcher’s personal participation.

1.6 Thesis Outline

This thesis contains five chapters: an Introduction, a Background and Literature

Review, Oil and Gas Well Site and Work Force, Analysis and Results, Findings,

Future Work and the conclusion of the study.

The content of each chapter is outlined as follows:

4

Chapter 1: Introduction

Chapter 1 is a quick and general review of the research which clearly states the

motivation, purpose and scope of the study as well as the research question. The

outline of this research is presented at the end of this chapter.

Chapter 2: Background and Literature Review

This chapter is divided into two parts. The first part (2.1) presents the background of

software errors and their causes, their reasons and measurements. It also focuses on

the importance of the performance of maintenance. The second part (2.2) presents a

literature review that covers the major works on errors and how to handle them,

categories and classifications of software errors and software maintenance. The

second part also focuses on human error and user mistakes.

Chapter 3: Oil and Gas Well Site and Work Force

Chapter 3 describes oil and gas well site operations, the roles of actors, positions and

the actions with the associated information required to complete the drilling

operations of each well and the role and importance of using the torque turn system

in these operations. Furthermore, the use case is presented in this chapter to handle

this information. Chapter 3 concludes with a discussion.

Chapter 4: Analysis and Results

Chapter 4 summarizes the method that was used to gather the data, the results that

were yielded through this method and the statistics that were used to obtain those

results.

Chapter 5: Findings and Future Work

Chapter 5 summarizes the findings of this research, addresses the limitations that

may restrict the findings and outlines possible future work. The conclusion and

answer to the research question are presented at the end section of this chapter.

5

CHAPTER TWO

BACKGROUND AND LITERATURE REVIEW

2.1 Errors and Their Causes

This section presents the definitions of the terms covered in this thesis as well as

preliminary knowledge to provide essential background on software errors and

software maintenance. We cover this as the literature being reviewed is closely tied

to these concepts.

2.1.1 Software Errors

We can define software errors as events that occur through program operations and

lead to undesirable outcomes, including exceptions due to divisions by zero. Such

errors may settle inside the software for long time without any activity until a

particular event occurs and activates it [1]. Errors occur as a result of mistakes in

documentation, code and the software. These errors may lead to faults or bugs, and

eventually failure of the software, as shown in Figure 1 [2].

Figure 1 Software failure life cycle [2]

Software faults or bugs are the software’s deviations from its required operations

path. Software failure is a symptom that appears though software execution and may

lead to operational crashes [3]. A system error is a mistake that occurs in the program

code at the time of execution and leads to system faults which are the behaviors of

the system leading to system failure. System failure is an event that occurs when

system behavior is not compatible with design requirements [54].

Mistakes Errors Faults Failure

6

System errors are also defined as the status when current system behavior does not

match with the actual behavior for which the system was designed. Additionally, two

types of error have been shown, the first of which is external errors caused by the

system platform and the second of which is internal errors caused by programming

mistakes [4]. Errors can arise due to the cognitive framework, and these errors can be

divided into perception errors (which include errors in visual detection, visual search

and listening), memory errors (which include forgetting (or miscalling) temporary or

longer-term information, forgetting previous actions, and forgetting planned actions),

judgment, planning and decision-making errors (which include errors in judging

aircraft trajectories, making decisions and planning), and action execution errors

(which include actions or speech performed notes-planned) [75]. There are three

major components of an error: (1) External Error Mode (EEM), which are errors

pertaining to external behavior, such as opening the wrong valve; (2) Performance

Shaping Factor (PSF): These errors relate to the human interface, training and time

pressure; and (3) Psychological Error Mechanism (PEM), which are the errors

pertaining to internal behavior such as memory failure [80].

2.1.2 Classifications of Software Errors

Errors can be classified according to many criteria. For example, about four decades

ago, [1] classified errors based on their impact on program operation. This depended

on the intensity of the impact on its success; for instance, a high impact will lead to a

complete software crash; a medium impact will cause a decay in performance; and a

low impact will disperse the software operation. Software errors can be classified

according to their programming and hardware features. A more recent classification,

[4], depends on the source that causes an error. There are two sources of error, first

being external sources such as the errors occurring through platform changes, and the

second being internal sources such as programming mistakes and design errors.

2.1.3 Software Error Categories

It is not easy to count the number of failed projects. Through the research, we have

experienced many types of software errors and faults most of which are the results of

7

design inefficiencies and code mistakes, as given in [5]. These errors increase and

become more complex whenever we increase the number of persons and modules

involved in software design. According to many firm reports, failures start with the

presentation of imprecise information and end with operation crashes [5]. The most

common types of error are persistent errors, transient errors, design errors,

performance errors, design erosion and software aging. We visit these errors in the

following sections of this chapter.

2.1.3.1 Persistent and Transient Errors

The difference between these two approaches is the live cycle interval and in order to

find if the error is persistent or transient, we have to take into account many factors,

such as the event existence period, the detection situation, the environment situation,

the logical appearance and statistical features [9].

The persistent error is a type of error that evades detection efforts and begins

operating during the software execution period. It appears during software operation

and operates for a long time without disappearing. These errors are a result of bad

design due to the poor prediction of the requirements for which the current software

is designed or the programmer’s experience being insufficient to envisage the

magnitude of the problem and cover the requirements of complex applications. These

types of error are large errors and cause loss of time and economic [7].

Transient errors, also known as non-persistent errors, are those which appear during

the software operational period and disappear later [7]. They appear many times

during software operation and cause faults in software components which in turn

leads to incorrect outcomes. A number of transient errors are considered to be

persistent errors, i.e., errors that occur in operating systems [6].

The multiple occurrences of these errors make repair efforts challenging because we

have to perform testing many times during the software operations and we have to

test the results at each point of the software and compare it with the original expected

outputs. These errors usually appear in GUIs caused by some GUI classes [8].

Many studies were performed to test the occurrence of persistent and transient errors

in a number of applications, such as Paint; Excel and Word. The studies showed the

8

large number of transient errors occurring throughout the test period, as shown in

Figure 2 [8].

0

500

1000

1500

2000

2500

3000

N
u

m
b

er
s

o
f

Er
ro

rs
 d

et
ec

te
d

TorpPaint TorpSpreadSheet TorpWord

Subjected Applications

Persistant

Transiant

Figure 2 Numbers of persistent and transient errors [8]

2.1.3.2 Performance Errors

Depending on input value, an application may present different behaviors which may

include one of the performance error factors [11]. Performance errors are

programming errors that slow down software operation [12]. Performance errors

occur as a result of programming mistakes attributable to poor programming skills as

many applications are designed by junior programmers using different software

engineering techniques or because of a “fix it later” approach. This makes errors

difficult to be discovered and fixed during times of debugging thereby causing losses

in cost and time. Therefore, it is better to find and fix errors during the designing

phase [13]. Moreover, performance errors can occur due to data sharing, resource

sharing variety and unbalanced remote access [14].

Fixing this type of error is difficult because the repair process has advantages and

disadvantages and programmers need to go through the advantages only without

evoking the disadvantages. Moreover, the separation process of the advantages and

disadvantages is a challenging process. Performance errors slow the software and

9

reduce the response time of the software [12]. User experience is a set of behaviors

and the emotions of using software products; therefore, any bug affecting system

speeds or times will help to increase the number of performance errors and thus

cause poor user experiences as it is critical to know how users perceive software

quality. This also leads a degradation in the quality of the software [96] [97].

Schlumberger is an international oil and gas company that is always looking to

enhance its software in order to improve its performance and usability and increase

the user experience. This is what happened with the Schlumberger Techlog Wellbore

Software Platform as they released the latest version of this application with new

features, taking care to improve performance and display interaction in the

application [99].

Other examples of performance errors are those that occur in Adobe Flash CS4

Professional (10.0.2), including performance issues when dragging objects on stage,

scrubbing the timeline, entering symbol edit mode in large AS 2.0 and AS 3.0 files,

performance issues when opening large files or files with many nested symbols, and

performance issues when working in the library such as scrolling, selecting items in

the library, dragging items to the stage, and editing symbols from the library [21].

2.1.3.3 Design Erosion

Design erosion occurs because of continuous change and update of the software

design. This causes erosion for the software’s original design. This error forces

programmers to issue new code and retire other parts. Sometimes, programmers have

to redesign the software anew, which is a difficult process and causes loss in time,

cost and personal effort [15]. The wholesale system replacement from scratch is

dangerous because it has major effect on technology and people as new systems may

require users to be trained in using the new system and the new system may lack

some of the functionality of the old system. Moreover, it will have an impact on

business as the purchase of new systems or developing current systems may impact

company budgets. The human and technology point of view is effected because

replacement may lead to a lack of some functionality resulting from the replacement

process. The replacement will contain new components and this will necessitate

retraining users in order to qualify them for the new components. At the same time,

10

businesses are also affected because the replacement may require new skills and

costs, implying a low return on investment. Therefore, development maintenance is

preferred to improve a system without discarding an existing system [16].

Design erosion leads to a low-quality and low-productivity system, increased time to

publish and software that is difficult to maintain [17]. Usually, such errors occur in

open source software because this type of software continues to evolve [15].

Mozilla browser is given in [15] as an example of design erosion as it is one example

of open source software. After half a year of continuously working, Netscape

developers discovered that the Mozilla browser was suffering from design erosion

caused by evolvement. The developers attempted to fix this issue without success.

They finally decided to redesign the software anew. However, after many years of

running, there has been a large amount of code added to the application and some

parts were retired about 20 years ago.

2.1.3.4 Software Aging

Software aging has been occurring in most software systems that work continuously

for long periods of time [58]. Software aging is defined as the accumulation of

software errors and failure to perform as a user intends, as software, similarly to

humans, can age [59]. Software aging is caused by the exhaustion of operating

system resources. It starts with faults and ends with crashing. Normally, software

does not age immediately after it starts running; however, it arises after a period of

time as the software at the beginning of operations works according to the required

specifications. However, after some time of operation, the software may not work

according to specifications causing faults and thus system crashes [18]. System

outages occur more due to software faults than to hardware faults [48].

Two kinds of aging are reported in the literature, the first of which occurring as a

result of changes in platform, such as hardware component replacement or upgrading

an operating system and unreleased software locks. Such changes make subsystems

appear old despite there being no aging problem. The second kind of aging occurs as

a result of software operating for a long time, which causes a lack in performance

and ends with unplanned system crashes, including memory leakage and data

11

corruption [18, 19, 49 and 50]. Software ages for two reasons, first being poor

adaptation to the environment and the second being continuous modification to the

software [61].As shown in figure 3, there are two stages of software aging. First, the

software starts its normal operation and the potential for failure at this stage is zero

(S0). After some time of operation, there is a possibility of failure occurring (Sp) and

the system will suffer from a fault until the crashing stage thus ensuring the

failure (Sf) [18].

S0 SP SF

λfprob λfailure

µup

Figure 3 Stages of software aging [18]

Aging errors can be fixed through rejuvenation and by using suitable maintenance

methods such as adaptive and perfective maintenance [18] [19]. Mobile device

software is the best example of software running for a long time. Generally, mobile

devices suffer of software aging because of their continuous running and use of many

resources. Therefore, the cloud was the best way to extend the operational life and

prevent software aging by offloading data from mobile devices to a cloud server [20].

One example of an aging error is a LOWIS application, which is a well services

management application from the Weatherford Company in the oil and gas sector.

Some errors occur through the running time leading to faults, and after all the

automatic refreshing attempts, an entire running system stops. Therefore, the system

was forced to restart even though the data of the last process performed may be

lost [29].

2.1.3.5 User Mistakes and Human Errors

The user is the major factor that introduces software faults and can be key to

understanding fault diversity [3]. Nowadays, many people are coding and most

design programs as a hobby and use different tools and languages to locate errors in

their programs [13]. Human error can occur in any phase of the software

12

development lifecycle (SDLC), which is defined as any human activity leading to not

achieving the goals of the system [69, 70 and 71]. User mistakes usually occur in

many systems, such as wrong outputs as a result of using wrong inputs. Moreover,

professional programmers make mistakes and they usually have errors in their

coding [43]. Many errors can be made by the end user. Such errors are broadly

divided into procedural errors and proficiency errors. Procedural errors are those

which occur while carrying out prescribed or normative sequences of action, while

proficiency errors are related to a lack of skills, experience or practice [51] [52].

Human errors can be divided into slips and mistakes. A slip error is a type of

procedural error occurring due to perceptual reasons wherein a subject may not pick

up cues or may inadvertently forget some details. For instance, the user may have

knowledge about the correct action but he fails in execute it, while mistakes are a

proficiency error which occur due to lack of user experience. They occur when the

execution process is correct but there is something wrong in the planning such as

when the user does not have knowledge about the correct action [51] [53]. Human

behavior plays a significant role in error occurrence. Human behavior is based on

rules, skills and knowledge. Rules-based errors rely on incorrect rules and

procedures, while knowledge-based errors occur when there are no procedures or

rules in the environment. Skills-based errors occur when the wrong intention results

in inappropriate execution of the plan [69, 72 and 73].

Human error can also be divided into two categories: commission and omission [63].

Error of commission can occur when one performs an unrequired task as the

operations usually force the operators to perform actions which are not required or

out of his scope of work [101]. It also occurs when human behavior in the correct

manner performs a task but the system status is not compatible with user

behavior [103]. On the other hand, error of omission means that the operator fails to

follow the procedure to perform his task; this is the most common human error and it

is the result of a number of symptoms, including lack of experience, time pressures

and lack of required staff, all of which are symptoms that may introduce later

errors [102].

13

2.1.3.6 Copy-Paste Errors

The end user is always interested in moving data using the copy-paste activity. They

copy data from a source and then paste it into a destination to reduce writing time

and to avoid transaction errors. However, this activity may lead to other errors

affecting productivity [100]. Errors usually occur in coding when using copy-paste

activity. This task sometimes leads to duplicate data, which occurs when copying and

pasting so as to reduce the time and efforts by using the same code many times rather

than rewriting fresh code [68].

2.1.4 Software Maintenance

Software errors are common and it is rare to find error-free software. It is important

to find a way to fix these errors but each error may occur due to another error and a

current error may introduce another error for which it becomes necessary to

determine the main reason so a feedback mechanism can be created [1] [4] [19].

Software maintenance is a useful process that has been found to fix these errors;

however, this process needs system monitoring to identify any problems and it needs

special tools and techniques [23]. Researchers expend much effort on maintenance in

order to find, fix and prevent future errors [19].

Software maintenance is a major concern in the world of military embedded systems.

For example, the software development cost for the US. F-16 airplane was

$85 million. However, the estimated cost of maintaining the software is

$250 million, as reported in [37]. Software maintenance is the modification process

of software after delivery or publishing in order to improve its performance, to adapt

it to environmental changes or to meet user requirements. It is a vital process without

which most of existing software would fail and become inefficient for organizations.

Therefore, around 80% or even more than 90% of programming efforts and

organizational budgets go to software maintenance [34].

The maintenance process passes through a sequence of activities, in which firstly, an

organization sends a fault report to developers and the developers diagnose the fault

and design suitable maintenance methods and identify the code that needs change.

14

They have to know why an error occurs, when an error occurs, who made the error,

and where the error occurred. They have to determine whether they can freeze the

error and prevent it. If they cannot do so, they have to find a way to detect it [24].

Second, developers apply the maintenance process and test the software, and finally

update any documents and retrain users for the new design [22]. The success of these

activities depends on how maintainable the software is. It also depends on the

technique used throughout the maintenance process as well as on user and

organization behavior [19].

The literature shows another definition of software maintenance, which is the

accumulation of all activities performed to provide cost-effective support to the

system. These activities perform before and after the software delivery [40].

Software maintenance can also be defined as the correction of errors and

implementation of new modification to enable the software to work with any new

changes and requirements. The literature also shows that software maintenance

should have a special procedure, especially when dealing with aging

phenomena [62].

Software maintenance is a critical process but not all maintenance processes succeed.

Sometimes, the process fails and leads to calamitous disasters because the process

may pass through undesirable consequences [25]. The maintenance process may

encounter a number of problems, including environmental problems such as resource

leaks, management problems, personal problems such as lack of skill and experience,

as well as user requirement problems due to maintenance processes possibly adding

or removing a number of user requirements [22].

Software must be continuously evolving and maintained in order to fulfill user

requirements and to improve its quality. Whenever this evolution and maintenance is

interrupted for any reason, it means that software quality may be corrupted, a

phenomenon known as software aging. Aging phenomena has been founded in

different aspects of life such as insulation systems, textiles and physics. They show

how their behavior is similar to aging in software.

Software aging can be defined as the degradation of software performance over time

for which there are two reasons: the effect of changes made to the software and the

failure to perform the changes according to the software owner’s requirements.

15

Software maintenance and evolution can be performed on software in order to fulfill

user needs and satisfaction or to adapt the software to environmental changes.

However, this continuous evolution may cause degradation in software quality and

performance, a phenomena called software aging [62].

Many factors impact the maintenance process, including maintenance task size, the

type of maintenance to be performed, and the maintainer’s dependence on the

expected task, the programming language being used, the priority of the task, the age

and size of the system, and the maintainer’s experience [34]. When a maintenance

project is completed, it means that the system has new maintainability and the team

related to the project has a good working knowledge of the system.

2.1.5 Software Maintenance Categories

Normally, software that is designed to work for a long time needs to be maintained to

adapt to platform changes and user requirements [38]. Software maintenance is a

process that performs to correct, adapt and perfect a system in order to increase its

performance to provisionally meet an organization’s requirements [40]. In order to

start with the maintenance process, it is necessary to identify where in the software

an error occurs and why it happened and a suitable maintenance method to

implement in order to prevent it [43]. As mentioned earlier, if we wish to fix an error,

we have to identify a suitable maintenance process compatible with the cause of that

error. We have experienced many types of maintenance, but the ones that are most

used are corrective, adaptive and perfective maintenance [19] [39] [42]. Moreover,

we can use rejuvenation (Section 2.1.6) to maintain the software suffering from

aging. System maintenance accounts for around 50% of the software lifecycle, with

adaptive maintenance alone representing 18.2% of project efforts and time and

13.8% of maintenance falling under the adaptive maintenance category [56].

2.1.5.1 Corrective Maintenance

These are the activities used to correct errors through running the software, including

design correction and code correction [25] [39]. Collective maintenance comprises

all the activities that revert the software to its initial state before the occurrence of a

16

failure [33]. It finds the error by identifying the code responsible for the error, fixing

it by designing new code to replace the buggy code, and testing it to ensure that there

is no error produced through the correction process [26]. Around 20% of the

maintenance effort goes to corrective maintenance according to [34]. There are many

reasons for this high rate of effort in corrective maintenance, including the difficulty

in defining and locating an error because a system may contain millions of lines of

code and many modules and components. For the size of modifications needed to fix

an error, it is necessary to know whether it needs the addition of new functionality or

a rewrite of many lines of code to retrieve the current functionality since the main

reason for errors is system functionality failure. Long clarifications of the error due

to the developers takes time to study. Another reason for the high rate of effort is to

decide whether modifications of the current block of code need to be applied or

whether developers have to insert new blocks of code. The last reason is that the

fixing process may introduce new errors or it may need multiple fixes [34].

It is difficult to determine where errors have been occurring. Whether they occur in

the code, database or user manual, there is much information to make this

determination easier, such as the path through which a system passes before point of

failure, the possible path through which a system may pass after failure, and the data

being processed when errors occur [35]. Faults are more difficult to isolate during

system/acceptance testing than during unit testing [36].

One example of this type of maintenance is the new version of the Tolteq application

– IGC product (V. 1.13), a WMD software developed by the NOV Oil and Gas

Company. A log pointer bug related to a memory logging module they had

experienced in the previous version was fixed [32].

2.1.5.2 Adaptive Maintenance

This is the activity of performing after delivery the application of the adaption for the

system to make it compatible with the platform changes. This would include the

addition of new code and retiring other code, or adding new modules and remove the

others [27] [39]. The number of lines of code to be changed and the number of

operator changes has a major impact on adaptive maintenance efforts. The most

important metrics used to estimate adaptive maintenance efforts are the class

17

complexity and the size of the code [34].

Adapting a system to platform changes is important to improve software

performance. However, repeated adaptation may lead to system decay. Through the

software life cycle, several countermeasures are applied against this decay, as shown

in the figure 4: (S1) assesses maintainability problems; (S2) determines a ranking of

these problems; (S3) selects some of the topmost items of that ranked list; and

(S4) addresses them [41].

Figure 4 Software maintenance life cycle with countermeasures against software

decay [41]

One example of this type of maintenance is the INTERSECT High-Resolution

Simulator, software used by the reservoir engineering team at Schlumberger Oil and

Gas Company. The challenge was to complete highly detailed and complex dynamic

reservoir modeling with improved speed, efficiency, and accuracy to plan enhanced

oil recovery (EOR) campaigns and aid corporate investment decision making The

solution was run for the INTERSECT High-Resolution Reservoir Simulator to

reduce runtime without compromising the quality of the results. As a result of that,

they achieved their goals and this process increased runtimes up to 20 times faster

than the original base case while maintaining integrity and accuracy and improving

project efficiency and confidence in decision making [30].

List of Problematic

Modules

Ranked List

Decayed Software Artifacts

Improved

Software Artifacts

Select top items and

Plan appropriate actions (S3) (S1) Assess Maintainability

Problems

(S4)

Other Maintenance activities

(S2)

Rank list items based

on some criteria

18

2.1.5.3 Perfective Maintenance

These are the activities performed after delivery to achieve high performance and

reliability goals with low effort and low cost [25] [39]. Studies have shown that 55%

of perfective maintenance goes into perfective maintenance [35]. It is used to

improve the initial statuses for systems. Perfective maintenance includes software

upgradability that provides us with quickly completing and installing the initial

version of the software, the possibility of uploading a software module to the system

without terminating ongoing system processes thereby reducing the time and

continuing the software process. Moreover, it expands the software life span and

enhances its performance and reliability by keeping it up-to-date with the new

technology [28].

One example of this type of maintenance is the new version of the LOWIS

application (version 7), which is one of the oil and gas industry’s critical

infrastructure systems related to an oil and gas company (Weatherford). They have

added a new service to solve one challenge occurring in the previous versions: the

challenge was “In earlier releases of LOWIS, whenever there was an update to the

client files users would need to run a new installation executable to update their

client software. Starting with LOWIS version 7.0 the executable you install locally,

or on your Citrix server, is actually a LOWIS client updater. Instead of directly

connecting to the server, it now downloads the client files from that server that will

be run locally. This removes the need for end users to need to regularly update their

client by manually installing newer versions, or administrators to update the client

installed on the Citrix server. LOWIS will now automatically download any updated

client file when you connect to the server.” [31].

Perfective maintenance involves redesigning, restructuring, redeveloping and

retesting of the system. Works such as [39] underline redesigning, restructuring,

redeveloping and retesting activities as they increase cost considerably most of the

time.

19

2.1.6 Software Rejuvenation

This is the technique that terminates software running, cleaning the internal state and

provides periodically proactive restarts to decrease the impact of aging, to avoid

crashing and to bring it back to the initial state before any occurrence of degradation

and error [44, 45 and 46]. The most important issue here is to define when, what and

how to rejuvenate. Many models have been introduced in the literature to answer

these questions [44, 47, 48 and 49]. Both rejuvenation and restart can be used to fix

memory leak errors, but there is a difference between these two procedures .The

comparison mentioned in [57] explains the difference between rejuvenation and

restart. This comparison shows that rejuvenation reboots the service periodically and

only the job currently in service will be dropped. Rejuvenation takes place at fixed

intervals in time. On the other hand, the restart process needs to designate a fixed

time to perform each service. If client requests are not performed by the requested

time, the client will cancel the request and send it again telling it execute all the

required services.

Rejuvenation is a cost effective and proactive fault management technique for a

software application that is continuously running for a long period of time, thereby

decreasing the risk of application failure and reliability and performance degradation.

The rejuvenation solution schedules periodic stopping of software and reboots it so

as to clean and refresh its internal state [76].

20

2.2 Major Works on Errors and How to Handle Them

2.2.1 Software Errors

Andrew J. and Brad A. proposed a substitution for ancient techniques to analyze

the impact of programming systems on errors. Additionally, the researchers proposed

finding the series of events that would lead to failure by defining a framework and

methodology to sample these events by monitoring user behavior with the system.

The authors built this framework based on three directions of research, namely the

classifications of common programming difficulties, studies on the difficulties in the

programming process, and research on behavior of human errors. Furthermore, the

researchers explained that the occurrence of software errors may lead to software

faults and that faults may lead to errors.

According to the researchers, the classification of the common difficulties does not

explain the system error types. It in fact explains the strong correlation between

errors, faults and failure. However, four important aspects of software error appear

through the analysis of this classification. According to authors, the first aspect is a

software error’s surface qualities. The authors consider that software errors can occur

as a result of language syntax. The second aspect refers to the lack of a user’s

programming experience, as exemplified in data-type inconsistency, design logic

bugs, and so on. The third aspect is the programming activity in which a software

error can occur. The fourth aspect is the action(s) that lead to errors.

The authors suggested six kinds of actions: creating, reusing, modifying, designing,

exploring and understanding. According to the authors, in order to build a strong

programming design, both programmers and the programming environment have to

be considered because they prove that system errors do not occur only as user

mistakes, and that occasionally, the programming environment plays a role in

software errors in addition to time interruptions and poor design and construction.

In order to build their framework, the authors considered both programmers and the

programming environment based on three aspects, the first of which is the

programmer’s activity, which involves specification activities, implementation

activities and runtime activities.

The second aspect is the programmer’s actions, which involves creating, reusing,

21

modifying, designing, exploring and understanding. The third and final aspect is the

breakdowns that results from the interactions between the programmer and the

programming environment (skill breakdowns, rule breakdowns, and knowledge

breakdowns) Afterwards, the authors combine these aspects into two ideas, the first

being cognitive breakdowns consisting of the type of breakdown, any suitable action

that may be needed to be performed when breakdowns occur, on which interface this

action is performed and the information being acted upon. The second idea is the

chains of cognitive breakdowns that leads to system errors.

As mentioned earlier, the researchers had defined a methodology based on designing

suitable programming tasks, appointing experienced programmers to perform these

tasks, recording any chains of cognitive breakdowns by tracking the path of software

error to find the main cause of these errors, and finally, analyzing the records to find

the relationships in the chains of cognitive breakdowns. According to the authors’

results, the study showed that the average chain had 2.3 breakdowns and caused 1.5

software errors. On average, 46% of programmers’ time was spent on debugging and

implementing code with about 77% of all breakdowns occurring during

implementation activity and about 18% of all breakdowns occurring during runtime

activity and Boolean expressions represented 33% of all breakdowns.

In general, the authors showed that 18% of breakdowns were debugging breakdowns

and 7% were reuse breakdowns, while nearly all of the 24% of the rule and skill

breakdowns in modifying code led directly to software errors [54].

Hongfa Xu, et al. showed that a system usually has many components, and these

components work well or badly depending on the impact of many external and

internal factors. The researchers presented error feedback to find the reasons for the

occurrence of errors, when the errors would occur and the source(s) of the errors. The

error feedback consisted of two classes: the run-time class used to scan the

programming code to detect the error; and the debugging class used to report

information and details about the error and suggestions about how to fix those errors.

The authors’ showed that each error feedback mechanism should consists of four

functions. The first function is the positioning of the error source; each program

contains various modules or subsystems. Sometimes, we work with data or functions

related to another module or class, in which case it is very difficult to locate the

22

source of the error. On the other hand, if we work with data related to the same

module, the source of the error in this case is easily located. The second function of

error feedback is the attainment of errors. This function can be performed by using

“catch…. exception” or by setting up a complete error-acquisition system based on

an OS or on BIOS. The third function is the expressions of errors. It is important to

provide a useful expression and vital information to the person responsible for fixing

system errors so as to avoid interrupting or decreasing the entire capability of the

system. This information is “date, time, source, type, event ID, user, description of

errors”. The last function is the transmission of errors. After finding an error, it must

be returned to the programmers for repair. However, two problems are presented

through the transmission process, namely missing the error and error distortion.

According to the authors, there were a number of disadvantages with their error-

feedback mechanism. Firstly, there was no standard in error expression. At times,

errors were presented because of another error, and in such as case, it was very

difficult to locate the source of the error. Moreover, attainment and transmission of

the error was not self-governing; as a result, there system errors would probably lead

to the failure of the mechanism. The authors suggested a solution to avoid these

shortfalls by setting up the error-feedback mechanism on a virtual machine to work

in a self-governing manner. In this case, system errors would not affect the error-

feedback mechanism [4].

Sunil Gupta, et al. defined an overview about the system’s importance in various

aspects of life. They also show how it is difficult to account how many project fails

or how much money is wasted each year because of such failures. The authors

explain that software failure occurs when there are differences between current

software behavior and real behavior for which systems are designed. The authors

explain the relations between faults, failure and error. The authors explain that many

errors may be introduced and if faults occur in a system, then it may lead to failure.

Additionally, the authors explain that a system consists of many components, and if

failure occurs in one of these components, it may lead to an entire system failure.

The authors show that the main reasons for failure may be due to source code, design

error or an error occurring in the environment. Moreover, the authors found that a

system’s failure range is elevated so long as we increase the number of users and

23

components involved in the system design process. The researchers conducted a

survey to find the system failures in most aspects of life. The survey introduced

many types of failure in each one of the life fields, including the medical field,

aviation, missiles and space craft, the financial sector, the IT field and various other

miscellaneous fields. For instance, in medical field, their survey showed a failure in

radiation therapy machine software related to the THERAC 25 Company. The failure

that occurred in 1995 was due to massive radiation overdoses to patients due to a rare

condition. The effect of this failure was the deaths of at least 5 persons. With regard

to space craft, the survey showed a failure in the software on NASA’s Mariner

spacecraft.

The failure that occurred in 1962 was due to a coding error causing the rocket to

wear dangerously (omission in coding). The effect of this failure at that time was

$18 million being wasted. In the financial field, the survey showed a failure

occurring at the Royal Bank of Scotland (RBS).

The failure that occurred in 2012 was due to a failed update leading to users being

unable to make or receive payments; the effect of this failure at that time was that

£125 million were wasted. In the IT sector, the survey revealed a failure occurring in

Apple’s iOS 8. The failure occurred in 2014 and was due to an error in an iOS 8

update, lost phone signals, a frozen update, and unlocking problems. The effect of

this failure was the inconvenience caused to Apple users. In other fields, the survey

revealed a failure occurring in new logistics software for a German car maker. The

failure that occurred in 2013 was a software change in the firm’s central logistics

system. Finally, the researchers concluded their study with some recommendations to

avoid failure in upcoming software design. The recommendations included hiring

many developers, hiring experienced developers, working with qualified services

firms, keeping versions organized and managing tasks, keeping working versions

clean, keeping work according to quality standards and involving people in every

process [5].

Rivalino M., et al. explained that software aging occurred as a result of software

faults and so-called aging-related bugs. These faults would cause accumulated errors

and change the behavior of the software in an unexpected manner and ultimately lead

the software to failure after crashing. According the authors, memory leaks are the

24

main cause of software aging as they are caused by the faults that occur in memory

management and lead to a decrease in the memory space until the system crashes.

According to the researchers, it is difficult to remove aging-related bugs during the

development or design period in spite of all the programming techniques in existence

to improve system reliability. Even in the execution or testing phase, when the

system runs for a short period, it is difficult to detect aging bugs, especially those

which occur as a result of memory leakage. Aging bugs occur only when the system

runs for long time.

The authors attempted to solve this challenge by trying to find the aging bugs caused

by memory leakage during the short testing period by using analysis systems. The

authors made a comparison between the version of the software that was being tested

and an older version of the software that had already passed the test. If there had

been a difference between the deviation of the old and the new version, it would

mean that the new version has aging bugs. Because memory leakage was one of the

main reasons for aging, the researchers would monitor the memory reading

periodically.

According to the authors, two important memory keys have to be monitored to

decide on the existence of a memory leak: system metrics (aging indicators) and

threshold values. The researchers showed the importance of using application

specific metrics to find memory leaks; for instance, RSS (resident set size), VSZ

(virtual memory size), HSZ (heap size), and HUS (heap usage) metrics that are

located in operating systems. The RSS is the working set size of monitored

processes. It considers only parts of the process (text, data, stack, and heap) currently

loaded in the main memory. VSZ acts as the total amount of virtual memory reserved

by a process. HSZ and HUS are, respectively, the total amount and the currently used

amount of the process heap, which include both in-memory and on-disk pages.

Following the authors’ research, they decided to use the HUS metric for their work as

it was the less noisy than the others and had a low rate of leak manifestation.

The authors also showed the importance of monitoring the selected metric values to

detect the existence of memory leaks by using an analysis model to make

comparisons between the heap usage pattern of the target application and the baseline

pattern [58].

25

Jamaiah H., et al. showed that the software aging occur when the software results

can’t be enough or useful for the user requirement or it can’t adapt with the

environment, they also showed that software aging occurs in most software relating

to most aspects of our lives. The authors showed that the maintenance of software

aging becomes difficult year after year and high cost, effort and time are expended

especially when the software life cycle decreases from working for 10 years

previously to 1 to 3 years only now. According to the authors, software quality does

not directly influence the number of years of its operation, and that it is related to the

quality of the environment in which the software operates since much software fails

to continue operations after a short period of time.

The authors explain the importance of building software in a flexible, modifiable and

scalable nature so as to be suitable for rapid technology development and keep it

young. Moreover, it must be rejuvenated to delay its aging. The authors show that

there are two types of aging, one of which occurs as a result of the changes made to

the software and the other occurring when the software fails to adapt to

environmental changes. The authors describe the characteristics of software aging as

follows: memory bloating/leaks, shared-memory-pool latching, unreleased file locks,

accumulation of un-terminated threads, file-space fragmentation, data

corruption/round off accrual, thread stacks bloating and overruns.

The researchers found that previous studies have a leak in detection of the external

view and perspective and that they are working on finding the perspective and

perception in software aging in Malaysia also they had been working to find the

factors that influence software aging. The authors prepared a survey in Malaysia,

including participants’ age, educational degree, firms at which they worked and their

positions. The authors’ results show that the most influential factors for software

change are business and technology requirements in addition to any failure of an

existing system currently running. The results also show that aging occurs because of

the software not being able to cover business and technology requirements and not

being able to adapt to the environment, which leads to a decrease in the software life

cycle and thus aging. The author’s results also show that the most influential factor

of aging is the product profile itself.

The adaptability, stability, technology, training and support, and user satisfaction are

the sub-factors related to the product profile of their software. Similarly, the second

26

most influential factor is the functional, which can be categorized with adaptability,

stability and rationality. The third factor is the surroundings, which consists of

sub-factors such as adaptability, training and support, stability, technology and

popularity. Furthermore, the results show that the human aspect has a major aging

influence on software applications in certain operating environments. The authors

propose that there is the possibility of delaying software aging so long as we have a

good understanding of the external factors that influence the software [59].

Jonas T., et al showed that adaptive maintenance is a useful method to improve

software quality after releasing the software. However, applying adaptive

maintenance many times may reduce software quality and maintainability, which

may lead to decay. The authors showed that using perfective and preventive

maintenance would be useful to have the software quality and maintainability last a

long time. According to researchers, the operator applying the maintenance may

encounter many problems. He may be provided with unsuitable resources to improve

the software quality. As a result, he would have to study all the negative and positive

aspects before making any decisions regarding maintenance.

The authors showed that there was a gap between developer and non-developer staff.

Many problems may arise because of this gap, such as managers being unable to

approve the addition of new features or fix bugs. Therefore, the authors formulated a

decision-supporting technique to fill this gap by using understandable indications

(such as current code complexity, past change frequency, and entanglement) within a

single view.

This visualization technique combined multiple indicators such as current code

complexity, past change frequency, and entanglement used to enhance circular

bundle views. It helped to identify the modules of code that may lead to increases in

maintenance efforts. By applying this technique, many benefits had arisen for the

researchers, including building communication between developers and non-

developers. The visual analysis was fast and it enabled human visual analysis to take

advantage of one of its strengths, namely identifying outliers using pre-attentive

perception. Ad-hoc interconnections of multiple indicators not requiring a defined

mathematical operation for interconnection became possible by mapping the

indicator’s values to visual variables. The authors encountered some limitation while

27

processing their approach. There was a difficulty with human recognition such that

the modules may have had numeric numbers close to each other but not identical and

the operator would possibly have thought that they were the same value. The authors

found a number of indicators related to increasing the maintenance risk while

increasing maintenance efforts and costs. These indicators that had been designed

easily were to be suitable for use and understandable even by non-developers [41].

Gouri P. classified maintenance as being corrective, adaptive, preventive and

perfective. The author showed that perfective and adaptive maintenance are used

commonly to enhance the system by improving its usability. The author attempted to

find the factors that improved the agility of maintenance and to find whether the

adaptive or perfective type was more suitable to process with the maintenance of the

system. Agility is the authority of the software to choose and react expeditiously and

appropriately to various changes in its surroundings and to the demands imposed by

the surroundings [98]. Because agility is important in software development, it is

important also in software maintenance. According to the author, there are many

factors that can impact agility in software maintenance. These factors may facilitate

it or hinder it; therefore, the author attempted to analyze these factors. According to

the author, organizations have schedules for maintenance. These schedules provide

information about when system maintenance is to be performed. These schedules of

maintenance may be monthly, semi-annual or annually. The author performed an

analysis on twelve systems with different maintenance schedules. According to

author’s study and some studies that applied by the some stakeholders, systems with

monthly or bi-monthly maintenance schedules were rated by the stakeholders as

being faster, more agile and more usable than systems maintained annually or semi-

annually.

The author defined maturity of architecture as the capability of a given architecture

to serve as the choice of the structural framework for deployment of given software

development efforts by virtue of its past usage and performance in multiple efforts of

an identical nature. According to the researcher, the maturity of the architecture has

an impact because the grown architecture reduces the technical risk linked with the

given architecture in advance. Moreover, it gives software users and developers more

space to focus on maintenance and development activities. In addition, in organically

28

built systems, software maintenance is executed by ad-hoc slots of components, as

and when a request is created. However, maintenance results take more time than

those systems that follow an industry standard. Moreover, there are other factors that

impact author rating. According to the author, software designed to support a

vendor’s products is more agile when compared with systems designed for industry-

independent products. Another factor that impacts the rating and the frequency of

schedule is the extent of regression test automation. According to the author, systems

with automated regression are better than systems with non-automated regression

because of the differences in procedure and the time needed to perform it. The

authors found that historical rates of change requesting submission also had an

impact on ratings. For systems with semi-annual schedules, enhancements were

rarely requested [60].

Jamaiah H., et al. showed that software can age similarly to a human and this aging

is inevitable and that it is possible to find the factors that lead to software aging. The

authors showed that aging occurred because software cannot adapt to an environment

and as a result of continuous modifications to the software. The authors showed the

possibility of applying rejuvenation to delay aging in software if the software aging

factors are clear and understood by the programmer. According to the researchers,

software aging occurs when the software works for a long time. However, time is not

the only factor that influences software aging and there is another factor that does so,

namely software quality. The researchers showed the importance of software quality

on its behavior throughout the life cycle, and so they focused on software quality in

their work.

The authors took an approach known as Goal Quality Metrics (GQM) to classify the

factors influencing software aging. They also used GQM to detect the cause of

software aging and examined the aging measurements produced by them. GQM

approaches consist of three levels: the first level being the conceptual level which

represents the goal of the study; the second level is the operational level, which

contains the questions related to the goal; and the third and final level is the

measurement level, which contains the metrics used in the study. The authors

showed that the best software is that which can maintain its quality for a long time

and this takes place using the rejuvenation process.

29

For all the aforementioned results, it is important to measure software quality at all

points in the software life cycle following the certification process in order to provide

the ability to predict quality decay. According to the authors, certification is the

procedure of giving value to the user or organization and a certificate must be

attached with this value to ensure its validity and to prove the internal and external

behavior of that software.

The authors showed that software quality should be gauged by non-developers

(users, designers, consumers and purchasers), so the quality certification model must

be uncomplicated, accurate and usable by any non-expert person. Most software

certification methods depend on official validation, professional evaluations,

designer valuation and software measurements to ensure the quality of an item.

Another method that measures quality is the ISO 9126 model (an old model,

currently there is ISO 25000). According to the researchers, software faults can occur

as a result of software error (40%), hardware error (15%), human error (40%) and

other factors (5%). Software aging occurs due to software errors. The authors

showed that in order to apply the rejuvenation process, it is vital to find the aging

factors by using the software aging measurement model. These factors can be the

base to build a rejuvenation model to delay or prevent aging. The researchers showed

that the measures being created were based on the experiences of those who used and

designed the software, which means it is a measure of the external features and

through this, they can link it with the internal features to enable an honest judgment.

According to these measures, aging can be categorized as little aging and big aging.

According to the researchers, many measures should be taken in the account to

improve software quality through the rejuvenation process.

These measures include software maintenance, redesigning, repositioning and

reorganizing. The measures should be applied at every point in the software life

cycle until the new version is introduced to replace the previous version. According

to the authors, many rules should be applied regarding software aging, such as

software having to be adapted to its environment, continuous growth, increased

complexity, organizational stability and the feedback system. The researchers

showed that there are four main factors that influence software aging. These include

the human factor, the functional factor, the history factor and the environmental

factor. The human factor comprises education, staff, users, training and popularity.

30

The functional factor comprises software usefulness when there is no benefit to using

the current software. The history factors comprise the time of designing the software,

the time of buying the software and the technology. The environmental factor is the

external factor comprising accessories, alternatives and changes of technology [61].

Zaiha N., et al. showed that software aging occurs over time as a result of resource

use ever long time as well as being due to damaged data. According to the authors,

software must be created and maintained to fulfill user requirements by improving its

quality, and when the maintenance process is interrupted, the quality of any software

will degrade and aging appears. The authors show that all software will suffer from

aging and nobody can prevent it; nevertheless, there is a possibility to extend

software life by understanding the causes that lead to this fault. The authors show the

importance of measuring software quality to enable software developers to monitor

software status throughout the lifetime of the software as any degradation in software

quality will lead to the software aging; moreover, software quality can be measured

using software metrics. The researchers showed that software aging can occur due to

using resources for a long time or by using damaged data, leading to a gradual

deterioration in software performance. They also showed the relationship between

errors, faults and software failure; they showed that the small errors as well as the big

errors can lead to software failure, this failure would contribute to software aging.

According to the researchers, there are two main focuses: the operating system and

the end user. Most previous studies had focused on hardware, operating systems and

memory problems and poor studies had focused on the end user aspect. The results of

the previous studies show that software aging occurs due to software error (40%),

hardware (15%), human error (40%) and other factors (5%). According to the

authors, factors that affect software aging include its design and implementation,

cost, any change in environment and technology, and the quality of the software. The

authors performed an empirical study to identify and classify the factors that would

affect software aging and the age of software. This study was performed in Malaysia

with 111 people who comprised practitioners and users. For software age to be

useful, the study showed that 32.4% of respondents gave an answer of 1-3 years,

47.7% gave 4-6 years, 15.3% gave 7-10 years and only 4.5% gave an answer of more

31

than 15 years. The previous results showed that the software had a short lifespan, so

for that the researchers suggested developing a model to extend software lifetime.

Concerning the factors that influence software aging, the study showed 4 factors: the

first of which was the functional factor with the highest score (4.48 out of 5), and

which related to the software function such that if any interruption occurred in the

software function, this factor would have many sub-factors, including the failure of

the existing software, the support system, improvement of the software according to

customer needs, interface and software performance.

 The second factor was the environment factor (4.32 out of 5), which related to the

change that would occur in the environment, including the addition of new

technology and the software being unable to work with the new technology. Many

sub-factors related to this factor include business requirements, technological

evolution, changes in the business process, environmental changes, information

about software and its popularity. The thirds factor was product profile (4.12 out of

5), which would contain information about the history of the software and its

purchase date. The sub-factors that related to this factor included technological

evolution, failure of existing software, information about the software, improvement

of the software according to customer need, its popularity, policies and

documentation and software maintenance. The fourth factor that influenced software

aging was the human factor (4.05 out of 5), the sub-factors of which related to

business requirements, changes in business processes, support systems, improvement

of software according to customer need, orders from the top management, software

quality, software maintenance, user satisfaction, education, training and popularity.

Depending on all the previous results of the study, the researchers created a model to

help developers and practitioners to monitor the quality and status of their software

and to help them in extending the lifetime of the software [62].

Carol Smidts created a stochastic model that related the software failure intensity

function to finding and discovering the occurrence of development and debugging

errors throughout the software lifecycle by using information about the development

lifecycle and the developers experience as well as other factors to predict rates of

human error. This model allowed for variations in the development lifecycle length

and explained the impact of this variation on development faults such as the nature of

32

faults, the number of faults and the amount of functionality developed. According to

the author, development errors occur when developers were involved in the software

creation stage, while debugging errors occur when developers attempted to remove a

known fault from the software; perhaps the target fault was not removed and new

faults may have been introduced. The author emphasized the importance of repairs

and maintenance throughout the development lifecycle (requirements, design or

coding stages). Once a fault is introduced in any of these stages and the more faults

are introduced, it means that more repair efforts need to occur. The author showed

that when one of the development lifecycle stages (requirements, design and coding)

is presented and built, many errors and faults may be introduced and those errors

may disappear during the debugging stage. The author conducted a study to find the

influence of repairing omission related faults and commission related faults on each

of the development stages size. It was revealed that repairing the omission related

faults increased the stage size by introducing new parts of the stage, but repairing

commission related faults didn’t have any influence on the development stage [63].

Weider D., et al. divided the software development lifecycle into three stages:

(1) low level design, which contains details about the algorithms and the components

used in the design process; (2) implementation, which contains the source code and

data needed in software testing; and (3) the unit test, in which each component and

code scope used in the design stage is tested individually. The authors showed that

50% to 60% of software product errors occurred during the development phase. The

authors also showed that it is important for engineers to have information about fault

types, their frequencies and percentages and when they initially occur in order to

succeed in software development and production [64].

Kanav K. and Foad S. showed that a high cognitive load environment caused

challenging problems for human-computer interaction designers as these

environments needed advanced decision making under time constraints in the

presence of noise. The authors showed that a large number of user errors had been

reported each year and they showed the great impact of user mistakes on these

systems. According to the authors, in order to monitor user behavior, it is important

to monitor the environment in which he works. The authors suggested two methods

33

to monitor user behavior and predict errors. The first method is to monitor the

behavior of each user individually and create a model to predict errors that may be

produced by the user.

The second method is the physiological method, which monitors the user by tracking

some factors, including user experience and fatigue. The authors created a multistage

analysis algorithm framework to classify the errors and provide feedback to users so

as to alert them to take measures to avoid errors. According to the authors, errors can

be categorized into two types: procedural errors, which occur through action

execution, and proficiency errors, which occur due to lack of user ability and

experience. The author’s framework analyzed user errors as slips and mistakes. The

authors provided a database for their framework; this database contained 80 samples

of each status (no error, slip, and mistake), 60 samples for training and 20 for testing.

Moreover, they used a time interval to check the time. The analysis revealed that

most of the results fell between slips and mistakes, and the results ensured that slip

errors were not a result of missing experience but occurring due to missing

perceptual cues [51].

Benjamin W., et al. showed that in user interaction system UIs, the user has

complex duties and when monitoring complex processes and choosing suitable

functions for them, human errors have been committed and these systems become

erroneous. The researchers showed that human error in such systems occurred due to

lack of knowledge and experience, training, situational awareness, mental workload

and interface design. The authors showed that users may create an abnormal situation

inside the system which would recognize this abnormal situation and attempt to

repair it by offering many reconfiguration options to users to help them in

recognizing and avoiding repetitions such errors. Moreover, they showed that it is

essential to develop user skills, knowledge and situational awareness in order to

avoid and prevent these errors. According to the authors, situational awareness refers

to the perception and comprehension of information and the projection of future

system states and the important factors that may increase or decrease human error in

user interface systems. The authors also showed that interface design and how the

information was distributed also influenced the situational awareness value, and it

showed how information can be accurate, how it is compatible with a user’s

34

situational awareness requirements and how it helps to reduce mental workload. The

authors showed that interface reconfiguration and flexibility help to reduce human

error and increase performance as they can reconfigure it according to their

requirements [65].

Sumie Y., et al. showed that human errors occur due to many reasons, including lack

of skills required to perform a task, lack of knowledge about how, why and when to

perform a task, limitation in a user’s abilities, mistakes because of wrong action and

wrong planning, slip errors because of wrong operations, lapse errors occurring when

the user forgets how to perform a task, and violation errors because of

non-compliance with specific standards and rules. In order to reduce and prevent

human error, the researchers created a model to adopt them, which they called an

analytic hierarchy process model. The authors conducted a study on human error

when using an AV remote controller and they showed errors occurring due to users

making mistakes and using wrong buttons, and users pressing the right button but the

button itself performing the wrong action or an error coming through the button size.

The authors showed that errors occurred because of the age of the operator such as

elderly persons having vision problems but children not having those [66].

Fuqun H. and Bin L. showed that the developer’s cognitive abilities are important

in software development and that cognitive errors are very common representing

87% of system residual failures. Therefore, there is a need to develop users’

cognitive abilities in order to prevent cognitive failure because if developers can

understand why, when and how error occurs, they can prevent errors more

effectively. The authors emphasized the factors that influence human error in order to

predict the human error probability. The researchers showed that human error cannot

be prevented using external devices and that it can be prevented only through the

developers themselves by studying their own cognitive processes.

The researchers created defect prevention based on a human error theories (DPEHE)

framework to explain the cognitive mechanism. This framework relied on the

knowledge and monitoring of developers. The framework consisted of three stages:

the knowledge training stage with 2 aspects, the first being the cognitive model used

to govern human error and is the second being developers having to know why users

35

produce errors, what type of error they produce and how to prevent these errors

during programming. The second state is the regulation training stage which helps

developers to promote the awareness and self-regulation of human error prevention.

Developers are supported by two DPEHE checklists. Developers monitor the

development process and when they identify an error during the debugging and

testing phase, they attempt to find the cause of this error by using the regulation lists.

In the third and final stage, developers employee the experiences and self-regulation

acquired during the regulation stage to continue to improve the systems and prevent

defects.

According to the authors, software developers have to understand the cognitive

process in software development in order to understand the error mechanism. They

showed that software development performance has two activities, namely routine

and design. Routine activities do not need any effort for problem solving, which

represents a small part of the development process. The main part of the process is

the coding and design activities, with coding representing routine problem solving

and design representing non-routine problem solving.

The researchers showed that errors would occur due to two reasons, the first being

due to limitations in working memory leading to error in the attention mode, and the

other reason being due to a lack of human knowledge, which leads to errors in the

schematic mode. Errors in the attention mode may be attributable to the user possibly

allocating attention to the wrong features or ignoring some information.

Alternatively, the user may have omitted proper checks or he may have performed

mistimed checks. When there is a working overload, the cognitive load can exceed

the user’s working memory capacity. Therefore, working overload error can be due

to task complexity, workspace limitation.

The researchers created an error base mode which was created based on the most

common errors encountered, validated and accepted by software developers in the

past. They would avoid errors that would rarely occur. Moreover, they created a

scenario for each error mode with explanations and examples to help software

developers to understand these error modes. Errors such as classical modes are

summarized by reason, post completion errors, lack of knowledge, and problem

representation errors. Furthermore, the researchers adapted, tailored, and reorganized

these modes to strike a balance between usability, consistency and completeness. The

36

researchers provided a heuristic strategy based on the error base mode and cognitive

mechanism of problem solving. This was an effective strategy used to enhance self-

regulation and provide a strong ability to help developers to choose the correct

approach to solving and preventing errors.

The authors provided three stages of problem solving: problem representation,

solution generation and solution evaluation. They also provided strategies for each

stage and they explained when, why and how to use each strategy. The researchers

showed that the error mechanism and prevention strategy is insufficient for use by

developers in real situations, but they needed to have knowledge about the situation

and this knowledge came through training, whether or not it is prone to error.

Therefore, the researchers designed two regulation checklists used in developer

training to increase and improve the ability to prevent errors. These checklists

include a problem solving regulation checklist (PSRC), which is used prior to and in

the course of software development. The other checklist, the root cause identification

checklist (RCIC), is used after defects are found in the debugging or testing phase.

The authors performed two studies, the first of which was in an international

organization at CMM Level 5, at a software development institution in the Chinese

Aviation Industry at CMM Level 1. The authors used both quantitative and

qualitative data in their study. The quantitative data were collected through the

participants’ assessment and the qualitative data were collected through open

questions to developers about their ability to prevent errors using DPEHE. The

researchers’ study showed that DPEHE would promote a programmer’s software

defect prevention capability by providing links between error modes, error-prone

scenarios, error prevention strategies and programming defect examples [67].

37

2.2.2 Software Maintenance

Jane H., et al. defined adaptive maintenance as the modifications made to software

systems to improve performance and adapt it to environmental changes. The authors

explained that managers and developers misjudged the time and effort needed to

maintain software. According to the authors, many problems would occur during a

system change process, including a lack of validated and adopted tools for planning,

estimating and performing maintenance. Therefore, the authors attempted to define

the metrics relating to adaptive maintenance by using a metrics based model to

estimate the effort required to perform an adaptive maintenance process depending

on personal hours. The authors built this model based on determining the metrics that

correlated with maintenance efforts. According to the researchers and studies shown

in [55], the most important metrics that affect the efforts of adaptive maintenance are

the percentage of operators changing and the number of lines of code that are edited,

added, changed or deleted [56].

Philipp R. and Katinka W. explain the impact of software aging and its

rejuvenation on network software. The authors define software aging as the

degradation of software performance until the software crashes. The authors showed

that the rejuvenation process is an evident process that solves aging problems by

periodically restarting the software. The authors define rejuvenation as the process

that prevents operation drop time and avoids system crashes caused by software

aging since rejuvenation reduces task execution times and avoids task failures. The

researchers attempted to explain the usability of using rejuvenation and restarting to

avoid aging problems.

The authors assumed a work area that contained clients and service providers. Many

clients were able to send service requests to services provider and the service

provider was able to provide service on request at the time by using a queuing

process (first-come first-served). The authors assumed two types of model to study

aging behavior, the first of which being the Weibull-distributed model, which follows

crashes that occur in the intervals of the Weibull-distributed length. The second

model is the explicit model, which follows the aging that occurs due to memory

38

leaks. According to the authors, when a crash occurs in the server, the server will lose

every task in its queue. According to the authors, both rejuvenation and restart will

improve the performance and maintain system availability. Rejuvenation saves on

execution time and reduces loads but the server will lose the job in a crash. A restart

will take more time to complete any tasks and it may cause further load on the server

because the client will continue in its requests. However, it will ensure that every

service request is performed.

After all this discussion, the authors found that restarts can be useful if aging does

not affect server performance; however, with explicit aging and when the load is

high, it is not possible perform a restart. They instead use rejuvenation as in this case,

a restart would increase the load on the server [57]. This result was also improved by

Rivalino M., et al., as they defined software rejuvenation as the best method to

decrease aging effects by resetting the application whenever aging effects occur [41].

2.2.3. Human Errors

Zahra A., et al. showed that the major factors contributing to change requirements

in software engineering are human errors and faults. The authors showed that not all

software projects are free of the requirements for change. Most projects would need

additions, modifications and deletions. These processes would increase the risk of a

project and as long as humans perform these processes, the human factor would be

the most important aspect in software projects. The authors showed that human error

included failure to set an objective, substitution of a word or alphabet, omitting

words or sounds, gaps in attention and memory failure, omitting a particular activity,

and using or disregarding a particular activity [69].

J. Ernstsen and S. Nazir showed that errors would occur in most socio-technical

frameworks (systems that need interaction between humans and machines). The

researchers showed that 80 to 85 percent of these errors were due to humans.

Therefore, many resources and efforts have been spent on improving human

performance and the reduction of human errors. The authors showed that the role of

people in such systems is critical because it may cause damage to equipment, touch

people’s lives, cause severe injuries, or contribute to environmental pollution.

39

The authors also showed that the assessment of human reliability is a vital approach

to predict human error, and the various studies of human error yielded a variety of

human reliability assessment methods (HRA), most of which can be divided into

quantitative or qualitative approaches. In order to understand and predict human

error, the HRA function finds the errors that occur through an operation, finds its

probability of occurring and finds methods to reduce such errors. The authors

showed that the HRA of socio-technical frameworks is complex because there are

many interdependent and dynamic variables influencing human reliability.

The authors attempted to reduce the high percentage of human error occurrence by

building a systematic human error reduction and prediction approach (SHERPA) to

study error types and error remedies apparent in pilotage systems (one of the

socio-technical frameworks). The authors conducted the study in Norway, where they

collected data through interviews and observation. They focused on the errors most

likely to occur, errors deemed as critical and the high frequency of the occurrence of

the same error type. With SHERPA, the authors divided the errors into five

categories, namely action errors, checking errors, retrieval errors, communication

errors and selection errors. The authors’ study shows that action errors are the most

frequent errors and second most frequent are communication errors [74].

Steven and Barry conducted a study on human error in air traffic control and

showed that human error involved perception, memory, decision-making,

communication and team resource management (TRM). The author’s literature

showed that human error may be skills, rules and knowledge-based behavior.

Additionally, it can be classified as slips, violations, mistakes and lapses [75].

Etman and Halawa conducted a study on the safety design in maritime incidents.

The authors showed that the focus on the human factors and errors was more

important than the ship’s design and operation. The International Maritime

Organization (IMO) focused its attention on the human role in maritime accidents in

the mid-1980s.

The authors showed that the main focus of the IMO was the enhancement of the

design and operation but there was a lack of attention given to human factors such as

the lack of proper competency, multinational crews, education and training systems

40

and many others. The authors showed that human role is vital in the maritime sector

and that people working in this sector must be well trained and motivated.

According to the authors, there are many factors influencing the role of people in the

maritime sector, including competence, as the authors showed that additional to the

human skills and training, they have to have good assimilation and understand the

subjects. The human attitude towards education and training would be given by their

mental ability, intelligence, personality, character and sensitivity. Self-awareness and

self-evaluation were the key drivers. Motivation can be driven by the teamwork,

good communication, direction and empowerment. In order to help people to

perform their duties and jobs, they have to have a good life style, attend alcohol and

drugs tests, and be encouraged periodically to exercises and watch their diet. A safe

and secure work environment includes a safe work area, the use of full safety

equipment, and the use of safe and proper tools.

According to the authors, in order to perform in the maritime safety culture, maritime

administrations should take care in people’s training, education, work environment,

working and rest hours, and living conditions onboard. According to the authors’

literature and the study performed by the IMO, there were many factors that would

lead to accidents in the maritime sector, with the human factor being the main cause

of 80-100% of these accidents. The authors show that the common human causes of

accidents are stress, lack of training, lack of knowledge and education, lack of

motivation, lack of communication, carelessness, and operator errors [77].

Paul C. & Ann B. show that user errors commonly occur through the use of

interactive systems and these errors are disastrous as device errors. The researchers

showed that people behave rationally, as they draw on their goals and knowledge and

attempt to perform tasks, and as a result, identical types of persistent human error

occur. The authors defined a user model to detect these persistent user errors.

The model detects three classes of persistent errors, the first of which is post

completion errors, which occur when a user terminates a current remaining

outstanding completion task. The second class is device delay errors, which occur

when there is a device delay in performing a task without feedback for the user and

the user attempts to repeat the last action again. The third class is communication-

goal errors [78].

41

John G. and Sandra L. showed that human error can be identified, controlled and

minimized if we know the potential source of them.

The authors established an approach to identify the critical procedures in preventing

major accidents and human error related to these procedures and how it can be

controlled to minimize the errors. Depending on a report from the Exxon Mobil

Company, they made an assessment of all the operational procedure steps to find

potential and relative errors.

When the assessment found the relative errors, they continued to find the cause of the

errors, the consequences of those errors and the existing control and recovery

actions. Table (1) below contains examples of error categories and specific error

types used in the classification of potential human errors.

This is a comprehensive list based on the Health and Safety Executive Guidance

Document on Human Failures provided on the Exxon Mobil website [79].

42

Table 1 Examples of error categories and specific error types used to classify

potential human errors [79]

Error Type Error

Action Errors

 Operation too long/short

 Operation mistimed

 Operation in wrong direction

 Operation too little/too much

 Operation too fast/too slow

 Misalignment

 Right operation on wrong object

 Wrong operation on right object

 Operation omitted

 Operation incomplete

 Operation too early/too late

Checking Errors

 Check omitted

 Check incomplete

 Right check on wrong object

 Wrong check on right object

 Check too early/too late

Information Retrieval

Errors

 Information not obtained

 Wrong information obtained

 Information retrieval incomplete

 Information incorrectly interpreted

Information

Communication Error

 Information not communicated

 Wrong information communicated

 Information communication incomplete

 Information communication unclear

Selection Errors

 Selection omitted

 Wrong selection made

Planning Errors

 Plan omitted

 Plan incorrect

Violations

 Deliberate routine

 Deliberate exceptional

43

Barry K. defines major error types including slips and lapses, which include wrong

sequences to perform tasks, the amount of performance (too much, too little), errors

related to maintenance, cognitive errors related to misunderstanding of a system’s

design or procedure, and the lack of training and skills. Maintenance errors and latent

failures include maintenance and testing errors that lead to immediate failure. Errors

of commission occur when the operator performs an incorrect and unrequired task.

Additional error types include rule violations, idiosyncratic errors and software

programming errors [80].

Vicki A. and Donald G. showed that human error can lead to economic loss as a

result of equipment damage or system outages. They also showed that human error

occurred in an airline company in 1998 which had caused an outage for two hours.

This outage at that time led to 265 delays. According to the researchers, there are

three major sources of human error: communication and coordination errors,

procedural errors, and errors resulting from installing new software or equipment.

The authors conducted a study on the airlines’ facilities companies with a number of

maintenance control center (MCC) specialists. The researchers found that human

error in the MCC would occur due to communication and coordination errors that

were caused by miscommunication between two teams or between two persons, such

as when changing from an engine generator to a commercial generator without

informing the radar center.

Moreover, errors were due to incomplete or incorrect information, caused by using

an out-of-date database, such as appointing a task for a technician who was not

available or on vacation. The work shift and workload errors also occasionally

contributed to problems, such as a work shift continuing a long time or assigning

many tasks to be perform in a short time.

The researchers also conducted a study with a number of operations control center

(OCC) specialists, and discovered that human error in OCC was related to procedural

errors. At times a specialist had not been following a procedure or the procedure was

not clear. There were also remote maintenance monitoring errors such that a number

of the specialists had not been familiar with the remote maintenance monitoring.

Usability errors showed that the usability of the interface design needed to be

examined and that operators should have been trained to use it. Finally, insufficient

44

training/insufficient experience errors occurred because most of the experienced

specialists were retired and the new specialists were lacking in training and

experience [81].

Ender A. shows that the major cause of maritime accidents is human error and those

errors are caused by the environment, organization and technology. Therefore,

ergonomic design has to exist in systems that have interactions with humans in a

specific work environment to support the abilities and limitations of the human user.

The researcher showed that the human factor in maritime accidents has been

growing. In 1960, the human factor comprised 30% of an accident, but in the present

time, it is now 70-90% of accidents. The researcher shows that the poor training and

education of a ship’s employees is one of the main causes of most accidents that

occurred in the present days [82].

Neville A., et al. built a human error template (HET) that used an External Error

Mode (EEM) to predict pilot error. The HET and EEM comprised twelve types of

errors, namely fail to execute, task execution not complete, task executed in wrong

direction, task repeated, wrong task execution, task executed on the wrong interface

element, task executed too early, task executed too late, task executed too much, task

executed too little, misread information [83].

James J., et al. divided human error into: (1) unintentional errors, which occur when

the user lacks experience with the task he performs; and (2) intentional errors, which

occur when the user believes that his action or idea is better than the prescribe action.

The researchers suggested that managers should determine whether a user has the

required skills and attitude to perform an assigned task because they study the

Performance Shaping factors (PSFs) that influence human performance. According

to the authors, there were three PSFs that can affect human performance, namely

internal PSFs, external PSFs, and stressors. Internal PSFs are the user’s abilities,

skills and training as shown in the table (2):

45

Table 2 Internal Performance Shaping Factors [84]

Internal Performance Shaping Factors

 Training/skill

 Practice/experience

 Knowledge of

required performance

standards

 Stress: mental or

bodily tension

 Intelligence

 Motivation/work

attitude

 Personality

 Emotional state

 Gender

 Physical condition/health

 Influences of family and

others

 outside persons or

agencies

 Group identifications

 Culture

External PSFs are divided into two characteristic groups: situational characteristics

and task, equipment and procedural characteristics, as shown in the table (3).

Table 3 Two groups of characteristics of External Performance Shaping Factors [84]

Situational Characteristics
Task, Equipment and Procedural

Characteristics

 Architectural features

 Environment: temperature,

humidity, air quality,

lighting, noise, vibration or

general cleanliness

 Work hours/work breaks

 Shift rotation

 Availability/adequacy of

special equipment, tools or

supplies

 Staffing levels

 Organizational structure:

authority, responsibility or

communication channels

 Actions by supervisors,

co-workers or accreditation

and regulatory personnel

 Facility policies

 Procedures: written or unwritten

 Written or oral communications

 Cautions and warnings

 Work methods/practices

 Dynamic vs. step-by-step activities

 Team structure and communication

 Perceptual requirements

 Physical requirements: speed and

strength

 Anticipatory requirements

 Interpretation/decision making

 Complexity: information load

 Long- and short-term memory load

 Calculation requirements

 Feedback: knowledge of results

 Hardware interface factors: design of

control equipment, test equipment,

process equipment, job aids or tools

 Control-display relationships

 Task criticality

 Frequency/repetitiveness

46

Stressors are divided into psychological and physiological stressors, as shown in

table (4):

Table 4 showing psychological and physiological stressors [84]

Psychological Stressors Physiological Stressors

 High task speed and heavy task load

 Suddenness of onset

 High jeopardy risk

 Threats of failure or loss of job

 Monotonous or meaningless work

 Long, uneventful vigilance periods

 Conflicting motives about job

performance

 Negative reinforcement

 Sensory deprivation

 Distractions: noise, glare or movement

 Inconsistent cueing

 Lack of rewards, recognition or

benefits

 Fatigue

 Long duration of stress

 Pain or discomfort

 Hunger or thirst

 Temperature extremes

 Radiation

 Exposure to diseases

 Vibration

 Movement constriction

 Movement repetition

 Lack of physical exercise

 Disruption of circadian

rhythms

The authors showed that in order to improve human performance, managers have to

address two basic error types, namely errors caused by human characteristics that are

not related to the work situation (accounting for 15-20% of errors), and errors caused

by factors related to the design of work situations (accounting for 80-85% of errors).

The authors showed that if the PSF of the work situation is not compatible with

human abilities, attitudes and limitations, errors will arise because of insufficient

procedures, insufficient equipment design, insufficient training, poor communication

between workers, incompatible human interests and insufficiently labeled

equipment [84].

Cannon A. B., et al. Conducted a study on user errors on mobile devices. The

authors showed that the age of the user and input content have a major impact on

error rates. Moreover, they showed that there were two important metrics for

evaluation of the input content, namely accuracy and speed. According to the

authors’ literature, there are three groups of typing error: substation, insertion and

omission. The researchers presented two methods used for typing into mobile

47

devices: keypad devices and touch screens. They showed that users made fewer

errors when using keypad devices. According to the researchers’ literature, keypad

devices were faster than touch screens as they found that typing time when using a

touch screen was 73% longer than a keyboard. However, the authors found that the

age of the user has an impact on this value. They found that the older user works

faster when using a touch screen, but those users made fewer errors when using

keypad devices. The authors attributed those errors to the lack of knowledge and

experience in using touch screens. The researchers conducted a study on participants

from two different generations, and the results of their study differed from their

literature. The study showed that users work faster and make fewer errors when using

touch screens and it showed that age has no impact on user error [85].

Gheorghe and Cecelia studied human error in the power sector and showed that

human error was the main key in operational unavailability, equipment damage and

accidents. They showed that the training and experience of operators had a major

impact on the availability of the systems, as inexperienced operators caused a greater

number of errors when performing complex tasks. The authors defined human error

as any user behavior or factor that can cause negative results of a task. The authors

showed that there was a strong relation between the complexity of a task, human

experience and human error, as inexperienced operators would produce a greater

number of errors when the complexity of a task was high, as shown in the figure (5).

Figure 5 Relationship between human error, operator experience and complexity of a

task [86]

The researchers showed that errors would usually occur because of system design,

environment and human factors. They also showed that system design could be

48

controlled to reduce human error while the environment and the manner in which an

operator would use the system was very difficult to control. Moreover, they showed

that human factors have a major impact on the availability and security of systems as

the user has direct use of the system infrastructure. There are many factors that have

an impact on the incidence of human error, as shown in the table (5):

Table 5 shows the factors that have an impact on the occurrences of human error[86]

No. Factors Description

1 Competency Knowledge of the job, skills and attitude towards

the job

2 Communication The ability to express information

3 Procedural Factors Clarity regarding standards and procedures and

whether they are adhered to

4
Mental and Physical

Factors
Stress, cognitive overload and exhaustion

5
Socio-Environmental

Factors

Personal pressures such as family pressures and

organizational pressures such as work relations

6 Motivation Individual and organizational aspects such as job

satisfaction and leadership style

7
Ergonomic

Factors
Light, noise, space, etc. This includes health,

safety and shift cycles

The authors divided human error into two types: error of omission, which means a

user executes a task but missing some of the procedure steps, and error of

commission, which means that the user performs a task following a different

procedure. The researchers showed that human error can occur due to a lack of

procedure, a lack of personal training and poor environments as well as occurring

due to the design of the system interface, as misunderstanding the interface may

increase occurrences of errors [86].

Pierre and Paula studied human error in mining and manufacturing. They showed

that 84% to 94% of errors was due to human error. The authors showed that the

working shift and the time had a strong impact on the occurrence of human error, and

it was observed that errors increased during the night, especially from 01:00 am to

08:00 am [87].

49

Anne I., et al. studied human error in aviation systems and showed that more than

90% of errors were human in origin. The authors showed the importance of periodic

training of the personnel as every system is being continually upgraded and a lack of

training would increase the number of errors [88].

Tianyi C., et al. studied the typing and pointing errors in mobile web. The authors

showed that the design of a system interface had a strong impact on increasing or

decreasing errors and they showed that users usually produced more errors when

using the web on their mobile devices. Moreover, their work was inefficient when

compared with desktop or laptop computers.

They also showed that user experience had an impact on error occurrences as

experienced users produced fewer errors when using the mobile web. The

researchers’ study revealed many types of typing errors, including key ambiguity

errors, which would occur when typing a letter different from the target letter,

missing key error, which would occur when the user would press the targeted key but

without applying sufficient force to select it, additional key errors, which would

occur when the keys are very near to each other so when the user selects the target

key, another key might also be selected, bounce errors, which would occur when the

user presses the targeted key more than one time, long key press errors, which would

occur when a key is pressed for too long a time and causing unwanted copies of the

targeted letter, and finally, transposition errors which This error occurs when two

characters adjacent to each other are typed in reverse order [89].

Phillip P., et al. studied human error in the transportation sector and defined human

error as the inability of the user to achieve the required target through predefined

conditions or achieving a task different from the targeted task. The authors showed

that to prevent or to decrease human error, many barriers should be created such as

procedure, experience or training barriers, as those barriers would be used to prevent

any undesirable events [90].

Won C.C. and Tae studied the effects of human error on electrical components and

showed that human error had been the main cause of the errors that impact electrical

components. The authors classified human error in three groups: (1) Errors of

commission, accounting for 97% of errors; (2) Mistake/slip/lapse/violation errors,

50

accounting for 74%; and (3) Latent errors, which account for 95%. The authors

showed that in order to prevent an error, human behavior had to be studied. They

described many casual factors that influenced human behavior, as shown in the

figure (6) [91].

Figure 6 Casual factors that influence human behavior [91]

Shi W., et al. showed that human error is the most major cause of error and failure in

production systems. The authors showed that many factors would influence human

behavior and lead them to make mistakes. Some of these factors are physiological,

psychological, training, experience and environmental, as shown in the figure

(7) [92]:

Figure 7 Model of human error [92]

Insecure psychology

Safety training does not

reach designated position

Safety management is flawed

Psychological factors

Environmental factors
Human

Error
Accident

Casual factor

Equipment

deficiency

Working

Environment

Written Procedure

and drawings

Field

Knowledge

Communication Working

Performance

Workload Workload

MMI Environment Writing Qualification Shift Attitude Personal Budget

Components Safety gear Application Education Technique Safety

gear

Characteristic Operation

51

Dahlias S., et al. studied road accidents and showed that human error accounted for

over 90% of road accidents. They also showed that people’s lack of knowledge and

experience is the most important reason for accidents in addition to non-periodic

training as users may face difficulties remembering the steps and sequences that lead

them to perform the task. The authors divided human error into three groups:

perceptual errors, which occur as a result of long working shifts and the time of the

day; distraction errors, occurring when the user’s mind is concentrating in something

else; and response errors, occurring when the user does not make the correct or most

appropriate response or there is a delay in responding to an emergency situation.

Finally, the authors showed that human thinking and reaction times are the most

important factor influencing task reliability [93].

Marie B. studied human error in dynamic environments. She defined human error as

the entire task performed a person and exceeding the limit of acceptance. She also

defined human error as every activity performed by a person not leading to the

achievement of target goals. The author divided errors in terms of human cognitive

activity levels, namely skill-based level, rule-based level and knowledge-based level.

The author showed that many temporal errors may occur and her literature revealed

five groups of temporal errors: incorrect estimate of sequence of actions, incorrect

estimate of duration, failure in the evaluation of the right time to act, failure in the

anticipation of an event, and failure in the synchronization of collective actions [94].

Arnstein F. categorized errors as active errors and latent errors. Active errors are

those that occur directly before an accident. The author divided active errors in terms

of human cognitive activity level, the first of which is the skill based level, including

slips and lapses. The second active error in terms of human cognitive activity level is

the rule based level, such that commitment to following rules and procedures is

important to reduce human error. The third error is the knowledge based level; the

author showed the importance of the training and experience of the person to reduce

human error. The author categorized active errors technically as capture errors,

description errors, memory errors, sequence errors and mode errors. Latent errors

would occur due to a lack of training, lack in supervision, following poor or incorrect

procedures as well as to social factors such as human language knowledge and

physiological states [95].

52

2.3 Discussion

In this chapter, we reviewed works reported in the literature on software failures and

maintenance, mainly relating to oil and gas industry. These studies can be clustered

as follows:

- Education

Educational level is one of the human factors that influences software

efficiency and have an impact on software life cycles [61] [62]. People with

high educational levels have the ability to improve the culture of safety [77]

since lower educational levels had been one of the main causes of most

accidents in the 19th century [82].

- Experience

People without sufficient experience in their field cannot imagine the size of a

problem that they encounter and they are not able to find suitable solutions

for their problems [7]. Experience level is the main factor for mistakes, as

persons with little experience cannot recognize the correct course of action to

perform [51] [53]. As a result, they cause more errors when performing

complex tasks [86]. Moreover, the level of experience can help to predict the

error rate [63] as it is the main cause of human error [65].

Therefore, in order to decrease human error, the level of experience must be

one of the barriers to be overcome [89]. One of the recommendations that can

be given to firms would be to hire experienced people [5]. Error rates will

increase when the experienced specialists are retired and junior specialists

come to replace them [81]. These newer specialists do not have sufficient

experience to perform the tasks assigned to them and thus they will cause

unintentional errors [84].

- Language

A misunderstanding of the rules or procedures may lead to rule-based errors

[69, 72, and 73]. These errors may occur if a specialist cannot understand

procedures well or if procedures are not clear [81].

53

- Work Load and Training

The assessment of human reliability and ability is a vital factor to predict

human error [74]. The length of a working shift has an impact on error

occurrence, as long shifts mean assigning too many tasks for a person and

this may lead to human error [81]. Long working shifts can lead to perceptual

errors [93]. Moreover, errors increase during night shifts, especially between

1 am and 8 am [87].

- System Interface

The use of touch screens, keyboards and touch screens with pens has a major

impact on error frequency as users produce fewer errors when using

keyboards [85]. This interface design has an impact on human error as much

human error occurs due to interface design. Interface flexibility can help to

reduce human error and increase performance [65]. Furthermore,

misunderstandings of the interface may increase error occurrence [86]. The

usability of an interface should be examined because low usability may lead

to human error [81].

- Extra Activities

Copy-paste is usually used by the people to reduce writing efforts in repeated

text. Sometimes, however, wrong or duplicated data are copied, which leads

to errors [68] [100]. Unrequired activities lead to errors of commission [80].

Operators are usually involved in unrequired tasks and perform tasks outside

their scope of work which thus leads to error [101].

54

CHAPTER THREE

OIL AND GAS WELL SITE AND WORK FORCE

3.1 Introduction

As mentioned earlier, drilling an oil well passes through many stages and services;

one of those services is the well construction service.

Well construction services, including casing and tubular running services, using

various sizes and types of tubing and casing joints to create the well string. The

casing or tubing is a joint that is usually about 40 feet long and screwed together to

form longer lengths of casing, called casing strings or tubing strings. Each joint has a

collar or coupling slightly larger in diameter than the joints and it also has female

threads used to connect the two male joint ends, as shown in the figure (8).

Figure 8 Casing and tubing joints with coupling

Casing service starts in the initial stages of the drilling by running various sizes of

casing pipes depending on the well depth and according to the casing program. Here,

a well is drilled to a certain depth, cased and cemented, and then the well is drilled to

a greater depth, cased and cemented again, and so on. Each time the well is cased, a

smaller diameter casing is used. The casing aids the drilling process in several ways.

55

It prevents fluid loss into or contamination of the production zones and provides a

strong upper foundation to allow for the use of high-density drilling fluid to continue

drilling deeper.

Tubing services are used to run the production pipe line and the fluid’s route to the

surface through the tubing string to the export or storage devices. This tubing runs

down into the well within the casing. Tubing joints are threaded together into a long

string, which is then perforated near the bottom to allow fluid from the formation to

flow into the tubing.

In order to perform casing and tubing running services, various types of resource are

used, including hydraulic equipment (HPU, HPT and CRT), rig mechanization tools,

handling gear, experienced human, additional to use one of the oil and gas critical

infrastructure systems called Torque Turn system (TTS).

The TTS Technician uses TTS with a power tong or CRT to apply the required torque

to the thread. The torque needed to make up the casing thread is monitored and

controlled in order to ensure that the casing thread does not leak. The make-up torque

ratings rely on casing size, grade, metallurgy, weight, and the thread compound

friction factor being utilized.

3.2 Human Role in Torque Turn Systems

The human role in this field can be:

- Blue collar employees to handle jobs manually (in manufacturing,

construction, maintenance, etc.) such as technicians and engineers who

perform the work at the sites.

- White collar employees to handle office operations such as customer services,

HR, sales, etc.

- Crew chiefs and supervisors to handle maintenance and monitor work as well

as be in touch with the customers.

- Managers to oversee the departments and ensure that work in performed

according to customers’ needs.

TTS is a real time computerized device with data acquisition systems embedded in it.

TTS is usually connected with external hydraulic equipment such as HPT, CRT via

the BGDU. This external equipment is used to make up and break down the casing

56

and tubing joints. The TTS receives the torque and turn values that come from the

external device through the BGDU and calculates the values according to a special

formula to show the running results as a graph on a screen, as shown in the figure

(9).

Figure 9 Running result as shown on TTS screen, Figure shown casing or tubing

running graph

As shown below in the use case diagram, four actors are involved in these

operations:

Torque Turn Technician:

This person’s responsibilities and tasks include working with the TT Tech Supervisor

to validate requirements and verify jobs and equipment, operate and maintain other

machine actors (power tong and CRT), stage all TTS equipment including the torque

turn box, tension/compression load cells, computers, the correct cables, power boxes,

(if applicable) explosion proof boxes, inverters, dump valves, have knowledge of

connections and thread designs, independently set up and safely operate the TTS

system as well as understand torque turn and torque time theory, perform routine

cleaning and packing of TTS equipment and be responsible for rigging up and

rigging down the TTS tools on the rig site as well as occasionally performing basic

maintenance on site when required.

57

Torque Turn Supervisor:

This person’s responsibilities and tasks include maintaining TTS equipment in

accordance with the maintenance program, inspecting, assembling, disassembling,

and checking the functionality of TTS equipment. He may assist TTS techs to set up

and safely operate tubing/casing tong, power units, casing and tubing handling

equipment as well as perform routine calibration and troubleshooting on TTS

Tension gear i.e., load cell and torque gauges, train new TTS hand personnel in

operation and maintenance procedures of power equipment and TTS systems,

oversee TTS personnel development of assets in advancement to the next level with

the competence development team, maintain an efficient inventory stocking system

of the TTS Lab and equipment, upgrade all TTS units so they are using the correct

and up-to-date versions of TTS Software and tracking of TTS equipment and

technicians’ locations .He is also responsible for extracting job dates through the TTS

unit and sending them to customers.

Hydraulic Power Tong:

This is a machine operated by a liquid which moves in a confined space under

pressure. It makes a rotating motion when breaking out, or making up casings,

tubing, drill pipes and other pipes. This tong has a self-locking mechanism and large

capacity pliers used to grip and drill casing and tubing string components so as to

apply torque, and make or break casings and tubing placed in drill holes in order to

maintain the opening of the well. Some TTS accessories (load cell, turns sensor,

BGDU and damp valves) installed on the power tong acquire torque and turns data

and send them to the TTS Unit.

Casing Running Tools:

This is a machine used with casing running only, it has the same duties of the power

tong but with a difference in the operation type. It makes a rotating motion when

breaking out or making up casings, and it helps to provide automation of running

casings and ensures that casings reach the bottom without fail. It has been proven

that pipe rotation and reciprocation while cementing helps to achieve a more reliable

and secure cement job. Casing running tools provide the ability to rotate, circulate,

58

and reciprocate pipes simultaneously during cementing operations. It is built in the

TTS accessories (load cell, turns sensor) and it connects with the TTS unit over a

wired or wireless connection to obtain the torque and turns data followed by sending

the data to the TTS unit.

Rig Up TTS and connect the

accessories at the Rig site to

perform the job

Rig down the TTS and

disconnect the its accessories

Rig Up TTS and connect the

accessories at the base for testing

and make it ready to send to the

rig site

Run and operate the TTS

In case of any problem, Check for

solution

Torque Turn System

Extend

Torque Turn

Technician

Torque Turn

Supervisor
CRT

Power

Tong

Figure 10 Torque Turn System Use Case Diagram

59

3.3 Discussion

As we have presented in this chapter, there are various tasks at the rig site. The turn

torque system is one of the most sophisticated series of tasks as it requires both

physical activities and mastering computerized equipment. The skills of technicians

are crucial. We recall that the researcher has considerable experience in the field.

His knowledge is also a source in addition to the literature reviewed in the second

chapter. Thus, we have added the following points of the technicians to be

investigated in addition to what we have placed in Section 2.2, Computer literacy,

experience in torque control and monitoring systems, and technician behavior as in

using equipment.

60

CHAPTER FOUR

ANALYSIS AND RESULTS

4.1 Introduction

The second and third chapters presented the following points to be investigated at the

rig site: education, experience, language, work load and training of the employees,

interface, and extra activities. We formulated these points into interview questions.

Later, we approached two key informants to validate the questions. Finally, we

present Figure 11 and Table 8.

4.2 Interview Questions

Section One: Technician Skills and Qualifications

Q.1. What is your level of education?

Q.2. What is your level of experience in the oil and gas industry?

Q.3. What is your gender?

Q.4. Select the system(s) with which you are familiar.

Q.5. Can you understand the English guides and manuals on your own?

Q.6. Select what you are familiar with.

Q.7. Regarding the Torque Turn System, select from below the certificates you have.

Q.8. How often do you receive assessments from the Torque Turn System Trainer?

Section Two: Work Period

Q.9. How long did your longest work shift at the rig site continue?

Section Three: You may select more than one option.

Q.10. During the running operation, you make fewer errors when you are using…

Q.11. During the running operation, which of the following is easy to use?

Q.12. You work faster when you are using...

61

Q.13. You find that the Torque Turn software interface is easy to follow.

Q.14. You find that the Torque Turn software interface is robust, i.e., does it crash or

does it do what it is not intended to do?

Q.15. You find that the Torque Turn software interface helps you to work quickly.

Section Four: Technician Behavior

Q.16. Do you use copy-paste in repeating tasks? For instance, copying comments

from previous graphs and using them for the next graph’s comments.

Q.17. You do calculations in your mind when you need to calculate and fill job data

such as torque value for maxT., minT., optT., high shT., low shT., dumpT and

refT.

Q.18. You use an electronic calculator when you need to calculate and fill job data,

such as torque value for maxT., minT., optT., high shT., low shT., dumpT and

refT.

Q.19. You double check any data you filled before starting a job.

Q.20. You check the final torque and shoulder point values for each joint that you run

in the hole.

Q.21. You left the acquiring or ready-mode window and go to another window, such

as when reviewing previous graphs.

Q.22. You do further activity which is not required; for instance, performing

calibrations to load cells and torque gauges.

Q.23. You use your personal memory stick to transfer data to or from the Torque

Turn System.

Q.24. You use a company memory stick to transfer data to or from the Torque Turn

System.

While conducting the interviews, the participants are informed not to disclose any

private information related to them and their organizations so as to maintain

anonymity.

The third question, about the gender of the technician, yielded an interesting result.

All of the respondents appeared to be male while this question was recommended by

the person regarding how to validate our question, taking into account the differences

between male and females in term of ability in working under pressure, behavior and

decision making. Nevertheless, we intended to report it.

62

4.3 Results

The questionnaire with 24 questions was administered to 81 respondents. The results

are as follows:

R1. The analysis reveals a strong relation between making fewer errors and ease of

use when using the keyboard. Technicians who used keyboards made fewer

errors and they found them easy to use. There were 38 responses with this

feedback.

R2. A meaningful relation can be seen between making fewer errors and working

faster when using a keyboard. Technicians who use keyboards make fewer

errors and find it faster. There were 33 responses with this feedback.

R3. A strong relation can be seen between ease of use and working faster when

using a keyboard. Technicians who use keyboards find it easy to use and do

their jobs faster. There were 34 responses with this feedback.

R4. The analysis reveals a strong relation between making fewer errors and ease of

use when using touch screens. Technicians who use touch screens make fewer

errors and found them easy to use. There were 40 responses with this feedback.

R5. The analysis reveals a strong relation between making fewer errors and

working faster when using touch screens. Technicians who use touch screens

make fewer errors and perform their jobs faster. There were 34 responses with

this feedback.

R6. The analysis reveals a strong relation between ease of use and working faster

when using touch screens. Technicians who use touch screens found them easy

to use and performed their jobs faster. There were 37 responses with this

feedback.

R7. The analysis reveals a strong relation between making fewer errors and ease of

use when using touch screens with pens. Technicians who use touch screens

with pens made fewer errors and they found them easy to use. There were 52

responses with this feedback.

63

R8. The analysis reveals a strong relation between making fewer errors and

working faster when using touch screens with pens. Technicians who used

touch screens with pens made fewer errors and performed their jobs faster.

There were 51 responses with this feedback.

R9. The analysis reveals a strong relation between ease of use and working faster

when using touch screens with pens. Technicians who used touch screens with

pens found them easy to use and performed their jobs faster. There were 58

responses with this feedback.

R10. A strong relation is revealed between finding the torque turn system interface

easy to follow and finding it robust. Technicians who usually found the

interface easy to follow would find it robust. There were 41 responses with this

feedback.

R11. A strong relation was revealed between finding the torque turn system interface

easy to follow and finding that it helped to work quickly. Technicians who

usually found the interface easy to follow would work quickly. There were 50

responses with this feedback.

R12. The analysis reveals a strong relation between finding the torque turn interface

robust and finding it helps to work quickly. Technicians who did not find the

interface robust did not find that it helped to work quickly. There were 41

responses with this feedback.

R13. The analysis reveals a strong relation between finding the torque turn system

interface robust and using a personal memory stick. Technicians who usually

found the interface robust used their personal memory sticks to transfer data

from and to the torque turn system. There were 22 responses with this

feedback.

R14. The last relation revealed through the analysis was the relation between finding

the torque turn system interface robust and using a company memory stick.

Technicians who usually used a company memory stick to transfer data from

and to the torque turn system; they did not find the interface robust. There were

21 only respondents with this feedback.

64

Figure 11 Results of the relation between human factors and the number of respondents

to each relation after analysis

12.1 TTS Keyboard is help

to work faster

10.1 TTS Keyboard is help to
make fewer errors

11.1 TTS Keyboard is

easy to use 38

33
34

12.2 Touch screen is help to

work faster

10.2 Touch screen is help to

do less error

11.2 Touch screen is

easy to use

34 37

40

15 TTS Interface is

help to work quickly

13 TTS Interface is

ease to follow

14 TTS Interface

is robust

23 TTS Tech. using

their own memory

stick

50

41

22

21

12.3 Touch screen with pen is

help to work faster

10.3 Touch screen with

pen is help to do less error

11.3 Touch screen with

pen is easy to use
52

51 58

R1-Pvalue=0.057

R2-Pvalue=0.022 R3-Pvalue=0.000

R5-Pvalue=0.404

R4-Pvalue=0.395

R6-Pvalue=0.000

R7-Pvalue=0.000

R9-Pvalue=0.000
R8-Pvalue=0.007

R10-Pvalue=0.322

R11-Pvalue=NA

R14-Pvalue=0.025

R13-Pvalue=0.239

R12-Pvalue=NA

24 TTS Tech using

company memory

stick

41

65

4.4 Data Analysis

An analysis has been made of the respondents’ feedback and we took the feedback

results to identify the findings, limitations and future work, as we present later in

Chapter 5.

4.4.1 Data Sets

In this section, we present the data collected from the Torque Turn System

technicians through a questionnaire with 24 questions. The questionnaire had been

distributed to more than 200 TTS technicians; however, we received only 81

responses. The targeted persons were TTS technicians working with various oil and

gas companies around MENA. All were male with over 5 years of experience in the

field. Our questions focused on the information that yielded through the literature

about the factors impacting human error, i.e., experience, education, training and

work shifts.

In terms of experience, 68 respondents were senior technicians (over 5 years of

experience), 12 respondents were junior technicians (1 to 4 years of experience) and

only one respondent was a trainee (less than one year of experience), as shown in

figure 12.

84%

15%

1%

Respondents' Experience

Senior (More than 5 years
of Experience)

Junior (1 to 4 years of
Experience)

Trainee (less than one year
of Experience)

Figure 12 Respondents’ experience level

66

In terms of education, 39 respondents had Bachelor’s degrees, 20 had diplomas, 12

had a secondary degree or less, 5 had a master degree and 5 had other certificates, as

shown in figure (13).

Figure 13 Respondents’ educational level

In terms of working shifts, 24 respondents worked a 12-hour working shift, 20

worked an 18-hour working shift, 15 worked a 6-hour working shift, 11 worked a

30-hour working shift, while only 9 worked a 24 hour working shift and one

respondent preferred to not to respond to this question, as shown in the figure (14).

Figure 14 Respondents’ working period

67

In terms of periodic training, 59 respondents would take periodic assessment and

training, 15 respondents would take irregular assessment and training, while only 6

respondents had never received any training and one respondent preferred to not to

respond to this question, as shown in the figure (15).

Figure 15 Attendance of periodic assessment and training

4.4.2 Statistical Analysis

We used the chi-square test for independence to compare every two variables of our

questionnaire in a contingency table to see whether the distributions of categorical

variables differ from one another. Too many relations were yielded through the

analysis, so we ignored the relations whose difference in proportion were not

significant as the p-value was much greater than 0.05. Therefore, we listed the

relation whose difference of proportion is significant with a p-value near to or less

than 0.05, as a low value means there is a high correlation between the two sets of

data.

Chi-square uses the formula below to perform the test.

https://www.statisticshowto.datasciencecentral.com/what-is-a-categorical-variable/
https://www.statisticshowto.datasciencecentral.com/what-is-a-categorical-variable/

68

Where:

- c = degree of freedom

- O = questionnaire observation value

- E =our expected value

- The summation symbol means that we perform a calculation for every single

data item in the data set.

As shown above in Section 4.3, the analysis yielded only 14 relations with a

significant difference of proportion, as shown in the table (6).

Table 6 P-value of analysis relations

Relation P-Value Relation P-Value Relation P-Value

R1 0.057 R6 0.000 R11 N.A.

R2 0.022 R7 0.000 R12 N.A.

R3 0.000 R8 0.007 R13 0.239

R4 0.395 R9 0.000 R14 0.025

R5 0.404 R10 0.322

We can see in the above table that relations R1, R2, R3, R6, R7, R8, R9 and R14

were significant with chi-square values with p-values less than 0.05, while relations

R4, R5, R10 and R13 were not significant with chi-square values with p-values

greater than 0.05. Moreover, relations R11 and R12 had zero p-values, but we still

recommend those relations for our work and future studies should be established to

focus on those relations.

69

CHAPTER 5

FINDINGS AND FUTURE WORK

5.1 Findings

Finding 1: There is a strong relation between less error and ease of use; there were

38 responses on using a keyboard (as shown above in R1) and 40 responses on using

touch screens (as shown above in R4). While the relation is stronger when using

touch screens with a pen, there were 52 responses on this question (as shown above

in R7).

Finding 2: There is a strong relation between less error and working faster. There are

33 responses on using Keyboard (as shown above in R2) and 34 responses on using

touch screen (as shown above in R5). While the relation was stronger for using touch

screens with pens, there was 51 responses to it (as shown above in R8).

Finding 3: There is a strong relation between ease of use and working faster. There

were 34 responses to using keyboards (as shown above in R3) and 37 responses to

using touch screens (as shown above in R6). While the relation is stronger for using

touch screens with a pen, there were 58 responses to it (as shown above in R9).

Finding 4: There is a strong relationship between finding the interface easy to follow

and finding it robust. There were 41 responses for that (as shown above in R10).

Finding 5: There is a strong relationship between finding the interface robust and

finding that it helps to perform work quickly. There were 41 responses to it (as

shown above in R12).

Finding 6: There is a strong relationship between finding the interface easy to use

and finding that it helps to perform work quickly. There were 50 responses to it (as

shown above in R11).

70

Finding 7: There is a strong relationship between finding the interface robust and

using a personal memory stick. There were 21 responses to it (as shown in R13).

Finding 8: There is a strong relationship between finding the interface robust and

using a company memory stick. There were 21 responses to it (as shown above in

R14).

Finding 9: A major similarity was found between relation no. 1 and relation no. 4, as

their numbers respondents were nearly identical, numbering 38 for relation no. 1 and

40 for relation no. 4. A difference was found for relation no. 7 when comparing it

with relation nos. 1 and 4 as there were 52 respondents for relation no. 7.

Finding 10: A major similarity was found between relation no. 2 and relation no. 5,

as the numbers of respondents were nearly identical, numbering 33 for relation no. 2

and 34 for relation no. 5. A difference was found with relation no. 8 when comparing

it with relation nos. 2 and 5, as there were 51 respondents for relation no. 8.

Finding 11: A major similarity was found between relation no. 3 and relation no. 6,

as the numbers of respondents were nearly identical, numbering 34 for relation no. 3

and 37 for relation no. 6. A difference was found with relation no. 9 when comparing

it with relation nos. 3 and 6, as there were 58 respondents for relation no. 7.

Finding 12: We couldn’t find enough information as this information might not

public or may not many people worked on such subject.

71

5.2 Research Limitations

The work presented in this thesis has the following limitations:

Limitation 1: Collecting Information

The targeted firms are distributed over broad areas in the Middle East and North

Africa. Not all of them were investigated and it was difficult to conduct face-to-face

interviews with every TTS technician in those firms.

Limitation 2: Information Resources

There was a lack of literature related to errors due to end users, especially in oil and

gas operation systems. Moreover, senior management refused to allow the researcher

to have access to information about previous systems errors and maintenance

activities. Moreover, data didn’t collect at the wok time.

Limitation 3: System Analysis and Design

In Chapter 3, we identified the actors, actions and information associated with torque

turn systems and represented them by drawing use case diagrams. The technology,

databases behind the system, structured ER diagrams and deployment models needed

to be taken into consideration when analyzing the system.

Limitation 4: Software Development

The development in software should be taken into account, as I/O devices and the

interface will change to follow updates of infrastructure.

Limitation 5: Legal Issues

Organizational barriers on the legal side are excluded from this study. Some

important questions were excluded from the questionnaire because the respondents

would not answer them as they would have impacted their company policy.

72

5.3 Future Work

Future Work 1: Conducting Meetings and Surveys

To overcome limitation 1, we recommend data collection through face-to-face

interviews as much as possible as data will be collected through semi-structured

interviews. Data collected in this manner can be evaluated and the results may

provide precise information regarding end user errors in the oil and gas sector.

Future Work 2: Access Data Sources

From limitation 2, it becomes necessary to obtain real examples through the oil and

gas sector regarding end user errors and software maintenance, also it is necessory to

collect the data directly through the field at the time of work.

Future Work 3: System Development

To overcome limitations 3 and 4, a real study should be conducted on the torque turn

systems taking into account the continuous development of its interface and

accessories.

Future Work 4: Investigation of Legal Issues

To overcome limitation 5, further research is needed to investigate in depth a firm’s

rules and legal barriers as detailed research on laws and regulations will strengthen

the study.

73

5.4. Conclusion

Many factors can impact system availability, one of which includes end user behavior,

the major reason for system unavailability. In this thesis, we presented the factors that

can have an impact on end user behavior i.e., experience, training, the interface,

working load and so on.

Our study shows the impact of computer input devices (keyboards, touch screens,

touch screens with pens) on end user behavior and thus on system availability. In

findings 1, 2 and 3, we learned that using a touch screen with a pen is easier and is the

best method to make fewer errors in addition to helping to perform work quickly.

In addition, our study shows the impact of the interface on system availability. In

findings 4, 5 and 6, we learn that the end user works faster when the interface is easy

to use.

Memory sticks also have an impact on system availability. In findings 7 and 8, we

learn that there is a relationship between the use of memory sticks and finding the

interface to be robust. The respondents, who were usually using their personal memory

sticks, saw the interface as robust, while the respondents using company memory

sticks.

In this thesis, we have found that many external and internal factors can influence end

user behavior and thus, affect operational availability and efficiency. External factors

include system interfaces, input and output devices and memory sticks. Internal factors

include training, experience, education and working shifts.

About the research questions:

“Can end user behavior influence oil and gas operations availability and efficiency in

TTS?”

In light of our findings in Section 5.1 and considering the limitations in Section 5.2,

we believe the results obtained in our analysis support our hypothesis that end user

behavior has an impact on oil and gas availability and efficiency, keeping in mind that

most of the potential factors that influence user behavior are due to a lack of

experience, education, training, system interfaces and working shifts.

74

REFERENCES

[1] Schneidewind, N. F. (1975). Analysis of error processes in computer software. In

ACM Sigplan Notices (Vol. 10, No. 6, pp. 337-346). ACM.

[2] Kumar, P., & Khan, R. A. (2015). Classification of Software Requirement Errors:

A Critical Review. International Journal of Computer Applications, 132(7), 9-14.

[3] Huang, F., Liu, B., Song, Y., & Keyal, S. (2014). The links between human error

diversity and software diversity: Implications for fault diversity seeking. Science of

Computer Programming, 89, 350-373.

[4] Xu, H., Chen, W., & Qian, H. (2011). Research on error feedback mechanism of

information system. In 2011 2nd International Conference on Artificial

Intelligence, Management Science and Electronic Commerce (AIMSEC) (pp. 5112-

5115). IEEE.

[5] Gupta, S., Mishra, A., & Chawla, M. (2016). Analysis and recommendation of

common fault and failure in software development systems. In 2016 International

Conference on Signal Processing, Communication, Power and Embedded System

(SCOPES) (pp. 1730-1734). IEEE.

[6] Dong, L., Melhem, R., Mossé, D., Ghosh, S., Heimerdinger, W., & Larson, A.

(1999). Implementation of a transient-fault-tolerance scheme on DEOS-A

technology transfer from an academic system to an industrial system. In

Proceedings of the Fifth IEEE Real-Time Technology and Applications Symposium

(pp. 56-65). IEEE.

[7] Glass, R. L. (1981). Persistent software errors. IEEE Transactions on Software

Engineering, (2), 162-168.

[8] Memon, A., & Xie, Q. (2004). Using transient/persistent errors to develop

automated test oracles for event-driven software. In Proceedings. 19th

International Conference on Automated Software Engineering, 2004. (pp. 186-

195). IEEE.

75

[9] Sosnowski, J. (1994). Transient fault tolerance in digital systems. IEEE Micro,

14(1), 24-35.

[10] Wu, J., & Shin, K. G. (2005). SMRP: fast restoration of multicast sessions from

persistent failures. In 2005 International Conference on Dependable Systems and

Networks (DSN'05) (pp. 150-159). IEEE.

[11] Luo, Q., Poshyvanyk, D., Nair, A., & Grechanik, M. (2016). FOREPOST: a tool

for detecting performance problems with feedback-driven learning software

testing. In Proceedings of the 38th International Conference on Software

Engineering Companion (pp. 593-596). ACM.

[12] Nistor, A., Chang, P. C., Radoi, C., & Lu, S. (2015). Caramel: Detecting and

fixing performance problems that have non-intrusive fixes. In 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering (Vol. 1, pp. 902-

912). IEEE.

[13] Chambers, C. C. W. (2014). Helping end-user programmers find and fix

performance problems in visual code.

[14] Zhu, L., Jin, H., & Liao, X. (2016). A Tool to Detect Performance Problems of

Multi-threaded Programs on NUMA Systems. In 2016 IEEE

Trustcom/BigDataSE/ISPA (pp. 1145-1152). IEEE.

[15] Van Gurp, J., & Bosch, J. (2002). Design erosion: problems and causes. Journal of

systems and software, 61(2), 105-119.

[16] Pérez-Castillo, R., de Guzmán, I. G. R., & Piattini, M. (2011). Diagnosis of

software erosion through fuzzy logic. In 2011 IEEE Symposium on Computational

Intelligence in Dynamic and Uncertain Environments (CIDUE) (pp. 49-56). IEEE.

[17] De Silva, M., & Perera, I. (2015). Preventing software architecture erosion

through static architecture conformance checking. In 2015 IEEE 10th International

Conference on Industrial and Information Systems (ICIIS) (pp. 43-48). IEEE.

[18] Jiang, L., & Xu, G. (2007). Modeling and analysis of software aging and software

failure. Journal of systems and software, 80(4), 590-595.

76

[19] Pusatli, O. T. (2009). Interoperability and Information System Replacement in the

Health Sector. University of Newcastle.

[20] Wu, H., & Wolter, K. (2015). Software aging in mobile devices: Partial

computation offloading as a solution. In 2015 IEEE International Symposium on

Software Reliability Engineering Workshops (ISSREW) (pp. 125-131). IEEE.

[21] Adobe Flash CS4 Professional (10.0.2) addresses issues regarding the compiling

of large project files. (2017), retrieved from http://helpx.adobe.com/.

[22] Yip, S. W., & Lam, T. (1994). A software maintenance survey. In Proceedings of

1st Asia-Pacific Software Engineering Conference (pp. 70-79). IEEE.

[23] Sosnowski, J., Dobrzyński, B., & Janczarek, P. (2017). Analyzing problem

handling schemes in software projects. Information and Software Technology, 91,

56-71.

[24] Endres, A. (1975). An analysis of errors and their causes in system programs.

IEEE Transactions on Software Engineering, (2), 140-149.

[25] López, C., & Salmeron, J. L. (2012). Monitoring software maintenance project

risks. Procedia Technology, 5, 363-368.

[26] Jambor-Sadeghi, K., Ketabchi, M. A., Chue, J., & Ghiassi, M. (1994). A

systematic approach to corrective maintenance. The Computer Journal, 37(9), 764-

778.

[27] Kozlov, D., Koskinen, J., Markkula, J., & Sakkinen, M. (2007). Evaluating the

impact of adaptive maintenance process on open source software quality. In First

International Symposium on Empirical Software Engineering and Measurement

(ESEM 2007) (pp. 186-195). IEEE.

[28] Tai, A. T., & Alkalai, L. (1998). On-board maintenance for long-life systems. In

Proceedings. 1998 IEEE Workshop on Application-Specific Software Engineering

and Technology. ASSET-98 (Cat. No. 98EX183) (pp. 69-74). IEEE.

[29] DURNAN, H. (2017). What To Do When an Error Occurs on the LOWIS Server,

retrieved from: https:// softwaresupport.weatherford.com.

http://helpx.adobe.com/

77

[30] Case Study: ONGC Improves Field Simulation Runtime by 20 Times Using the

INTERSECT High-Resolution Simulator (2016), retrieved from:

https://www.slb.com.

[31] DURNAN, H. (2017). Changes to Updating the LOWIS Client in 7.0, retrieved

from: https://softwaresupport.weatherford.com.

[32] Tolteq Release Notes - iGC, retrieved from: https://www.NOV.com.

[33] Gao, B., Guo, L., Ma, L., & Wang, K. (2012). Corrective maintenance process

simulation algorithm research based on process interaction. In Proceedings of the

IEEE 2012 Prognostics and System Health Management Conference (PHM-2012

Beijing) (pp. 1-5). IEEE.

[34] Li, J., Stålhane, T., Kristiansen, J. M., & Conradi, R. (2010). Cost drivers of

software corrective maintenance: An empirical study in two companies. In 2010

IEEE International Conference on Software Maintenance (pp. 1-8). IEEE.

[35] Rao, B. S., & Sarda, N. L. (2005). Execution model for outsourced corrective

maintenance. In The Fifth International Conference on Computer and Information

Technology (CIT'05) (pp. 944-948). IEEE.

[36] Evanco, W. M. (2001). Prediction models for software fault correction effort. In

Proceedings Fifth European Conference on Software Maintenance and

Reengineering (pp. 114-120). IEEE.

[37] Schrank, M. J., Anderson, A. C., Bisignani, M. E., & Boyce, G. W. (1995).

Assessing the capabilities of military software maintenance organizations. In

Proceedings of 14th Digital Avionics Systems Conference (pp. 314-319). IEEE.

[38] Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., & Mauro, J. (2015).

Developing correct, distributed, adaptive software. Science of Computer

Programming, 97, 41-46.

[39] Sherer, S. A. (1992). Cost benefit analysis and the art of software maintenance. In

Proceedings Conference on Software Maintenance 1992 (pp. 70-77). IEEE.

https://www.slb.com/
https://softwaresupport.weatherford.com/
https://www.nov.com/

78

[40] Rashid, A., Wang, W. Y., & Dorner, D. (2009). Gauging the differences between

expectation and systems support: the managerial approach of adaptive and

perfective software maintenance. In 2009 Fourth International Conference on

Cooperation and Promotion of Information Resources in Science and Technology

(pp. 45-50). IEEE.

[41] Trümper, J., Beck, M., & Döllner, J. (2012). A visual analysis approach to support

perfective software maintenance. In 2012 16th International Conference on

Information Visualisation (pp. 308-315). IEEE.

[42] Cote, V., & Pierre, D. S. (1990). A model for estimating perfective software

maintenance projects. In Proceedings. Conference on Software Maintenance 1990

(pp. 328-334). IEEE.

[43] Pavlic, Z., Lugaric, T., & Silic, M. (2012). Debugging in consumer-programming

oriented environments. In 2012 Proceedings of the 35th International Convention

MIPRO (pp. 841-846). IEEE.

[44] Hanmer, R. S., & Mendiratta, V. B. (2010). Rejuvenation with workload

migration. In 2010 International Conference on Dependable Systems and Networks

Workshops (DSN-W) (pp. 80-85). IEEE.

[45] Huang, Y., Kintala, C., Kolettis, N., & Fulton, N. D. (1995). Software rejuvenation:

Analysis, module and applications. In Twenty-Fifth International Symposium on

Fault-Tolerant Computing. Digest of Papers (pp. 381-390). IEEE.

[46] Levitin, G., Xing, L., & Ben-Haim, H. (2018). Optimizing software rejuvenation

policy for real time tasks. Reliability Engineering & System Safety, 176, 202-208.

[47] Vaidyanathan, K., & Trivedi, K. S. (2005). A comprehensive model for software

rejuvenation. IEEE Transactions on Dependable and Secure Computing, 2(2), 124-

137.

[48] Garg, S., Puliafito, A., Telek, M., & Trivedi, K. (1998). Analysis of preventive

maintenance in transactions based software systems. IEEE transactions on

Computers, 47(1), 96-107.

[49] Trivedi, K. S., Vaidyanathan, K., & Goseva-Popstojanova, K. (2000). Modeling

and analysis of software aging and rejuvenation. In Proceedings 33rd Annual

Simulation Symposium (SS 2000) (pp. 270-279). IEEE.

79

[50] Parnas, D. L. (1994). Software aging. In Proceedings of 16th International

Conference on Software Engineering (pp. 279-287). IEEE.

[51] Kahol, K., & Saeidi, F. (2009). Haptic system to alert users before impending

human errors. In 2009 IEEE International Workshop on Haptic Audio visual

Environments and Games (pp. 36-41). IEEE.

[52] Dekker, S. W. (2007). Doctors are more dangerous than gun owners: a rejoinder to

error counting. Human factors, 49(2), 177-184.

[53] Dix, A., Finaly, J., Abowd, G. D., & Beale, R. Human-computer interaction (3RD

Ed.) (pp. 258-288).

[54] Ko, A. J., & Myers, B. A. (2005). A framework and methodology for studying the

causes of software errors in programming systems. Journal of Visual Languages &

Computing, 16(1-2), 41-84.

[55] Huffman Hayes, J., Mohamed, N., & Gao, T. H. (2003). Observe‐mine‐adopt

(OMA): an agile way to enhance software maintainability. Journal of Software

Maintenance and Evolution: Research and Practice, 15(5), 297-323.

[56] Hayes, J. H., Patel, S. C., & Zhao, L. (2004). A metrics-based software

maintenance effort model. In Eighth European Conference on Software

Maintenance and Reengineering, 2004. CSMR 2004. Proceedings. (pp. 254-258).

IEEE.

[57] Reinecke, P., & Wolter, K. (2010). A simulation study on the effectiveness of

restart and rejuvenation to mitigate the effects of software ageing. In 2010 IEEE

Second International Workshop on Software Aging and Rejuvenation (pp. 1-6).

IEEE.

[58] Matias, R., Andrzejak, A., Machida, F., Elias, D., & Trivedi, K. (2014). A

systematic differential analysis for fast and robust detection of software aging. In

2014 IEEE 33rd International Symposium on Reliable Distributed Systems (pp.

311-320). IEEE.

[59] Yahaya, J. H., Abidin, Z. N. Z., & Deraman, A. (2015). Perspective and perception

on software ageing: The empirical study. In 2015 10th International Conference on

Computer Science & Education (ICCSE) (pp. 365-370). IEEE.

80

[60] Prakash, G. (2010). Achieving agility in adaptive and perfective software

maintenance. In 2010 14th European Conference on Software Maintenance and

Reengineering (pp. 61-62). IEEE.

[61] Yahaya, J. H., Abidin, Z. N. Z., Ali, N. M., & Deraman, A. (2013). Software

ageing measurement and classification using Goal Question Metric (GQM)

approach. In 2013 Science and Information Conference (pp. 160-165). IEEE.

[62] Abidin, Z. N. Z., Yahaya, J. H., & Deraman, A. (2015). Software ageing

measurement model (SAMM): The conceptual framework. In 2015 International

Conference on Electrical Engineering and Informatics (ICEEI) (pp. 456-461).

IEEE.

[63] Smidts, C. (1999). A stochastic model of human errors in software development:

impact of repair times. In Proceedings 10th International Symposium on Software

Reliability Engineering (Cat. No. PR00443) (pp. 94-103). IEEE.

[64] Yu, W. D., Barshefsky, A., & Huang, S. T. (1997). An empirical study of software

faults preventable at a personal level in a very large software development

environment. Bell Labs Technical Journal, 2(3), 221-232.

[65] Weyers, B., Burkolter, D., Kluge, A., & Luther, W. (2010). User-centered interface

reconfiguration for error reduction in human-computer interaction. In 2010 Third

International Conference on Advances in Human-Oriented and Personalized

Mechanisms, Technologies and Services (pp. 52-55). IEEE.

[66] Yamada, S., Nonaka, T., & Hase, T. (2010). Suitable graphical user interface

selection based on human errors using analytic hierarchy process. In 2010 IEEE

International Conference on Systems, Man and Cybernetics (pp. 3028-3032).

IEEE.

[67] Huang, F., & Bin, L. I. U. (2017). Software defect prevention based on human

error theories. Chinese Journal of Aeronautics, 30(3), 1054-1070.

[68] Li, Z., Lu, S., Myagmar, S., & Zhou, Y. (2006). CP-Miner: Finding copy-paste and

related bugs in large-scale software code. IEEE Transactions on software

Engineering, 32(3), 176-192.

81

[69] Askarinejadamiri, Z., Zulzallil, H., Ghani, A. A. A., & Wei, K. T. (2017). Impact

propagation of human errors on software requirements volatility. Int. J. Adv.

Comput. Sci. Appl., 8(2), 227-237.

[70] Walia, G. S., & Carver, J. C. (2009). A systematic literature review to identify and

classify software requirement errors. Information and Software Technology, 51(7),

1087-1109.

[71] Senders, J. W., & Moray, N. P. (1995). Human error: Cause, prediction, and

reduction.

[72] Norman, D. (2013). The design of everyday things: Revised and expanded edition.

Basic books.

[73] Embrey, D. (2005). Understanding human behaviour and error. Human Reliability

Associates, 1(2005), 1-10.

[74] Ernstsen, J., & Nazir, S. (2018). Human error in pilotage operations. TransNav:

International Journal on Marine Navigation and Safety of Sea Transportation, 12.

[75] Shorrock, S. T., & Kirwan, B. (2002). Development and application of a human

error identification tool for air traffic control. Applied ergonomics, 33(4), 319-336.

[76] Machida, F., Kim, D. S., Park, J. S., & Trivedi, K. S. (2008). Toward optimal

virtual machine placement and rejuvenation scheduling in a virtualized data center.

In 2008 IEEE International Conference on Software Reliability Engineering

Workshops (ISSRE Wksp) (pp. 1-3). IEEE.

[77] Etman, E., & Halawa, A. (2007). Safety culture, the cure for human error: A

critique. Dmitriy Zhukov, 115.

[78] Curzon, P., & Blandford, A. (2001). Detecting multiple classes of user errors. In

IFIP International Conference on Engineering for Human-Computer Interaction

(pp. 57-71). Springer, Berlin, Heidelberg.

[79] GOULD, J. & LOVELL, S. (2009). Human error analysis at a refinery, IChemE,

549 – 553.

82

[80] Kirwan, B. (1998). Human error identification techniques for risk assessment of

high risk systems—Part 1: review and evaluation of techniques. Applied

ergonomics, 29(3), 157-177.

[81] Ahlstrom, V., & Hartman, D. G. (2001). Human error in airway facilities (No.

DOT/FAA/CT-TN01/02). William J. Hughes Technical Center (US).

[82] ASYALI, E. (2003). Impact of Man-Machine Interface on Maritime Casualties.

Proceedings of International Association of Maritime Universities (IAMU), 89-90.

[83] Stanton, N. A., Salmon, P., Harris, D., Marshall, A., Demagalski, J., Young, M. S.,

& Dekker, S. (2009). Predicting pilot error: testing a new methodology and a

multi-methods and analysts approach. Applied ergonomics, 40(3), 464-471.

[84] Rooney, J. J., Heuvel, L. N. V., & Lorenzo, D. K. (2002). Reduce human error.

Quality progress, 35(9), 27-36.

[85] Cannon, A. B., Strawderman, L., & Burch, R. (2015). Evaluating change in user

error when using ruggedized handheld devices. Applied ergonomics, 51, 273-280.

[86] Grigoraş, G., & Bărbulescu, C. (2013). Human errors monitoring in electrical

transmission networks based on a partitioning algorithm. International Journal of

Electrical Power & Energy Systems, 49, 128-136.

[87] Ruckart, P. Z., & Burgess, P. A. (2007). Human error and time of occurrence in

hazardous material events in mining and manufacturing. Journal of hazardous

materials, 142(3), 747-753.

[88] Isaac, A., Shorrock, S. T., & Kirwan, B. (2002). Human error in European air

traffic management: the HERA project. Reliability Engineering & System Safety,

75(2), 257-272.

[89] Chen, T., Yesilada, Y., & Harper, S. (2010). What input errors do you experience?

Typing and pointing errors of mobile Web users. International journal of human-

computer studies, 68(3), 138-157.

[90] Polet, P., Vanderhaegen, F., & Zieba, S. (2010). An Iterative Learning System to

Learn from Human Errors in Transport Systems. IFAC Proceedings Volumes,

43(13), 47-52.

83

[91] Cho, W. C., & Ahn, T. H. (2019). A classification of electrical component failures

and their human error types in South Korean NPPs during last 10 years. Nuclear

Engineering and Technology, 51(3), 709-718.

[92] Wenwen, S., Fuchuan, J., Qiang, Z., & Jingjing, C. (2011). Analysis and control of

human error. Procedia Engineering, 26, 2126-2132.

[93] Sam, D., Velanganni, C., & Evangelin, T. E. (2016). A vehicle control system

using a time synchronized Hybrid VANET to reduce road accidents caused by

human error. Vehicular communications, 6, 17-28.

[94] Bes, M. O. (1999). A case study of a human error in a dynamic environment.

Interacting with Computers, 11(5), 525-543.

[95] Arnstein, F. (1997). Catalogue of human error. British journal of anaesthesia,

79(5), 645-656.

[96] Nistor, A., Jiang, T., & Tan, L. (2013). Discovering, reporting, and fixing

performance bugs. In Proceedings of the 10th Working Conference on Mining

Software Repositories (pp. 237-246). IEEE Press.

[97] Hashemi, M., & Herbert, J. (2014). Uixsim: A user interface experience analysis

framework. In 2014 5th International Conference on Intelligent Systems,

Modelling and Simulation (pp. 29-34). IEEE.

[98] Vishakha, Ms. (2014). Achieving Agility in Software Maintenance. In

International Journal of Engineering Research & Technology (IJERT), 3(5) (pp.

174 178).

[99] Techlog software new release, (2019). https://www.software.slb.com

[100] Stolee, K. T., Elbaum, S., & Rothermel, G. (2009). Revealing the copy and paste

habits of end users. In 2009 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC) (pp. 59-66). IEEE.

[101] Thompson, C. M., Cooper, S. E., Kolaczkowski, A. M., Bley, D. C., Forester, J. A.,

& Wreathall, J. (1997). The application of ATHEANA: A technique for human

error analysis. In Proceedings of the 1997 IEEE Sixth Conference on Human

Factors and Power Plants, 1997.'Global Perspectives of Human Factors in Power

Generation' (pp. 9-13). IEEE.

https://www.software.slb.com/

84

[102] Love, P. E., Edwards, D. J., Irani, Z., & Walker, D. H. (2009). Project pathogens:

The anatomy of omission errors in construction and resource engineering project.

IEEE Transactions on Engineering Management, 56(3), 425-435.

[103] Sträter, O., Dang, V., Kaufer, B., & Daniels, A. (2004). On the way to assess errors

of commission. Reliability Engineering & System Safety, 83(2), 129-138.

[104] Saha, S., Lozi, J. P., Thomas, G., Lawall, J. L., & Muller, G. (2013). Hector:

Detecting resource-release omission faults in error-handling code for systems

software. In 2013 43rd Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN) (pp. 1-12). IEEE.

[105] Hayllar, B., Veal, A. J., & Sherval, M. (1996). Pathways to research. Rigby

Heinemann.

85

APPENDIX

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: ALRAWI, Layth Nabeel FOTO

Date and Place of Birth: 05 March 1986, Mosul, Iraq

Marital Status: Married

Phone: +9647701712496

Email: Lnalrawi@gmail.com

EDUCATION

Degree Institution Year of Graduation

M.Sc.

Cankaya University, Graduate School of

Natural and Applied Science, Computer

engineering department

2019

B.Sc.
Mosul Univ., Faculty of Computer

sciences and Mathematics, Mosul
2008

High School
Al-Resala Al-Islamiyah Secondary

school, Mosul
2004

WORK EXPERIENCE

Year Place Enrollment

2017- Present Parker Drilling Company, ITS Division
Operations Manager,

North Iraq

2014-2016
Nabors Drilling, Tesco Corporation

Division
TRS Supervisor

2008-2014 Weatherford Oil Tools, TRS Dept. JAM, TTS Engineer

mailto:Lnalrawi@gmail.com

86

LANGUAGE SKILLS

 Arabic-Mother Language.

 English (reading and writing).

 Turkish (Intermediate).

