

TOWARDS AN AUCTION-BASED REWARD MECHANISM FOR EFFECTIVE

BUG RESOLUTION

ÇAĞDAŞ ÜSFEKES

JULY 2019

TOWARDS AN AUCTION-BASED REWARD MECHANISM FOR EFFECTIVE

BUG RESOLUTION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

ÇAĞDAŞ ÜSFEKES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF

COMPUTER ENGINEERING

JULY 2019

iii

STATEMENT OF NON-PLAGIARISM PAGE

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by

these rules and conduct, I have fully cited and referenced all material and results that are

not original to this work.

 Name, Last Name : Çağdaş ÜSFEKES

 Signature :

 Date : 31.07.2019

iv

ABSTRACT

TOWARDS AN AUCTION-BASED REWARD MECHANISM FOR

EFFECTIVE BUG RESOLUTION

ÜSFEKES, Çağdaş

M. Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Murat YILMAZ

Co-Supervisor: Dr. Eray TÜZÜN

July 2019, 72 pages

Bug management involves all the processes from discovering to reporting in a project. A

bug may occur at any stage of software development lifecycle, and managing software

development processes better reduces the number of bugs that may occur. In particular, in

large-scale software development projects, the approach called ALM (Application Life

Cycle Management) has been developed to define software development processes well

and to manage their relationship with each other. ALM is a set of process covering the

development, management and maintenance of source code in software development

projects.

One of today's software engineering problems is the inability to use the Application

Lifecycle Management (ALM) tools efficiently in software development. Within the

delivery process fewer bugs improves software quality and customer satisfaction,

however it may not be enough to test the product well. It is also significant that the

v

relevant bug records are distributed to software practitioners as efficiently as possible and

quickly resolved during business planning. At this point, using gamification and reward

mechanisms can be more efficient in the distribution and solution of software bugs.

Gamification provides methods that make learning easier and therefore eliminates

barriers to work efficiency by combining methods developed with new technology for a

business or process with traditional game methods. Rewarding mechanisms aim to

motivate each player in the game in line with a goal and increase the efficiency of the

players by rewarding them provided that they are successful.

In this study, the effect of gamification on software developers' bug solving was observed

by using Monte Carlo simulation. The study was carried out on a project developed

within HAVELSAN. Firstly, a pilot project was selected and the resolution times of the

bug records in this project were examined. Later, another study in which gamification

was used in the training of real users was examined and the effect of gamification on the

test results was calculated mathematically. We calculated a metric named as

“gamification ratio” by comparing the pre-test and post-test results in this study. Monte

Carlo simulation was designed on the value obtained with this calculation and the impact

of the bug records of the pilot project on the resolution times was examined. In the

simulation, virtual auctions and virtual players were created and these auctions were bid

by the players. Each auction item has been created through bug records. After all, by

comparing the bug resolution times of the pilot project with the resolution times obtained

at the end of Monte Carlo simulation, it was observed that gamification increased the

efficiency obtained from the bug resolution.

Keywords: Gamification, Bug management, Software productivity, Monte Carlo

simulation, Application lifecycle management.

vi

ÖZ

ETKİLİ HATA ÇÖZÜMÜ İÇİN İHALE TABANLI ÖDÜLLENDİRME

MEKANİZMASI

ÜSFEKES, Çağdaş

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi: Doç. Dr. Murat YILMAZ

Eş - Tez Yöneticisi: Dr. Eray TÜZÜN

Temmuz 2019, 72 sayfa

Hata yönetimi, bir projede hatanın keşfedilmesinden raporlanmasına kadar geçen süreci

kapsar. Hata, yazılım geliştirme yaşam döngüsünün herhangi bir adımında çıkabilir ve

yazılım geliştirme süreçlerini iyi yönetebilmek çıkabilecek hata sayısını azaltır. Özellikle

geniş ölçekli yazılım projelerinde yazılım geliştirme süreçlerini daha iyi tanımlayabilmek,

birbirleri ile olan ilişkilerini yönetebilmek için UYY (Uygulama Yaşam Döngüsü

Yönetimi) adlı yaklaşım geliştirilmiştir. UYY, yazılım geliştirme projelerinde kodun

geliştirilmesi, yönetilmesi ve bakımının yapılması gibi adımları kapsayan bir süreçler

bütünüdür.

Bugün, yazılım mühendisliğinde karşılaşılan zorluklardan biri Uygulama Yaşam

Döngüsü Yönetimi (UYY) araçlarının yazılım geliştirmede verimli şekilde

kullanılamamasıdır. Teslimat sürecinde, geliştirilen ürünün olabildiğince az hata içermesi,

yazılım kalitesinin ve müşteri memnuniyetinin artmasını sağlar fakat bunun için sadece

vii

ürünün iyi test edilmesi yeterli olmayabilir. İş planlaması sırasında ilgili hata kayıtlarının

yazılım geliştiricilere zaman açısından olabildiğince verimli dağıtılması ve hızlı

çözülmesi de önemlidir. Bu noktada oyunlaştırma ve ödüllendirme mekanizmalarını

kullanmak yazılım hatalarının dağıtımı ve çözümünde daha verimli olunmasını sağlar.

Oyunlaştırma, bir iş veya süreç için yeni teknolojiyle geliştirilen araçlar ile geleneksel

oyun metotlarını birleştirerek öğrenme işlemini zorlaştıran, iş verimini azaltan engelleri

ortadan kaldıran yöntemler sunar. Ödüllendirme mekanizmaları ise oyun içindeki her

oyuncuyu bir hedef doğrultusunda motive edip, başarılı olması koşuluyla ödüllendirerek

oyuncudan alınan verimi artırmayı amaçlar.

Bu çalışmada, oyunlaştırmanın yazılım geliştiricilerin hata çözmelerine olan etkisi Monte

Carlo simülasyonu kullanarak gözlemlenmiştir. Çalışma HAVELSAN bünyesinde

geliştirilmiş bir proje üzerinde gerçekleştirilmiştir. İlk olarak bir pilot proje seçilmiş ve bu

projedeki hata kayıtlarının çözüm süreleri incelenmiştir. Daha sonrasında,

oyunlaştırmanın gerçek kullanıcıların eğitiminde kullanıldığı bir başka çalışma

incelenmiş ve oyunlaştırma kullanımının eğitim sonucu yapılan sınav sonuçlarına etkisi

matematiksel olarak hesaplanmıştır. Bu hesap ile elde edilen değer üzerinden Monte

Carlo simülasyonu tasarlanmış ve pilot projeye ait hata kayıtlarının çözüm sürelerine olan

etkisi incelenmiştir. Simülasyonda sanal açık artırmalar ve sanal oyuncular yaratılmış,

açık artırmalara bu oyuncular tarafından teklif verilmiştir. Her açık artırma öğesi hata

kayıtları üzerinden yaratılmıştır. Pilot projeye ait hata çözüm süreleri ile simülasyon

sonunda elde edilen çözüm süreleri kıyaslanarak oyunlaştırmanın hata çözümünden

alınan verimi artırdığı gözlemlenmiştir.

Anahtar Kelimeler: Oyunlaştırma, Hata yönetimi, Yazılımda verimlilik, Monte Carlo

simülasyonu, Uygulama yaşam döngüsü yönetimi.

viii

ACKNOWLEDGEMENTS

I would like to thank to my thesis advisor, Assoc. Prof. Dr. Murat YILMAZ and my

thesis co-advisor Dr. Eray TÜZÜN. They are one of the best supervisors who I have ever

met in my academic life. They supported and guided me in this thesis study patiently. I

had lots of useful discussions with them while studying in this thesis and I got lots of

valuable comments from them.

I would like to express my deep gratitude to Yagup MACİT. He supported me during my

thesis study and helped me about creating auction-based bug management simulation

model. He is one of the best software engineer and software architect who I have ever

met.

Finally, I wish to thank the thesis committee for their kindness during the presentation of

this thesis study.

ix

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM PAGE ... iii

ABSTRACT ... iv

ÖZ .. vi

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENTS ... ix

LIST OF FIGURES ... xi

LIST OF TABLES .. xii

LIST OF FORMULAS .. xiv

LIST OF ABBREVIATIONS ... xv

CHAPTERS:

1. INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Objective of This Study ... 2

1.3 Research Questions ... 2

2. BACKGROUND AND RELATED WORK .. 4

2.1 Introduction ... 4

2.2 Software Development .. 4

2.2.1 Agile Software Development ... 5

2.2.2 Application Lifecycle Management (ALM) ... 6

2.3 Definition of Games and Gamification ... 7

2.3.1 Theory of Games in Software Engineering Literature 7

2.3.2 Reward Mechanisms .. 10

2.4 Application of Gamification in Bug Management .. 11

2.5 Simulation and Modeling .. 12

3. METHODOLOGY ... 14

x

3.1 Introduction ... 14

3.2 Research Design .. 15

3.3 Auction-Based Bug Management Model .. 16

3.4 Variables and Measures ... 18

3.4.1 Mean Time to Resolve (MTTR) ... 18

3.4.2 Gamification Ratio ... 22

3.5 The Auction-Based Bug Management Simulation .. 26

3.5.1 Analyzing Bug Data ... 28

3.5.2 Calculating Gamification Ratio .. 28

3.5.3 Creating Monte Carlo Simulation .. 28

4. DESIGN AND IMPLEMENTATION ... 33

4.1 Introduction ... 33

4.2 System Description .. 33

4.3 Tools .. 34

4.3.1 Team Foundation Server (TFS) .. 35

4.3.2 Visual Studio (VS) ... 38

4.4 System Functions and Implementation .. 39

4.4.1 Monte Carlo Simulation Back-End Model ... 41

4.4.2 Monte Carlo Simulation Front-End Model .. 46

4.4.3 Monte Carlo Simulation Execution Model ... 48

4.5 Analysis and Test Results .. 50

4.6 Revisiting the Research Questions .. 56

5. CONCLUSION AND FUTURE WORK ... 58

5.1 Threats to Validity ... 59

5.2 Future Work... 61

REFERENCES ... 62

xi

LIST OF FIGURES

Figure 1 The Research Design Process .. 15

Figure 2 Auction-based Bug Management .. 17

Figure 3 Bug workflow schema ... 20

Figure 4 Experimental group test scores [88] .. 23

Figure 5 Control group test scores [88] .. 23

Figure 6 Activity diagram of Monte Carlo simulation ... 27

Figure 7 Project X milestones .. 28

Figure 8 Simulation pseudocode .. 31

Figure 9 Bug work item ... 37

Figure 10 Monte Carlo Simulation Solution .. 39

Figure 11 Class Diagram of Monte Carlo Simulation.. 40

Figure 12 Monte Carlo Simulation Parameter Settings ... 46

Figure 13 Monte Carlo Simulation Progress Bar ... 48

Figure 14 Monte Carlo Simulation Information Bar .. 48

Figure 15 Calculation of Bidding Hour ... 50

Figure 16 MTTR values for Monte Carlo simulation .. 51

Figure 17 MTTR values for Project X ... 52

Figure 18 MTTR comparison of Project X and Monte Carlo simulation 53

xii

LIST OF TABLES

Table 1 Pre-test results [88] ... 24

Table 2 Post-test results [88] .. 24

Table 3 Bug counts in milestones (Day) .. 34

Table 4 Bug Work Item Fields ... 36

Table 5 Supported Programming Languages by VS .. 38

Table 6 “Auction” Class Definition ... 41

Table 7 “User” Class Definition .. 42

Table 8 “UserCredit” Class Definition .. 42

Table 9 “AuctionAttendee” Class Definition ... 43

Table 10 “AuctionWinner” Class Definition ... 43

Table 11 “UserCreditHistory” Class Definition ... 43

Table 12 “WorkItem” Class Definition .. 44

Table 13 “AuctionState” Enumaration Definition ... 44

Table 14 “TimerItem” Class Definition ... 45

Table 15 “RandomService” Class Definition .. 45

Table 16 Monte Carlo simulation MTTR values (Days) .. 51

Table 17 Project X MTTR values (Days) .. 52

Table 18 Project X and Monte Carlo simulation MTTR Comparison 52

Table 19 Top 5 users .. 53

Table 20 Monte Carlo simulation MTTR values (Repetition 1) 54

Table 21 Monte Carlo simulation MTTR values (Repetition 2) 54

Table 22 Monte Carlo simulation MTTR values (Repetition 3) 55

xiii

Table 23 Monte Carlo simulation MTTR values (Repetition 4) 55

Table 24 Monte Carlo simulation MTTR values (Repetition 5) 55

Table 25 Threats to validity items on Monte Carlo simulation .. 60

xiv

LIST OF FORMULAS

Formula 1 MTTR formula ... 21

Formula 2 Elapsed time to fix a bug .. 21

Formula 3 MTTR detailed formula ... 21

Formula 4 Calculation of IoS for experimental group ... 24

Formula 5 Percentage of IoS(E) .. 25

Formula 6 Calculation of IoS for control group .. 25

Formula 7 Percentage of IoS(C) .. 25

Formula 8 Formula of gamification ratio .. 25

Formula 9 Calculation of gamification ratio.. 25

Formula 10 Calculation of bidding hour ... 31

Formula 11 Calculation of minimum and maximum bidding hour range 31

xv

LIST OF ABBREVIATIONS

ALM Application Lifecycle Management

TFS Team Foundation Server

VS Visual Studio

MTTR Mean Time to Resolve

MCTS Monte Carlo Tree Search

GVGP General Video Game Playing

URL Uniform Resource Locator

LINQ Language Integrated Query

XML Extensible Markup Language

HTML Hyper Text Markup Language

IEEE The Institute of Electrical and Electronics Engineers

CCB Configuration Control Board

IDE Integrated Development Environment

DEVOPS Development and Operations

1

CHAPTER 1

1. INTRODUCTION

1.1 Introduction

Defects are instances that cause incorrect results in the analyzing, software developing,

designing, software testing, or in the deployment stages of a software project [102].

Defects in source code created during the software development process are called ‘bugs’.

There may be several amendments to the source code throughout this process, either to

improve its quality and performance or in resolving or attempting to resolve a different

problem. Nevertheless, largescale source code amendments may inadvertently create

critical bugs. It is therefore crucial to effectively employ bug management systems in

order to minimize the occurrence of potential bugs, and also to preserve the quality of the

source code within its evolved status during the software development process.

A well-designed bug management system facilitates the deployment of software

development projects within planned budgets and according to scheduled delivery targets.

A critical bug diagnosed within the advanced phases of the software development process

may negatively impact the overall timeline of a project. There are several software

development management systems available for the successful execution of the software

development project timeline such as Application Lifecycle Management (ALM).

Application Lifecycle Management encompasses the processes of version control system,

requirement, build and test management with deployment, as well as monitoring and

feedback.

The current study concerns the use of gamification along with ALM to improve the

software developers’ motivation in the bug solution process within a software

development project. Gamification provides users with a motivating and engaging

environment for information exchange by distributing game resources as rewards such as

recognition, badges or credits. Gamification in daily life creates an enjoyable working

environment for the participants. In addition to daily life, gamification may also be

applied to simulation software.

2

Monte Carlo [71] is a type of simulation based on the generation of values randomly. In a

Monte Carlo simulation, a transaction is repeated multiple times in order to achieve a

real-like value, and the more the transaction is repeated, the more real-like the resulting

value.

The aim of this study is to observe the impact of gamification on the bug solution process

through the use of a Monte Carlo simulation. To this aim, a completed software

development project of HAVELSAN, a Turkish defense industry corporation, was

selected as the pilot project, and named as “Project X” throughout the study. Bug solution

timing in Project X was analyzed as the first step. Then, a different study examined the

impact of gamification on the training of football referees. The referees were separated

into two different groups, with the first group educated by using conventional methods,

while the second group was trained using gamification. A pre and post tests were applied

to all groups in order to see the differences and changes in their respective results.

In this study, a Monte Carlo simulation was designed using bug solution timing in Project

X as well as mathematical data obtained from a reference study. An auction-based bug

management model was developed for resolving bugs in the simulation, with participants

(software developers) and auctions (bugs) created virtually. During the simulation, the

participants were made to bid for auctions. Data obtained at the end of the study were

compared to the data obtained through Project X in order to evaluate the impact of game

systems on the bug solution process.

1.2 Objective of This Study

We aim to investigate the impact of using gamification in software development

processes by using Monte Carlo simulation. Bug management is one of the processes of

software development projects and it directly affects product quality. Gamification

improves the efficiency of personal learning, working skills. In this study, we aim to

show improvement of productivity on bug resolution in a simulation using gamification.

1.3 Research Questions

In this study, we aim to improve the software bug management process. Solving bugs in a

shorter time is one of the most important part of this goal. In line with this goal, the

research questions are listed as follows;

3

 RQ1: How can the auction-based reward mechanism help the bug resolution

process?

 RQ1.1: How can we minimize the bug resolution time?

 RQ1.2: How can we demonstrate the effectiveness of auction-based

reward mechanism in the bug resolution process?

In this study, the overall structure has five chapters with including this introductory

chapter. The other chapters as follows:

Chapter 2 begins by the definition of software development, application lifecycle

management (ALM) and literature view of game theory in software engineering with

reward mechanisms. Then it continues with the definition and literature view of

simulation and modeling.

Chapter 3 starts with the brief description of Mean Time to Resolve (MTTR) metric,

followed by the description of the metric defined in this study: “Gamification Ratio,” and

gives detailed information about how we used it in the simulation. After that we explain

our simulation model that depends on Monte Carlo simulation.

Chapter 4 starts with the introduction of our simulation implementation. Then it

continues with the system description and tools that we used. After that, we explained the

system functions and encountered problems. Details about the simulation results are then

given and compared with the project bug data source sand basic statistical information

about the winner users is presented.

Chapter 5 explains the conclusion of the study detailed and summarizes the study by

giving a discussion about our method. The validation of threats is then classified in four

categories and list the threats.

4

CHAPTER 2

2. BACKGROUND AND RELATED WORK

2.1 Introduction

This chapter starts with a brief review of the software development, with the emphasis of

software development processes, agile software development, and ALM. Next, we

provide details related to the definition of games and gamification with a review of the

theory of games in software engineering’s literature and reward mechanisms. The next

part continues with the literature review of applying gamification techniques in a bug

tracking context. The chapter ends with the definition of Monte Carlo simulations and

sample usage of it in various studies.

2.2 Software Development

Software development is a process of understanding, describing, designing, coding,

testing, bug fixing and documenting software applications, software frameworks or any

other software components [6]. Software development can include research about new

development techniques, methodologies, prototyping, and modifications. It should be

reusable and support re-engineering [64]. Software engineering is a type of engineering

which provides developing software in a systematic method [65].

The software development process describes the procedures for creating software

products and services [33]. These processes can be used by software organizations or

individuals. Software development process divides all development work into small parts

to improve the design, project management, and product management. The software

development process includes some related activities. These activities help to develop

products and provide a road map for software development with a budget and plan. Each

activity includes a task which is the smallest work unit [66]. Software development

companies can be considered as social organizations built on employee’s skills. Based on

5

software organizations’ skills, resources and goals, they directly use a process or modify a

process regarding their needs [33] [67].

The software process improvement methods should include different actions to improve

the software project’s quality [2, 26]. These actions should be reevaluated by considering

factors affecting software development activities (e.g. human characteristic in coding,

social relationship problems, e.g.). In the software development process, software

practitioners are seldom working by themselves; in almost all cases they are working in

various teams so all of the working actions can be considered as an activity of social

relationships [27]. The software developers who is working in various development teams

are affected by different social factors. These factors are not limited with their

interdependence, rationality, characters and working conditions [28]. Improving the

quality of software projects and finish the project in planned budget is an important aim

of improvement of software processes [3]. To achieve this point, a coordination

mechanism from development to maintenance and management are needed. As an

example, while the project is getting larger, source code and technical documentation

readability is decreasing. Therefore, the members of a software development team has to

work in coordination while the team is getting larger. The level of coordination about this

teams affect the software product's quality. At this point, the software development

problems can be assigned to the correct team members [84] [103].

2.2.1 Agile Software Development

Agile software development is an approach which is organized solutions and

requirements by cross-functional teams in software development [5]. With agile software

development, some type of lightweight software development methods is described. At

first “Rapid Application Development” was announced [54]. Then “Dynamic System

Development Method”, “Scrum”, “Crystal” and “Extreme Programming” and “Feature-

driven Development” announced. After that, Manifesto for Agile Software Development

was published [57]. The agile manifesto focuses on customer collaboration and

interaction while working on software.

Agile Software Development methods divide the main work into small pieces to

minimize the planning and design phases. The name of these parts is iteration or sprint in

Scrum [56]. Iterations can be one week to four weeks [56]. Each iteration includes a

cross-functional team that is working on planning, analyzing, designing, developing, and

testing. In cross functional teams people who has different expertise work for a common

6

goal [56]. At the end of each iteration, the output is shown to customers. Working with

iterations decreases the overall risk and allows change product easily.

In Scrum teams, an assigned member is held responsible to represent stakeholders. This

member is called “Product Owner” of the team. Product owner provides communication

between stakeholders and the team. When each iteration ends, this member and

stakeholders review progress and order product priorities [58]. In each iteration, product

owner assigns the bugs or tasks to the other team members (developers).

2.2.2 Application Lifecycle Management (ALM)

Application lifecycle management (ALM) is a ruleset for managing and integrating the

processes which are related to the development, governance and maintaining of a

software project [98]. ALM can be divided into three areas. These are, operations,

development and governance. In the governance part, we have to be sure that the software

product always provides what the customer needs [1] [47]. Governance step includes all

of the steps of Application lifecycle management. Development step is a common part of

all lifecycle of software product [1] [47]. After the development step finishes operation

step starts [1]. When the deployment step is finished, every software project needs to

monitoring and managing. In operation step, project builds and deployments are

managed.

ALM 1.0 proposes to use different tools for every discipline and every tool works

properly between each other [1]. These tools include development, test, build, design and

management modules [50]. In ALM 1.0 various software companies developed different

tools and also there were orchestration problems between these tools. Therefore, “ALM

2.0” is announced [50, 32]. In ALM 2.0 all of the software development processes can

work in one tool [49, 51]. Tools that appropriate to the solution of ALM 2.0 follow a role-

based and authority-based approach throughout this process. In ALM 2.0, data modeling

is suitable for communication between different tools.

With the advantages of the ALM 2.0, large companies started to use ALM process in their

projects [104]. In ALM 2.0 all steps of a project can be followed in one tool. In a project

from start point to endpoint software development engineers, test engineers, configuration

managers, project managers, etc. are using ALM tools. ALM tools supports software

engineers work with a single framework. This framework includes everything for the

many modules that the software development process requires [49]. These modules are as

7

follows (i) requirement, (ii) test, (iii) build, (iv) project, (v) source code and (vi) task

management. A software project development process depends on these modules and

each of them has chain-like structure. These various processes are integrated between

each other successfully in ALM and this ability is important about software products’

delivery process. Employees who are from different roles use relevant ALM tools. So all

of these employees know their toolset. The whole spectrum of the ALM process is

addressed with various ALM tools. In particular, it is challenging for software

practitioners to fully engage with the tasks that are assigned to them in these ALM tools.

In this study, we aim to create a reward mechanism to use ALM tools more efficiently.

2.3 Definition of Games and Gamification

The notion of games is relevant to studies of social aspects of software development,

which have gained increasing attention among researchers [59]. Recently, several

researchers have conducted research to explore the potential usage of games in software

development activities in terms of collective behavior: altruism and selfishness that

ultimately affect the software product health. Games are a special kind of social activities,

which can easily highlight the social interactions or engagements that could offer a

variety of measurable societal outcomes. Over the last decade, games have reshaped the

ways of communication by the help of social media to promote cooperation and

competition. Serious games are used for game-based social skill training that helps

individuals to gain social responsibility through the creation of fun and engaging

environments. Emerging trends improve the popularity of researchers and practitioners

who have redefined the notion of games in non-gaming contexts. Consequently, the term

gamification (i.e. the use of game elements in non-gaming practices) becomes an

emerging subject for improving the software development processes. It not only has a

great potential to align individuals’ motivations with software development task but also

helps to address a variety of information technology related issues [84] [103].

2.3.1 Theory of Games in Software Engineering Literature

Research into games has a long history. The theory of games first appeared in the

literature at the 1930s. A game highlights strategic interaction among individuals, teams,

units, or infrastructures. Historically, research investigating the individuals’ interactions

8

associated with games has focused on analytical methods and tools to aid the decision-

making process [2]. Around the early 1960s, small-scale research and case studies began

to emerge linking theory of games with social science successfully. Especially, in the last

15 years games become popular and companies are using game-based techniques to

analyze the characteristic features of their employees.

Game Theory is a set of analytical tools, which can be used to model the interactions

between participants (e.g. individuals, companies, nations, etc.) in a game form [60]. In

addition, it can be used to explore the actual or essential decisions and behaviors, and

ultimately their consequences that may include tradeoffs or conflicts among individuals.

The most important fact about game theory is that it assumes all players are rational. In

other words, all players follow the rules of a game and hence their goal is to win. In the

last decade, use of game theory has become widespread, not only in economics but used

in the fields of psychology, biology, and computer science [3]. Game theory has both

cooperative and non-cooperative forms. However, it is mostly known for its “non-

cooperative” form [3]. In this approach, the goal is to design a controlled competition

where selections of participants are likely to affect every single player’s benefits. These

players are considered as successful when they mind their benefits based on choice

architecture. This architecture is the designing various types of ways about which choices

could be shown to consumers and the effect of the selected way on consumer’s decision

[99]. Nash [4] coined “Nash Equilibrium”, which describes the optimal outcomes of a

game by predicting the outcome of strategic interactions.

There are many examples of using the theory and practices of games and the use of game

elements to address a set of problems in software development. For example,

Cockburn [8] accepted that software development is a kind of game based on limited

project resources, communication, and coordination skills. Baskerville [9] analyzed high-

speed internet development from a balancing game viewpoint that depends on high usage

of resources. Lagesse [7] created a game theoretic model for assigning tasks to software

practitioners. Sullivan [10] worked to evaluate software design decisions by economic

approach. Sazawal and Sudan [11] combined the theory of games and decision modeling

structure to improve software design. In this work, they designed a game called “software

design evaluation”. This game aims to address problems between developers and

customers. Moreover, they suggested a lightweight game theoretical analysis technique to

assess software development teams.

Gao [12] designed a game theoretic model to configure software products and decision

errors. Gao-hui [13] worked about depending corporate software developments to game

9

theory. Soska et al. [14] worked about students in academic life. In this work, they

designed a card game to teach students about software testing. In addition, Pedreira et al.

[15] created a systematic map about the usage of gamification in software engineering.

By this work, they aimed to find opportunities for next works. In recent years,

gamification becomes more popular in software engineering research. Sweedyk [16]

worked about the popularity of gamification in academic programs and conferences. In

2016, Kitagawa and others created a game theory on code review. Code review has a big

effect on software quality in the development process and it aims to decrease the number

of bugs [17]. Szabo [18] applied “Game Dev Tycoon” game to students for teaching

software engineering. This game is about business simulation. Amir [19] worked about

getting systems more gamified and effective with using gamification. Ranganathan [20]

used gamification in hardware engineering. He supported a low power timer on the circuit

by a game theory which depends on “Nash equilibrium”. Nash equilibrium is a solution

concept for an individual game. In this theory there are at least two or more players. Each

player is assumed to know strategies of equilibrium for the other players [61].

A game is a useful tool to reveal interpersonal conflicts. This situation is known as a

“social dilemma”. A social dilemma is a situation where people takes advantage of

selfishness unless everyone selects an egoistic option. In this case, the whole group loses

[62]. “Prisoner’s dilemma” is a basic framework that often used by researchers to observe

such issues. Hazzan and Dubinsky [21] suggest that “prisoner’s dilemma” is useful to

highlight the problems in software development. Fejis [22] designed a game theoretic

model for software developers and testers. He worked about the results of this game and

said that these results may cause “prisoner’s dilemma”. Costa [23] combined the

“Prisoner’s dilemma” with gamification and he designed war and peace game by using

this combination. In another work, Mortensen [24] used “prisoner’s dilemma” in security

and privacy of web technologies. In this work, he defined seven strategies and created a

strategy to exceed “prisoner’s dilemma” of web technologies by using a set of strategies.

Several lines of evidence suggest that building a mechanism for automating software

development activities by designing game-like activities is essential [29, 30, 31]. Yılmaz

[32] designed a game-like approach to explore the effects of team personality

characteristics in software development activities. Yılmaz et al. [31] created a

gamification approach to improve the software development process. The idea of creating

an economic mechanism for software development is introduced by [30], which was one

of the first serious discussions about the subject matter. One study by Yilmaz et al. [33]

proposed an economic mechanism for improving the software development process.

Yılmaz and O'Connor [34] suggested a complementary approach to ScrumBan to

10

improve the software development process using gamification. In another work, Yilmaz

and O'Connor [35] considered software development as an economic activity and created

a market-based approach to investigate task assignment problems. Collectively, these

studies confirm that using game-like approaches in the software development activities

have a significant impact on software productivity improvements. One study by Jurado et

al. [36] proposed a system to design game elements. This system includes three

components. These components are; game environment, game environment process, and

component to measure and evaluate. This study analyzes knowledge management, and

game elements to determine the relationship of motivation for contribution, collaboration

and participation in the definition of knowledge management steps, especially in the

scenarios of software development projects [36].

2.3.2 Reward Mechanisms

A reward mechanism can be considered a feedback device, which is an important aspect

of game design. A considerable amount of literature has been published on computational

features of these mechanisms. Houk et al. [37] investigated the models of intelligent

behaviors and their relation to reward mechanisms. In another work, Singh [38] proposed

a reward mechanism for online learning systems. Singh studied to categorize web pages

to predefined subjects which is based on an available text in URL. Lua [39] worked on a

reward mechanism which is designed for P2P systems. They designed a reward

mechanism for reducing the costs of P2P systems. Wang and Sun [40] researched reward

mechanisms which was designed for computer games. In this work, they discussed how

reward mechanisms can be used to motivate or change behaviors in the physical world.

Reward mechanisms have a crucial impact on associative learning and cognition [63]. In

addition, they are likely to game elements. If a reward system is constructed properly, it is

likely to improve the motivation of the participants. Game elements potentially assist

people to solve problems in an enjoyable way, e.g. while they are working on routine

tasks. Walz [41] defined a game as a closed system that depends on social and cultural

fundamentals of cultural values. Gonzales [42] described the advantages of games for

teaching a process in computer engineering. Qu [43] worked on teaching software

engineering. Largo [44] collected lots of feedback from students and he examined game

elements in the learning process.

Large corporations are using more complex systems. These can be engineering

management tools, financial automation tools, etc. To use these systems efficiently,

11

employees must be experienced. At this point, employees make more effort to use these

systems efficiently. In this process using gamification accelerates the employees learning

process. For example, in software engineering, Pariza [45] designed a game about

traceability in software tests and while conducting source code inspections. He designed a

game about traceability in software tests and code artifacts [46].

2.4 Application of Gamification in Bug Management

Bug management is one of the process of software development lifecycle. Solving bugs

in late periods of software development cause high cost. Fixing bugs in development

period increases the quality of the product. Finishing software development period with

zero bugs is impossible. Test engineers can detect bugs with running test scenarios before

deploying products to the customer side.

Gamification can be used in bug tracking because game elements and game scenarios can

motivate the developers to solve more bugs. Lotufo [68] used Stack Overflow bug source

in a work. Stack Overflow is a website to search answers about software development

failures. They use game elements to address these problems by motivating the

contributors. Sasso [69] used gamification to gamify software engineering and also bug

reporting. Sasso [69] used building blocks to define a game-based system. In other work,

Fraser [70] try to set a new view to testing and detecting bugs using gamification. Zheng

[92] at al. created a bug management framework to support development of product. In

this work, they focused on hardware products and they developed this bug framework

which is depend on activities that evaluate and define the design failures. Aqlan [93]

combines data analyze methods with the simulation modelling for developing an

approach to use in bug management. In another work, Rahman [94] designed an approach

for life cycle of bug management to improve software quality. The main goal of this

study is defining a bug management process and its details. Taba [95] defines an

extensive approach to inspecting of software project. This model offers unique equipment

for collecting prevalent barriers to inspection. Weerd [96] defines a new conceptual

approach to integrate software product management (SPM). In other work, Nair [97]

defines an effective bug management process for project managers. This research enables

to increase the quality of software projects and helps to the project managers about

resource allocation on project management [97].

12

2.5 Simulation and Modeling

In simple terms, simulation and modeling is a substitute for every experiment in physical

the world. Computers can be used to calculate the result of these experiments. As such

simulation and modeling can simplify understanding the behavior of a system without

testing in the real world. Using simulation and modeling within engineering is well

recognized. This helps to increase the quality of software projects and decrease the costs

of project [100]. In this study, we studied Monte Carlo simulation to validate our results.

The simulation which based on Monte Carlo method is a type of stochastic simulation

system which depends on choices by selecting randomly for modeling aspects of the real-

life system [71]. In this simulation technique, a condition is repeated multiple times to

calculate nearest results. This simulation is used in mathematics and physic and it can be

used in a wide variety of settings, from medicine to the software industry. We can use

Monte Carlo simulation in three areas. These areas are sampling, estimation, and

improvement [72] [73]. Monte Carlo is concerned with “Sampling”. “Sampling” is a

process that simulates the non-virtual system behaviors like telecommunication network

systems [72]. In "Estimation", the focus is guessing the numerical values about a

simulation model. An example usage of Monte Carlo method can be given as expecting

the productivity of a product line. Another usage of Monte Carlo method can be given as

using random variables to evaluate the multi-dimensional integrals [72]. Monte Carlo

method is used to refine noisy functions by using random variables [72].

Raychaudhuri [74] describe the Monte Carlo method is creating multiple samples as

randomly to calculate and analyze the simulation results. Burgin [75] used the Monte

Carlo methods in super-recursive software development algorithms. Kalantari [76] used

Monte Carlo methods in a neural network to clear the noises from data. In another work,

Neese [77] used Monte Carlo method to solve complex bounded integrals within seconds

using Java programming language. Soemers [78] studied on a research that using Monte

Carlo Tree Search (MCTS) in General Multimedia (Video) Game Playing. General Video

Game Playing (GVGP) is a child of Artificial Intelligence (AI) and Monte Carlo Tree

Search (MCTS) is a type of search method for playing of game and it is not a domain-

based approach. In another work Maia [79] used MCTS and Google Maps in location-

based games. They presented a study that shows the improvements in game balancing

using the two most popular location-based games "Ingress" and "Pokemon Go". And

Lorentz [80] studied on MCTS by using evaluation methods. They designed an algorithm

named as MCTS-EPT and this algorithm depends on three various games. These games

13

are; Havannah, Breakthrough, and Amazons. Malefaki [81] designed a rejuvenation in a

computer system to protect from software aging. At the end of this study, they calculated

and compared performance results to show the effect of software rejuvenation. In another

work, Pacagnella [82] used Monte Carlo simulation to calculate cost estimations in

software development projects. Madani [83] suggested to solve multi-criteria decision

making problems by using non-cooperative gamification approaches.

14

CHAPTER 3

3. METHODOLOGY

3.1 Introduction

This section describes the methodology of the current thesis. It begins with software

metrics and a brief description of Mean Time to Resolve (MTTR). Mean Time to Resolve

is a measuring type of the repairable items’ maintenance. MTTR calculates the average

time that takes to resolve a non-working component like software bugs. Next, the chapter

continues with the definition of “Gamification Ratio”. We reference another study [88] to

calculate “Gamification Ratio”. The reference study includes two training examinations.

The first exam is performed before training and the other is performed after training. We

calculate MTTR values on these exam results to calculate gamification ratio value. Next,

we designed a Monte Carlo simulation to simulating the use of auction-based bug

management. Gamification ratio is used as an input in this Monte Carlo simulation.

In this study, we aim to show that using reward mechanisms in software development

projects decreases the bug resolution time. Reward mechanisms help to improve the

motivation of employees about their work. In this research, auction-based reward

mechanism is designed to enable software developers to select bugs by themselves. After

all, software developers can solve bugs in less time with higher motivation and we can

minimize the bug resolution time using reward mechanisms.

A Monte Carlo simulation is designed to simulate auction-based reward mechanism. In

the simulation algorithm “Gamification Ratio” and bug resolution time of Project X are

used as inputs. Then, the algorithm applies the “Gamification Ratio” to the real bug

resolution time and creates virtual bug items with possible virtual resolution time. Mean

Time to Resolve (MTTR) method is used to calculate the average resolution hours in

simulation. By this way, we can demonstrate the effectiveness of auction-based bug

management and we can calculate the impact of reward mechanism on bug resolution

process.

15

3.2 Research Design

Figure 1 The Research Design Process

16

In this study, we categorized our research process into two parts. The first part focuses on

data analysis and the second part focuses on implementation (see Figure 1). In the first

part, we reviewed the literature about Application Lifecycle Management (ALM),

gamification, reward mechanisms and Monte Carlo simulation. Then we selected a pilot

project to analyze bug resolution time values. In the second part, we calculated Mean

Time to Resolve (MTTR) of bugs. Then we studied on another referenced study to

calculate “Gamification Ratio”. After all, we designed a Monte Carlo simulation

algorithm to simulate an auction-based bug management system. The simulation uses

MTTR values and “Gamification Ratio” as input and creates new MTTR values as

output.

The purpose of this simulation (see Figure 1) is to shorten bug resolution time. In this

model, every single bug is equal to a single auction and this model can provide software

developers to select any bug by themselves. The team leader or product owner does not

need to assign any bug to any software developer. Using an auction-based system

increases the motivation of employees about their work. By this way, software developers

can solve bugs with higher motivation in less time and bug resolution time decreases

using gamification.

3.3 Auction-Based Bug Management Model

Application lifecycle management (ALM) systems do not necessarily suggest the most

efficient methods to software developers while they are assigning bugs. The goal of this

model is using individual choices to improve software productivity while developers are

assigned bugs. Users can join multiple auctions which are defined in this software model.

Auctions can be related to requirement analysis, software testing or etc. Therefore, users

can choose the bugs that motive them the most from a pool with resource distribution

method. This model is proposed as a resource management framework to define the task

choices based on the priority of the software developer’s selection. This system aims to

make the task assignment and time planning in an efficient way. The workflow of the

system is seen in Figure 2.

17

Figure 2 Auction-based Bug Management

The main aim of this mechanism (see Figure 2) is to reform the software development

activities in a resource economy model where software practitioners have initial credits,

which enable them to select these bugs regarding their preferences. Based on the

proposed model, we announce the bugs to the software developers in an auction like

structure. Similar to story cards, these bugs are based on their effort and complexity

points. A practitioner requests a set of specific bugs depending on the amount of credit

they might be able to pay by using the auction mechanism. From these requests, the

proposed mechanism selects the practitioner who desires to do this job the most. In this

way, a gamification based value mapping occurs between bugs and resources. The system

ensures that a user has to bid on their own budget and allows the price to stay constant

over time. The system uses a set of game elements to motivate its users such as giving

reputation, badges, and leaderboards (i.e. to create community leader with more

privileges). Consequently, participants who finish their bugs in time are rewarded by the

system based on the importance of their achievements. All this information is announced

to system participant to foster their motivation (see Figure 2) [84] [103].

18

Using this technique, individuals in a team can bid for the work they would like to

perform and in the context of their available credits. We believe that this could have

interesting ramifications for productivity and knowledge diversity among individuals in

software development teams. Here, we suggest that this is a useful vehicle for risk

reduction in software companies since everyone has the right to bid for work in the

context of their credit position. Let’s look to a metaphor – a golfing handicap. In amateur

golfing competitions, individuals participate in competitions but their score is modified

on the basis of their handicap /ability with the result that the winner is not the player who

shot the absolute score for the round of golf but rather the winner who shot the lowest

score taking into account their own ability. This means that everyone competes with the

ability to win the competition and everyone is trying to improve his or her own personal

performance.

3.4 Variables and Measures

In this study, we used two variables to create a simulation model for auction-based

reward mechanism. These variables are;

 MTTR values of bug items

 Gamification Ratio

In this part, we described the definition of MTTR (Mean Time to Resolve) and how we

calculate the MTTR values of bug items. Then, we gave a reference study [88] to

calculate the “Gamification Ratio” value.

3.4.1 Mean Time to Resolve (MTTR)

A software metric is a way of measuring software characteristics as countable and

quantifiable. In the software development process, there is various type of metrics that are

related to each other. In this study, we used “Mean Time to Resolve (MTTR)” as a

software metric to calculate the time intervals on bug resolution.

In software development projects, one of the critical customer satisfaction criteria is to be

able to fix bugs in short periods of time. Time to fixing a selected bug is the time elapsed

between when a bug is reported (i.e. entered into the “Proposed” state in the bug

management tool) until a resolution to the bug is verified by the test engineer (i.e.

19

entering a “Closed” state in the bug management tool) [89]. We selected Team

Foundation Server (TFS) as a bug management tool because bug data source was located

in TFS. Team Foundation Server is developed by Microsoft and it is useful on application

lifecycle management processes. Team Foundation Server has some type of work items

and users can create custom work item types. These are examples of some work item

types:

 Backlog

 Task

 Bug

 Requirement

 Nonconformity

 Test Case

 Test Suite

 Test Plan

In this study, we focused on “Bug” work items. The workflow of a bug item is shown in

Figure 3.

20

Figure 3 Bug workflow schema

21

Throughout its life cycle, a bug item always begins with “Proposed” state and ends with

“Closed” state. It is necessary to calculate the duration using timestamps from “Proposed”

and “Closed” state. This metric is usually measured in days or hours. Then we can

calculate and use “Mean Time to Resolve” (MTTR) as a metric to examine this

perspective. Mean Time to Resolve is a measuring type of the repairable items’

maintenance [89]. It calculates the time required to fix a non-working component or

machine. It is the average repair time for failed items divided by the number of

maintenance operations for failures during in a time range [90]. Fousch [91] has

previously focused on software solutions for MTTR predictions. The formula for MTTR

is given as follows;

𝑀𝑇𝑇𝑅 =
∑ 𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑓𝑖𝑥 𝑎 𝑏𝑢𝑔(𝑖)𝑛

1

𝑛

Formula 1 MTTR formula

Calculating elapsed time to fix a bug is shown in Formula 2.

𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑓𝑖𝑥 𝑎 𝑏𝑢𝑔 = 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 [𝐶𝑙𝑜𝑠𝑒𝑑] − 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 [𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑]

Formula 2 Elapsed time to fix a bug

If we further expand the formula, we will have the following Formula 3, where n is the

total bug count in project.

𝑀𝑇𝑇𝑅 =
∑ 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 [𝐶𝑙𝑜𝑠𝑒𝑑](𝑖) − 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 [𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑](𝑖)𝑛

1

𝑛

Formula 3 MTTR detailed formula

This is an important metric to calculate the bug resolution time of the team. Although it is

useful to show which failure took long a time to repair, MTTR gives an overall indicator

of the performance of the team. Since in general, your team can resolve bugs for the

customers, the happier customers will be, this metric is directly related to customer

satisfaction.

22

The metric also would provide an indicator of the team’s efficiency. By analyzing this

metric, we can explore various types of bottlenecks in the overall bug resolution process.

3.4.2 Gamification Ratio

In this chapter, the gamification ratio based on a previous related work which was

published in 2016. Gulec and Yılmaz [88] examined decision-making skills on 54

Turkish football referees. Firstly, we gave a brief description of this study and then we

described how we calculate the gamification ratio.

Gulec and Yılmaz [88] created two groups as an experimental and control group from 54

referees. The football referees were divided into two groups randomly. The first group

named as “control group” (included 27 referees) and the second named as “experimental

group” (included 27 referees). The control group members were not allowed to use the

game system. The control group members could train by using only the LOG book (Law

of the game). The football referees who are located in the experimental part could access

the game system. However, the LOG book was forbidden to experimental group members

[88]. Experimental group members are trained with a serious game and control group

members are trained by classical referee training system from a book. All of these groups

are tested before and after training. They called the test before training as “Pre Test” and

called the test after training as “Post Test”.

A pre-test was applied to the all of the group of referees before the beginning of the

education period. By this test, the referees’ knowledge level has been determined. This

test included 50 questions and the exam questions were divided into two parts thus [88]:

 Test Questions

 Multimedia Questions

By these question types, 15 multimedia (video) questions and 35 test questions were

selected.

After the training finished, a post test was applied to a part of football referees. The post

test was the same as pre-test. Exam content and question count were same because

questions’ the difficulty degree should be equal in pre-test and post-test because we

should provide validity on these tests. The pre-test scores and answers were not exposed

in the training period.

23

The pre and post-test results for experimental group members are seen in Figure 4.

Figure 4 Experimental group test scores [88]

The post and pre-test scores of control group members are shown in Figure 5.

Figure 5 Control group test scores [88]

24

Average test results for all groups and all question types in pre-test are shown in Table 1.

Table 1 Pre-test results [88]

 Test (70 points) Multimedia (30

points)

Totally (100

points)

Experimental Referees 38.3 16.8 55.1

Control Referees 38.4 17.3 55.7

Average test results for all groups and for all question types in post-test are shown in

Table 2.

Table 2 Post-test results [88]

 Test (70 points) Multimedia (30

points)

Totally (100

points)

Experimental Referees 43.6 22.6 66.1

Control Referees 41.2 20.9 62.0

Now we can crosscheck the post-test scores with the pre-test scores. Firstly, we calculated

the increase of success (IoS) on the experimental group. This group are trained by

gamification methods and group members’ average score point is 55.1 in pre-test and

66.1 in post-test. We set the increase of success for the experimental group as a variable

IoS(E). IoS(E) calculation is shown in Formula 4.

𝐼𝑜𝑆(𝐸) = 66.1 − 55.1 = 11

Formula 4 Calculation of IoS for experimental group

25

We converted the IoS(E) value to percentage in Formula 5.

 𝐼𝑜𝑆(𝐸) % =
11 ∗ 100

55.1
= 19.96 %

Formula 5 Percentage of IoS(E)

Secondly, we calculated the increase of success on a control group. Control group are

trained by classical referee training system and group members’ average score point is

55.7 point in the pre-test and 6.20 point in the post-test. We set the increase of success for

the control group as a variable IoS(C). IoS(C) calculation is shown in Formula 6.

𝐼𝑜𝑆(𝐶) = 62.0 − 55.7 = 6.3

Formula 6 Calculation of IoS for control group

We converted the IoS(C) value to percentage in Formula 7.

 𝐼𝑜𝑆(𝐶) % =
6.3 ∗ 100

55.7
= 11.31 %

Formula 7 Percentage of IoS(C)

If we look at these results, we can analyze that the experimental group is 19.96 % more

successful in using gamification in the training period. However, control group is 11.31

% more successful in using classical referee training system.

As a result, we can calculate the effect of using gamification in this training system by

taking difference of two values in Formula 8 and Formula 9.

𝐺𝑎𝑚𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 = 𝐼𝑜𝑆(𝐸) − 𝐼𝑜𝑆(𝐶)

Formula 8 Formula of gamification ratio

𝐺𝑎𝑚𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 = 19.96 % − 11.31 % = 8.65 %

Formula 9 Calculation of gamification ratio

26

In this study, we set the gamification ratio to 8.65 % and used it in Monte Carlo

simulation application. The detailed information about how we used this ratio will be

given in the next chapter.

3.5 The Auction-Based Bug Management Simulation

In this study, we designed a simulation that uses Monte Carlo method. The simulation

includes five parts. These parts are:

 Loading bug data

 Creating virtual bugs (auctions)

 Creating virtual users

 Running simulation

 Calculating winner users and MTTR values

In the Monte Carlo simulation, all parts execute in an order like seen in Figure 6. In first

part, user loads the bug data as a file input. This file contains fixing the time and

completed work values of bug items. In second part simulation creates virtual bug items.

We named as “Auction” to virtual bug items in the simulation model. In third part, the

simulation creates virtual users. Each user has the same credit value at the start of the

simulation. In fourth part, the simulation starts to run and random users bid random bugs.

In each bidding action, users spend credit and if a user wins an auction, user earns the

credit which is equal to the point of auction. In fifth part, the simulation calculates the

MTTR values of virtual bug items and lists the winner users with their credit value.

In the last part, we can compare the simulation results with the previous MTTR values

which are calculated from project bug data. However, we can show the effect of

gamification on bug resolution using Monte Carlo method. The activity diagram of Monte

Carlo simulation is seen in Figure 6.

The simulation can export the simulation results to XML or text file. We can run the

simulation by changing parameters in every run and we can save results to separate files.

By this functionality, we can see which variable change the results.

Monte Carlo simulation uses two parameters as input. These are:

 Project bug data

 Gamification Ratio

27

Figure 6 Activity diagram of Monte Carlo simulation

28

3.5.1 Analyzing Bug Data

In this step, we worked on a pilot project’s (Project X) bug items. These bugs were

generated in a real project’s lifetime and categorized by milestones. Bug source has four

milestones. These milestones are seen in Figure 7.

Figure 7 Project X milestones

We calculated bug counts, percentages of bug counts and MTTR values for all milestones

to compare them with the simulation results which are calculated after running Monte

Carlo simulation.

3.5.2 Calculating Gamification Ratio

As previously mentioned, we calculated the gamification ratio value that depends on

another study. In the referenced study, the pre-test was applied to 27 football referees

before education and a post-test was administered after education. This education was

performed by using gamification. We compared post-test and pre-test scores and

calculated 8.65 % difference. This value named as “gamification ratio” in this study and

used in Monte Carlo simulation. Gamification ratio is described clearly in Chapter 3.4.2.

3.5.3 Creating Monte Carlo Simulation

At the final step, we designed a Monte Carlo simulation algorithm. This algorithm uses

project bug data source and gamification ratio as input and creates a virtual auction-based

29

simulation. At the end of this simulation, we can compare the simulation MTTR values

with the project MTTR values to see the effect of gamification. The simulation has five

parts.

 Loading bug data: In this part, the simulation loads the fields of pilot project

bug items. The simulation reads fixing time values and completed work values

from bug items.

 Creating virtual bugs (auctions): The simulation creates a virtual bug item for

every real bug item. Virtual bug items named as auction items. Each auction has

four fields: These are:

1. Point: Point is a numerical value that is created randomly. It has

minimum and maximum limit. These limit values are determined by user.

Point can be called as a price of the auction. This means if the user wins

this auction, he/she earns the point as credit.

2. Fix Time: Fix time is a numerical value that is read from bug items. Fix

time is bug resolution day count. This value is calculated by subtracting

the proposed date from closed date. Proposed and closed date

information is located in the selected ALM tool.

3. Team: The bug source includes five different development teams. These

teams are loaded in simulation and each auction receives a team value

randomly.

4. Completed Work: Completed work is a numerical value that is read

from bug items. Completed work is required field and each bug has

completed work value. This value indicates how much time it was spent

to resolve a bug. The simulation sets completed work values to every

auction one by one.

 Create virtual users: The simulation creates virtual users to bid auctions. User

count and credit per user can be defined at the start of the simulation.

30

 Run simulation: The simulation needs some parameters to run. These

parameters are;

1. Auction Count: The value of how many virtual bugs (auctions) will be

created in simulation.

2. Min. Auction Point: The value of minimum point for a single auction.

3. Max. Auction Point: The value of maximum point for single auction.

4. User Count: The value of how many users will be created in simulation.

5. Credit per User: The value of how much credit each user will have at

the beginning of the simulation.

6. Fixing Hours: The file which includes the fixing hour for every bug

item.

7. Completed Work Hours: The file which includes the completed work

hour for every bug item.

After all parameters have entered, the simulation loads the auctions and users, then

runs every auction in a different thread. When every auction enters a thread, the

simulation needs to check users. Simulation checks;

1. There is at least one user can bid at least one auction

2. There is at least one user have enough credit to bid an auction

If at least one user is found who provides these conditions, the simulation starts to bid

current auction.

The algorithm searches the available users to bid the current auction. Then gets every

available user and creates a bidding hour using current auction’s fix time and

gamification ratio. Bidding hour is selected randomly from a range. This range has

minimum and maximum values. Randomly selection is shown in formula 10.

31

𝐵𝑖𝑑𝑑𝑖𝑛𝑔 𝐻𝑜𝑢𝑟 = 𝑅𝐴𝑁𝐷𝑂𝑀(𝑀𝑖𝑛 [𝑖], 𝑀𝑎𝑥 [𝑖])

Formula 10 Calculation of bidding hour

Calculation of Minimum and maximum values are shown in formula 11.

𝑀𝑖𝑛 [𝑖] = 𝐹𝑖𝑥𝑇𝑖𝑚𝑒 [𝑖]

𝑀𝑎𝑥 [𝑖] = 𝐹𝑖𝑥𝑇𝑖𝑚𝑒 [𝑖] × (1 - "𝐺𝑎𝑚𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜")

Formula 11 Calculation of minimum and maximum bidding hour range

After calculation of bidding hour, the algorithm bids the current auction and subtracts

the auction point from current user’s credit. This bidding process continue in a loop

until the simulation is finished. The simulation pseudocode is seen Figure 8.

Figure 8 Simulation pseudocode

32

 Calculating winner users: At the end of the simulation, we can analyze

statistical information about the simulation. We can order the users by their credit

(winner users), by bidding count or their teams. We can compare the MTTR

values of simulation and pilot project. Ultimately, we can show the effect of

gamification on bug management as a numeric value.

33

CHAPTER 4

4. DESIGN AND IMPLEMENTATION

4.1 Introduction

The goal of this chapter is to give the detailed description of Monte Carlo simulation

algorithm. This chapter includes system description, the information about the tools

which have been used to develop Monte Carlo simulation application. We describe the

back-end and front-end of application and the flow mechanism. We give detailed

information about the system functions and we describe the implementation of simulation

step by step. Then we describe the execution model of Monte Carlo simulation.

4.2 System Description

This auction-based bug management application is a simulation tool, which is designed to

simulate bug resolving in a software development project. This simulation tool aims to

improve software development quality in the projects of HAVELSAN. HAVELSAN is a

Turkish Systems and Software corporation having a business in various domains. This

company works in three business areas. The main area is simulation and training systems

and the others are command, control and e-government projects. HAVELSAN has

various software development project portfolio of around 50 projects in different sizes at

any given time.

In this study, we explored one of the projects in the defense industry with around 60

personnel. Project X (we could not introduce the name of project because of security)

started in 2014 and finished in 2016. In the project, the team used Microsoft Team

Foundation Server for integrated ALM.

Project X had four milestones T0 (Integration), T1 (System), T2 (Release Candidate), and

T3 (Acceptance) with a total of 1065 bugs. We calculated the sum of bugs in these

periods and calculated the percentages of them. The bug counts and percentages in

Project X are shown in Table 3.

34

Table 3 Bug counts in milestones (Day)

Time Bug Count Percentage

T0 488 45.8 %

T1 441 41.5 %

T2 115 10.8 %

T3 21 1,9 %

Total 1065 100 %

According to IEEE [45], a bug is a failure part or data in a software project. In Figure 3,

we have provided the workflow of a bug. The lifecycle of a bug starts with a user (mostly

test engineers) report a bug in the system. This bug report is reviewed by the development

tech lead for initial triage, following which there are mainly two alternatives. Either the

tech lead would assign the bug to a developer to get it fixed, or if a bug is affecting more

than one system, the tech lead would escalate to the Configuration Control Board (CCB).

Later on, after evaluation in CCB, the bug would be assigned to a developer, or might be

closed by the CCB. In the Resolved state, a test engineer would test the proposed fix. If

the fix is verified, the bug would be closed, otherwise the test engineer would return the

bug to the developer in the Assigned State.

We can classify software anomalies in two groups. First group is “Defect Classification”

and the other one is “Failure Classification” [87]. In this study, we concentrated on

“Defect Classification” items.

4.3 Tools

In this part, we give brief information about the tools which we used in the study. We

selected a pilot project named as “Project X” and analyzed this project’s bug source to

calculate MTTR values. Project X keeps the bug work items in Microsoft Team

Foundation Server (TFS). We develop our Monte Carlo simulation using object-oriented

C# programming language and Visual Studio 2017. Visual Studio (VS) is an integrated

35

development environment (IDE). C# programming language, Team Foundation Server

and Visual Studio are designed by Microsoft.

4.3.1 Team Foundation Server (TFS)

Microsoft Team Foundation Server (TFS) is a tool of Application Lifecycle Management

(ALM) to manage a software development project. The new version of TFS named as

“Azure DevOps”. TFS includes requirement, task, test, build and source code

management. Users can create or modify own work item types or use custom work item

types in TFS. The most used work item types listed as follows:

 Task

 Bug

 Backlog Item

 Requirement

 Change Request

 Test Case

 Test Plan

 Test Suite

 Nonconformity

In this study, we used around 1200 bugs of Project X from TFS 2017. TFS has a powerful

API to read, create, update or delete any of work item like Bug, Task or Test Case etc.

We used TFS API to export bug items to Excel file. Excel has available mathematical

functions and we used these functions to calculate MTTR values easily. Each work item

includes around 30 fields. We filtered these fields and exported some of them to the Excel

file. Most commonly used fields and types are shown in Table 4.

36

Table 4 Bug Work Item Fields

Field Name Type Description

Original Estimate Decimal Working hour which is assigned while creating

bug (approximate value)

Completed Work Decimal Working hour which is calculated after resolving

bug (exact value)

Activated Date Date Time Start date on the bug

Resolved Date Date Time Resolve date of bug

Area Path String The project area of bug

Assigned To String The assignee person of bug

Description String The description of bug

State String The state of bug

Reason String The reason about bug

The screenshot of a bug item from TFS is seen in Figure 9. (Not from Project X)

37

Figure 9 Bug work item

38

4.3.2 Visual Studio (VS)

Visual Studio (VS) is one of the popular IDE (Integrated Development Environment) that

is developed by Microsoft. Software developers can develop applications with various

programming languages by using Visual Studio. The most popular programming

languages which is supported by Visual Studio is seen in Table 5.

Table 5 Supported Programming Languages by VS

C# Go Visual Basic

C Ruby PHP

C++ JavaScript PowerShell

Python HTML Perl

Java TypeScript Coffee Script

Visual Studio has extended features that provides coding more efficiently. Visual Studio

Code, Azure DevOps (Team Foundation Server) and Visual Studio App Center can be

given as example to these features.

Visual Studio includes various software development environments like web

development (ASP.NET, ASP.NET MVC), mobile development (Xamarin, Windows

Mobile), Office Add-ins (Word, Excel, PowerPoint), Windows Forms Applications. WPF

(Windows Presentation Framework). In this study, we selected Windows Forms

Application to develop Monte Carlo Simulation. Windows Forms Applications allows to

develop classic windows style applications with rich interfaces.

In Visual Studio, each software development project stored under a solution file. One

solution includes one or more projects and each project includes one or multiple code

files, interface files, images etc. Windows Form Applications create two different files for

every windows form interface. One of them includes interface items (textbox, button,

label, progress bar, panel, checkbox) and the other one includes all codes about the

current windows interface. The solution of Monte Carlo simulation is seen in Figure 10.

39

Figure 10 Monte Carlo Simulation Solution

4.4 System Functions and Implementation

Based on system description which is explained in 4.2 section, this system is an auction-

based bug management simulation application. The system’s functions are divided into

two groups according to user items and auction items (work items). In the simulation,

random users can bid random auctions. While bidding action is running, the system

checks various requirements about the selected user and auction.

The class diagram of Monte Carlo simulation can be seen in Figure 11. All class and

enumeration items are listed in this diagram.

40

Figure 11 Class Diagram of Monte Carlo Simulation

41

“WorkItem” and “User” are the base classes of this system. Work items are exported

from Project X and users are generated dynamically during the simulation.

“UserCreditHistory” and “UserCredit” are the sub classes of the “User” class and they

hold the credit information about a user. “Auction” class is inherited from “WorkItem”

class. “AuctionAttendee” and “AuctionWinner” are the sub classes of “Auction” class.

“AuctionAttendee” class describes which users bid an auction and “AuctionWinner” class

shows the winner user of an auction. “TimerItem” class shows how long the simulation is

run.

4.4.1 Monte Carlo Simulation Back-End Model

The Monte Carlo simulation includes 8 classes and 1 enumeration which are developed

by using C# programming language. The main classes of the simulation model are

“Auction”, “User” and “UserCredit”. The others are helper classes or inherited from main

classes. All classes are listed below with properties and descriptions.

Table 6 “Auction” Class Definition

Property Name Type Description

ID Integer The unique id of auction

WorkItem WorkItem The reference work item of auction

CreatedDate Date Time The creation date of auction

Point Integer The point value of auction

State AuctionState The state enumeration value of auction

FixTime Decimal The fixing hour value of work item

CompletedWork Decimal The completed work hour of work item

Team String The team value of work item

AuctionAttendeeList AuctionAttendee[] The users who bid the auction

Table 6 shows an auction item and its properties. Auctions are inherited from work items.

42

Table 7 “User” Class Definition

Property Name Type Description

ID Integer The unique id of user

UserName String The username of user

DisplayName String The display name of user

JobTitle String The job description of user

Team String The team value of user

UserCredit UserCredit The credit value of user

CreditHistory UserCreditHistory[] The all credit history of user

Table 7 shows a user item and its properties. All users have credit (money) to bid

auctions.

Table 8 “UserCredit” Class Definition

Property Name Type Description

ID Integer The unique id of user credit

User User The owner user of credit

CreditValue Integer The value of credit

Table 8 shows a credit value item and its properties. Credit value item shows how much

credit does a user have?

43

Table 9 “AuctionAttendee” Class Definition

Property Name Type Description

ID Integer The unique id of attendee user

BidDate Date Time The date of bidding auction

TargetHour Decimal The time that user declares to solve bug

User User The user who bids auction

Table 9 shows an auction attendee item and its properties.

Table 10 “AuctionWinner” Class Definition

Property Name Type Description

Auction Auction The auction items

WinnerAttendee AuctionAttendee The winner user of current auction

Table 10 shows an auction winner item and its properties. Auction winner shows the

winner user of an auction.

Table 11 “UserCreditHistory” Class Definition

Property Name Type Description

ID Integer The unique id of credit history

Auction Auction The related auction of credit history

User User The owner user of credit history

CreditValue Integer The value of credit

IsPositive Boolean The flag which shows credit earned or

spent

CreatedDate Date Time The creation date of credit history

44

Table 11 shows a user credit history item and its properties. User credit history shows a

single credit operation about a user. If user earns credit, “IsPositive” property will be true

and if the user spends credit this property will be false.

Table 12 “WorkItem” Class Definition

Property Name Type Description

ID Integer The unique id of work item

SiteUrl String The ALM site url of work item (TFS)

CollectionName String The collection name of work item in TFS

ProjectName String The project name of work item in TFS

Title String The title of work item

State String The state of work item

WorkItemType String The work item type of work item

AssignedTo String The owner of work item

Priority Integer The priority of work item

Severity String The severity of work item

OriginalEstimate Decimal The original estimation value of work item

ImportedDate Date Time The imported date of work item from TFS

to simulation

Table 12 shows a work item and its properties. Work items are exported from Project X.

Table 13 “AuctionState” Enumaration Definition

Property Name Type Description

Started Integer The auction is started to bidding

Closed Integer The auction is closed to bidding

Cancelled Integer The auction is cancelled

45

Table 13 shows auction state enumeration and its values.

Table 14 “TimerItem” Class Definition

Property Name Type Description

Hour Integer How many hours of simulation is running

Minute Integer How many minutes of simulation is

running

Second Integer How many seconds of simulation is

running

Table 14 shows timer item and its properties. Timer item indicates how long the

simulation is run.

Table 15 “RandomService” Class Definition

Method Name Input Type Output Type

GetTeamList() String[]

CreateRandomUsers() Integer,

Integer

User[]

CreateUserCredit() Integer,

Integer

UserCredit

CreateRandomAuctions() Integer,

Integer,

Integer,

Decimal[],

Decimal[]

Auction[]

GetRandomBiddingHour() Decimal,

Decimal

Decimal

Table 15 shows random service and its functions.

46

4.4.2 Monte Carlo Simulation Front-End Model

The Monte Carlo simulation interface is designed in Windows Forms Applications by

using C# programming language. Visual Studio provides rich controls to design classic

windows forms easily. Software developers can use various controls like Textbox,

Button, Panel, RadioButton, CheckBox, ProgressBar or ListBox while coding a windows

forms application.

In this study, we designed a simple interface to manage auction-based bug management

simulation. We separated the screen into two parts. In the first part, (left of screen) we

located a control set that allows entering simulation parameters. Monte Carlo simulation

needs 7 parameters except “Gamification Ratio”. The screenshot of the parameters panel

is seen in Figure 12.

Figure 12 Monte Carlo Simulation Parameter Settings

47

All numerical parameters have default values. Default parameters are calculated

according to the Project X. The detailed information about parameters are like that:

 Auction Count: This value shows how many auctions will be created in

simulation. In project, X we have 1065 bugs and we set this value as default.

 Minimum Auction Point: The minimum limit for an auction point. Auction

point cannot be a negative number and we set the minimum positive number to

this parameter. “1” means the easiest auction in simulation.

 Maximum Auction Point: The maximum limit for an auction point. Auction

point calculation depends on “Priority” and “Severity” fields of current auction

(work item). Highest “Priority” value can be 5 and highest “Severity” value can

be 10 in Project X. We calculated the maximum auction point by multiplying

highest “Priority” and “Severity” values.

 User Count: This value shows how many user will be created in simulation. In

Project X, there are 6 teams and every team includes around 10 people. We

calculated the default value as the total population of Project X.

 Credit Value per User: The initial credit value for every user. Every user spends

credit while bidding an auction. We set the default value 5000 credit. This is

enough to run simulation around 1000 auction.

 Fixing Hour File: This file includes the all fixing hours of Project X bug items.

Fixing hours are used while creating auctions.

 Completed Work Hour File: This file includes the all fixing hours of Project X

bug items. Completed work hours are used while creating auctions.

When user clicks “Start” button, the simulation starts to run with selected parameters.

“Reset” button sets the default values for all parameters. While simulation is running, a

progress bar appears and it shows how many auctions are bid, total auctions count,

percentage of bid auctions and how long has the simulation been running. The screenshot

of information bar is seen in Figure 13.

48

Figure 13 Monte Carlo Simulation Progress Bar

At the end of the simulation run, statistical information about Monte Carlo simulation

results are presented below the progress bar. The other detail information is saved to a

text file automatically. Presented information can be used to answer the following

questions:

 How many user(s) bid at least one auction?

 How many user(s) win an auction?

 How many auction(s) were bid by at least one user?

 What is the average point of all auctions?

The information bar is shown in Figure 14.

Figure 14 Monte Carlo Simulation Information Bar

4.4.3 Monte Carlo Simulation Execution Model

Monte Carlo simulation needs a set of required parameters to execute. These parameters

are explained in previous part. After all required parameters are set, the simulation creates

virtual users and virtual auctions. Next, the simulation is ready to run in a loop. The loop

count is equal to the user count.

49

In every step of the loop, the simulation bids a different auction and checks a set of

conditions. If one of these condition is not provided, simulation finishes otherwise the

simulation continues to run in current loop. The conditions are like that:

 Checking users’ credit: The simulation checks is there at least one user can bid

at least one auction. If there is at least one user, the simulation continues,

otherwise simulation ends.

 Checking minimum auction: The simulation calculates the minimum auction

point of all auctions. Then it checks is there at least one user whose point is

bigger than minimum auction point. If there is at least one user, the simulation

continues, otherwise simulation ends.

 Checking user-auction map: In the simulation, one user can bid the same

auction only one time. If all users bid all the auctions one time, the simulation

finishes.

If all of these conditions are provided, the simulation starts to bid current auction. The

function “SimulateSingleAuctionBidding()” is called to bid every auction. The function

creates a new thread for every auction and disposes the thread after execution finishes.

This function takes the current auction item as input parameter.

When the simulation starts to bid an auction firstly available users are determined to bid

the auction. These users are determined by their credit value. If a user has not enough

credit to bid an auction, he/she cannot bid the auction. While bidding process is continue,

the system calculates a bidding hour. The bidding hour value is calculated by a function

and this function uses two parameters as input. These are:

 Fix time (decimal): Every auction item inherited from a real bug item from

Project X. Fix time value is a numeric field that is read from bug item.

 Gamification ratio (decimal): This numeric ratio is calculated by a reference

study. Gamification ratio is explained in the methodology section.

The function calculates and return a new bidding hour by using fix time and gamification

ratio. Function code is shown in Figure 15.

50

Figure 15 Calculation of Bidding Hour

The simulation creates a range for bidding hour by using fix time and gamification ratio.

Then the function selects a random value from this range and return it to the simulation.

After the simulation is finished, the winner users of auctions are listed by their bidding

hour values. We can calculate the new MTTR values from the simulation results and

compare them with the pilot project’s MTTR values to show the effect of using

gamification in software development projects.

4.5 Analysis and Test Results

We ran the auction simulation using 1065 bugs and 60 users. Then we calculated and

compared the MTTR values for two scenarios. The first scenario was depending on real

project data from Project X. The second scenario ran the Monte Carlo simulation with

parameters in Table 3 and using the gamification ratio which is drawn from previously

published study by the authors [88]. The main difference between the two scenarios is the

use of gamification ratio. By this ratio, we can see the effect of using gamification in bug

management.

51

We calculated MTTR values for two scenarios by the formula (1). We included 1065

bugs into this formula. MTTR results for the Monte Carlo simulation is shown in Table

16.

Table 16 Monte Carlo simulation MTTR values (Days)

Time MTTR Min. Time Max. Time

T0 50.30 0.06 633.66

T1 47.12 0.02 307.12

T2 73.11 1.41 182.31

T3 28.76 5.01 68.02

The MTTR values for the T0, T1, T2 and T3 milestones of Monte Carlo simulation is

seen in Figure 16.

Figure 16 MTTR values for Monte Carlo simulation

MTTR values for the Project X is shown in Table 17.

52

Table 17 Project X MTTR values (Days)

Time MTTR Min. Time Max. Time

T0 54.61 0.04 686.76

T1 51.87 0.02 310.76

T2 78.10 2.03 195.83

T3 33.75 5.79 71.82

The MTTR values for the T0, T1, T2 and T3 milestones of Project X is seen in Figure 17.

Figure 17 MTTR values for Project X

Then we compared actual MTTR values for Project X with the Monte Carlo simulation,

as shown in Table 18.

Table 18 Project X and Monte Carlo simulation MTTR Comparison

 Project X Monte Carlo Simulation

Number of bugs that used 1065 1065

MTTR values (day) 54.58 49.82

53

The comparison of MTTR values in Project X and auction-based Monte Carlo simulation

is shown in Figure 18. In this graph, we can see the effect of gamification on MTTR

values.

Figure 18 MTTR comparison of Project X and Monte Carlo simulation

We listed the top 5 users who has maximum points, won auction counts and their teams.

The list is shown in Table 19.

Table 19 Top 5 users

Username Point Won Auction Count User Team

User 3 2456 58 Maintenance

User 7 2256 48 Planning

User 32 1748 32 Infrastructure

User 16 1290 18 Maintenance

User 57 967 10 Infrastructure

54

We conducted experiments with a set of parameters (see Figure 12) and the average

results are shown in Table 16. We repeated the simulation for five times and we got close

results. The average of MTTR values were between 49.05 days and 52.52 days for every

repetition.

The MTTR values for the first repetition is seen in Table 20.

Table 20 Monte Carlo simulation MTTR values (Repetition 1)

Time MTTR Min. Time Max. Time

T0 48.25 0.05 632.21

T1 49.10 0.06 302.18

T2 72.10 1.49 176.56

T3 29.66 7.02 69.01

The MTTR results for second repetition is seen in Table 21.

Table 21 Monte Carlo simulation MTTR values (Repetition 2)

Time MTTR Min. Time Max. Time

T0 49.33 0.09 628.11

T1 43.18 1.00 306.00

T2 76.13 1.34 171.52

T3 29.36 7.01 65.02

The MTTR values for the third repetition is seen in Table 22.

55

Table 22 Monte Carlo simulation MTTR values (Repetition 3)

Time MTTR Min. Time Max. Time

T0 49.11 0.06 624.11

T1 43.99 1.04 311.40

T2 73.54 1.32 169.53

T3 32.31 7.09 64.03

The MTTR values for the fourth repetition is seen in Table 23.

Table 23 Monte Carlo simulation MTTR values (Repetition 4)

Time MTTR Min. Time Max. Time

T0 49.45 0.02 629.12

T1 45.78 0.24 316.42

T2 78.54 1.42 172.43

T3 36.31 7.78 67.09

The MTTR values for the fifth repetition is seen in Table 24.

Table 24 Monte Carlo simulation MTTR values (Repetition 5)

Time MTTR Min. Time Max. Time

T0 45.45 0.08 628.42

T1 44.88 0.14 313.79

T2 77.11 1.89 171.72

T3 35.01 7.34 64.19

56

4.6 Revisiting the Research Questions

In this section, our three research questions from Chapter 1 are discussed and detailed

answers are given for all questions. We defined three objectives. These are;

 Analyze Project X bug data (MTTR calculation).

 Create an auction-based bug management simulation.

 Compare the MTTR values of Project X and the auction-based bug management

simulation.

Depending on three objectives, we defined three research questions. The questions and

answers are explained below this paragraph.

RQ1: How can the auction-based reward mechanism help the bug

resolution process?

To address the first question, we studied on a referenced paper. Gulec and Yilmaz [88]

designed a game system to train the football referees. The first group of referees (control

group) was trained by using handbook and the second group (experimental group) was

educated by using gamification. The same exam was applied to all groups at the end of

the training. Exam results show that the second group (trained by using the game system)

is 8,65 % more successful than the first group. According to these results, we decided to

use the reward mechanism to help software developers to solve bugs in less time. The

reward mechanism can encourage participants (software engineers) to solve problems in

more enjoyable ways while they are trying to solve bugs about their jobs. By this way,

software engineers can resolve more bugs during development process.

RQ1.1: How can we minimize the bug resolution time?

To address the second question, we should study on MTTR calculation. In Project X,

there are 1065 bug items and MTTR value is 54.58 days. In auction-based bug

management simulation, there are 1065 auction items (bugs) and the MTTR value is

between 49.05 days and 52.52 days in all repetitions. We can see that using gamification

helps software developers to solve bugs. Software developers (participants) were allowed

to choose bugs to resolve by themselves during the simulation and they had higher

motivation while working on bugs. If a software developer has high motivation, he/she

57

can solve bugs in less time and we can minimize the average bug resolution time in a

software development project.

RQ1.2: How can we demonstrate the effectiveness of auction-based

reward mechanism in the bug resolution process?

To address the third question, we designed a Monte Carlo simulation for an auction-based

bug management. Monte Carlo is a type of simulation that depends on randomly choices.

In auction-based bug management system, every single bug item is equal to an auction

and software developers can bid an auction which they want to solve. The team leader

does not assign a bug to a developer. The team members (developers) can solve bugs with

high motivation in auction-based working model. The improvement of motivation is a

result of using auction-based reward mechanism in Monte Carlo simulation.

58

CHAPTER 5

5. CONCLUSION AND FUTURE WORK

In the field of software development, MTTR is a notable metric with lower MTTR figures

correlating closely with greater satisfaction for the customer. In order to reduce MTTR,

an innovative gamification approach is presented in this study. We initiated this project to

devise a structure that would incentivize, using Monte Carlo simulation methods,

software developers to improve their bug tracking and investigation skills. Following five

experiments, the results seemed to indicate that the gamified variant (i.e., incentive

mechanism-based simulation) yielded outcomes that were superior to the normal run. It

could be observed in the data distribution of the study that a sequence of dichotomous

event outcomes occurred in a selected period including a number of bugs being resolved

over 51.45 days [25].

Our research endeavored to present and advance a model that would expound on and

analyze auction-based incentive systems for bug tracking in software development

environments. The findings present a potential procedure for designers of mechanism

(software managers) to evaluate any possibilities that increase the probability of managers

making better decisions. As attested in previous related research showing the great

complexity of software development process decisions [85] and the dependence on the

manner in which many individuals perform in software development [86], measures taken

to deal with this complexity via gamification may facilitate handling it through the

enlistment of software developers at a higher level through the software development

social setting of gamification, which would probably result in more timely higher quality

work [25].

Our identified approach provides individual developers with the benefit of selecting those

bugs that are most likely to be resolved. Individuals will of course occasionally fail to be

accurate in their assessment of their abilities. Nevertheless, providing them with the

means to identify issues that they believe can be resolved is considered by the authors to

be a way for matching particular developers with particular individual bugs. Moreover,

when developers quote an estimated period time leading to resolution, they become

bound to the time(s) declared. In the event of failing to meet their declared target(s), there

59

is the potential risk of appearing incompetent in the company of their peers should this

failure continue. Nevertheless, this can assist individual developers to concentrate on

determining and pinpointing more accurate bug resolution durations. Moreover, at a later

time, a combination of known developer predictive resolution duration accuracy and bids

placed across various auctionable bugs to identify the stronger economic distributions of

bugs to bug resolvers may be used by a development team, which would be an

improvement in the effective removal of bugs by applying gamification techniques [25].

Our current study, for the first time, delves into applying an auction mechanism to

software development. In software development, for a better sense of bug trend dynamics,

the classification of MTTR has increased in importance. Our research presents interesting

possibilities to expand on what we know about software metrics. This makes it possible

for us to specify better software product dependability.

Preliminary prototype and simulation results had been disclosed to the company, from

whom we received immediate commendations. Nevertheless, there is still more work

required for a better and more complete understanding of the ramifications of an auction-

based incentive mechanism. For further study, we intend to test the system on an

intermediate sized software company.

5.1 Threats to Validity

Yılmaz [29] describes the “threats to validity” as a set of possible factors which can

change the correctness, usefulness of study and trust-ability in a negative way. However,

Fayter et al. [101] define threats as the factors which cause to get worse quality results.

We can classify the validation of threats as four categories. These are;

 Construct Validity: Constructs and valid operational measures should represent

the subject clearly [29].

 Interval Validity: Any invisible factors which affect the validity should be

predicted and conceptual definitions should match with the operational results

[29].

 External Validity: The research should provide equipment to extrapolate on

research results [29].

60

 Reliability: The research should be stable about measuring instrument and the

researchers can repeat the study with the current results [29].

There are however, various limitations in our study which should be discussed. Firstly,

similar to other methods based on the theory of probability Monte Carlo approaches are

data-intensive. Therefore, they cannot produce significant results unless a considerable

set of data has been generated - which has the effect of introducing a computational

burden. Apparently, more experiments need to be conducted under various data scenarios.

An auction-based bug management is a socio-technical process where all on different

trials needs to be run to determine parameters which should have to be set by the

researcher. This may impose time constraints while modeling the system. A further

limitation can be seen in the assumption that the gamification ratio from earlier research

will retain validity in the context of this gamification experiment. Clearly, further study

should be conducted to examine this assumption. It should, however, be noted that a new

gamification ratio could be established for individual teams.

Table 25 summarizes the potential threats to validity for this study.

Table 25 Threats to validity items on Monte Carlo simulation

Threat Category Threat Description

Internal Validity Monte Carlo simulation is data-intensive. Data size is important

about the simulation result is consistent or not.

Construct Validity Auction-based operations are socio-technical processes and all

system parameters should have to be set by the researcher

otherwise different trials can give different results.

External Validity The data which depends on the calculation of ‘Gamification

Ratio’ has a limitation on Monte Carlo simulation.

Reliability The measurement methods should be accurate and stable where

the methodologies and measuring methods could be reused by

other researchers.

61

5.2 Future Work

In this study, we designed an auction-based bug management simulation using Monte

Carlo method. In the future, we are planning to develop an auction-based bug

management tool. This tool will be a web-based application and has the ability to create

auctions with work items from Team Foundation Server (TFS). We will determine one or

more administrators on this tool and they have ability to create auctions. All auctions will

start and finish in scheduled time zone. All of the software engineers (gamers) can login

to this system and they can see the open auctions. Software engineers can bid any auction

if they have enough credit. One gamer will win the auction at the end of auction. If

winner software engineer can solve the bug in promised time range, he/she will earn more

credit, otherwise will not earn any credit.

When the bug management tool development will be finished, we will select another pilot

project in HAVELSAN. Firstly, we will create two different groups as an experimental

and control group. The software engineers will be divided into these two groups

randomly. Control group will work with the classical model. In classical model, team

leaders will assign bugs to developers. Then we will collect some bug data like resolving

time, priority and severity value etc. to calculate MTTR value of control group. The

experimental group will work using the auction-based bug management tool and we will

collect the same bug data for experimental group during the development process. At the

end of the project lifecycle, we will compare the MTTR values of control and

experimental group to show the effectiveness of auction-based game systems in bug

resolution process.

62

REFERENCES

1. Chappell, D. (2008), “What is Application Lifecycle Management?”, Chappell &

Associates.

2. Yilmaz, M., O'Connor, R. (2011), “Oyun Kuramı Kullanarak Yazılım

Takımlarının Üretkenliğini Artırmak İçin Geliştirilen Bir Yazılım Süreç

Mühendisliği Yaklaşımı”, UYMS.

3. Zahran S. (1998), “Software Process Improvement: Practical Guidelines for

Business Success”, Addison Wesley.

4. Maskin E. (2008), “Nash equilibrium and mechanism design, Institute for

Advanced Study, Princeton University”, United States.

5. Dingsøyr T., Dybå T., Moe N. B. (2010), “Agile Software Development: Current

Research and Future Directions”, 1st ed. Springer.

6. Deek F. P., McHugh J. A., Eljabiri O. M. (2005), “Strategic software

engineering: an interdisciplinary approach”, CRC Press.

7. Lagesse B. (2006), "A Game-Theoretical model for task assignment in project

management" in 2006 IEEE International Conference on Management of

Innovation and Technology, Singapore, pp. 678-680.

8. Cockburn A. (2006), “Agile software development: the cooperative game.”

Addison-Wesley, "A Game-Theoretical model for task assignment in project

management," in 2006 IEEE International Conference on Management of

Innovation and Technology, Singapore, pp. 678-680.

63

9. Baskerville R. L., Levine L., Ramesh B., Pries-Heje J. (2004) “The high speed

balancing game: How software companies cope with internet speed” Scandinavian

Journal of Information Systems, vol. 16, no. 1, pp. 11–54.

10. Sullivan K., Chalasani P., Jha S. (1997), “Software design decisions as real

options” University of Virginia, Tech. Rep.

11. Sazawal V., Sudan N. (2009) “Modeling software evolution with game theory”

Trustworthy Software Development Processes, vol. 5543, pp. 354–365.

12. Xing G., Weijun Z., Shue M. (2013), “A game-theory approach to configuration

of detection software with decision errors”.

13. Gao-hui N. (2006), “Analysis on Enterprise's Software Project Management

Based on Game Theory, Management Science and Engineering”.

14. Soska A., Mottok J., Wolff C. (2016), “An experimental card game for software

testing: Development, design and evaluation of a physical card game to deepen the

knowledge of students in academic software testing education”, Global

Engineering Education Conference (EDUCON), IEEE.

15. Pedreira O., García F., Brisaboa N., Piattini M. (2015), “Gamification in

software engineering – A systematic mapping, Information and Software

Technology”, v. 57.

16. Sweedyk E., Keller R. M. (2005), “Fun and games: a new software engineering

course”, ITiCSE '05 Proceedings of the 10th annual SIGCSE conference on

Innovation and technology in computer science education, Pages 138-142.

17. Kitagawa N., Hata H., Ihara A., Kogiso K., Matsumoto K. (2016), “Code

review participation: game theoretical modeling of reviewers in gerrit datasets”,

CHASE '16 Proceedings of the 9th International Workshop on Cooperative and

Human Aspects of Software Engineering, Pages 64-67.

18. Szabo C. (2014), “Evaluating GameDevTycoon for teaching software

engineering”, Proceeding SIGCSE '14 Proceedings of the 45th ACM technical

symposium on Computer science education, Pages 403-408.

64

19. Amir B., Ralph P. (2014), “Proposing a theory of gamification effectiveness”,

Proceeding ICSE Companion 2014 Companion Proceedings of the 36th

International Conference on Software Engineering, Pages 626-627.

20. Ranganathan N., Murugavel A. (2003), “A low power scheduler using game

theory”, CODES+ISSS '03 Proceedings of the 1st IEEE/ACM/IFIP international

conference on Hardware/software codesign and system synthesis, Pages 126-131.

21. Hazzan O., Dubinsky Y. (2005), “Social perspective of software development

methods: The case of the prisoner dilemma and extreme programming” in Extreme

Programming and Agile Processes in Software Engineering. Springer, pp. 74–81.

22. Feijs L. (2001), “Prisoner dilemma in software testing” Computer Science

Reports, vol. 1, pp. 65–80.

23. Costa C. J., Costa P. J. (2011), “A peace war game application”, OSDOC '11

Proceedings of the 2011 Workshop on Open Source and Design of

Communication, pp. 71-74.

24. Mortensen P., Wai C. (2007), “Avoiding the prisoner's dilemma of the web”,

DUX '07 Proceedings of the 2007 conference on Designing for User eXperiences.

25. Usfekes C. et. al. (2019), “An Auction-Based Serious Game for Bug Tracking”,

IET Software, DOI: 10.1049/iet-sen.2018.5144.

26. Conradi R., Fuggetta A. (2002), “Improving Software Process Improvement”

IEEE Software, vol. 19, no. 4, pp. 92–99.

27. Dittrich Y., Floyd C., Klischewski R. (2002), “Social thinking software

practice.” The MIT Press.

28. Grechanik M., Perry D. E. (2004), “Analyzing Software Development as a

Noncooperative Game” in IEE Seminar Digests, vol. 29.

29. Yilmaz M. (2013), “A software process engineering approach to understanding

software productivity and team personality characteristics: an empirical

investigation.” PhD thesis, Dublin City University.

65

30. Yilmaz M, O'Connor R. (2010), “Maximizing the value of the software

development process by game theoretic analysis”, In: 11th International

Conference on Product Focused Software, Limerick, Ireland. ISBN 978-1-4503-

0281-4.

31. Yilmaz M., Yilmaz M., O'Connor R., and Clarke P. (2016) “A gamification

approach to improve the software development process by exploring the

personality of software practitioners”, In: Clarke, Paul and O'Connor, Rory and

Rout, Terry and Dorling, Alec, (eds.) Software Process Improvement and

Capability Determination. Communications in Computer and Information Science,

609 . Springer, pp. 71-83. ISBN 978-3-319-38980-6

32. Schwaber C., et al. (2006), “The Changing Face of Application Lifecycle

Management”, Forrester Research, August 18.

33. Yilmaz M., O'Connor R., Collins J. (2010), “Improving software development

process through economic mechanism design”, In: 17th European Software

Process Improvement Conference, Grenoble, France. ISBN 978-3-642-15666-3.

34. Yilmaz M., O'Connor R. (2016) “A Scrumban integrated gamification approach

to guide software process improvement: a Turkish case study”, TehnickiVjesnik

(Technical Gazette), 23 (1). pp. 237-245. ISSN 1330-3651.

35. Yilmaz M., O'Connor R. (2012) “A market based approach for resolving

resource constrained task allocation problems in a software development process”,

In: 19th European Conference on Systems, Software and Services Process

Improvement (EuroSPI 2012), Vienna, Austria.

36. Jose L. J., César A. C., Francisco L. G., Luis M. (2016), “Designing Game

Strategies: An Analysis from Knowledge Management in Software Development

Contexts, Serious Games”, Interaction and Simulation, pp.64-73

37. James C. H., Joel L. D., David G. B. (1994), "Models of Information Processing

in the Basal Ganglia", MIT Press, pp. 185 – 185.

38. Neetu S., Narendra S. C. (2014), "Differential Reward Mechanism Based Online

Learning Algorithm for URL-based Topic Classification", IEEE, Computational

Intelligence and Communication Networks (CICN).

39. Lua K., Wanga S., Xiea L., Wanga Z., Li M. (2016), "A dynamic reward-based

incentive mechanism: Reducing the cost of P2P systems", vol. 112, pp. 105 – 113.

66

40. Wang H., Tsai C. (2011), “Game Reward Systems: Gaming Experiences and

Social Meanings”.

41. Walz S. P., Deterding S. (2014), "Gamification and Learning", MIT Press, pp.

688.

42. González C. S., Carreño A. M. (2014), "Methodological proposal for

gamification in the computer engineering teaching", IEEE, Computers in

Education (SIIE).

43. Qu W., Zhao Y., Wang M., Liu B. (2014), "Research on teaching gamification of

software engineering", IEEE, Computer Science & Education (ICCSE).

44. Largo F. et. al. (2016), "Gamification of the learning process: lessons learned",

IEEE, IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, pp. 1 – 1.

45. Parizi R. M. (2016), "On the gamification of human-centric traceability tasks in

software testing and coding", IEEE, Software Engineering Research, Management

and Applications (SERA).

46. Parizi R. M., Kasem A., Abdullah A. (2015), "Towards gamification in software

traceability: Between test and code artifacts", Software Technologies (ICSOFT),

2015 10th International Joint Conference on.

47. Lacheiner H., Ramler R. (2011), "Application Lifecycle Management as

Infrastructure for Software Process Improvement and Evolution: Experience and

Insights from Industry", 2011 37th EUROMICRO Conference on Software

Engineering and Advanced Applications, doi: 10.1109/SEAA.2011.51, pp. 286-

293.

48. Aytekin A. İ. et. al. (2015), “Uygulama Yaşam Döngüsü Yönetimi – Sistematik

Eşleme Çalışması”, UYMS.

49. Shaw K. (2007), “Application Lifecycle Management for the Enterprise”, Serena

Software, White Paper,

http://www.serena.com/Docs/Repository/company/Serena_ALM_2.0_For_t.pdf.

50. Kääriäinen J., Välimäki A. (2008), “Impact of Application Lifecycle Management

– A Case Study”, In: International Conference on Interoperability of Enterprise,

Software and Applications (I-ESA), Berlin, Germany, pp. 55–67.

67

51. J. K, Välimäki A. (2009), “Applying Application Lifecycle Management for the

Development of Complex Systems : Experiences from the Automation Industry” in

EuroSPI, pp. 149–160.

52. Kitchenham B. A., Dyba T., Jorgensen M. (2004), “Evidence-Based Software

Engineering”, Proc. Of the 26th International Conference on Software Engineering

(ICSE '04), Scotland, UK, pp. 273-281.

53. Macit Y. et. al. (2014), “Büyük Ölçekli Bir Organizasyonda Uygulama Yaşam

Döngüsü Yönetimi Uygulama Deneyimi”, Proceedings of the 8th Turkish National

Software Engineering Symposium.

54. Martin J. (1991), “Rapid Application Development.”, Macmillan. ISBN 0-02-

376775-8.

55. Beck K. et. al. (2010), "Principles behind the Agile Manifesto", Agile Alliance.

Archived from the original on 14 June 2010.

56. Krajewski L. J., Ritzman L. P. (2005), “Operations Management: Processes and

Value Chains”, Pearson Education, Upper Saddle River.

57. Beck K. et. al. (2001), "Manifesto for Agile Software Development",

https://agilemanifesto.org/

58. Gangji A., Hartman, B. (2015), "Agile SCRUM for Denver Web Development",

Neon Rain Interactive. Retrieved September 25.

59. Mangalindan J. P. (2012), "Play to win: The game-based economy", Fortune,

Archived from the original on 2012-11-12.

60. Yilmaz M., V. O’Connor R., Collins J. (2010), “Improving Software

Development Process through Economic Mechanism Design”, EuroSPI 2010, pp

177-188.

61. Osborne M. J., Rubinstein A. (1994), “A Course in Game Theory”, Cambridge,

MA: MIT, 1994. Print.:14

62. Allison S. T., Beggan J. K., Midgley E. H. (1996), "The quest for "similar

instances and simultaneous possibilities": Metaphors in social dilemma research".

68

Journal of Personality and Social Psychology. 71: 479–497. doi:10.1037/0022-

3514.71.3.479.

63. Schultz W. (2015), "Neuronal reward and decision signals: from theories to data",

Physiological Reviews, pp 853–951.

64. DRM Associates (2002), "New Product Development Glossary", Retrieved 2006-

10-29.

65. Laplante P. (2007), “What Every Engineer Should Know about Software”, ISBN:

978-0849372285

66. ISO/IEC (2008), “Systems and software engineering Software life cycle

processes”, Amendment to ISO/IEC 12207-2008.

67. Persse J.R. (2006), “Process Improvement Essentials”, O’Reilly Media, Inc.

68. Lotufo R., Passos L., Czarnecki K. (2012), "Towards improving bug tracking

systems with game mechanisms", Proceedings of the 9th IEEE Working

Conference on Mining Software Repositories, pp.2-11.

69. Sasso T. D., Mocci A., Lanza M., Mastrodicasa E. (2017), "How to Gamify

Software Engineering", Software Analysis, Evolution and Reengineering

(SANER).

70. Fraser G. (2017), "Gamification of software testing", Proceedings of the 12th

International Workshop on Automation of Software Testing, pp.2-7.

71. Metropolis N., Ulam S. (1949), "The Monte Carlo method", Journal of the

American Statistical Association Vol. 44, No. 247, pp. 335-341.

72. Kroese D. P., Brereton T., Taimre T., Botev Z. I. (2014), "Why the Monte Carlo

method is so important today". WIREs Comput Stat. 6: 386–392.

doi:10.1002/wics.1314.

73. Pham H. (1999), "Software Reliability", John Wiley & Sons Inc., p:567, ISBN

9813083840, 1999, "Software Validation. The process of ensuring that the software

is performing the right process. Software Verification. The process of ensuring that

the software is performing the process right.".

69

74. Raychaudhuri S. (2008), "Introduction to Monte Carlo simulation", Proceedings

of the 40th Conference on Winter Simulation, pp. 91-100.

75. Burgin M. S., Maurice J. A. (2009), "Monte Carlo methods and super-recursive

algorithms", SpringSim '09 Proceedings of the 2009 Spring Simulation

Multiconference Article No. 140.

76. Kalantari N., Bako S., Sen P. (2015), "A machine learning approach for filtering

Monte Carlo noise", ACM Transactions on Graphics (TOG) - Proceedings of ACM

SIGGRAPH 2015, Volume 34 Issue 4, 2015, Article No. 122.

77. Joshua A. N., Gregory K. H., Jin W. (2014), "Bounded Monte Carlo integration

using Java", Proceedings of the 2014 ACM Southeast Regional Conference Article

No. 29.

78. Dennis J. N., Soemers J., Chiara F. S., Torsten S. (2016), "Enhancements for

real-time Monte-Carlo Tree Search in General Video Game Playing",

Computational Intelligence and Games (CIG).

79. Maia L. F., Viana W., Trinta F. (2017), "Using Monte Carlo tree search and

google maps to improve game balancing in location-based games",

Computational Intelligence and Games (CIG).

80. Lorentz R. (2016), "Using evaluation functions in Monte-Carlo Tree Search",

Theoretical Computer Science, Volume 644, pp. 106-113.

81. Malefaki S., Koutras V. P., Platis A. N. (2012), "Modeling Software

Rejuvenation on a Redundant System Using Monte Carlo Simulation", Software

Reliability Engineering Workshops (ISSREW).

82. Pacagnella A. C., Pacifico O., Terra L. A. (2015), "Cost estimation in software

development projects with Monte Carlo simulation", IEEE Latin America

Transactions, pp. 3051 – 3058.

83. Madani K. (2011), "A Monte-Carlo game theoretic approach for Multi-Criteria

Decision Making under uncertainty", Advances in Water Resources, Volume 34,

Issue 5, pp. 607-616.

70

84. Usfekes C. et. al. (2017), "Examining Reward Mechanisms for Effective Usage of

Application Lifecycle Management Tools.", 24th European Conference, EuroSPI

2017

85. Clarke P., O'Connor R.V., Leavy B. (2016), "A Complexity Theory viewpoint on

the Software Development Process and Situational Context", In: proceedings of the

International Conference on Software and Systems Process (ICSSP), Co-Located

with the International Conference on Software Engineering (ICSE), pp. 86-90,

DOI:10.1145/2904354.2904369.

86. Clarke P. and O'Connor R.V. (2015), "Changing situational contexts present a

constant challenge to software developers", 22nd European Conference on

Systems, Software and Services Process Improvement (EuroSPI 2015), Springer-

Verlag.

87. IEEE (2010), "1044-2009 - IEEE Standard Classification for Software

Anomalies", ISBN: 0-7381-0406-X.

88. Gulec U., Yilmaz M. (2016), "A serious game for improving the decision making

skills and knowledge levels of Turkish football referees according to the laws of the

game".

89. Lapp S. A. (1986), "Derivation of an Exact Expression for Mean Time to Repair",

IEEE Transactions on Reliability, pp. 336 – 337.

90. Institute for Telecommunications Sciences (2008), “Mean Time To Repair

definition”, Archived 2008-09-25 at the Wayback Machine.

91. Fousch R.J. (1989), "PC software solutions for MTTR predictions", Reliability

and Maintainability Symposium.

92. Zheng H., Liu W., Xiao C. (2018), "An activity-based defect management

framework for product development", Computers & Industrial Engineering.

93. Aqlan F., Ramakrishnan S., Shamsan A. (2017), "Integrating data analytics and

simulation for defect management in manufacturing environments", Simulation

Conference (WSC).

71

94. Rahman A., Hasim N. (2015), "Defect Management Life Cycle Process for

Software Quality Improvement", Artificial Intelligence, Modelling and Simulation

(AIMS).

95. Taba N. H., Ow S. H. (2012), "Improving Software Quality Using a Defect

Management-Oriented (DEMAO) Software Inspection Model", Modelling

Symposium (AMS).

96. Weerd I. V., Katchow R. (2009), "On the integration of software product

management with software defect management in distributed environments",

Software Engineering Conference in Russia (CEE-SECR).

97. Gopalakrishnan T. R., Suma V., Shashi K. N. R. (2011), "An analytical

approach for project managers in effective defect management in software

process", Software Engineering (MySEC).

98. Tuzun E. et. al. (2019), “Adopting integrated application lifecycle management

within a large-scale software company: An action research approach”, Journal of

Systems and Software, pp. 63-82.

99. Scheibehenne B., Greifeneder R., Todd P. (2010), "Can there ever be too many

options? A meta-analytic review of choice overload". Journal of Consumer

Research. 37 (3): 409–25.

100. National Science Foundation (NSF) (2006), "Report on Simulation-Based

Engineering Science", Blue Ribbon Panel.

101. Fayter D., McDaid C., Eastwood A. (2007), “A Systematic Review Highlights

Threats to Validity in Studies of Barriers to Cancer Trial Participation”, Journal of

Clinical Epidemiology, vol. 60, no. 10, pp. 990- 991.

102. Shen T. -. Yu, V. Y., Dunsmore H. E. (1988), "An analysis of several software

defect models" in IEEE Transactions on Software Engineering, vol. 14, no. 9, pp.

1261-1270.

103. Usfekes C. et. al. (2017), "Systems, Software and Services Process Improvement",

EuroSPI 2017, vol. 748, pp. 259-268.

72

104. Tuzun E. et. al. (2019), "Adopting integrated application lifecycle management

within a large-scale software company: An action research approach", Journal of

Systems and Software, vol. 149, pp. 63-82.

