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ABSTRACT

MULTI-LABEL CLASSIFICATION OF TEXT DOCUMENTS USING

DEEP LEARNING.

MOHAMMED, Hamza Haruna

M.Sc., Computer Engineering Department

Supervisor: Asst. Prof. Dr. Abdül Kadir GÖRÜR

Co-Supervisor: Asst. Prof Dr. Roya CHOUPANI

SEPTEMBER 2019, 65 pages.

Recently, studies in the field of Natural Language Processing and some of its

related important problem and Applications in the machine learning field continue

to mount up. Machine Learning is prove to be predominantly data-driven in the

sense that generic model buildings are used and then tailored to a specific appli-

cation data. Needless to say, this has proven to be a very effective approach to

modeling the complicated data dependencies we frequently experience in practice,

making very few assumptions and allowing the information to talk for themselves.

Examples can be found in chemical process engineering, climate science, systems,

healthcare, and linguistic processing of natural language, to name a few. Moreover,

text classification is one of the important aspect of Natural Language Processing.

Text classification is the act of categorising text or text documents into a given set
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of labels. While on the other hand, multi-label text classification deals with classify-

ing text or documents into one more labels at the same time. Over the years, some

methods for classifying text and documents have been proposed, including popularly

known Bag of Words (BoW) method, Supervised Machine Learning, tree induction

and label-vector embedding, to mention a few. These kind of tools can be used

in many digital applications, such as document filtering, search engines, document

management systems, etc. Lately, Deep Learning based methods is getting more

attention, especially in an Extreme Multi-Label text classification. Deep learning is

one of the major solutions to many machine learning applications that involve high-

dimensional and unstructured data, such as pictures and text documents. However,

it is of paramount importance in many of these applications to be able to reason

accurately about the uncertainties associated with the predictions of these models.

Therefore in this studies, we explore multi-label classification of text documents

using deep learning methods such as CNN, RNN, LSTM, and even GRU. We in-

vestigate two scenarios in the studies. Firstly, multi-label classification models with

plane embedding layer, and secondly with a Glove, Word2vec, and FastText as pre-

trained embedding corpus for our models. We evaluate and compare these different

neural network models performances in terms of multi-label evaluation metrics with

respect to the two approaches.

Keywords: Natural Language Processing, Multi-Label Text Classification, Deep

Learning, Word Embedding.
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ÖZ

DERİN ÖĞRENME KULLANAN METİN BELGELERİNİN ÇOKLU

ETİKET SINIFLANDIRILMASI.

MOHAMMED, Hamza Haruna

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Danışman: Dr. Öğr. Üyesi Abdül Kadir GÖRÜR

Ortak Danışman: Dr. Öğr. Üyesi Roya CHOUPANI

Eylül 2019, 65 sayfa.

Son zamanlarda, Doğal Dil İşleme alanında çalışmalar ve bununla ilgili bazı

önemli problemler ve makine öğrenmesi alanındaki uygulamalar artmaya devam

ediyor. Makina öğreniminin genel amaçlı modellerin uygulama alanina özel veri

ile eğitilerek kullanılması ile veriye dayalı olduğu kanıtlanmıştır. Bu yöntemin

pratikte sıkça karşılaştığımız karmaşık veri bağımlılıklarının modellenmesinde, çok

az varsayımda bulunulduğunda ve bilgilerin kendileri için konuşması açısından çok

etkili bir yaklaşım olduğu kanıtlanmıştır. Kimyasal proses mühendisliği, iklim bilimi,

sistemler, sağlık hizmetleri ve doğal dilin dilbilimsel işlenmesinde bazılarına örnek-

ler verilebilir. Ayrıca, metin sınıflandırma Doğal Dil İşlemenin önemli yönlerinden

biridir. Metin sınıflandırma, metin veya metin belgelerini belirli bir etiket grubuna

kategorize etme eylemidir. Öte yandan, çok etiketli metin sınıflandırma, metin veya
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belgelerin aynı anda bir başka etikete sınıflandırılması ile ilgilidir. Yıllar içinde ke-

lime çantası modelleri, denetimli makina öğrenmesi, ağaç azaltma ve etiket-vektör

gömmeleri gibi metodlar önerilmiştir. Bu tür araçlar, belge filtreleme, arama mo-

torları, doküman yönetim sistemleri gibi gerçek dünyadaki birçok uygulamada kul-

lanılabilir. Son zamanlarda derin öğrenmeye dayalı modeller, bunların içinde de

aşırı çoklu etiketli metin sınıflandırma modeli, ilgi çekmeye başlamıştır. Derin

öğrenme, resim ve metin belgeleri gibi yüksek boyutlu ve yapılandırılmamış verileri

içeren birçok makine öğrenimi uygulamasının ana çözümlerinden biridir. Bununla

birlikte, bu uygulamaların birçoğunda, bu modellerin öngörüleriyle ilgili belirsiz-

likleri doğru bir şekilde aktarabilmek çok önemlidir. Bu sebeple, bu çalışmada

çoklu etiketli metin sınıflandırma problemini evrişimsel sinir ağları, yinelemeli sinir

ağları, uzun kısa zamanlı hafıza modelleri ve geçitli tekrarlayan birimler modelleriyle

araştırdık. Bu çalışmada iki senaryo kulandık. Birincisi, gömme katmanıyla ve ikin-

cisi Word2vec, Glove ve FastText gibi önceden eğitilmiş bir gömme bütüncesi ile çok

etiketli sınıflandırma. Bu farklı sinir ağı modeli performanslarını, bu iki yaklaşıma

göre çok etiketli değerlendirme ölçütleri açısından değerlendirdik ve karşılaştırdık..

Anahtar Kelimeler: Doğal Dil İşleme, Metin sınıflandırma, Derin Öğrenme,

Makine Öğrenimi, Korpusu
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ÖZ vi

ACKNOWLEDGEMENT viii

TABLE OF CONTENTS xi

LIST OF FIGURES xiii

LIST OF TABLES xiv

LIST OF ABBREVIATIONS xv

1 INTRODUCTION 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Text Classification Problems and Applications . . . . . . . . . . . . . 2

2 TEXT CLASSIFICATION 4

2.1 Binary Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Multi-Class Classification . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Multi-Label Classification . . . . . . . . . . . . . . . . . . . . . . . . 6

3 MULTI-LABEL TEXT CLASSIFICATION TECHNIQUES 8

3.1 Problem Transformation Method . . . . . . . . . . . . . . . . . . . . 8

ix



3.1.1 Copy Transformation . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 Label Power Set . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.3 Binary Relevance . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.4 Ranking Pairwise Comparison . . . . . . . . . . . . . . . . . . 12

3.2 Learning Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Adapted Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Deep Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 METHODOLOGY 18

4.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . 24

4.1.3 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . 24

4.1.4 Gated Recurrent Unit . . . . . . . . . . . . . . . . . . . . . . 26

4.1.5 Bidirectional Gated Recurrent Unit . . . . . . . . . . . . . . . 28

4.1.6 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . 28

4.1.7 Bidirectional Long Short-Term Memory . . . . . . . . . . . . . 30

4.2 Word Embedding Techniques . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Keras Embedding . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Pre-Trained Embedding . . . . . . . . . . . . . . . . . . . . . 32

4.2.2.1 Word2vec . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2.2 FastText . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2.3 Glove . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Data Preparation and Pre-processing . . . . . . . . . . . . . . 35

4.3.2 Experiment Data Splits . . . . . . . . . . . . . . . . . . . . . 36

4.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.1 Models Parameters Summary . . . . . . . . . . . . . . . . . . 37

4.4.2 Activation Functions: ReLU and Sigmoid . . . . . . . . . . . . 37

x



4.4.3 Adam Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.1 Hamming loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.3 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.4 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.5 F1-measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 EXPERIMENTS 42

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 CONCLUSIONS AND FUTURE WORK 54

REFERENCES 56

A NOMENCLATURE 62

B DATA SET DESCRIPTION 63

xi



LIST OF FIGURES

2.1 Text Classification Scenario. . . . . . . . . . . . . . . . . . . . . . . . 4

4.1 Deep Learning Supervised Leaning Model Methodology . . . . . . . . 19

4.2 Neural Network Architecture. . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Neural Network Model Architecture. . . . . . . . . . . . . . . . . . . 23

4.4 Convolutional Neural Network Model Architecture. . . . . . . . . . . 24

4.5 RNN Cell Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6 LSTM Cell Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.7 Bidirectional LSTM Structure. . . . . . . . . . . . . . . . . . . . . . . 30

4.8 CBOW vs Skip-gram models. Source [32] . . . . . . . . . . . . . . . . 33

5.1 Baseline NN Accuracy and Loss Plots . . . . . . . . . . . . . . . . . . 45

5.2 CNN Accuracy and Loss Plots . . . . . . . . . . . . . . . . . . . . . . 46

5.3 RNN Accuracy and Loss Plots . . . . . . . . . . . . . . . . . . . . . . 46

5.4 LSTM Accuracy and Loss Plots . . . . . . . . . . . . . . . . . . . . . 46

5.5 GRU Accuracy and Loss Plots . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Bil-LSTM Accuracy and Loss Plots . . . . . . . . . . . . . . . . . . . 47

5.7 Bil-GRU Accuracy and Loss Plots . . . . . . . . . . . . . . . . . . . . 47

5.8 CNN with Glove Accuracy and Loss Plots . . . . . . . . . . . . . . . 48

5.9 RNN with Glove Accuracy and Loss Plots . . . . . . . . . . . . . . . 48

5.10 LSTM with Glove Accuracy and Loss Plots . . . . . . . . . . . . . . . 48

5.11 GRU with Glove Accuracy and Loss Plots . . . . . . . . . . . . . . . 49

5.12 Bil-LSTM with Glove Accuracy and Loss Plots . . . . . . . . . . . . 49

5.13 Bil-GRU with Glove Accuracy and Loss Plots . . . . . . . . . . . . . 49

xii



5.14 CNN with fastText Accuracy and Loss Plots . . . . . . . . . . . . . . 50

5.15 RNN with fastText Accuracy and Loss Plots . . . . . . . . . . . . . . 50

5.16 LSTM with fastText Accuracy and Loss Plots . . . . . . . . . . . . . 50

5.17 GRU with fastText Accuracy and Loss Plots . . . . . . . . . . . . . . 51

5.18 Bil-LSTM with fastText Accuracy and Loss Plots . . . . . . . . . . . 51

5.19 BilGRU with fastText Accuracy and Loss Plots . . . . . . . . . . . . 51

5.20 CNN with Word2Vec Accuracy and Loss Plots . . . . . . . . . . . . . 52

5.21 RNN with Word2Vec Accuracy and Loss Plots . . . . . . . . . . . . . 52

5.22 LSTM with Word2Vec Accuracy and Loss Plots . . . . . . . . . . . . 52

5.23 GRU with Word2Vec Accuracy and Loss Plots . . . . . . . . . . . . . 53

5.24 Bil-LSTM with Word2Vec Accuracy and Loss Plots . . . . . . . . . . 53

5.25 Bil-GRU with Word2Vec Accuracy and Loss Plots . . . . . . . . . . . 53

xiii



LIST OF TABLES

3.1 Generated Binary Relevance (a) . . . . . . . . . . . . . . . . . . . . . 10

3.2 Generated Binary Relevance Data (b) . . . . . . . . . . . . . . . . . . 11

3.3 Generated Binary Relevance Data (c) . . . . . . . . . . . . . . . . . . 11

3.4 Generated Binary Relevance Data (d) . . . . . . . . . . . . . . . . . . 11

3.5 Generated Ranking Pairwise Comparison (a) . . . . . . . . . . . . . . 12

3.6 Generated Ranking Pairwise Comparison (b) . . . . . . . . . . . . . . 12

3.7 Generated Ranking Pairwise Comparison (c) . . . . . . . . . . . . . . 13

3.8 Generated Ranking Pairwise Comparison (d) . . . . . . . . . . . . . . 13

3.9 Generated Ranking Pairwise Comparison (e) . . . . . . . . . . . . . . 13

3.10 Generated Ranking Pairwise Comparison (f) . . . . . . . . . . . . . . 13

4.1 Dataset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Classifier Special Filters And Dense Layers for the the Models. . . . . 37

5.1 Experiments System Specification Setup in Colab. . . . . . . . . . . 42

44

A.1 Nomenclature Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B.1 Train Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.2 Test Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.3 Test Labels Data Description . . . . . . . . . . . . . . . . . . . . . . 65

xiv



LIST OF ABBREVIATIONS

NLP: Natural Language Processing

DL: Deep Learning

DNN: Deep Neural Network

ML: Machine Learning

NLU: Natural Language Understanding

XMTC: Extreme Multi-Label Classification

NN: Neural Network

CNN: Convolutional Neural Network

RNN: Recurrent Neural Network

LSTM: Long Short-Term Memory

GRU: Gated Recurrent Unit

Bil: Bidirectional

BoW: Bag-of-Words

CBOW: Continuous Bag-of-Words

FAIR: Facebook’s AI Research

API: Application Programming Interface

S-VSM: Scrap Value Stream Mapping

HL: Hamming Loss

Acc: Accuracy

BR: Binary Relevance

CC: Classifier Chain

CSMLC: Cost-Sensitive Multi-label Classification

BPMLL: Backpropagation for multi-label learning

PD-Sparse: Primal and Dual Sparse

xv



RakEL-d Random k-label

KNN: K-nearest neighbor

MLkNN: Multi-label k-nearest neighbor

MLkNN: Dependent Multi-label k-nearest neighbor

GPU: Graphics processing unit

TPU: Tensor processing unit

XMTC: Extreme Multi-label Classification

SLEEC: Sparse Local Embeddings for Extreme Multi-label Classification

C2AE: Canonical Correlated AutoEncoder

xvi



CHAPTER 1

INTRODUCTION

1.1 Motivations

With its contextual dissimilarity and unstructured form, the large quantity of

textual information on the web and other platforms makes classification of text files

of paramount significance. Nowadays, company decisions can be improved with the

assistance of text classification through rapid decision-making and effective process

automation. Extracting meaningful information from our unstructured texts in our

email, social media, web pages, chats and many more is time consuming and hard

at the same time. Although scientists have studied and even created a number of

text classification applications, there is still a lack of a comprehensive overview of

text classification studies in comprehensive format, particularly using latest trends

in deep learning.

Deep learning is predominantly data-driven, in the sense that generic model

structures are used, which are then adapted to the application-specific data. Need-

less to say, this has proven to be a very successful approach for modeling the com-

plex data dependencies that we often encounter in practice very few assumptions

are made and the data is allowed to speak for itself. However, another very com-

mon approach to modeling and prediction-making is to use simulation-based models

based on physical insights or first principles. Examples are found in in healthcare,

linguistic natural language processing (NLP), chemical process engineering, climate

science, and autonomous systems, to mention a few. This approach to modeling
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benefits from prior knowledge and can often leverage decades of research devoted to

better understanding a specific problem area.

1.2 Natural Language Processing

Natural Language Processing (NLP) refers to the use of algorithms to extract

semantic information from our natural language spoken speech or written text. It

can be divided into two primary classes. The first one is Natural Language Gen-

eration(NLG). It can be describe as the concept of creating instruments for text

or voice generation, while the second class is regarded as Natural Language Under-

standing (NLU). It can be define as the ability to understand sentences the spoken

language buy an individual. NLP Applications can be found in Sentiment Analy-

sis, Customer Service, Customer Service, Managing the Advertisement Funnel, and

Market Intelligence etc.

1.3 Text Classification Problems and Applications

Text classification is a one of the primary research topic in Natural Language

Processing (NLP). The concept of mapping a specified text or text document to a set

of labels based on contextual categories led to the need to extract knowledge from

a given text. All this due to the immense availability of textual data in our digital

world, be it in industries, hospitals, and even over the web brought the attention

of researchers and even software developers in the industries to texts related tasks,

such as studies in the field of topic summarizing, clustering, categorization and clas-

sification of texts. These lead to many NLP application related the texts tasks like

that of Search Engines, News Filtering, Spam Filtering, Document Organization and

Retrieval System, Grammar Checker, and even Document Management Systems.

Moreover, most of the previous researches in text and documents classification

used machine learning methodologies that has made a significant progress over the

years. For instance partition method using tree induction together with label-vector
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embedding in relation to the target space, Bag of Words (BoW), Supervised and

Semi-supervised Machine Learning, and many other techniques available for text

document classification [56]. However, challenges to those previous include handling

those texts when the text is in large volume (Big Data), unstructured form of text

data, and high complexity of our natural languages. With these challenges, it will

be impractical to adopt classification on billions of text documents manually, which

can result to intensive labor procedures and time consumption during the process

[47].

Deep Learning-based semantic methods are getting more attention recently [48]

[8] [21] [13]. The idea is to shift far from human-designed features of traditional

machine learning method to an automatic information-context and sectional parts

extraction of texts using neural networks based on deep learning models. However,

most of the previous study approaches were base with multi-class classification bi-

nary and even binary classification. very little are base on an extreme multi-label

classification problem techniques. In our study, we would explore the limitation of

multi-label classification problem. Multi-label classification is the idea grouping an

entity or sample to a given multiple label at a time. In other words, predicting toxic

comment text documents that are not mutually exclusive. Therefore, we perform

this multi-label classification experimental study base on distinct deep neural net-

work classifiers and separate Natural Language methodologies like word embedding

in order to observe different scenarios.
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CHAPTER 2

TEXT CLASSIFICATION

Text Classification is one of the elementary tasks of Natural Language Process-

ing (NLP) with a tremendous success in variety of applications, among others are

intent detection, sentimental analysis, spam filtering and many more. It can be

described as the act in which text is assigned or labelled with respect to a given tags

or categories according to its content. In other words, it aims to assign predefined

labels to text documents [101].

Figure 2.1: Text Classification Scenario.

As illustrated in Figure 2.1 text classification task can be described as follows.

Let the training document be defined as:

D = d1, d2, .......dn (2.1)

such that the instances d1 is assigned with a label l1 from the set:
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L = {l1, l2, l3, ........, lk}

The objection is to find a classification model f where:

f : D → L f(d) = l (2.2)

Text Classification problem is divided into sub-different types, Binary Classification,

Multi-class Classification, Multi-label Classification, and or Multi-label and Extreme

Multi-label Classification. In this section, we will explore and elaborate on these

types.

2.1 Binary Classification

Binary classification in other term binomial classification is the problem of as-

signing instances into a given label among only two label classes. The mapping

scenario in which each corresponding label is associated with is described in equa-

tion 2.3 with respect to the basis of the classification rules.

Given a classification function:

f : D → L f(d) = l

for which the label set L is :

L = {1, 0}

we can therefore map the following binary classification function as:

f(d) = {0, 1} (2.3)

5



2.2 Multi-Class Classification

Multi-class classification is the task of classifying each text instance into one of

three or more labels. The mathematical module for this type of classification prob-

lem can be describe as;

Given a classification function:

f : D → L f(d) = l

for which the label set L is :

L = {l1, l2, ........, lk}

we can map the following multi-class classification function for which instance d

is labeled to a corresponding label among the given set of labels, as described below:

f(d) = {1, 2, ........, K} (2.4)

2.3 Multi-Label Classification

Multi-label classification is more less the most complicated form of classification

problem. One may find it difficult to differentiate it with multi-class. However,

multi-label classification can be referred to as the a problem of assigning multiple

labels to each given instance.

To describe this problem as a mathematical module as shown in Equation 2.5.

Let the given function f illustrated the mapping procedure for each instance to

given set of labels:

f : D → Z Z ⊆ L = {l1, l2, ........, lk}

6



we can conclude that:

M = {(xi, Zi)}1,2 , ..,N (2.5)

xi ∈ D ; Zi ⊆ L

The main contrast between multi-class classification variants and the multi-label

case is in the latter an instance can be assign between one or more of the labels at a

given time among the class sets, while in the former an instance can be represented

or assigned to more than label.
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CHAPTER 3

MULTI-LABEL TEXT CLASSIFICATION

TECHNIQUES

Several methods exits for multi-label classification. In this section, we broken

down some of these methods used in multi-label classification. These methods in-

clude; Problem transformation methods, Leaning paradigms, supervised and semi-

supervised methods, and using Adapted algorithms. We also highlight some of the

literature of this methods, and give extensive overview of state-of-art tree based

method, hierarchical, and deep learning methodologies.

3.1 Problem Transformation Method

Multi-label classification problems are challenging because of the high number

of labels available, and the existence of label correlations problem in this type of

problem. One way possible to handle this issue is to transform this given task into

a traditional binary or multi-class classification problem. The idea here is to exploit

the label correlations by simplifying the learning process. Some techniques under

this Problem Transformation Method are introduced to address this issue, such as

using Copy Transformation Method, Label Power Set Method, Binary Relevance

Method, a and Ranking Pairwise Comparison Method. Now, lets clarify them one

by one.
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3.1.1 Copy Transformation

Copy Transformation strategy transforms and mapped the labels of multi-label

instances into various single-label notations. For example, let the multi-label train-

ing example be described as:

(d1, {l1, l3}), (d2, {l2, l4}) and (d3, {l4})

We can transform the problem into an binary classification of unweighted form

(di, l) ∈ Dk such that:

(d1a, l1), (d1b, l3) (d2a, l2), (d2b, l4), (d3a, l4)

Thus for all labels {l1, l2, ...., lk} training set instances {d1, d2, ...., dk} are transform

to binary classification form. Based on that, a binary method or classifier can be

applied to the training set such as in our case using Deep Learning method, or

some other popular machine learning binary classification learning techniques like

Random Forest [10] [12], Decision Trees, k-Nearest Neighbor [53] etc.

3.1.2 Label Power Set

Label Power Set method treats unique set of labels for a given instances in the

multi-label problem as a single label or class. Pruning can be applied also here.

To better illustrate this method, let us consider the previous multi-label example

discussed in copy transformation method:

(d1, {l1, l3}), (d2, {l2, l4}) and (d3, {l4})

The Label Power Set transform this labels set such that:

(d1, l1,3), (d2, l2,4), (d3, l4)
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This method does not take into account the label correlations between the label

classes, because it only consider each member of the labels power as a single label in

the training set. And some other label combinations in the labels set may even have

few positive samples. In this approach, the number of distinct label combinations

grows exponentially as the number of class labels increase, thus make the method

of high computational complexity.

3.1.3 Binary Relevance

Binary Relevance technique allocates a distinct classifier per different label in

the labels set. In this method, each given classifier i use the entire dataset during

training but only take note of a label of that given class i as a positive while the

other label class as a negative. For example, given that:

(d1, {l1, l3}), (d2, {l2, l4}) and (d3, {l4})

Binary relevance transform the original data q data sets Dlj, for j = 1...q that

contain all samples of the original data sets. If the label set of the original sample

in the data set contain lj, we labeled the new sample as positive, otherwise negative

label will be annotated as indicated in the generated Table 3.1., Table 3.2, Table

3.3, and Table 3.4. After generating these set of data, we can apply classification

on the instance, and the binary relevance outputs the union of the lj labels that are

positively predicted by q classifiers.

Table 3.1: Generated Binary Relevance (a)

Attributes Label

d1 l1

d2 ¬l1
d3 ¬l1
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Table 3.2: Generated Binary Relevance Data (b)

Attributes Label

d1 ¬l2
d2 l2

d3 ¬l2

Table 3.3: Generated Binary Relevance Data (c)

Attributes Label

d1 l3

d2 ¬l3
d3 l3

Table 3.4: Generated Binary Relevance Data (d)

Attributes Label

d1 ¬l4
d2 l4

d3 l4
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3.1.4 Ranking Pairwise Comparison

Ranking Pairwise Comparison learns a different classifier per each matching set

of distinct labels. Using similar example described in Section 3.1.1 , let the multi-

label training data be described as:

(d1, {l1, l3}), (d2, {l2, l4}) and (d3, {l4})

Using ranking pairwise comparison method, the new dataset will be of binary

label transformation form of q(q−1)
2

, each pair of label is represented as (li, lj), where

1 ≤ i < j ≤ q. In each of the new data sets, the attributes or instances of the

original dataset will be equally represented but annotated by at least one of the two

labels only, and the binary classifier learns to distinguish the difference between the

two labels and train each of these new data sets. At the last stage, each label is

ranked with respect to the total votes received. Table 3.5 through Table 3.10 shows

the data sets generated using ranking by pairwise comparison method.

Table 3.5: Generated Ranking Pairwise Comparison (a)

Attributes Label

d1 l1,¬2

d2 l¬1,2

Table 3.6: Generated Ranking Pairwise Comparison (b)

Attributes Label

d1 l¬1,3

d3 l¬1,3

12



Table 3.7: Generated Ranking Pairwise Comparison (c)

Attributes Label

d2 l¬1,4

d3 l¬1,4

Table 3.8: Generated Ranking Pairwise Comparison (d)

Attributes Label

d1 l¬2,3

d2 l2,¬3

d3 l¬2,3

Table 3.9: Generated Ranking Pairwise Comparison (e)

Attributes Label

d2 l2,4

d3 l¬2,4

Table 3.10: Generated Ranking Pairwise Comparison (f)

Attributes Label

d1 l3,¬4

d2 l¬3,4

d3 l3,4
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3.2 Learning Paradigm

In Learning Paradigm methodology, almost all the existing multi-label classifi-

cation methods can be classed on the basis of learning paradigms as batch learning

and online machine learning. Batch learning schemes require all information samples

being pre-accessible. It trains the model to use all the sample data and afterwards

predicts the test sample using the found relationship. On the other hand, the online

learning algorithms are increasingly building their models in sequential iterations.

At iteration t, an online algorithm gets a sample xt and predicts its label(s) in the

present model; then the algorithm gets yt, the true label(s) of xt, and updates its

model based on the instance’s sample label pair and label.

3.3 Adapted Algorithms

Adapted Algorithms apply modification to the decision functions or cost func-

tions and adapt a given single-label classification algorithms on the multi-label prob-

lem. Examples of these algorithms that adopt this scheme include, traditional K-

nearest neighbor (KNN) algorithm [53], Decision Trees [29], BP-MLL adaptation

method of back-propagation neural network algorithm [54] etc.

Additionally, [35] introduce a benchmark Multi-label Classification Algorithms.

In their study, different multi-label classification algorithms and several benchmarks

multi-label of different domain datasets with respect to the input space and label

complexity. They performed hyper-parameter tuning in the experiment for both the

problem transformation, example binary relevance (BR) and classifier chain (CC),

random k-label (RakEL-d). Moreover, they use some adaptation method of multi-

label classification algorithms like Multi-label k-nearest neighbor (MLkNN), Depen-

dent MLkNN (DMLkNN), Backpropagation for multi-label learning (BPMLL) in

the study.
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3.4 Deep Learning Methods

Deep learning methods for multi-label and extreme multi-label start to gain

popularity recently. One of the recently studied deep learning method is XML-

CNN [26]. In their studies, they adopted the same strategy like in [21] [18] through

adoption of different convolution filters in which the model pass through. They use

dynamic max pooling scheme to capture more fine-grained features from different

position or place in the document. Moreover, they opted for a binary cross-entropy

as the activation function instead of the popular sigmoid output activation function

adopted in extreme multi-label classification . Between the pooling and the output

layers, they use extra hidden bottleneck layer between to capture the behavior of

compact document representations, thus reducing the model size and boosting the

model’s efficiency. [55] introduced a different deep embedding scheme for extreme

multi-label classification, and adopt non-linear embedding in both feature and la-

bel spaces. Their method model the feature space non-linearity and label graph

structure simultaneously for the XMTC problem.

In addition to that, [19] developed Deep learning method and BoW method

together. A representation of a document is built by averaging the embedding of

the words appearing in the document, on which a softmax layer is applied to map

the representation of the document to class labels. In building document depic-

tions, it ignores word order and utilizes a linear softmax classifier. FastText is very

effective to train, specially on multi-class classification benchmarks it achieves excel-

lent performance. Nonetheless, the simple average architecture of word embedding

input could curb its success in XTMC. This can be because document representa-

tion in XMTC needs to capture the much rich information in order to effectively

predict various correlated labels and discriminate them from huge number of irrele-

vant labels. Also, another method for Multi-label Classification using deep learning

state-of-art method is developed with a Rethinking Structure capability [46]. They

proposed an algorithm in their model that imitate human thinking capability, to
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handle label correlation and cost-sensitivity (that’s cost importance of each distinct

labels) by modifying the loss function in the model. The first step of the model is

adopting Binary recurrence (BR) data transformation. They compare their model

with other Cost-Sensitive Multi-label Classification (CSMLC) algorithms on differ-

ent (domains) datasets. RethinkNet shows auspicious improvement compared to

previous approach of multi-label classification using neuron networks (NN).

3.5 Other Methods

Furthermore, other methods use in this type of problem that does not fall into

the earlier subsections include a recently proposed PD-Square [49] a dual sparse and

primal method. In this study, the classification classifier penalise each label on the

weighted embedding matrix. This makes the primal and the dual space to be very

sparse, which is an advantageous to an Extreme Multi-label Text Classifications.

The prediction time is linear for PD-Square, however the method come up with the

solution to have sub-linear training time with respect to the number of labels using

an algorithm called Fully-Corrective Block-Coordinate Frank-Wolfe training algo-

rithm. PD-Sparse is claim to have less training time and model size compared to

Logistic regression and Support Vector Machine on multi-label classification prob-

lems [49].

Additionally, SLEEC [5] presented a new embedding method that consists of

2 phases, learning embedding step and the k-nearest neighbor(KNN) classification

step. The method sets training data into clusters, and the models learns embedding

from each of the given clusters assembled. For that reason the search for each text

document can be perform within the given cluster the document belongs to. High

dimensional data clustering is prove to be rocky and unstable. Nonetheless, SLEEC

introduced an ensemble scheme for clustering this dimensional data to improve the

prediction accuracy.

Furthermore, [37] Tree-based method for extreme multi-label text classifications.

The key idea in this method is to have comparable label distribution records in
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each sub-set and characterize the distribution using a set-specific ranked label list.

This is achieved by jointly maximizing the scores of the ranked label lists in the two

sibling subsets for the Normalized Discounted Cumulative Gain (NDCG). In additon

to that, they make multi-induced trees ensemble learning to enhance prediction

robustness.

Moreover, Fusion based method introduced in [6] for Classification of text docu-

ments based on Pattern Recognition Letter along with score level fusion approach.

They proposed and designed two different classifier approach using two different

model representations for text documents. They use and enhanced Scrap value

stream mapping (S-VSM) and interval-valued representation model for text docu-

ments representation. While Fusion two different classifier scores to haven effective

text classification classifier that has an accurate result. They also use baseline neu-

ral network for unigram representation, specifically word level neural network for

text representation for efficient capture of semantic information in text data. Other

methods worth mentioning include; such as Semantic kernel Model, Concept Vector

and Term based Vector Space Model, and other classification algorithms [52]. On

top of that, Hierarchical attention networks for document classification method [47],

Deep neural networks (DNN) based mode amp; Canonical Correlated AutoEncoder

(C2AE) [48] other deep learning methods [8][13].
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CHAPTER 4

METHODOLOGY

In the previous years, many different machine learning methods have achieved

good accuracy in multiple research studies and projects related to classification

problems, especially in binary and multi-classification cases. Recently, classification

problem and its applications has attracted even more interest due to its applicability

wide range of domains, especially multi-label text classification, scene and video

classification, and bioinformatics [39].

Moreover, deep learning methods have been explored in many other machine

learning solvable problems due to their high performance measure. With that, deep

learning models are increasingly used in different machine learning domains includ-

ing recently in text classifications [17]. However, multi-label classification is a bit

complicated, comprising label correlation. Unlike the binary classification and tra-

ditional multi-class classification problem, multi-label classification deals with how

to associate instance with a given subset of labels. And this type of classification

problem can be tricky to handle especially with mere traditional simple approach

use in binary and multi-class cases.

In this study, we used a famous python framework called keras to handled this

multi-label classification task using supervised learning model - deep learning neu-

ral nets. The end-to-end classification pipeline methodology use in this study is

described in Figure 4.1.
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Figure 4.1: Deep Learning Supervised Leaning Model Methodology

• Training Toxic Text Comment: Input toxic text comment through which

our models (supervised) are able to learn and predict desired labels.

• Feature Vector: Word embedding vector that contains the features of the

input data. In our case; Word2Vec, fastText, and Glove.

• Labels: Predefined toxic labels/categories that our models will predict. Com-

prising of labels toxicity as described in Table 4.1.

• Deep Learning Methods: The algorithm-neural network that is used in the

model for the text classification. In our study; we implement NN, CNN, RNN,

LSTM, and GRU.

• Predictive Model: The trained model that is used on the test dataset to

perform label predictions.

• Predictive Toxic Labels: Labels output from the model.
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4.1 Deep Learning

Deep learning is a branch of machine learning that is getting lots of attention

lately in both academia and the industries due to its high accuracy that were pre-

viously not achievable. Automatic feature extraction requires a structured or semi-

structured large sets of labelled data and neural network architecture. Thus, deep

learning models are train with large labeled set of labelled data employing deep neu-

ral network architectures that comprise of many different layers connected together.

Deep Learning is synonymous to Neural Nets, inspired by the structure of cerebral

cortext composed of various layers of interconnected perceptrons.

In a typical neural networks architecture [34] as illustrated in the Figure. 4.2 of

four layer simple network, the figure shows a neural network consist of 4 layers. The

first layer, as an input layer, and the two layers in the middle as the hidden layers,

and while the last layer at the far end as the output layer with one output neuron

(in our case with six toxic labels, most be six output neurons). In the network as

describe in Figure. 4.2, the input values are feed to the network from the input

layer, and then pass through the hidden layers until they converge to the last out-

put layer called output neurons. The prediction of our output layer have 6 output

nodes, given that the problem we are dealing with multi-label classification that

have six (6) possible outcome of toxicity of comment in our studies. In the hidden

layers, each node in the network has a weight that is multiplies with its given input

value and keeps modifying the data over a few different layers until it feels what its

relationship with the target output variable is ultimately.

Furthermore, the number of hidden layers comprises of 2-3 layers in a traditional

networks, while in a deep networks can have more have more than 4 or up to 150

hidden layers. Thus, the amount of hidden layers available in neural networks usually

refers to the term ”deep”. With deep learning, both feature extraction and modeling

steps are automatic compared to machine learning technique of manually choosing
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Figure 4.2: Neural Network Architecture.

the features and classifier. The key benefit of using deep learning is that as the size

of the data increases, the model improves.

To begin with, we discussed the general multi-label classification problem in the

section 2.3. The Wikipedia toxic comment dataset has 6 distinct labels, this means

that given k samples:

D = {d1, d2, ........, dk}

and labels

L = {l1, l2, ........, lk}

with li ∈ {1, 2, 3, 4, 5, 6}. We then use different types of neural networks ranging

from simple neural Network (NN), Convolutional Neural Network (CNN), Recurrent

Neural Network(RNN), Long Short Term Memory (LSTM) network, Gated Recur-

rent Neural Network etc. as described in Section 4.1.1 till 4.1.5 sections to model

the probability P (cj|di) of a class ci with respect to di samples as show in Equation

4.1.

l̂i = argmaxj∈{1,2,3,4,5,6}P (cj|di) (4.1)

The output layer of multi-class classification model is usually a softmax layer that
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takes a vector z with K-dimension as an input vector of real values, and normalizes

it into a K-dimensional σ(z), that is proportional to the exponential in the range

[0, 1] of real values, regarded as a probability values which will be sum up to be

1 [27]. The activation softmax function makes the neural network models to have

multinomial distribution probability of a class cj that is independent to other class

probabilities. This method is good for binary or multi-class classification since they

deal with single label prediction per sample.

Furthermore, suppose the model is to predict multiple label per sample, like in

our multi-label classification problem. The softmax function results to fix number

of labels prediction per sample. To handle this, we use a threshold value so that the

probability between the labels be independent for a given samples. Sigmoid acti-

vation function as formulated in Equation 4.2 is the most generally used activation

function for multi-label classification model. Therefore, we use the sigmoid func-

tion at the output layer of our models in order to eliminate this label dependencies

between the classes.

σ(z) =
1

1 + exp(−z)
(4.2)

for z ∈ R

Now, the probabilities of the neural network models of each class cj is indepen-

dent from the probabilities of the other class, and as a Bernoulli distribution as in

shown in the Formula 4.3.

P (cj|di) =
1

1 + exp(−zj)
. (4.3)

In keras and tensorflow [16][1], the general loss function that is use to compile

multi-class classification models is categorical crossentropy loss [33], given the clas-

sification problem in thşs study has to do with more than two mutual exclusive

targets, the targets should be encoded as one-hot vectors [38]. However, the target
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classes can be of multiple form at once in multi-label classification problem. There-

fore, we use binary crossentropy in our models. We treat each output-neuron in the

neural network as a separate random variable, and the product of the loss of those

separate binary variables as the loss for the total or whole output vectors. In other

words, we consider the product of binary cross-entropy for each single output unit

as the loss for the labels.

4.1.1 Neural Network

In section 4.1, we cover all the basic details about neural network. Therefore,

we implement a baseline neural network as illustrated in Figure 4.3 with six output

neurons in the output layer to conform with our six multi-label toxic labels. The

network takes the word-embedding vectors of the toxic comment as an input, and

pass the hidden dense layers as described in the Table 4.2.

Figure 4.3: Neural Network Model Architecture.
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4.1.2 Convolutional Neural Network

Convolutional Neural Network is one of the most widely used deep neural net-

works, especially in image related problems and applications. CNN uses 2D con-

volution layers and deform the input data with the learned features. This type of

network architecture is well suited for processing 2D data, like image categorization,

object classification tasks and other computer vision tasks [23]. In images prob-

lems, CNN automatically extracts features from pretrained features instantly. In

this type of models and problem, as the network model trains, the network model

also trains on the collection of those images. This ability makes this type of neural

model popularly use in computer vision related tasks [43].

Moreover, Convolutional neural network starts to gain attention in other un-

structured data tasks, such as text classification. Therefore, we build a CNN model

for this experiment with model parameters described in Table 4.2 and the Figure

4.4 below.

Figure 4.4: Convolutional Neural Network Model Architecture.

4.1.3 Recurrent Neural Network

Recurrent Neural Network (RNN) is a memory component structure network

that distinguishes it from other general neural feed-forward networks. This dis-

tinction in the processing sequence of inputs makes it possible to compress prior

inputs in a low-dimensional space, resulting in effective processing of text informa-
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tion. RNN is that it can use information from previous time steps efficiently which

is what edge it to other networks. That’s why RNNs are applicable in the majority

of NLP tasks. Figure 4.5 shows what a simple RNN looks like.

In the Figure 4.5, We’ve got our word vectors at the bottom (xt, xt−1, xt+1). At

the same time, each vector has a hidden state vector (ht, ht−1 , ht+1). In each RNN

module, the hidden state is a feature of both the word vector and the prior step of

the hidden state vector. This can be mathematically represented as in 4.4.

ht = σ(W (hh)ht1 +W (hx)x[t]) (4.4)

As the Formula 4.4 indicated, the input input word vector xt will be multiply

by the weight matrix W (hx), and the hidden state vector at the previous time step

will be multiply by the recurrent weight matrix W (hh). The recurrent weight is the

same across the network, that same through all time steps. This is the one of the

key difference to RNNs compared to other traditional NN. Each particular output

of a given module ŷt in the RNN, will be the product of ht and W S, which is another

weight matrix as shown below in Figure. 4.5.

ŷt = softmax(W (S)ht) (4.5)

Figure 4.5: RNN Cell Structure.
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Recurrent Network takes sequence of inputs (toxic words in our case) compared

to traditional NN, say CNN that takes single input. However, the input word can

be anywhere in the RNN type of deep network, ranging from a short toxic comment

text to long toxic comment text. Moreover, the input order in this sequence can

have a major impact during training on the state values of the vectors in hidden

layer and the weight matrices. But the architecture makes the model to capture the

information from past states during the training.

4.1.4 Gated Recurrent Unit

The first inception of Gated Recurrent Units is to provide way to eliminate the

long term dependencies in tradition RNN. GRU come up with a complex solution to

compute vectors of hidden state h(t) as described inSection 4.1.3. In RNN network

architecture, error flows during backpropagation, from previous steps of time to

present time step. Provide that the initial gradient value is a small-scale value (for

example, say less than 0.25), the gradient will have virtually disappeared by the 3rd

or 4th module and therefore the previous hidden states of the previous steps will

not be updated.

besides

There are 3 component in GRU, the reset gate, update gate, and memory con-

tainer. The reset and update gates are the functions of input values (toxix comment)

besides hidden state values. This relationship can be mathematically describe as in

be

The GRU provides a different way to compute the hidden state vector h(t) of our

traditional RNN described in 4.1.3. GRU divide the computation into 3 component

parts, an update gate, reset gate, and a new memory container. The first two gates

(update ad reset gates) are both functions of the input toxic eord vector as well as

the hidden state of the previous time step. This can be describe as Equation 4.6 to

4.8. The Equation 4.6 as the mathematical representation of update gate, while the

Equation 4.7 as the rest gate formulation.
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zt = σ(W (z)xt + U (z)ht−1) (4.6)

rt = σ(W (r)xt + U (r)ht−1) (4.7)

where;

zt = Update gate.

rt = Reset gate

The main difference here is that each gate used different weights. That’s W z

and U z for the update gate, and W z and U z for the other gate. The representation

of the symbols of all the equation is describe in Table A in the Appendix A chapter.

Furthermore, the Equation 4.8 describe tangent of the dot hadamard product of

current update gate and previous state value of hidden vectors summed with input

value at that step.

ĥt = tanh(Wxt + rt o Uht1) (4.8)

With respect to the Equation 4.8, the dot indicates Hadamard product [28]. As

the rest gate unit approaches zero, the whole terms becomes zero. Consequently,

the information ht1 from the previous steps will be ignored. Then the unit will

function with respect to the new toxic word vector xt. Thus, the Equation of h(t)

is as follows:

ht = zt o ht−1 + (1− zt) o ĥt (4.9)

ht in Equation 4.9 is a feature of all three component parts: reset gate, update

gate, memory container. The current hidden ht state vector depends on the previous

state vector zt, when zt approaches 1, the current memory container (1 − zt) will

approach to 0. While as zt is close to 0 or approaches 0, and we ignore the previous
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hidden state, the current vector ht state depends on the memory container at the

present state.

4.1.5 Bidirectional Gated Recurrent Unit

This is a special network of Gated Recurrent Network. Bidirectional Gated

Recurrent Unit allows the use of previous and future steps in order to predict the

current state. It compose of only one input and forget gates, which makes it a one

of the typical class of recurrent neural networks.

4.1.6 Long Short-Term Memory

Long Short-Term Memory are widely used in voice assistance and language tran-

sitional applications. Rampant reduction in RNN gradient value prevents weights

from being updated by the Neural Network. However, this feature is enabled by the

LSTM framework by avoiding a gradient issue. The LSTMs and GRUs have the

special function of maintaining long-term dependencies in a sequence between words

or phrases. These dependencies are recorded through gated that the sequence may

ignore or store some information. The difference in number gates between GRU and

LSTM is 2 gates for GRU, while there are 3 gates for the LSTM. This influences

the amount of nonlinearities that the input passes through and ultimately impacts

the general computation. The GRU also has not the same memory cell(ct) as the

LSTM. The graphical view of the LSTM Network is described as in Figure ??.

The mathematical equation of LSMT can be illustrated as follows:
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Figure 4.6: LSTM Cell Structure.

σt = σg(Wσxt + Uσht 1 + bσ)

it = σg(Wixt + Uiht 1 + bi)

ft = σg(Wfxt + Ufht 1 + bf )

Ct = ft ∗ Ct 1 + it ∗ tanh(Wixt + Uiht 1 + bi)

ht = σt ∗ σh(Ct)

(4.10)

Where;

xt = input vector,

it = input gate.

ft = forget gate.

σt = activation vector of output gate .

Ct = cell state.

ht = LSTM cell unit output vector.

U and W = matrices.

The Equations 4.10 describe the mathematical model of Figure ??. With refer-

ence to that same equation, forget gate fi determine which cell state of Ct 1 to get

rid of, when the input xt and ht 1 are pass to the cell of the Neural Network. After

that, the values of xt and ht are then pass to it in order to save the updated values

in the current state Ct. To minimise the loss function, the matrices W and U and b

are periodically updated during the iteration. The output at each iteration and the
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final one is computed using the activation vector of the output gate sigmat.

4.1.7 Bidirectional Long Short-Term Memory

Bidirectional LSTM requires placing identical LSTM layers opposite to each

other in the network as sketched in Figure 4.7. In this type of network, the input

sequence normally allocate to the first layer and the other layer gets the reverse

copy of the input sequence both in a bi-directional sequence. In other words, the

input sequence are processed one by one, while the network steps through in both

direction.

Figure 4.7: Bidirectional LSTM Structure.

The network ability to processed both previous and future states while training,

results the network capable to interpret the context of the input easily. This ap-

proach was first introduced in voice and speech recognition, but it begin to instigate

in natural language processing applications, especially in classification problems and

predictive analysis of stock market [25]. Figures 4.5, 4.6, and 4.7 are sourced from

[25].
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4.2 Word Embedding Techniques

Extracting meaning from a word or text is one the primary aim of Natural lan-

guage processing (NLP). Recently, words embedding methods of embedding words

into a low-dimensional space were proposed using neural-network approach [4] [11].

Therefore, Word embedding is the essential part of any classification problem. This

allows to represent the text-words using vector representation so that it can be fed

to our neural networks. Dense vector representation is considered to be the state-

of-art word embedding technique. The words in the text (toxic text comments in

our case) are depicted by thick vectors where each vector represents the projection

or mapping of the word into a constant vector space. Within the vector space, the

position of each word is learned from the text within the surrounding words [32].

Bag-of-word model method was previously used in which a big sparse vector was

used to represent each word in a vector form of a whole vocabulary.

The vector representation of the word or documents comprise of mostly zero

values that make the vector sparse and of large space [36]. In our studies, we

employed two (2) methods of embedding the toxic comment text into vectors. In

the first method, we apply word embedding using keras embedding library [16] as

the embedding layer in our models. This method is slower, and model dependent

to our training toxic comment dataset. While the second method proposed in this

study is to use pre-trained embedding corpus; Word2Vec, Glove and FastText in the

experiments [51].

4.2.1 Keras Embedding

Keras machine learning library provides pre-built word embedding layers for

neural network models. The input values in a typical Neural network model is

an encoded integer values. Therefore, Keras provides Tokenizer API for this data

preparations in order to feed the neural-network [16]. The Embedding layer is a

flexible layer that learns to embed all specified words with random weights initialized
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at first in the training dataset.

In addition, this embedding layer can be used to load a pre-trained word embed-

ding model as a transfer learning form. It can also function together with the deep

learning model itself to learn how to embed with the model. The term embedding

can also be used as a learning paradigm that can be saved and used for the future

in other models. Keras Embedding layer consists of 3 arguments in the architec-

ture. These include input length, input dimension, output dimension. The input

dimension specify the vocabulary size of the given text data, and output dimension

argument stands for vector space size of the embedding words. And lastly, input

length represent the input sequences length for the input layer of the Keras model.

Over and above that, the Embedding layer has 2D vector output that can embed

each as the input sequence of text or text documents [42].

4.2.2 Pre-Trained Embedding

4.2.2.1 Word2vec

Word2vec was first introduced by Google research team with idea of aggregat-

ing related models to produce word embedding [30]. The Word2vec algorithm they

proposed [15] creates an Embedding vectors from words of text corpus that is more

efficient compared to the previous approaches such as Latent Semantic Analysis ap-

proach of Count-based method [32]. In Count-base, the method compute statistical

co-occurrence and frequency appearance of word with its neighbouring words in the

text corpus, and map these count-statistics to dense vector for each given word found

in the corpus. The associated models in Word2vec are two-layered, shallow neural

networks designed to construct a linguistic representation of the words’ contexts.

It requires a big corpus of text as an input and output a vector-space of several

hundred dimensions, with a corresponding vector allocated to each single phrase in

the text corpus. In addition, words in the vector space that share common context

in the corpus are placed close to each other [32].

Moreover, Word2vec can serve as a predictive model that can predict and learn
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a word embedding from raw text. This model is computationally efficient similar

to other Neural Probabilistic Language Models. The Word2vec algorithm comprise

either two architecture for construction of dense embedding vectors of words rep-

resentation, Skip-Gram model [24] and Continuous Bag-of-Words model (CBOW)

[31]. These two models are close enough with each other in term of adopted methods

and algorithms in both cases. he model predicts target word from source context

words in continuous bag-of-words architecture. In this architecture, sequence of the

context word does not effect the prediction of the word. While continuous Skip-

gram architecture does the inverse, here prediction of source context words from

a given targed word occur in this model. In this architecture, the distant source

context-words are considered more that nearby source context-words. Therefore,

CBOW performs faster than ht skip-gram method [31]. Visualization of skip-gram

and CBOW models is describe in Figure 4.8 for better illustration.

Figure 4.8: CBOW vs Skip-gram models. Source [32]

33



4.2.2.2 FastText

FasText created by Facebook’s AI Research (FAIR) is an another pre-trained

word embedding library for text classification. FastText model users neural net-

work to create an supervised and unsupervised learning algorithms to build vector

representations fro words [3].

Furthermore, fastText model supports training CBOW and Skip-gram models

using softmax or hierarchical loss functions, and negative sampling. It perform very

well for word representation of short sentence or text classification by modelling

character level information for infrequent words in the text or sentence. In this

model, apart from the original word, each word is depicted as a bag of character

n-grams. This enables you to maintain or express denotation for prefixes/suffices

and other short words that may appear for other phrases as ngrams [19]. In the

course of model training specially during the model update, fastText model learns

weights for the entire word token and each of the n-grams. In our experiment, we

use fastText embedding library [20] trained on Wikepedia, Tatoeba, and SETimes

datas sets as our pre-trained fastText.

4.2.2.3 Glove

Global V ectors for Word Representation (Glove) is a model for distributed

word representation that is first developed by Stanford. Glove is an unsupervised

model for acquiring semantic vector representations of words. The method combine

both local context window word embedding methods together with global matrix

factorization method to obtain word embedding in a linear substructures form. In

this method, a corpus build a word to word co-matrix and aggregate the representa-

tion as the word embedding [36]. The difference between Glove and Word2ec is that,

the later rely not only local context information of words statistics, but it acquire

word vectors from the combination of statistics for global word co-occurrence.

In Glove, log-bilinear model takes into account the probabilities of word to word

co-occurrence ratios with likelihood or possibility to encode some semantic meaning
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from the given words relation. In addition to that, the train objective in this model

is to have a trained vectors of words, given that the value of the dot product between

given words is equal to logarithmic value of co-occurrence of of words likelihood. The

Glove word vector representation performs better than in some Word2vec analogy

problem

4.3 Dataset

Toxic Comment Classification dataset consists of Wikipedia Comments from

Wikipedia Talk Pages which Conversation AI team asked 5000 crowd-workers la-

beled the comments according to their relative toxicity comments labels such as

”toxic”, ”severe toxic”, ”obscene”, ”threat”, ”insult”, ”identity hate” [44]. This

data set is multi-label text related problem type, and it consists of approximately

∼160k observation in total, ∼125k with zero labels (toxicity) of any type, and ap-

proximately ∼35k classified in one or more toxicity categories. The dataset charac-

teristics is described in Table 4.1 and the following data features:

• Number of total data points 159571.

• Observations in one or more class 35098.

• Unclassified observation 124473.

Furthermore, the format and the descriptions of the 3 data-files is explain in

appendix B, reference to Tables B.1, B.2, and B.3. The Table B.1 describe the train

data, while Table B.2 and B.3 shows the two test data files for this data set.

4.3.1 Data Preparation and Pre-processing

The dataset is an unbalanced-dataset, and the existence of high occurrence of

124473 unclassified observation. This limitation could affect model. Therefore, we

used the 16225 samples that are classified in at least one sample of around 35098
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Table 4.1: Dataset Characteristics

Label Type Data points
toxic 15294

severe toxic 1595

obscene 8449

threat 478

insult 7877

identity hate 1405

in order to train and validate our model. We then removed unwanted punctuations

and characters in both train and test data, so that would not affected our models.

4.3.2 Experiment Data Splits

That splits ratio for train, validation, and test data on most of the machine

learning experimental data relies on the number of samples in the dataset, together

with the type of model selected for the experiment. It’s always good to split the

data into 3 : 1 : 1 ratio if the experimental dataset is 1 file. But thanks Kaggle [50]

idea of separating train and test data into separate dataset files, we only needed

to splits the train dataset into train and validation splits data, and then treat the

test dataset as our test split data. In our experiment, we used cross validation [40]

to split the train data into random train and validation subset, specifically Keras

k-fold cross validation method [45]. Finally, the models were trained and validated

iteratively on these different sets of data.

4.4 Model

This section elaborate on the structure of our deep neural network models se-

lected for the experiment. We also highlight the functionalities and parameters use

in training a neural network, such as activation function and optimizer.
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4.4.1 Models Parameters Summary

While training the network, we apply a callback function that allows us to specify

the performance measure to monitor, using a specific number of training epochs. The

model stop the training process, when the model performance stops improving on a

hold the validation dataset.

Table 4.2: Classifier Special Filters And Dense Layers for the the Models.

Model Special Filters Dense Layers

NN NA 50, 6

CNN #filters = 100,
kernel size = 4 ×100

50, 6

RNN Units = 25 50, 6

LSTM Units = 25 50, 6

Bidirectional
LSTM

LSTM units = 25 50, 6

GRU Units = 128,
filters = 64,
kernel size = 4 ×64

6

Bidirectional
GRU

#GRU Units = 128,
filters = 64,
kernel size = 4 ×64

6

4.4.2 Activation Functions: ReLU and Sigmoid

In deep neural network terms, Activation functions are used to convert weighted

input sums into an output value in a fully connected layer.

The first activation function used in this studies is ReLU activation function as

it is mathematically define as in the Equation 4.11.

ReLU(x) = max(0, x) (4.11)
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The function helps counteract gradient disappearing issues often associated with

back-propagation in profound and complicated neural networks. Therefore, it pro-

vides more effective way of computations when training.

Sigmoid activation function 4.12 is the other activation function we use in the

neural networks. The activation function (Sigmoid) has a ”s”-shaped curve and a

variety rage of [0, 1]. The function can be mathematically represented as showned

in Equation 4.2 and the Formula 4.12 below.

σ(z) =
1

1 + exp(−z)
for z ∈ R (4.12)

With respect to the function 4.12, when x is approaches to zero, the function behave

in a non-linear, smooth function with steep slope. Which implies that even mod-

ifications in predictors are small, it can demonstrate clear differences of response

values. Because we are dealing with binary classification, it’s crucial for the activa-

tion function to side with either 0 or 1.

4.4.3 Adam Optimizer

Although SGD is faster in helping descent of gradient, its precision and accuracy

is not as desirable as it should be. In our experiment, we introduce different opti-

mizer called Adaptive Moment Estimation (Adam) [22]. The optimizer concept of

RMSprop and Momentum. Momentum utilizes an exponentially weighted gradient

average to fix the oscillation issue of gradient descent. Sometimes, gradients take

too many downward oscillations to achieve the local minimum, because we calcu-

late in mini-batches when calculating gradients in SGD, which does not always lead

immediately to the local minimum. And increasing the learning rate of the gradient

descent can cause the gradient to overrun and even diverge in its descent.

On the other hand, RMSprop splits the learning rate by an exponentially de-

clining square gradient average that dramatically decreases the learning rate as

gradients approach the minimum. For the gradient descent, Adam calculates an
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adaptive learning rate. It calculates not only an exponentially declining average of

square gradients such as RMSprop, but also an exponentially declining average of

gradients such as Momentum [41].

4.5 Evaluation Metrics

Metrics measures of multi-label classification differ to that of single-labeled bi-

nary and multi-class classification evaluation measures. In the latter case, simple

measures like accuracy, precision, recall are been used. However, in multi-label

actual labels subset prediction is more considered than no prediction occurrences.

To evaluate a multi-label model or learning given document data set denoted as

M :

M = {(xi, Yi)} xi ∈ D;Yi ⊆ L

and the labels

L = {λj : j = 1, ..., q}

the prediction denoted by Z for instances in M be

Zi ⊆ L

We then applied the following metrics for the multi-label classification perfor-

mance for our experiments.

4.5.1 Hamming loss

Hamming loss evaluation metrics measure the proportion of labels associated

with an unpredicted instance or sample. That is the rates at which the labels are

misclassified [9].
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Thus, the formula below illustrates the mathematical formation of Hamming loss

as a fraction of the incorrect labels for the overall number of labels predicted:

HL =
1

N

n∑
i=1

| Yi | + | Zi | −2 | Yi ∩ Zi |
| L |

Therefore, we can conclude that;

HL =
1

N

n∑
i=1

| Yi4Zi |
| L |

(4.13)

The optimal value of this evaluation is zero, given that we are dealing with a loss

function as its shown in the Equation4.13.

4.5.2 Accuracy

Accuracy measurement calculates among the entire expected labels the accu-

rately predicted true labels. For most classification problems, This is more balanced

and better performance measure compared to the hamming loss [14]. The Equation

4.14 describe the mathematical formula for this evaluation measure.

Acc =
1

N

n∑
i=1

I(Zi = Yi) (4.14)

For;

I(true) = 1; I(false) = 0

4.5.3 Precision

Precision calculates the percentage of classification out of all positive classifica-

tion as described in the mathematical formulation below 4.15.

P =
1

N

n∑
i=1

| Yi ∩ Zi |
| Yi |

(4.15)

40



4.5.4 Recall

Recall shows the classifier’s ability to classify the results as positive when the sub-

jects are genuinely positive. Recall in classification is also referred to as sensitivity.

This can be calculated using the Equation 4.16.

R =
1

N

n∑
i=1

| Yi ∩ Zi |
| Yi ∪ Zi |

(4.16)

4.5.5 F1-measure

This measure can be describe as generalized macro F1-score form that can be

computed using the Equation 4.17. It is expressed as the weighted harmonic mean

measures of recall and precision, where a measure of F1 reaches its greatest value at

1 and the worst score at 0. In multi-label case, this can be calculated as the average

of the f1-measure of each label or class with weighting with respect to the average

parameter.

F1 =
1

N

n∑
i=1

2 | Yi ∩ Zi |
| Zi | + | Yi |

(4.17)
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CHAPTER 5

EXPERIMENTS

This section describe the necessary configuration setups and the result for this

thesis study experiments.

5.1 Experimental Setup

In our experiment, we use Google-Colab Cloud Service that supports Keras and

TensorFlow [7]. On top of that, the notebook support fast and high acceleration

tools like GPU and TPU. Therefore, we configured our experiment to run on Python-

3 programming language as our run-time type and GPU hardware accelerator tool

for our notebooks in the experiment as shown in Table 5.1 and the notedbook 1.

The code and experiment of this studies can be found in GitHub repository 2.

Table 5.1: Experiments System Specification Setup in Colab.

SPECIFICATIONS

GPU 1xTesla K80 , compute 3.7, hav-
ing 2496 CUDA cores , 12GB
GDDR5 VRAM

CPU 1xsingle core hyper threaded
Xeon Processors @2.3Ghz i.e(1
core, 2 threads)

RAM 12.6 GB Available

Disk 33 GB Available

1https://colab.research.google.com/drive/151805XTDg–dgHb3-AXJCpnWaqRhop2
2https://github.com/Hamxea/Multi-label-Classification
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5.2 Experimental Results

In this experimental studies, we evaluate our models with respect to F1-measure,

Precision, Recall and AUC evaluation metrics described in Section 4.5. We also

compare and contrast our findings with [2] to see the behavior of measures in terms

of that previous study. The F1-measure or F1 score is the harmonic mean of precision

and recall. Our models obtain an ideal score by merely assigning each class to each

input by using accuracy (precision) only. Therefore, a metric should also penalize

inaccurate class predictions (recall) to prevent this. We use F-beta score ranging

from 0 to 1 as a weighted mean of the true class predictions versus the ratio of

the false class predictions. As shown in Table 5.2 our model precision and F1-

measure outperforms the compared study by more than 8% in both Bidirectional

LSTM and GRU models using Glove and FastText pre-trained embedding, in the

other models contrast with at least 5% . This shows that the percentage of how

many selected labels are more relevant in our models than compared study. With

reference the table, their model has a greater recall rate with distinct classes across

the board, which implies that it is considerably easier to predict toxic. In general,

however, it has lower precision, which means it is underfitting in classification of

clean comments.

Furthermore, our results indicate that the importance of assigning correct classes

when beta less than 1 for the models based on table. And when beta is greater than

1, the F1-measure shows that the models are instead weighted to penalize wrong class

predictions. The result also shows that the pre-trained embedding does not apply

significant increase to all the evaluation measures in the models. Only Global Vectors

for Word Representation (Glove) maintain a uniform increase in contrast to the

models without pre-trained embedding and the other two pre-trained embeddings

(Word2vec and FastText). Moreover, AUC achieve highest score in using Glove in

all the models experimented with respect to Table 5.2.

Overall, Long Short-Term Memory (LSTM) outperforms almost all the others
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Table 5.2: Experimental Results and Comparison with Previous Work [2]
P: Precision, R: Recall, F1: F1-Measure, AUC: Area Under Curve

Our Models Metric Results Metrics Comparison
P R F1 AUC P R F1 AUC

NN .88 .84 .858 .921 - - - -
CNN .86 .83 .842 .907 - - - -

CNN (fastText) .86 .83 .778 .904 .73 .86 .776 .981
CNN (Glove) .85 .76 .795 .912 .70 .85 .748 .979

CNN (Word2vec) .82 .73 .739 .889 - - - -
RNN .87 .80 .829 .913 - - - -

RNN (fastText) .76 .70 .729 .875 - - - -
RNN (Glove) .83 .72 .776 .923 - - - -

RNN (Word2vec) .77 .73 .719 .882 - - - -
LSTM .88 .85 .862 .932 - - - -

LSTM (fastText) .87 .75 .796 .917 .71 85 .752 .978
LSTM (Glove) .86 .76 .803 .930 .74 84 .777 .980

LSTM (Word2vec) .84 .73 .744 .896 - - - -
Bil LSTM .90 .87 .883 .943 - - - -

Bil LSTM (fastText) .87 .76 .804 .919 .71 .86 .755 .979
Bil LSTM (Glove) .87 .79 .843 .942 .74 .84 .765 .981

Bil LSTM (Word2vec) .84 .74 .753 .899 - - - -
GRU .81 .71 .753 .885 - - - -

GRU (fastText) .88 .80 .844 .934 - - - -
GRU (Glove) .86 .82 .843 .942 - - - -

GRU (Word2vec) .86 .81 .795 .916 - - - -
Bil GRU .83 .73 .776 .898 - - - -

Bil GRU (fastText) .88 .82 .845 .937 .72 .86 .765 .981
Bil GRU (Glove) .87 .83 .852 .947 .73 .85 .772 .981

Bil GRU (Word2vec) .87 .83 .807 .922 - - - -
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models in the four evaluation measure metrics, then followed by CNN, Bidirectional

GRU (with FastText and Glove) and baseline Neural Network (NN) models. How-

ever the scores fluctuate as is shown in the Figure Table 5.2, due to the imbalanced

identity of the Toxic Comment data set. Nevertheless, this results outperform the

previous researches on this data in terms of precision and F1-measure.

We can also infer from the Accuracy and Loss plots diagrams for training and

validation measures as shown from Figure. 5.1 to Figure. 5.7 that without the

callback function implemented and used in these experiments, rigorous overfitting

and underfitting would have exits in some of the models. This can be due to the

imbalanced nature of the data set. For example, in Figure. 5.1 to Figure. 5.4 the

training accuracy increases as the validation accuracy steadily decreases with nega-

tive slope. These show that overfitting is likely to occur in these models, therefore

it is good thing that we use the early stopping or callback function described in

Section 4.4.1. While in the other plots, the validation accuracy plot in the diagram

shows the existence of little over or absence of overfitting in the neural network mod-

els, like in Figure. 5.7 to Figure. 5.25, the plot shows increase in validation accuracy.

Figure 5.1: Baseline NN Accuracy and Loss Plots
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Figure 5.2: CNN Accuracy and Loss Plots

Figure 5.3: RNN Accuracy and Loss Plots

Figure 5.4: LSTM Accuracy and Loss Plots
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Figure 5.5: GRU Accuracy and Loss Plots

Figure 5.6: Bil-LSTM Accuracy and Loss Plots

Figure 5.7: Bil-GRU Accuracy and Loss Plots

47



Figure 5.8: CNN with Glove Accuracy and Loss Plots

Figure 5.9: RNN with Glove Accuracy and Loss Plots

Figure 5.10: LSTM with Glove Accuracy and Loss Plots
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Figure 5.11: GRU with Glove Accuracy and Loss Plots

Figure 5.12: Bil-LSTM with Glove Accuracy and Loss Plots

Figure 5.13: Bil-GRU with Glove Accuracy and Loss Plots
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Figure 5.14: CNN with fastText Accuracy and Loss Plots

Figure 5.15: RNN with fastText Accuracy and Loss Plots

Figure 5.16: LSTM with fastText Accuracy and Loss Plots
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Figure 5.17: GRU with fastText Accuracy and Loss Plots

Figure 5.18: Bil-LSTM with fastText Accuracy and Loss Plots

Figure 5.19: BilGRU with fastText Accuracy and Loss Plots
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Figure 5.20: CNN with Word2Vec Accuracy and Loss Plots

Figure 5.21: RNN with Word2Vec Accuracy and Loss Plots

Figure 5.22: LSTM with Word2Vec Accuracy and Loss Plots
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Figure 5.23: GRU with Word2Vec Accuracy and Loss Plots

Figure 5.24: Bil-LSTM with Word2Vec Accuracy and Loss Plots

Figure 5.25: Bil-GRU with Word2Vec Accuracy and Loss Plots
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this study, we explore the issue of multi-label classification where one instance

is simultaneously classified into one or more than two classes. e explore the state-

of-art trend of deep leaning methodologies, by using different set or deep neural

networks. We address two approaches that vary in terms of the method of word

embedding.

In the first approach, we use plain Keras library embedding layer and create

a word embedding vector. We construct various architecture models such as the

Neural Network Base line, the Recurrent Neural Network, the Convolutional Neural

Network, the Long Short Term Memory Network, the Gated Recurrent Unit, and

the Bidirectional Network (Gated Recurrent Unit, Long Short Term Memory).

In the second methodology, we utilise different word embedding in our deep

learning models as a pre-trained embedded corpus. These include fastText, glove,

and word2vec. We observe the behavior and conduct of these models in terms of

the first and the second approaches. Finally, we compare our result with respect

to previous study. We observe that even though data set is an unbalanced, the

F1-measure in our studies achieve higher measures than the compared result.

The experiments demonstrate that, among the proposed methods, pre-trained

word embedding significantly improves the F1-measurement relative to the other

multi-label classification metrics in our models.

The study can be extended by working on developing an algorithm and technique

that can handle imbalance data. Starting point can be exploring Synthetic Minority

Oversampling Technique use in multi-class problem. The technique randomly picked
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a point from the minority class group and calculated the k-nearest neighbors for this

point. The synthetic points are added between the point selected and the neighbors.

We can also apply undersampling technique to the predominance classes. The neural

network model will pay more attention to the minor class samples in this method.

We believe these two methods will provide improvement to the models measure that

involve an unbalance data set.
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APPENDIX A

NOMENCLATURE

L Set of labels

d instance toxic text comment

l label

σ sigma

zt update gate

zt reset gate

xt input vector

it input gate

ft forget gate

zt reset gate

σt output gate activation vector.

Ct cell state

ht output vector of LSTM cell unit.

V matrices

W matrices

Table A.1: Nomenclature Table
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APPENDIX B

DATA SET DESCRIPTION

id comment text toxic severe toxic obscene threat insult identity hate

0036e50f
42d0b679

Oh, it’s me van-
dalising?xD See
here. Greetings,

0 0 0 0 0 0

0036621
e4c7e10b57

Would you
both shut up,
you don’t run
wikipedia, espe-
cially a stupid
kid.

1 1 1 0 1 0

003217c3
eb469ba9

Hi! I am back
again! Last
warning! Stop
undoing my
edits or die!

1 0 0 0 1 0

0007e25b
2121310b

Bye! Don’t look,
come or think of
comming back!
Tosser.

1 0 0 0 0 0

0020e711
9b96eeeb

Stupid peace of
shit stop delet-
ing my stuff ass-
hole go die and
fall in a hole go
to hell!

1 1 1 0 1 0

Table B.1: Train Data Description

63



id comment text

0000247867823ef7 == From RfC == The title is
fine as it is, IMO.

00017695ad8997eb I don’t anonymously edit articles
at all.

0001ea8717f6de06 Thank you for understanding. I
think very highly of you and
would not revert without discus-
sion

0002f87b16116a7f ”::: Somebody will invariably
try to add Religion? Really??
You mean, the way people have
invariably kept adding ””Reli-
gion”” to the Samuel Beckett in-
fobox? And why do you bother
bringing up the lo...

0016b94c8b20ffa6 I WILL BURN YOU TO HELL
IF YOU REVOKE MY TALK
PAGE ACCESS!!!!!!!!!!!!!

001d739c97bc2ae4 How dare you vandalize that
page about the HMS Beagle!
Don’t vandalize again, demon!

Table B.2: Test Data Description
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id toxic severe toxic obscene threat insult identity hate

0000247867823ef7 -1 -1 -1 -1 -1 -1

00017695ad8997eb -1 -1 -1 -1 -1 -1

0001ea8717f6de06 -1 -1 -1 -1 -1 -1

0002f87b16116a7f -1 -1 -1 -1 -1 -1

0016b94c8b20ffa6 -1 -1 -1 -1 -1 -1

001d739c97bc2ae4 -1 -1 -1 -1 -1 -1

Table B.3: Test Labels Data Description
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