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Abstract
In this article, an accurate and efficient numerical method is presented for solving the
space-fractional order diffusion equation (SFDE). Jacobi polynomials are used to
approximate the solution of the equation as a base of the tau spectral method which
is based on the Jacobi operational matrices of fractional derivative and integration.
The main advantage of this method is based upon reducing the nonlinear partial
differential equation into a system of algebraic equations in the expansion coefficient
of the solution. In order to test the accuracy and efficiency of our method, the
solutions of the examples presented are introduced in the form of tables to make a
comparison with those obtained by other methods and with the exact solutions easy.
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1 Introduction
Due to their accuracy, fractional partial differential equations (PDEs) in the description
of nonlinear phenomena in engineering, physics, viscoelasticity, fluid mechanics, biology,
and other areas of science have got a lot of attention in recent years [–]. There are many
advantages of fractional derivatives, one of them is that it can be seen as a set of ordinary
derivatives that give the fractional derivatives the ability to describe what integer-order
derivatives cannot []. One may refer for the historical development of fractional opera-
tors to [, ].
The tau spectral method is one of the most important methods that have been used to

find numerical solutions of differential equations. Expressing the solution as an expansion
of certain orthogonal polynomials and then choosing the coefficients in the expansion in
order to satisfy the differential equation as accurately as possible is the main idea of the
spectral methods.
In a lot of papers there have been proposals for solving the multi-term fractional differ-

ential equations such as the Haar wavelet [, ], the homotopy analysis method [, ], the
Legendre wavelet method [], the homotopy-perturbation method [, ], and the vari-
ational iteration method []. Spectral methods have been used to introduce approximate
solutions for the fractional differential equations based on collocation and tau methods,
see [, ].Moreover, spectralmethods are appliedwith the help of the operationalmatrix
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of fractional derivatives for numerical approximations of the linear and nonlinear FDEs
[–], not only the operational matrices of fractional derivatives, but those of fractional
integrations are used with the help of the tau and pseudospectral methods to solve some
types of FDEs [–].
The use of general Jacobi polynomials has the advantage of obtaining the solutions in

terms of the Jacobi parameters α and β . Hence to generalize and instead of developing
approximation results for each particular pair of indices, it would be very useful to carry
out a systematic study on Jacobi polynomials (α,β > –) with general indices, which can
then be directly applied to other applications. It is with this motivation that we introduce
in this paper a family of Jacobi polynomials with indices α,β > –.
The operational matrix was presented for fractional derivatives of shifted Jacobi poly-

nomials by Doha et al. [] and used with the help of the spectral tau method to intro-
duce numerical solutions of FDEs. Recently, spectral methods are used together with the
shifted Jacobi polynomials for investigating numerical approximations of linear and non-
linear FDEs with constant and variable coefficients in [].
During the past few decades fractional order partial differential equations began to play

a key role especially in the study and modeling of anomalies and complex systems [, –
]. SFDEs model phenomena exhibiting anomalous diffusion that cannot be modeled
accurately by the classical diffusion equations. Because of the nonlocal property of frac-
tional differential operators, the numerical methods for SFDEs often generate dense or
even full coefficient matrices. Numerical approaches to different types of fractional diffu-
sion models have been increasingly appearing in the literature [–]. Spectral methods
are applied together with the finite difference method [] in order to find an approxi-
mate solution of SFDEs; see []. Bhrawy and Baleanu [] proposed the Legendre-Gauss-
Lobatto collocation scheme for solving the SFDEswith variable coefficients. Recently, Saa-
datmandi and Dehghan [] and Doha et al. [] applied the operational matrix of frac-
tional derivatives with the help of tau approximations based on Legendre polynomials and
Chebyshev polynomials for numerical solutions of SFDEs, respectively.
In this paper we are concerned with the direct solution techniques for the numerical

solution of SFDEs, using the Jacobi tau approximations. Developing an efficient algorithm
using the tau method together with operational matrices of a fractional derivative and
integration of shifted Jacobi polynomials is our main aim. The shifted Jacobi tau method
based on Jacobi operational matrices reduces SFDEs to a system of algebraic equations,
which simplifies the problem. We note that the improved operational matrix techniques
based on the Legendre tau method [], the Chebyshev tau method [], and some other
interesting methods can be obtained directly as special cases from our proposed shifted
Jacobi operational matrices with Jacobi tau approximations.
The article is arranged in the following way: In Section , some properties of Jacobi

polynomials and some necessary definitions are introduced. In Section , we apply our
algorithm for the solution of SFDEs. The error estimate is given in Section . In Section 
several examples have been applied. Also, a conclusion is presented in the final section.

2 Basic ideas and definitions
2.1 Fractional derivation and integration
The Riemann-Liouville and Caputo fractional definitions are the two most used defini-
tions of fractional calculus.
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Definition . The integral of order ν ≥  (fractional) according to Riemann-Liouville is
given by

Jν f (x) =


�(ν)

∫ x


(x – t)ν–f (t)dt, ν > ,x > ,

Jf (x) = f (x),
()

where

�(ν) =
∫ ∞


xν–e–x dx

is the gamma function.
The operator Jν satisfies the following properties:

Jν Jμf (x) = Jν+μf (x),

Jν Jμf (x) = JμJν f (x),

Jνxβ =
�(β + )

�(β +  + ν)
xβ+ν .

()

Definition . The Caputo fractional derivatives of order ν is defined as

Dν f (x) =


�(m – ν)

∫ x


(x – t)m–ν– dm

dtm
f (t)dt, m –  < ν ≤ m,x > , ()

wherem is the ceiling function of ν .
The operator Dν satisfies the following properties:

DνC =  (C is constant),

Dν Jν f (x) = f (x),

JνDν f (x) = f (x) –
m–∑
i=

f (i)
(
+

)xi
i!
,

Dνxβ =
�(β + )

�(β +  – ν)
xβ–ν ,

Dν
(
λf (x) +μg(x)

)
= λDν f (x) +μDνg(x).

()

2.2 SFDE
Consider a one-dimensional SFDE considered as

∂u(x, t)
∂t

= c(x)
∂νu(x, t)

∂xν
+ q(x, t),  < x < L,  < t ≤ τ ,  < ν ≤ , ()

with initial and boundary conditions

u(x, ) = f (x),  < x < L, ()
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and

u(, t) = g(t),  < t ≤ τ ,

u(L, t) = g(t),  < t ≤ τ ,
()

respectively, where u(x, t) represents the solute concentration, q(x, t) is the source term
and f (x) is the initial solute concentration but g(x) and g(x) are the boundary solute
concentrations.

2.3 Properties of shifted Jacobi polynomials
The Jacobi polynomials are orthogonal with Jacobi weight function w(z) = ( – z)α( + z)β

over I = [–, ], namely

∫ 

–
P(α,β)
j (z)P(α,β)

k (z)w(α,β)(z)dz = δjkγ
(α,β)
k ,

where δjk is the Kronecker function and

γ
(α,β)
k =

α+β+�(k + α + )�(k + β + )
(k + α + β + )k!�(k + α + β + )

.

One can generate Jacobi polynomials from the recurrence relation:

P(α,β)
i (z) =

(α + β + i – ){α – β + z(α + β + i)(α + β + i – )}
i(α + β + i)(α + β + i – )

P(α,β)
i– (z)

–
(α + i – )(β + i – )(α + β + i)
i(α + β + i)(α + β + i – )

P(α,β)
i– (z), i = , , . . . ,

where

P(α,β)
 (z) =  and P(α,β)

 (z) =
α + β + 


(z) +

α – β


.

By introducing the variable z = x
L – , Jacobi polynomials can be used in the interval

x ∈ [,L] that will be called shifted Jacobi polynomials. Let the shifted Jacobi polynomials
P(α,β)
i ( xL – ) be denoted by P(α,β)

L,i (x). Then the shifted Jacobi polynomials are orthogonal
with respect to the weight function w(α,β)

L (x) over I = [,L], namely

∫ L


P(α,β)
L,j (x)P(α,β)

L,k (x)w(α,β)
L (x)dx = h(α,β)L,k , ()

where

h(α,β)L,k =
(
L


)α+β+

δjkγ
(α,β)
j =

Lα+β+�(k + α + )�(k + β + )
(k + α + β + )k!�(k + α + β + )

.

The analytic form of the shifted Jacobi polynomials P(α,β)
L,i (x) of degree i is given by

P(α,β)
L,i (x) =

i∑
k=

(–)i–k
�(i + β + )�(i + k + α + β + )

�(k + β + )�(i + α + β + )(i – k)!k!Lk
xk , ()
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where

P(α,β)
L,i () = (–)i

�(i + β + )
�(β + )i!

, P(α,β)
L,i (L) =

�(i + α + )
�(α + )i!

.

A function u(x), square integrable in (,L), can be expressed in terms of shifted Jacobi
polynomials as

u(x) =
∞∑
j=

cjP(α,β)
L,j (x),

where the coefficients cj are given by

cj =


h(α,β)L,j

∫ L


w(α,β)
L (x)u(x)P(α,β)

L,j dx, j = , , . . . . ()

In practice, only the first (N + ) terms of shifted Jacobi polynomials are considered.
Hence we can write

uN (x)�
N∑
j=

cjP(α,β)
L,j (x) = CTφL,N (x), ()

where the shifted Jacobi coefficient vectorC and the shifted Jacobi vector φL,N (x) are given
by

CT = [c, c, . . . , cN ],

φL,N (x) =
[
P(α,β)
L, (x),P(α,β)

L, (x), . . . ,P(α,β)
L,N (x)

]T . ()

Similarly a function u(x, t) of two independent variables defined for  < x < L and  <
t ≤ τ may be expanded in terms of the double shifted Jacobi polynomials as

uM,N (x, t) =
M∑
i=

N∑
j=

cijP(α,β)
τ ,i (t)P(α,β)

L,j (x) = φT
τ ,M(t)AφL,N (x), ()

where the shifted Jacobi vectors φτ ,M(t) and φL,N (x) are defined similarly to (); also the
shifted Jacobi coefficient matrix A is given by

A =

⎛
⎜⎜⎜⎜⎝

a a · · · aN
a a · · · aN
...

... · · · ...
aM aM · · · aMN

⎞
⎟⎟⎟⎟⎠ ,

where

aij =


h(α,β)τ ,i h(α,β)L,j

∫ τ



∫ L


u(x, t)P(α,β)

τ ,i (t)P(α,β)
L,j (x)w(α,β)

τ (t)w(α,β)
L (x)dxdt,

i = , , . . . ,M, j = , , . . . ,N . ()
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The first integration of φτ ,M(t) can be expressed as

Jφτ ,M(t)� P()φτ ,M(t), ()

where P() is an (M + ) × (M + ) operational matrix of integration of order one in the
Riemann-Liouville sense and is defined as follows:

P() =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(, ,α,β) �(, ,α,β) · · · �(,M,α,β)
�(, ,α,β) �(, ,α,β) · · · �(,M,α,β)

...
... · · · ...

�(i, ,α,β) �(i, ,α,β) · · · �(i,M,α,β)
...

... · · · ...
�(M, ,α,β) �(M, ,α,β) · · · �(M,M,α,β)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ()

where

�(i, j,α,β) =
i∑

k=

(–)i–k�(i + β + )�(i + k + α + β + )τ
�(k + β + )�(j + α + β + )(i – k)!�(k + )

×
j∑

f =

(–)j–f �(j + f + α + β + )�(α + )�(f + k + β + )(j + α + β + )j!
�(j + α + )�(f + β + )(j – f )!f !�(f + k + α + β + )

(see [] for a proof ).
The fractional derivative of order ν >  of φL,N (x) can be expressed as

DνφL,N (x) �D(ν)φL,N (x), ()

where D(ν) is the (N + ) × (N + ) Jacobi operational matrix of derivatives of order ν in
the Caputo sense and is defined as follows:

D(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

   . . . 
...

...
... . . .

...
   . . . 


ν(�ν�, ) 
ν(�ν�, ) 
ν(�ν�, ) . . . 
ν(�ν�,N)
...

...
... . . .

...

ν(i, ) 
ν(i, ) 
ν(i, ) . . . 
ν(i,N)

...
...

... . . .
...


ν(N , ) 
ν(N , ) 
ν(N , ) . . . 
ν(N ,N)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ()

where


ν(i, j) =
i∑

k=�ν�

(–)i–kLα+β–ν+�(j + β + )�(i + β + )�(i + k + α + β + )
hj�(j + α + β + )�(k + β + )�(i + α + β + )�(k – ν + )(i – k)!

×
j∑

l=

(–)j–l�(j + l + α + β + )�(α + )�(l + k + β – ν + )
�(l + β + )�(l + k + α + β – ν + )(j – l)!l!

. ()
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Note that in D(ν), the first �ν� rows are all zero (see [] for a proof ).

3 The numerical scheme
In this section, we apply the spectral tau method together with the shifted Jacobi opera-
tional matrix to solve SFDE () with initial conditions () and boundary conditions ().
First, we approximate u(x, t), c(x), q(x, t), and f (x) by the shifted Jacobi polynomials as

uM,N (x, t) = φT
τ ,M(t)AφL,N (x),

cN (x) = CTφL,N (x),

qM,N (x, t) = φT
τ ,M(t)QφL,N (x),

f (x) = φT
τ ,M(t)FφL,N (x),

()

where A is an unknown (M + ) × (N + ) matrix, but CT , Q and F are known matrices
which can be written as

CT = [c, c, . . . , cN ],

Q =

⎛
⎜⎜⎜⎜⎝

q q · · · qN
q q · · · qN
...

... · · · ...
qM qM · · · qMN

⎞
⎟⎟⎟⎟⎠ , F =

⎛
⎜⎜⎜⎜⎝

f f · · · fN– fN
  · · ·  
...

... · · · ...
...

  · · ·  

⎞
⎟⎟⎟⎟⎠ ,

()

where cj and fj are given as in () but the qij are given as in ().
By getting the integrated form of () from  to t and using (), we have

u(x, t) – f (x) =
∫ t


c(x)

∂νu(x, t)
∂xν

dt +
∫ t


q(x, t)dt. ()

Using (), (), and () it is easy to obtain

∫ t


c(x)

∂νu(x, t)
∂xν

dt � (
CTφL,N (x)

)(∫ t


φT

τ ,M(t)dt
)
A

(
DνφL,N (x)

)
,

=
(
CTφL,N (x)

)(
φT

τ ,M(t)P
TAD(ν)φL,N (x)

)
= φT

τ ,M(t)P
TAD(ν)φL,N (x)φT

L,N (x)C. ()

Let

φL,N (x)φT
L,N (x)C �HTφL,N (x), ()

where H is a (N + )× (N + ) matrix. To illustrate H, () can be written as

N∑
k=

ckP(α,β)
L,k (x)P(α,β)

L,j (x) =
N∑
k=

HkjP(α,β)
L,k (x), j = , , . . . ,N .

http://www.advancesindifferenceequations.com/content/2014/1/231
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Multiplying both sides of the above equation by P(α,β)
L,i (x)w(α,β)

L (x), i = , , . . . ,N and in-
tegrating the result from  to L, we obtain

N∑
k=

ck
∫ L


P(α,β)
L,i (x)P(α,β)

L,k (x)P(α,β)
L,j (x)w(α,β)

L (x)dx

=Hij

∫ L


P(α,β)
L,i (x)P(α,β)

L,i (x)w(α,β)
L (x)dx. ()

By using () and making use of () we have

Hij =


h(α,β)L,i

N∑
k=

(
ck(x)

∫ L


P(α,β)
L,i (x)P(α,β)

L,k (x)P(α,β)
L,j (x)w(α,β)

L (x)dx
)
,

i, j = , , . . . ,N . ()

Employing (), () can be written as

∫ t


c(x)

∂νu(x, t)
∂xν

dt = φT
τ ,M(t)P

TAD(ν)HTφL,N (x). ()

Also using () and () we get

∫ t


qM,N (x, t)dt = φT

τ ,M(t)P
TQφL,N (x). ()

Applying (), (), and () the residual RN ,M(x, t) for () can be written as

RN ,M(x, t) = φT
τ ,M(t)

[
A – F – PTAD(ν)HT – PTQ

]
φL,N (x)

= φT
τ ,M(t)EφL,N (x), ()

where

E =A – F – PTAD(ν)HT – PTQ.

As in a typical tau method, see [], we generate (M + )× (N – ) linear algebraic equa-
tions using the following algebraic equations:

Eij = , i = , , . . . ,M, j = , , . . . ,N – . ()

Also, substituting () in () we obtain

φT
τ ,M(t)AφL,N () = g(t), ()

φT
τ ,M(t)AφL,N (L) = g(t), ()

respectively. Equations () and () are collocated at (M + ) points. For suitable collo-
cation points we use the shifted Jacobi roots ti, i = , , . . . ,M +  of P(α,β)

τ ,M+(t). The number
of unknown coefficients aij is equal to (N + )(M + ) and can be obtained from ()-().
Consequently uN ,M(x, t) given in () can be calculated.
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4 Numerical results
Example  Let us consider () with initial condition u(x, ) = x,  < x < , and bound-
ary conditions u(, t) =  and u(, t) = e–t , with c(x) = 

�( – ν)xν and d(x, t) = –e–tx;
see [].
The exact solution of the problem is of the form u(x, t) = e–tx.

Consider u(x, t) and uM,N (x, t), the exact and approximated solutions, respectively. Then
the error is defined by

∥∥u(	x,	t) – uM,N (	x,	t)
∥∥∞, ()

where ‖ · ‖ is the l∞ norm.
Regarding this problem we study four different choices of ν , 	x and 	t with N =M = .
In Tables  and , we compare l∞ errors using the proposed method, at N =M =  with

different choices of ν , 	x, α, β and 	t, and that obtained by Sousa []. Also, in Figure ,
we plot the error function at N =M = , α = β = , and ν = ., while in Figure , we show
the logarithmic graphs of themaximum absolute errors (MAEs) (Log error) at α = β = ,
ν = ., and various choices of N (N =M); by using our algorithm. From these figures, it
is shown that the numerical errors decay rapidly as N increased. This confirms that the
proposed method has an exponential rate of convergence.
In [], Sousa implemented the Crank-Nicolson discretization in time together with the

spline approximations for introducing a solution of this problem and the results are shown
in Tables  and . It is clear fromTables  and  that the presentedmethod ismore accurate
than the spline method. Moreover, numerical results that have been obtained in the case
of α = β = – 

 are entirely consistent with the results presented by Doha et al. [].

Table 1 l∞ error at N =M = 5 for ν = 1.2, 1.4 and �x = �t for Example 1

�x ν Sousa [31] α = β = 0 α = β = 1 α = β = 0.5 α = β = –0.5

1/15 1.2 1.275× 10–3 2.873× 10–7 1.739× 10–7 2.239× 10–7 3.505× 10–6

1/20 7.571× 10–4 2.051× 10–7 1.179× 10–7 1.552× 10–7 2.623× 10–6

1/25 5.030× 10–4 1.493× 10–7 8.316× 10–8 1.111× 10–7 1.960× 10–6

1/30 3.566× 10–4 1.123× 10–7 6.095× 10–8 8.247× 10–8 1.500× 10–6

1/15 1.4 9.070× 10–4 2.296× 10–7 1.446× 10–7 1.833× 10–7 2.693× 10–6

1/20 5.327× 10–4 1.635× 10–7 9.792× 10–8 1.269× 10–7 1.993× 10–6

1/25 3.486× 10–4 1.191× 10–7 6.892× 10–8 9.083× 10–8 1.486× 10–6

1/30 2.461× 10–4 8.971× 10–8 5.043× 10–8 6.741× 10–8 1.138× 10–6

Table 2 l∞ error at N =M = 5 for ν = 1.5, 1.8 and �x = �t for Example 1

�x ν Sousa [31] α = β = 0 α = β = 1 α = β = 0.5 α = β = –0.5

1/15 1.5 7.660× 10–4 1.686× 10–7 1.076× 10–7 1.359× 10–7 1.952× 10–6

1/20 4.493× 10–4 1.198× 10–7 7.257× 10–8 9.387× 10–8 1.436× 10–6

1/25 2.929× 10–4 8.726× 10–8 5.081× 10–8 6.701× 10–8 1.068× 10–6

1/30 2.067× 10–4 6.568× 10–8 3.697× 10–8 4.962× 10–9 8.179× 10–7

1/15 1.8 4.380× 10–4 2.794× 10–8 1.744× 10–8 2.260× 10–8 3.175× 10–7

1/20 2.540× 10–4 1.955× 10–8 1.076× 10–8 1.502× 10–8 2.307× 10–7

1/25 1.649× 10–4 1.399× 10–8 6.692× 10–9 1.020× 10–8 1.705× 10–7

1/30 1.150× 10–4 1.032× 10–8 4.167× 10–9 7.111× 10–9 1.279× 10–7

http://www.advancesindifferenceequations.com/content/2014/1/231
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Figure 1 Error function at N =M = 8, α = β = 0, and ν = 1.6 for Example 1.

Figure 2 Convergence of the MAEs at α = β = 0 and ν = 1.2 for Example 1.

Example  Consider the following problem:

∂u(x, t)
∂t

= c(x)
∂.u(x, t)

∂x.
+ q(x, t),  < x < ,  < t ≤ , ()

where

c(x) = �(.)x., q(x, t) =
(
x – x

)
e–t ,

with initial condition

u(x, ) = x – x,

and boundary conditions

u(, t) = u(, t) = ,

http://www.advancesindifferenceequations.com/content/2014/1/231
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Table 3 Absolute errors at N =M = 5 with t = 2 and various choices of α, β , for Example 2

x Khader [30] α = β = 0 α = β = 0.5 α = –β = –0.5 α = β = 1

0.1 4.2× 10–5 4.4× 10–6 1.8× 10–6 2.5× 10–6 6.9× 10–7

0.2 3.7× 10–5 2.7× 10–7 8.9× 10–7 1.9× 10–6 1.8× 10–6

0.3 8.4× 10–5 5.8× 10–6 4.8× 10–6 1.6× 10–7 5.3× 10–6

0.4 3.2× 10–5 1.0× 10–5 8.1× 10–6 1.5× 10–6 8.6× 10–6

0.5 3.6× 10–5 1.1× 10–5 9.9× 10–6 2.6× 10–6 1.0× 10–5

0.6 1.9× 10–5 1.0× 10–5 1.0× 10–5 3.0× 10–6 1.2× 10–5

0.7 2.9× 10–5 8.5× 10–6 9.5× 10–6 2.7× 10–6 1.1× 10–5

0.8 4.9× 10–5 6.0× 10–6 7.8× 10–6 2.0× 10–6 1.0× 10–5

0.9 2.8× 10–5 3.6× 10–6 5.0× 10–6 1.1× 10–6 6.5× 10–6

Figure 3 Error function at N =M = 8, α = β = 1, and ν = 1.8 for Example 2.

where the exact solution of this problem is

u(x, t) =
(
x – x

)
e–t .

This problemwas also investigated by Khader using the Chebyshev collocationmethod,
see [], but in [] the authors introduced a tau approach based on shifted Legendre
polynomials for solving it. In Table  we introduce the absolute errors at N =M =  with
t = , and various choices of α and β , while in Figure , we plot the error function at
N =M =  and α = β = . For the sake of comparison, the results obtained by Khader []
are also introduced in the second column of Table . Table  confirms that this method is
more accurate than the Chebyshev collocation method [] (see Table  in []). Results
that have been obtained in the case of α = β = , are entirely consistent with the results
presented by Saadatmandi and Dehghan [].
In the case where an exact solution is not known, one follows a similar method. The

difference is that one calculates the residual errors only, since comparison to an exact
solution is not possible.

Example  Consider () with the coefficient function, c(x) = 
�( – ν)xν , and the source

function, q(x, t) = sin(–t)x – cos(–t)x, with initial condition u(x, ) = x,  < x < , and
boundary conditions u(, t) =  and u(, t) = cos(–t).
The exact solution of the problem is of the form u(x, t) = cos(–t)x.

http://www.advancesindifferenceequations.com/content/2014/1/231
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Table 4 Absolute errors at N =M = 5, ν = 1.8 with x = 1 and different choices of α, β for
Example 3

t α = β = 0 α = β = 0.5 α = β = 1 α = –β = –0.5 α = β = –0.5

0.1 5.2× 10–7 4.9× 10–7 4.0× 10–7 8.1× 10–7 4.5× 10–7

0.2 2.3× 10–7 7.8× 10–8 2.4× 10–8 1.6× 10–7 4.5× 10–7

0.3 3.8× 10–7 3.1× 10–7 2.5× 10–7 5.1× 10–7 4.6× 10–7

0.4 1.0× 10–7 4.8× 10–8 1.6× 10–8 2.3× 10–7 2.1× 10–7

0.5 4.0× 10–7 2.9× 10–7 2.2× 10–7 2.8× 10–7 5.9× 10–7

0.6 1.0× 10–7 4.8× 10–8 1.5× 10–8 3.2× 10–7 2.0× 10–7

0.7 3.7× 10–7 3.0× 10–7 2.4× 10–7 1.0× 10–7 4.5× 10–7

0.8 2.1× 10–7 7.4× 10–8 2.3× 10–8 3.0× 10–7 4.3× 10–7

0.9 4.9× 10–7 4.6× 10–7 3.7× 10–7 1.4× 10–7 4.2× 10–7

Figure 4 Convergence of the MAEs at α = β = 1 and ν = 1.5 for Example 3.

Table  lists the absolute errors using the Jacobi tau spectral method based on the Jacobi
operational matrix at x =  with N = M =  and different choices of α, and β . Also in
Figure , we show the logarithmic graphs of the MAEs at α = β = , ν = ., and various
choices of N (N =M); by using our algorithm.
Results that have been obtained in the case of α = β = – 

 are entirely consistent with
the results presented by Doha et al. [].

5 Conclusion
The fundamental objective of the paper is to introduce a newmethod for solving the SFDE
()-(). Using the tau spectral method based on shifted Jacobi polynomials together with
the operational matrix of fractional derivatives this objective has been achieved. The frac-
tional derivatives are described in the Caputo sense. By adding more terms of the shifted
Jacobi polynomial from (), the errors will be smaller. In order to illustrate the accuracy
of the method, we compared our approximate solutions of the problems with their exact
and with the approximate solutions presented by othermethods. According to the numer-
ical results given in the previous section, the proposed method may be extended to solve
several types of two-sided space-fractional partial FDEs subject to nonhomogeneous con-
ditions.
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