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We apply the lower and upper solutions method and fixed-point theorems to prove the existence of positive solution to fractional
boundary value problem D, u(t) + f(t,u(t)) = 0,0 <t < 1,2 < « < 3,u(0) = u'(0) =0, D‘O"Ilu(l) = pu(&), 0 < & < 1, where Dy,
denotes Riemann-Liouville fractional derivative, (3 is positive real number, B£*! > 2I'(«), and f is continuous on [0, 1] x [0, c0).
As an application, one example is given to illustrate the main result.

1. Introduction

In the recent years, fractional calculus has been one of the
most interesting issues that have attracted many scientists,
especially in the fields of mathematics and engineering sci-
ences. Many natural phenomena can be presented by bound-
ary value problems of fractional differential equations. Many
authors in different fields such as chemical physics, fluid
flows, electrical networks, and viscoelasticity try to present a
model of these phenomena by boundary value problems of
fractional differential equations [1-4]. In order to achieve
extra information in fractional calculus, interested readers
can refer to more valuable books that are written by other
authors [5-20].

The existence and multiplicity of solutions or positive
solutions of nonlinear fractional differential equation (FDE)
by the use of fixed point theorems, Leray-Shauder theory,
and so forth are mentioned in some papers [6, 8, 12, 20, 21].
Few papers have considered the boundary value problems
of fractional differential equations [12, 14]. By the use of

some fixed point theorems on cones, Zhang [15] obtained the
existence of positive solution for the equation

Dyu(t)+ f(Lu(t)=0, 0<t<1, 1<a<2, (1)

with the boundary conditions
u(0)=u(l)=0. (2)

In [22], Liang and Zhang applied lower and upper solutions
method and fixed point theorems to obtain some results on
the existence of positive solutions for the following BVPs:

Dyou(t) = f (tu (1)),

u@=ul)=u' 0 =u'(1)=0,

0<t<l1, 3<a<4,

3)

where D* denotes Riemann-Liouville fractional derivative.



In this paper, we investigate the existence of positive
solution for a nonlocal BVP of FDE,

Dyu(t)+ f(b,u() =0, 0<t<1,2<a<3, (4

u(0) =4 (0)=0, Di'u(l)=pu, (5)

using lower and upper solutions method and fixed point
theorem, where D® denotes standard Riemann-Liouville
fractional derivative, ,85“_1 > 2I(a), and f € C([0,1] x
[0, 00), [0, 00)).

The main result of this paper can be seen in Theorem 10.
In Theorem 10, we use the following conditions:

(H,) f(t,u(t)) € C([0,1] x [0,00),R") is nondecreasing
with respect to u,

(H2) f(t) Q(t)) :/: 0 fOrt € (0) 1))

(H;) there exist a positive constant A < 1 such that
k’\f(t, u) < f(t,ku), for all 0 < k < 1, and the
Schauder fixed-point theorem to show that problem
(4)-(5) has a positive solution.

2. Basic Definitions and Preliminaries

In this section, we present the necessary definitions and
lemmas that will be used to prove our new results.

Definition 1 (see [5, 6]). The Riemann-Liouville fractional
integral of order « > 0 of a function f : (0,00) — R is
defined by

1 t
Io. f (¢ =—J t—s) "' f(s)ds, n-1<a<n, (6
S0t | 9O ©)
provided that the right-hand side is pointwise defined on
(0, 00).

Definition 2 (see [5, 6]). The Riemann-Liouville fractional
derivative of order « > 0 of a function f : (0,00) — Ris
defined by

o B 1 dar
Dy f ) = I'(n-oa)dx"

jt (t— " f (s) ds,
0 @)

n—-1<a<n,

where n = [«] + 1, provided that the right-hand side is point-
wise defined on (0, 00).

Definition 3 (see [5, 6]). A function u(t) € C?[0, 1] is called a
lower solution of problem (4)-(5) if u(t) satisfies

~Diu(t) < f(tLu®),

p(0) <0,

0<t<l, 2<a<3,
(8)

p (0)<0, Du(t)<pu®.

Definition 4 (see [7, 8]). A function u(t) € C*[0,1] is called
an upper solution of problem (4)-(5) if u(t) satisfies

=Dy (t) > f(t,u()),

1 (0) >0,

0<t<l, 2<a<3,

Dy.u(t) > Pu(E).

)
1 (0) 20,
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Lemma 5 (see [7, 8]). Let u € C(0,1) n L(0,1). Then the
fractional differential equation

D*u(t) =0 (10)

has

oa—n

u(t) =t ot Pt
(11)

for some ¢ eR, i=1,...,n,
as a unique solution.

Lemma 6 (see [7, 8]). Let u € C(0,1) n L'(0,1) with a
fractional derivative of order « > 0,n—1 < < n (n € N),
that belongs to C(0,1) N L(0, 1). Then

ta—n

IEDGu(t) =u() + gt + ot 4+,

LW
for some ¢ eR, i=1,...,n.

Lemma 7. If BE*" > 2I(), then for 0 < y(t) € C[0, 1], the
problem,

Dypu(t)+y(t)=0, 0<t<l, 2<a<3, (13)

u(0)=u(0)=0, D 'u(l)=pu()), (14)

has a unique positive solution
u(t) = - —— r(t-s)‘“ () ds
T (o) Jo 4
P S
pEet =T (a)

B : a-1 a-1
' [BE¥! —T ()] T () Jo t (€ - 9)" y(s)ds.
(15)

1
J t* 'y (s)ds
0

Proof. We can apply Lemma 6 to reduce (13) to an equivalent
integral equation

t

u(t) = b J (t - s)“_ly (s)ds + clt‘x_1 + thx—z + %ta_3,
I'(x) Jo

(16)

for some ¢}, c,,¢; € R. From u(0) = 0 and u'(0) = 0 in (14),
we have ¢, = ¢; = 0. On the other hand, D*'u(1) = Pu(&)
yields

1 t
= BT b O
B ¢ 17)
a—1
TR T (@] T () L (=97 y(s)ds.

Then, the unique solution of problem is given by wu(t).
Obviously, u(t) > 0if y(t) > 0O ont € [0,1]. The proof is
complete. O



Abstract and Applied Analysis

3. Main Result
In this section, we present and prove our main result.

Lemma 8. Suppose that BE*™' > 2I(x). Given that y €
C[0, 1], the Green function for the problem (13)-(14) is given

by

G(t,s)
(~t =9 [BE - T ()]
+T (@)t + N E - 9)* )
<([BE - T (@] T (@),
(-9 [pE* " - T ()]
+T () t“’l)
([ - T @] T (@),
T (o) t* ™ + Bt (E - 5)* !
[Be* =T (@)] T (a)

toc—l

e =T ()’

0<s<t<l, s <é,

(18)
Proof. By Lemma 7, for t < &, we have

u(t)

B 1 -1 1
_ r()J(t 9y O g

X [(Lt+ f+J';) ! (s)ds]
e f(fx)] T (a)

([ 1)

= [, (e g -1 @) )

+T () £+ BTN E -9

x([ﬁﬁ‘x*l -T (oc)] F(oc))_1> y(s)ds

N J.f T ((X) toc—l + ﬁt(x—l(E _ S)tx—l
e [BETT-T(@)]T ()

y(s)ds

1 T ((X) ta—l
’ L [BE¥ 1 T ()] T ()

y(s)ds

= Jl G(t,s) y(s)ds.
0

For t > &, we have

u(t)

x [(J‘: + Lt + J;l) "y (s) ds]

ﬁ Eoc—l _ oa—1
—l"(oc)]F(oc)Lt =97 y(s)ds

+ [ﬁga—l
:
- L (-9 [ - T (@]
+T (@)t + BTN E - 9™
x([BE =T @] T (@) ") y(s)ds
+ L (-9 B T @] +T (@)

x([Be ! -T @] T @) ") y(s)ds

T ()t

1
v O
= jl G(t,s) y(s)ds.
0
(20)
The proof is complete. O

Lemma 9. Suppose that u(t) € C?[0,1] and is a positive
solution of (4)-(5). Then

mp (t) <u(t) < Mpo(t), (21)

where

o(t) = [BE* T (a+ D]t —ct®, (22

F(oc+1)

where ¢ = BE*
constants.

— T(a), BE* " £ T(), and m and M are two

Proof. Since u(t) € C?[0, 1], there exists T > 0 so that [u(t)| <
T fort € [0, 1]. We define

m = ftu(t))

(t, u)E[O 1]><[0 T
(23)
M = ftu@®).

(t, u)e[O 1]><[0 T]

Therefore, we have

1

1 1
mJ G(t,s)dssj G(t,s)f(s,u(s))dssMJ G(t,s)ds.
0 0 0 24)



On the other hand, by direct computation, we get

Jl G(t,s)ds
0
_ 1
[BE* 1 =T ()] T (aw+ 1)
x ([BE* =T (a+ 1] 7 = [BE“ - T (@)] ).
(25)
This completes the proof of the lemma. O

Theorem 10. The fractional boundary value problem (4)-(5)
has a positive solution u(t) if the conditions (H,)-(H;) are
satisfied.

Proof. Suppose that

= i 1’ i f b b
oy mm{ tel[r(l)’uf(tg(t))}

@, = max <|1, sup f(z‘,g(t‘))]> ,

te[0,1]

(26)
0<k1§m1n{ (o )M M},
x;
k, > max {i, (%)M(H)} ’
x;
and h(t) = fol G(t,s) f(s, o(s))ds. We show that u(t) = k,h(t)

and v(t) = k,h(t) are lower and upper solutions of (4)-(5),
respectively. From Lemma 7, h(t) is a positive solution of the
following problem:

<f(te®),
u(0) =4 (0) =0,

-Dg.u (t) 0<t<l, 2<a<3,

= pu(d).

We know that «,0(t) < h(t) < «a,o(t). Now, using the
assumption of the theorem, we get

(t) 1

kia,

(27)
Dy lu(1)

) 1

<

1) ke

o

<

<1,

=

(28)

(kl(xl)A > ky, (kz‘xz)/\ >k,

Therefore, from (H;) and since (klocl)’\

relations satisfy
o, ) (y(t) >A

2 (kl"‘l) fte®)>k f(te®),

f (to®) = (14000 > ("Eti)f(t (t)

> (ko) f (6,7 (0) > f (8,9 (E).

> ky, the following

flu®)= f<

(29)
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Consequently
~Djp(t) =k f(te®) < f(tpu(),
0<t<l, 2<a<3,
(30)
-Div(t) =k, f (o) > f (t,v (1)),

0<t<l, 2<a<3.

Since u(t) = k,h(t) and »(t) = k,h(t) satisfy the boundary
conditions, u(t) and ¥(t) are lower and upper solutions of (4)-
(5), respectively. Now, we suppose that

flu®), u<u®),
gtu(®) = fGu@), p@<u@®)<v(E), 6
FEr@®), u@®)<»@),
and prove that FBVP,

~Dg.u(t) = g (t,u(t)),

!

u(0) =u (0) =0,

0<t<l, 2<ac<3, (32)

DE (1) = fu(®),  (33)
has a solution. Consider operator T : c?[0,1] — C*0o,1],
with Tu(t) = JOI G(t,5)g(s,u(s))ds, where G(t, s) is defined as
in Lemma 8. It is easy to see that T' is continuous in c?[0,1].

Since f is nondecreasing in u (from (H,)), for u € c?[o, 1],
we have

ftu®)<gtu®)<fErv@), telo1]. (34)

So, there exists a positive constant M, such that |g(¢, u(t))| <
M. We will show that the operator T is equicontinuous.

Case 1. If s < &,
|T” (t,) = Tu (t2)|

<

1
J, [6(25) =669 g s ds

_ Jtz _(t2 _S)oc—l

0 T (a) g(s,u(s))ds
T ()t t, .
[/35"‘1 T ()] T () L g(s,u(s))ds
a-1
"B ﬁt;(a ]r(a)J -9 g(su(s)ds
F(OC) tot 1

1
X J g (s,u(s))ds
t

[/35“ '=T ()] T (a)
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"R ﬁtl?;)]r((x) L (E=9)""g(suls)ds
) Ltl %g(s,u(s))ds
i | s

- [Bet ﬁtr?:x)] T (a) J E=9""g(su(s)ds
i [/35"“f (—O? fx)l] T Ll g(s,u(s))ds

- pr Jl
[BE =T ()] T (ev) )y,

J~t1 [_(tz _ S)oc—l . (t1 _ s)xx—l

I'(a) T ()

E-9)""g(s,u(s))ds

] g (s,u(s))ds

bt —s)"
’ Ll T'(x)
L) (57 =651 (o
+
[BEt =T (@)] T () Jo

I'(x) t“ 1 t,
[/35“ LT ()] T () L g (s,u(s))ds

B (t;_l - t?_l) h a-1
T TBET T @)] T () J, €9 g sunas
prs”
R T
L) (57" -7

TR T T ()] T () L glsuls)ds

B T () ti‘_l
[BE*! ~T ()]

(e
[B&*! =T ()] T (a)

o
[BE*! ~T (o)

g(s,u(s))ds

g (s,u(s))ds

< |, @ o aGunas

[}
T(@) L g(s,u(s))ds

1
L & - 5)“719 (s,u(s))ds

t
T J, €9 g uinds

MT (o) (57" =571 1y
[BE =T ()] T (o)

2M
<
I(a+1)

(t,—1,)" +

n MT () t?l (t, - 1)
(B! T ()] T (a)

CMB(ET - M (1)
[IJ’E"“ T()]T(a) [ =T ()] T (a)
Mr(a)(tg‘_l—t‘l"_l)(l—tz) MT (@) 57 (t, - 1,)
[BE* =T ()] T () [ﬁE“l l"(oc)]l“(oc)
MBS A0 M ()

[BET-T@] T [FET-T@]T @
(35)

Case 2. If s > &,

[Tu (1) = Tu ()|

<

1
Jo [G(ty,5) = G(t,8)] g(s,u(s))ds

a—1
— Jtz ﬁg (S,M(S)) ds
0

- T (a)

1 o
+ML ty g(suls)ds

1 ! a-1
R ), 89

bt —s)"
+ L TQ(SM(S)MS

1 h a—1
_ML 7 g(su(s))ds

1 ! a—1
" BET T (a) L ty g(su(s))ds

Jtl [_(tz _ S)oc—l . (tl _ S)(x—l

() T ()

] g(s,u(s))ds

t, _ _ a—1
+ J g unas

N9
Ot l_tot 1

.35"‘ BET-T (@) Jo
@l

g(s,u(s))ds

‘szx 1 g (s,u(s))ds

t
1
5“1 r( )L g(sulsds

tal

T ng(s,ws))ds

ﬁftx—l
M « M (tg_l B t?_l) ty
< m(tz - tl) + W



( e 1
ﬁgoc—l

(7)) (1-1,)

-T'(x)

Mt (- 1)
pEt =T (a)

M (8, — 1)
e —T ()

(36)

Therefore, the operator T is equicontinuous, and by Arzela-
Ascoli theorem, T is a compact operator. Now, the Schauder
fixed-point theorem [23] shows that the operator T has a
fixed-point theorem and so FBVP (32)-(33) has a solution.
Finally, we will prove that FBVP (4)-(5) has a positive
solution. Suppose that u,(¢) is a solution of FBVP (32)-(33).
Since the function f is nondecreasing in u, we have

flu®) <gtu )< ftr®),
ul(t)a

D*X(t) > f(t,v(t) -

€[0,1]. (37)
Assuming X (t) = »(t) -
g(t,u, (1) =0,

(38)
X (0)=X"(0) = DX (1) = BX (§)
By Lemma 7, X(¢) > 0; that is, u,(t) < »(t) fort € [0,1].
Similarly, u(t) < u,(¢) for t € [0, 1]. Therefore u,(t) is a

positive solution of FBVP (4)-(5). The proof is complete. [J

Example 11. Consider the following fractional boundary
value problem:
-DyPu(t) = f (tu ),

u©) =u' (0)=0, Diu(1) =

0<t<l,

Pu (@),

(39)

where
F(tu®) —sm< >+ N (40)
For 0 < k < 1, we have Vk < 1. Therefore

K2 (8 u () = K (sin L va)
2
(41)
< sin g” Viu = f(t,ku(t).

Now, by Theorem 10, we obtain that the FBVP (39) has a
positive solution.
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