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ABSTRACT

ON SOME APPLICATIONS OF LOCAL FRACTIONAL CALCULUS

OZYUREK, Metin
M.Sc., Department of Mathematics and Computer Science
Supervisor:Assist. Prof. Dr. Dumitru BALEANU
July 2015, 67 pages

In this thesis, some basic definitions and theorems for the local fractional calculus
are given. Based on these definitions and theorems, the applications are presented
within the local fractional calculus. It is shown that the applications of the local
fractional calculus give very good results on the solution of physical and

mathematical equations.

Keywords:Local Fractional Calculus, Local Fractional Derivative, Local Fractional
Integral, Local Fractional Differential Equations, Wave Equation, Local Fractional

Sumudu Transform.
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YEREL KESIRLI ANALIZIN UYGULAMALARI UZERINE

OZYUREK, Metin
Yiksek Lisans, Matematik ve Bilgisayar Bolimi
Tez Yoneticisi: Yrd.Dog. Dr. Dumitru BALEANU
Temmuz 2015, 67 sayfa

Bu tezde yerel kesirli analiz hakkinda bazi temel tanimlar ve teoremler verilmistir.
Bu tanim ve teoremlerden yola ¢ikilarak yerel kesirli analiz ile ilgili uygulamalar
sunulmustur. Yerel fiziksel ve matematiksel denklemlerin ¢oziimiinde kesirli analiz

uygulamalar: oldukga iyi sonuglar vermistir.

Anahtar Kelimeler: Yerel Kesirli Analiz, Yerel Kesirli Turev, Yerel Kesirli
Integral, Yerel Kesirli Diferansiyel Denklemler, Dalga Denklemleri, Yerel Kesirli

Sumudu Dontistimii.
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CHAPTER 1

INTRODUCTION

1.1. Background

In the last years, the local fractional calculus has taken a lot of attention andit
has been investigated intensivelyby many researchers [1]. The local fractional
calculus (LFC) is defined on fractals [2] which were suggested by Mandelbrot [3].
The local fractional calculus has been applied to the real world problems [4,17, 58,
68, 69].

The classical calculus cannot properly deal with non-differentiable functions.
However, the local fractional calculus is one of the best candidates to solve this
problem and it has been applied to model several practical problems in engineering

[5].

Below, we give examples of studies that have been done in the recent years.
The Maxwell theory on Cantor sets was studied in [6]; the Heisenberg uncertainty
principle within local fractional Fourier Series was discussed in [7]. In [8], it was
developed a new Neumann series method for solving a family of local fractional
Fredholm and Volterra integral operation; Through the studying in [9], the mappings
for some special functions on Cantor sets were investigated. In [10], Helmhotz and
the diffusion equations involving the local fractional derivative operations are
presented on Cantor sets. In [11], the discrete wavelet transform via local fractional
operations was structured and applied to process the signals on Cantor sets.The local
fractional variational iteration method was given to handle the damped wave
equation and dissipative wave equation in fractal strings [12]. A new model of the



scale conservation equation in the mathematical theory of vehicular traffic flow is
suggested in [13]. A comparison is applied between the fractional iteration and
decomposition methods which can be applied to the wave equation on Cantor sets
[14]. In [15], the applications of local fractional variational iteration method are
given to handle the local fractional Laplace equations. The local fractional
variational iteration method is used [16] to solve the subdiffusion and wave
equations. In [18], by utilizing the fractional complex transform method, the
transport equations in fractal porous media are investigated. Also, a new wavelet

transform is introduced within the framework of the local fractional calculus [19].

The thesis consist of five chapters. A review of the LFC and its applications
is presented. In the first chapter, the theorems for local fractional derivative are
presented.

Chapter two deals with the properties and theorems of local fractional integral
and local fractional Taylor’s theorem.

In Chapter three, the local fractional differential equation, the local fractional
Fourier series and the Laplace transform are briefly mentioned.

In Chapters four and five, some applications of the local fractional calculus

are given.



1.2. Importance of Local Fractional Calculus

Fractional calculus is a branch of mathematics dealing with arbitrary order of
derivatives and integrals [21,32,34,36,70]. Many physical systems were modeled
more accurately with this type of calculus. So, the fractional calculus has played a
significant role in different fields such as mechanics [41], physics [45,51,56],
nanotechnology [54], bioengineering [53], signal processing [61,63], economics
[60], control theory [65], viscoelastic [57] and other fields of engineering [59].

The local fractional derivatives and integrals,defined on fractals [3,67], hold
an important place in the fractional dynamic theory.

We recall that there are many definitions of local fractional derivatives and
integrals. Firstly, we focus on the notations suggested by Kolwankar and Gangal.
They suggested the formula [17], namely

o _d%g(x) L dR09(x) - 9(%))
. Dra(x)= - X|_XO_.XILnxl X, )" ,0<a<l. (1.1)

Here, « is precisely the Holder exponent offunction defined in Cantor’s set
[49].

Kolwankar and Gangal introduced the local fractional integral as [24, 69]

M-1 d 1
(a) T dx; (X) P — _
NK g(x)_'\!IIan;g(Xi)—d(xi+1—xi) i=01..M-1, (1.2)

with1,, ., being the unit function defined on [x;, ., |-



Jumarie arrived at [25,26], using the generalization of Taylor series,

Dag(x) d g(X) | : Aa[g(x) g(X )] (13)

where A“g(x) = Z(—l)t [fj g(x+(a-t)h), O<a<l.
t=0
Jumarie suggested the fractional integral as follows [25,26]

J@g(x) = j g(t)(dt)* =« j (x-t)“g(t)dt, O<a<l. (1.4)

This notation of the fractional derivative and integral deals with the non-

differentiable functions. This calculus is called the modified fractional calculus.

Parvate and Gangal introduced the local fractional derivative as [27, 28]

D= 2900 | gy 90)-000)

- x»xos S(X)=SZ(X,) (1.5)

where G — lim is the notion of the limit of g(x) through the points of fractal set G .

X=X

Parvate and Gangal introduced a local fractional integral [27, 28], namely
b M-1
J900= [ 900dgx= D g(x; (SE (X, ) - SE(x; ), 0<a< 1. (L6)
a =0
Adda and Cresson proposed a local fractional derivative [29,30] as
d“f(x)‘
dx*”

 DEf(x)= = 1im D _[o( f - f(x,))(X)], (@7

with o =+, where DS‘_G is the Riemann-Liouville derivative operator.



Gao, Yang and Kang went through these definitions and obtained the notation

of the local fractional derivative [31,33,55,58] as given below

Dsg(x):%‘_ — lim A“[g(x)_g(xo)]’ (1.8)

dx* X% (X=%,)"
such that A*[g( X ) — g(%, )] = T(1+a )A[g(x)—a( X, )].

Gao, Yang and Kang introduced a local fractional integral [27,31,37,58,62]

as

Ilmfg(ti AL ), 0<a<l,

1@ g(x)=
9= oy im2

jg()( =

r(1

where At =t —t and At=maX{Atl,At2,...,Ati} for 0<a</ and
i=0,123..M -1, t,=a<t, <t, <..<t, =bisapartition of [a,b].

If a=b,then [1¥g(X)=0 andif a<b then  1”g(x)=-,17g(X).
1.3. Local Fractional Derivative

Suppose that g(x)eC,[ab] for O<a</, 6>0 and

e (%, —8,% + &) the limit [49],

Drg(x) = lim ZEFOLI) =006 )
= (X=% )"

is finite, then g(X)has the local fractional derivative of order a at X = X,

(1.9)

xymwml 9 (x,).



1.3.1. Left - Right Local Fractional Derivatives

If gx)eC,[ab]for 0<a<l, §>0 and xe(X,—5,%) the limit
[38]

Dt~ lim F(1+a()£g(x:))“g(xo ) 110)

is finite, then g(X)has the left local fractional derivative of order a at X = X,

Da (X)—d g(X) ‘ (a)( )

X=

If g(x)eC,[a,b]for 0<a <7, 5>0 and X &(X,,%, + ) the limit

Drg(0= tim L8090 -0067)) ™
X—%* (X X0 )a

is finite then g(X)has the right local fractional derivative of order o at X = X,,

Di00=S0 | =9k,

Proposition 1.1. [49]

If _Dyg(x)and .Djg(x) existand _Dyg(x)=_ .DJg(x),then
L Pca(x) = .Dig(x)=, DI a(x). (1.12)

6



1.3.2. The Increment of a Function [49]

The increment of g(X) is
Ag(x) =g (X)(AX)" + 2(AX)", (L.13)

where AXis increment of X and y —0 as AX >0for 0<a <.

1.3.3. The Local Fractional Differential [17]

The local fractional differential is

d?g=g“(x)(dx)* O<ac<l.

If there exist any point X, € (a,b) such that

d”g(x) |
X% L

e =g9'“(%,), (1.14)
X0

D, (a,b)is called the o - local fractional derivative set.

Proposition 1.2. [30]
If geD,(a,b)then geC_(a,b).

Proof. [30]
From (1.13) and (1.14), we obtain

A g(x) =g" (x)(Ax) “+ 2 (A%)“,
9(x)=9(%)=g"" (X)(x=%)" +x(x=%)
[ 9(3)]=| 9200 (x =3 )" + 2(x =% )" +9 (%)

a
1

Take the limit of the both sides X — X, we get lim |g( X)| = |g( X, )|
X=X



Proposition 1.3. [49]

Suppose thatg € D_(@a,b),then g(x) is local fractional differentiable on

(a.b).

Suppose that h(x) ,t(x) e D,(a,b)then the differentiation rules below
are valid [38-39]

d* (h(0) +1(x)) _ d“(h(x)) d“(¢(x))

_ , (1.15)
dx” dx“ dx“
4" (MOH0) _y 0 47 (000) o d°(100) (19
dx“ dx* dx* |
d“(T(X)) t(X)W+h(X)W
(x)"_ o X ift(x)=0, (L17)
dx“ t°(x)
d*(kh(x)) _ k d”(h(x)) , k is a constant. (1.18)
dx“ dx“”

If g(x)=(hot)(x), then

Q) _ e x))”. (119)
dx”

Some of the above results were discussed in [38,40]. We have

© thi
1) E(x*)=)Y ————— where0<a</,
) E) ;F(lﬂa)

da( Xia ) _ F(l'i‘ |C¥) X(i_l)a

2 dx“ I(1+(i-1)a)




d"‘(Ea(mx“ ))

3) =mE, (X“) , where m is a constant,
dx®
4) d“(E,(x")) _ E (x*),
dx“
5) M =CO0S,, X,
dx”
6) M = _Sinaxa .
dx“

1.3.4. The 2« -Local Fractional Derivative and Higher-Order Derivative [49]

The 2« -local fractional derivative of g(X) for 0<a <1

D,2[ g(x)]=(D,".D," )g(x) = da{

: dag<x)}=g<2“>(x). (1.20)
X

dx
Similarly, we have K -local fractional derivative

D, “[9(x)]=(D,*.D,”.D,”..D," )g(x)
kti‘ﬁ1es

= g"“(x). (1.21)

1.3.5. Theorems for Local Fractional Derivatives

Theorem 1.4. (Local fractional Rolle’s theorem )[50]

Suppose that g € C, [a,b]and g € D,(a,b). If g(a)=g(b), then there
exists a point t € (a,b) with
g‘*)(t)=0, (1.22)

where o € (0,1].



Proof. [50]
Case 1:1fg(x)=0in [a,b], then forall xe(a,b) we have g‘“’(x)=0.

Case 2 : Ifg(x)=#0in [a,b], because g( X ) is continuous there are points at

which g(x) gets its maximum and minimum values, denoted by M and m

respectively.

Since g(x) =0, at least one of the values M and m is not zero.
Suppose, for instance, m =0 and that g(t)=m. For this case

g(t+Ax)=>g(t).

If AX >0, then we arrive at the relations

I'(1+a)[g(t+4ax)—g(t)]

>0,
(Ax)”
and
lim I'(l+a)[g(t+4ax)—g(t)] 0.
(4)>0° (Ax)”
Similarly, if AX <0, then we have
I(1+a) g(t+4ax)-g(t)] <0
(Ax)° o
and
- I(1+a)[ g(t+ax)-g(t)] <
(890 (Ax)”

Since g(x)e D,(a,b),then _Dig(x)= .DJg(x).
It happen only if the right and left derivatives are both equal to zero.

g‘“)(t) =0as required. Similarly, we take M =0 we arrive at the formula (1.22).

10



Theorem 1.5. [17] (Local Fractional Mean Value Theorem)

Suppose that geC,[abland geD,(ab), then [17] there exists
¢ <(a,b) with

B _g"“(p)(b-a)’
g(b)-g(a)= Fiia) (1.23)

where € (0,1].

Proof. [17]

We define the G( X ) function

(x-a)"
6(x)=r(+anfo-g@]-loB)-s@] = 5t a
with ae(O,l].
We have G(a)=0 and G(b)=0.
Appliying the Theorem 1.4 to the function G(X),
(1 b)-

G(a) (¢)=g(a)(§0)_ ( +a)[g( ) g(a)]=o’ a<§0<b’ (125)

(b—a)’
r'(1+a)| g(b)-g9(a)]
o-ay

9 (p)=

then we get (1.23).

Theorem 1.6. [50] (Cauchy’s Generalized Mean Value Theorem)

Suppose that h(x),t(x)eC, [a,b] and h(x),t(x)eD_(ab).1ft(b)=t(a)

then there exists a point me(a,b)

11



h(b)-h(a) h(m)
t(b)-t(a) t“)(m)’

(1.26)

Proof. [50]
We define

G(x)=7(1+a)[h(x)-h(a)]- F(“iigh_% h(a)][t(x)—h(a)].

(1.27)
Then, we have G(a)=0 and G(b)=0.

Appliying the Theorem 1.4 to the function G( X )in (1.27)

we have the relation G'“’(m)=0,a<m<b,

(@) M) — (@) _[h(b)—h(a)] (@) Y —
G*“(m)=h**"(m) [t(b)—t(a)]t (m)=0.

Thus, we arrive at the formula (1.26).

Theorem 1.7. (Local Fractional L’Hospital’s Rule) [38]

Suppose that g(X),h(X)eCa[a,b] and g(x),h(x)eD,(a,b).

limg(x)=0 and limh(x)=0, furthermore K denotes either a real number or
X=Xy X—>Xg

one of the symbols —o0,+00.

(a)
] X ] X
If lim g—()z K , then it is also true that IImM= K.

x>% h{)(x) x>x% h(X)

12



CHAPTER 2

2.1. The Local Fractional Integral

Letg(x)eC, [a,b] , the local fractional integral of the function g( X )is

given by [42]

NG00 = Ig( )Y =g i 3 a(t, ALY

(2.1)
with 0 < @ 1At =t,,, —t, and At=max{At, At,,...At,,..} ,

where [t t,,, | k=012.,M -land ty=a<t, <t,<..<t, =b,is

partition of the interval [a,b].

We assume that _1_“’g(x)=0 and _1,'“g(x)=—_1g(x) if

a<b.

2.1.1. Properties of the Local Fractional Integral

Property 2.1. [17]

Suppose that g( x),h(x) e C,[a,b], then we have

o 90)+h(x)]= 1, 9(x) + ,1,h(x). (22)

Proof. [17]

L 00)+h(x)] = ——— I[g(t)+h(t)](dt)a

r(1

13



-t jg( )(dt ) + jh(t)(dt)“

=a |b(“)9(><)+ a |b(“)h(x)-

The proof of this property is completed.

Property 2.2. [49]

Suppose that g(x)eC,[a,b] and Kiis a constant, then we have

AL [Kg()]= K, 1L, [a(x)] - (2.3)

Proof. [49]
We take g(x)eC, [a,b] and K is a constant, then

M Ka(x)]= — j [Kg(t)](dt)"

ng[g(t)](dt)%Kalb(“)[g(x)].

Thus, the proof of the property was established.

Property 2.3. [50]

Suppose that g(x)=cC, then

a'b - :
INl+a)

Proof. [50]
Let we take g(X)=C in (2.1),

14



()~ _ a
loC= F(l+a)j( = F(l )

_¢(b-a)”
_F(1+a) '

=~ (b=a)

Thus, we proved the statement.

Property 2.4. [17]

If g(x)eC,[a,b] and g(x)=0, then we have

1.(99(x)=0 with b>a.

Proof. [17]
Let g(x)eC,[a,b] and g(x)=0, then we have
9(% )20, k=012,..M—1.

We take the partition of [a,b] is [xk,xk+1] for k=0,1,2,...

Xp=a<X <X, <..<Xy_, <Xy =b.

Because (AX. )* =0, we have

1 ) M-1
() — a
alb g(x)_]"(1+a)AI>!Lno§g(Xk)(Axk) 20.

Hence, the proof of the property is finished.

Property 2.5. [50]

If h(x),g(x)eCa[a,b] and h(Xx)= g(x), then we have

9N(x) > 1,9g(x) with b>a.

(2.4)

(2.5)

15



Proof. [50]
Let h(x)=g(x), then we have the relation
h(x)—g(x)=0 and h(x)-g(x)eC,[ab].
We take into account the Property 2.4 and the Property 2.1 , we get
o (h(x) =9(x)) 20,
o ()= 1, g(%)20,
JR(X)2 1,9 g(x).

Thus, the result is achieved.

Property 2.6. [49]

Let g(X)eCa[a,b] and let M and m, are the maximum and minimum

values of g(x) in [a,b].Then, we have

(b-a)® L (g(x)=m (b—a)*

g ﬁ g ]_'( ) with b>a. (26)

Proof. [49]
Let g(x)eC,[a,b]and we know m, < g(x)<M,.
In this inequality, let's integrate all sides for b>a. Moreover, we get
inequality below by using the Property 2.3,
o Omy < 1L 9(x) < 1M,

mm)fm (dt)" < 1, g(x) S - IM (dt)",
m M a|(a)f(x) M M_
‘I'(l+a) ‘I'(l+a)

The proof of this property is finished.

16



Property 2.7. [17]

If g( X)eCa[a,b], then we get

A 9(x)| < L1, g(x), 7

with b> a.

Proof. [17]
We know that —|g(x)|< g(x)<|g(x)).

Taking the integration for b > a and taking into account the Property 2.5,we

conclude

=1 g0 < L 1, 9(x) < 1, g (x).

Then, we obtain
L 9(x) < 1, g(x)].

So, we finished the proof.

Property 2.8. [50]

If g(X)eCa[a,b] and a< Kk <D, then we have

L g(x) =, 1L 9(x) +  1L,'g(x). (2.8)

Proof. [50]
Let g(x)eC, [a,b] and a<k <bthen g(x) is the local fractional

integral on Ca[a,b],Ca [a,k] and Ca[k,b].

Let the partition of [a,b] is [Xj , X ] where

j+1
X =a<X, <X, <...<Xy_, <Xy =band j=012..M-1.
Because to the definition of integration in (2.1),

17



alb(a)g(x)_; ZQ(X )(AX; ).

(]_+ )At -0
Let the partition of [a,k] be [X .+1] where

X,=a<X <X <..<X=kandi=0,12.t-1.

Because to the definition of integration in (2.1), we have

g(x) = 1im 3" (% )(A%, )"

1+ o) s>

Let the partition of [k ,b] be [X ] where

i+1

X, =K< X, <.<Xy,<Xy=bandi=t,..M-1

Due to (2.1), we conclude

0900 = lm 3 g(6)(Ax )

I(1+ a)a—0

Hence, it implies that

ZQ(X )(AX; )

ZQ(X (A% ) =

F(l+a)Af—>0 F(l+0¢)At -0

]“(1+0¢)At -0

Thus, we obtain (2.8).

2.1.2. Theorems for Local Fractional Integral

ZQ(X (A% ).

Theorem 2.9. (The Mean Value Theorem for Local Fractional Integrals) [50]

1fg(x)eC,[a,b ], then there exist a point 7in (@,b)such that

(b-a)”

(a) =
1900 =90n)

(2.9)
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Proof. [50]

Let g(x)eC, [a,b] and letM  and m, are the maximum and minimum
values of g(x) in [a,b], dueto (2.6)

(b-a)®
‘I'l+a) °

and therefore

Ir'l+a) |,
g Swalb( )g(X)S Mg, UE(a,b).

a(7)

(b—a)*

|(0€) > -
o 9x)Zm, I'(l+«a)

There exists a point 77 in (&,b) providing the above inequality.

and thus, we obtain (2.9).

Theorem 2.10. [17]

Suppose that g(x)eC, [a,b] , then there is a function,

[(x)=,1,9(x).

The function has its derivative with respect to (dx )“, namely,

d“TI(x)

v =g(x), a<x<b. (2.10)

Proof. [17]

Let X € [a,b] . There exists X+ AX € [a,b] such that

H(X)= a|x+Ax(a)g(X)’ (211)
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A“TI(x)=I"(1+a ) [ TT(x+ Ax)-TI(x)]

=I(1+a) jg(t)(dt)“—jg(t)(dt)d}

[ x+Ax

=r(l+a)| | g(t)(dt)“}

X

=I'(1+a),l ., “g(x).

Applying the Theorem 2.9, there exists a point 77, such that

X Ix+Ax(a) g( X )=g(77)

(Ax)"
I'l+a)

a(n)=

r'(l+a) 1 .0 g(x)

(ax)”

From (2.12), we obtain

g(7)="2

Taking the limit

lim

A“TI(x)

“TI(x)
(ax)"
A“TI(x)

as AX— 0 it implies that

(Ax)°

=9(x).

Ax—0 ( Ax)“

Here, there exists X=a and AX >0 such that

d“77(x)
dx“

Thus, there exists

d“I7(x)
dx“

= g(a").

x=a*

X=Db and AXx <0 such that

= a(b").

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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Combing (2.15) and (2.16), the proof is completed.

Theorem 2.11. [17]

If h(x)eC, [a,b] , then there exists /7 € Ca[a,b] such that

[1(x)=_1h(x). (2.17)

Proof. [17]
Taking the Theorem 2.10 into account we deduce the desired result.

Theorem 2.12. (The Local Fractional Integration is Anti-Differentiation [49])

If g(x)= h(“)(x)eCa[m,n] , then we have

21 9(x)=h(n)—h(m). (2.18)

Proof . [49]
LetTT(x)=,1,'’g(x)and g(x)=h“)(x)eC,[m,n].
Using the Theorem 2.10 to /7 (x)— h( x),we get

" (11(x)=n(x)) _a"(7(x)) _a"(n(x))

dx N dx”* dx

=g(x)-g(x)=0.

Thus, we conclude
7(x)-h(x)=c,

II(n)=h(n)+c

H(m)=h(m)+c}”(”)—17(m)=h(n)—h(m),

1g(x) = I7(n) = 17(m)=h(n)—h(m).
Thus, the proof is finished.
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Theorem 2.13. [17]

Suppose that h(X)eCl[a,b],(goh)(s)eCa[h(a),h(b)], then we

have

h(a) Ih(b)(a)g(x)= 1,¢9(goh )(S)[h\(s)]a- (2.19)

Proof. [17]

Let G(x)=_1*’g(x), then we arrive at the formula

h(a) Ih(b)(a)g(x)zG( h(b))_G( h(a))- (2.20)
By using the Theorem 2.11 in (2.20) , we have

G(h(b))-G(h(a))=,1,’[ D*(Goh)](s)

(2.21)
= 119G (h(s ) h(s)]" = .1, (goh)(s)[ h(s) ]

From (2.20) and (2.21), the proof of this theorem is provided.

Theorem 2.14. (Local Fractional Integration by Parts) [49]

Suppose that g(x),m(x)e D, (a,b) and g'*’(x),m*)(x)eC, [a,b],

then, we have [49]

S gOmO)=[gOMO] - 1 g Omt).  @22)
Proof. [49]

We know that,
d*[g(t)m(t)] _
dt”

therefore,

g‘(t)m(t)+ g(t)m' (1), (2.23)
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dt”

From (2.23) and (2.24), we obtain
J{gt)m(t)+ g(t)m ()} =[gt)m(t)].,
L {gmmn)}+ 1, {g(tym ()} =[g(t)m(t)]..

Then, we conclude that

LO{a)m )} =[a(t)m(t)]) - 1, {g ) (t)m(t)}.

So, we get the desired result.

|(a){da[g(t)m(t)]} [ (t)m(t)] (2.24)

Proposition 2.15. [43]

Suppose that for 0< <1, g™ (x)eC_(a,b), thus

Mo (ma)
(,1™90)) ™ =g(x), (2.25)
where
o L (x)— L L g(x) and g™)(x)=D..D, " g(x) .
mtlmes mtimes
Proof. [43]

Taking the Theorem 2.10 into account we deduce the result.

Proposition 2.16. [68]

Suppose that h"(x),h™H*)(x)eC_(a,b) for 0<a <1, then we

have

| ) [hna) (Y = | @) [Ramdad e )] = e i (X=%)" |
GO (x) ] = 1 [ (x)] (%) e D)
where (2.26)
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DOR(x) = 1@ 1@ h(x) and

e
n+1times

h((n+l)a)(x) — Dx(a)._.DX(a) h(x).
%/—/

n+1times

Proof. [68]
Using the Theorem 1.18, we report that,

1 X
I (n+1)) h((n+l)a) X — I (na) h((n+l)a) X dt a
R L COI R l:—F(1+a);[ (X )}

— XO|X(na)[h(na)(x)_h(na)(xo)] (2.27)

= LR (x) = 1R (),

Considering the formula in (2.27), we have

. |X(rwr)h(nor)(x0 )= h(”“)(xo )X0 |X(na)1

=h(“ﬂ”(xo)xoIx“”'““’[—1 <x—x0)“}

INl+a)
_ ) (2| L (1+a) 1 .\
=00, [F(1+2a)F(1+a)(X %) }

= h")(x, )—f_x_ %)
(1+na)

Applying this formula in (2.27), we obtain (2.26).

Theorem 2.17. [68] (Generalized Mean Value Theorem for Local Fractional
Integrals)

Suppose that g(x)eC, [a,b],g(“)(x) eC_(a,b), we have
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g(x)—g(x )= g(‘”(n)( “X%)" acx <p<x<b. (2.28)
I'(l+a)

Proof. [68]
Taking n=1 in (2.26), the proof of this theorem is completed.

2.2. Local Fractional Taylor’s Theorem
Theorem 2.18. [43]

Suppose that g"*"*)(x)eC_(a,b) for t=0,1,..,n and 0<x £1,
then we have,

g(ta)(xo) ta g'™v)(p) o \(ml)e
9(x)= Zf(l )T N ey TR @)

with a< x, <7< x<b,vxe(ab), where g*P(x)=D*...D ) g(x).
%/—/

t+1times

Proof. [43]
From the Proposition 2.16, we arrive at this formula in (2.26)

Ix(ta)[g(ta)(x)] I((t+1)a)[g(t+l)a)(x)] g(ta)( )

(X a)ta

ITta+1)

That is,

Z Ix(m)[g(ta)(x)]_a|X((t+l)a)[g((t+l)a)(x)]=gg(tzx)( );)Et a+)1)

10

~-

g(x)= 1,4 [gm(x)] (2.30)

Applying the theorem 2.9 into (2.30).
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1 X
I(na) ((n+l)a) X dt a
Evst LKA CCY

L g () (x =) ]
- I(1+a) (2.31)
(na) a
(n+1)a) e (x=a)
=g (n) T(+a)
g () (x—a) "™
T I(1+(n+l)a)

a|X((n+l)a)|:g((n+1)a)(x):|=

with a<n < x,Vxe [a,b] . Thus, we finish the proof.
Theorem 2.19. [49]

Suppose that g“*"*)(x)eC_(a,b) for t=0,1,...,n and 0< x £1,
then

(ter)
g(x)= 219(1(:0)) (X=% ) + Ry, (X=%). (2:32)

with a< X, <7< x<b,Vxe(a,b),

such that g")(x)=D,*?..D, () g(x) andR,(x—%)=0((x=x%)*).
-

t+1times

Proof. [49]

Applying the Proposition 2.16, we have

R, (X=X _| g™ (m)(x=x, )™= | | g'™V*)(n) (x—x )"
(x=x)" | |[F(1+(n+1)a)(x=%)"| |[F(1+(n+1)a) %
And that is
_ (n+1)a)
||m M: g (77) (X—Xo)a =O
=% (X=X, )" | *»%|[(1+(n+1)a)
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Hence, we obtain the desired result.

Theorem 2.20. [43]
Suppose that h™H*)(x)eC_(a,b)for m=0,1,..,n and 0<x <1,

n (ma) ((n+l)e)
h(X)= Z h (0) Xma + h (QX) X(n+2|.)0:
—~I(l+ma) I'1+ (n+1a)

(2.33)

with 0<@<1,Vxe(a,b) where N(™*)(x)=D ). .D“'h(x).
%/—/

m+1times

Proof. [43]
Applying the Theorem 2.18 , for X, =0 and a < X, <77 < X< b, we obtain

h(X)=i h(ma)(o) szx+ h((n+1)a)(77) X(n+1)a.
~TI'(1+ka) Ir'l+(n+1a)

(2.34)

If 7 =6X in (2.34), then we have

W™D (n) e DNOX) e
Ir'l+(n+1a) Ir'l+(n+1a)
with 0< @< 1.

Thus, we obtain (2.33).

Theorem 2.21. [31] (Taylor’s Series)

Suppose that g™"*)(x)eC_(a,b)for m=0,1,...n and 0< x <1,
g“““)(xo) e
Z X 235

with a< x, <x<b,V¥xe(a,b) where g{™*(x)=D*..D “ g(x).
%/—/

m+1times

Proof. [31]

According to the local fractional Taylor theorem ,we have
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(ma) ((n+l)a)
Hx)= "ngf(x;)(x_x‘) )" r(g1+(nf/11))a)(x_x° )(M)a

Thus, we get (2.35).

Theorem 2.22. [31] (Mc-Laurin’s Series)

Suppose that g™"*)(x)eC_(a,b)for m=0,1,...,n,... and 0<x <1

then we have
o (me) 0
900= 2 e 9 " 10) yme (2.36)

with a< X, <x<b,¥xe(a,b) where gUmba)(x)= DX(“)...DX("‘) g(x).
%/—/

m+1times

Proof. [31]
In the Theorem 2.21, we take X, =0, so the proof is completed.

An example for Mc-Laurin’s series is the Mittag-Leffler function [51],

namely

Xak
E (x* _ :
AX)= kz(;F(1+ka) (37)

2.3. Local Fractional Indefinite Integral

2.3.1. Local Fractional Anti-Differentiation

Let g(x) and h(x)are two local fractional continuous functions defined on

(a,b). 1f h')(x)=g(x) for each X in (a,b), then h(x)is called the local

fractional anti-derivative of g(x) on (a,b).
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Theorem 2.23. [17]

If h,(x) and h,(x) are any local fractional anti-derivative of g(X) on

(a,b) then there is aconstant C,h(x)= h,(x)+ C.

Proof. [17]
We take t( x )= h( x)—h,(x), then we have

t(x) = h(X) = () = g(x) - 9(x) =0,
for Vxe(a,b).

Thus, there is a constant C for all X in (a,b ), such that

C =t(x)=h,(x)=hy(x),

Hence, we conclude that h,(x)=h,(x)+C.

2.3.2. Local Fractional Indefinite Integral

If h(X) is an local fractional anti-derivative of g(X)on (@,b),then the set

{h(x)+C : Cisconstant}

is called a one-parameter family of local fractional anti-derivative of g( X ). We call

this one-parameter family of local fractional anti-derivatives the local fractional

indefinite integral of g(X) on (a,b) and write it [17],

ﬁjg(x)(dx):h(x)w. (2.38)
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2.3.3. Local Fractional Indefinite Integral of Elementary Functions

For a constant C ,these formulas are valid [17];

1
INl+a)

1

JE.(x)(dx) =E,(x*)+C,

(14 ka )Xtk
= +

J‘Xka( dx )*

INl+a) I'l+(k+1a)

—Isinax“(dx)“ =—cos, X* +C,
INl+a)

;J‘cosa X*(dx)* =sin x“ +C.
I'l+a)

1)

)

©)

(4)
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CHAPTER 3

3.1. The Local Fractional Differential Equations

Suppose that m( x) and n( X ) are defined on some interval (a,b), then the

form of the following equation [17],

EIK) 4 m(x)g(x)=n(x),0<a <1 @)

is called « local fractional differential equation of g(X).

Theorem 3.1. [17]

A model for Mittag-Leffler growth is the local fractional ordinary differential
equation,

a

d“y
dx“

+ty=0,t>0,y(0)=y,. (3.2)

The solution of this local fractional differential equation is given,

y(x) = YoE, (-tx"). (33)

Proof. [17]

In (3.2) we take the integration on both sides with respect to X,

d“y
= —ty,
dx“ y
a7y _ —tdx*,
y
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1 dy 1 3 a
r(1+0¢)I _F(1+a)j tax)",

In, y=-tx" +c,
y(x)=E,(-tx*+c),
y(x)=C.E_(—-tx*).
Let Y, = Y(0)=C, then we arrive at (3.3).
Similarly, a model for Mittag-Leffler growth is the local fractional differential

equation
d“y
g T=tyt>0,y(0)=y,. (3.4)
X
Similarly, the solution of this local fractional differential equation is given by

y(X)= Yo, (X7).

Theorem 3.2. [17]

Suppose that t >0 and m( x) is local fractional continuous on (a,b), then
the local fractional equation

d“y

dx“
has the one-parameter of solutions, namely

+ty=m(x), (3.5)

y(x)=E,_(~tx" )[ jm(x)E (tx“ )(dx)“+c} (3.6)

I(1+
Proof. [17]

We multiply the given local fractional differential equation in (3.5) by

E_ (tX” )which is called the integration factor.
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Z+tEa(tx“)y=m(x)Ea(tx“). (3.7)

[E (tx* )y:|

Ea(tx”‘)d

dll
dx”

By using the notation of the indefinite integral, we arrive at

Ea(tx"‘)y—r(l—jm(x)E (tx* )(dx)* +c. (3.8)

From (3.8), we obtain

y(x)=Ea(—tx“)[ Im(x)E (tx” )(dx)“+c}

I(1+

The proof of theorem is completed.

If m(x) and n(x) are defined on (a,b), then the equation

d*“g(x) g( )
dXZa

is called 2« local fractional differential equation in the variable g( x), [17].

+m(x)————=+n(x)g(x)=r(x),0<a <1, (3.9)

Theorem 3.3. [17]

Suppose that m and t are constant coefficients, then the local fractional
equation,
d* 9(x) , ,d79(x)
x> dx”
has two-parameter family of solutions [17]

(m+\/m2—4t X“J+ LE (—m+\/m2—4t .
2 “ 2

X J,m2—4t20,

+tg(x)=0 (3.10)

g(x)=KE,

with two constants K and L. (3.11)
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Proof. See [17] .
Theorem 3.4. [17]

The local fractional equation which has two constant coefficients [17]
d**g(x d“g(x
gz(a ) i m g(a )
dx dx
In (3.12), m and t are coefficients.

[m+i”’\/m2 — 4t XaJ
2

+1tg(x)=0, (3.12)

g(x)=KE,

+ LE,

—Mm+i%\Jm* —4t o
2 " (3.13)
m® -4t <0,

with two constants K and L.

Proof. [17]

Suppose that E_(kx”) is a solution of 2« local fractional ordinary
differential equation, namely

k*+mk+t=0. (3.14)

From (3.14) and m? — 4t <0, we have

t
k, = and k, = , respectively.

Due to the fact that for any constant C, CE_(kx“ ) is a solution of the 2«
local fractional ordinary differential equation, we show that,

g(x)=KE, (kX" )+ LE,(k,x*) then

m—i“ym® -4t —m+i“ydm° -4t
X“ |+ LE, > X“ |,

g(x)=KEa[ ;

with two constants K and L.
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3.2. The Total Local Fractional Differentials
3.2.1. Local Fractional Partial Derivative

Let a non-differentiable function g( X,y ) be defined in the domain D of the
Xy —plane. If y is fixed and X as variable are thought of, local fractional
derivative of g( X,y )with respect to X is called the local fractional derivative with

respect to x , which is denoted as [17]

0"904Y) |_ jim A’[9(x.y)=9(%.Y)]
ox“ X:XO X=X (X=%,)"

where A“[ g(X,¥)— 9(X%.Y) ]2 I (1+a )AL g(x,y)— (X Y) ]

, (3.15)

Similarly, the local fractional partial derivative of g( X,y )with respect to y

is called the local fractional derivative with respect to y, which is denoted by as [17],

0"904Y) |_ jiy A*[9(x.y)=9(x.¥, )]
Oy yey¥2% (Y=%)

where A“[ g(X,¥)—9(X,Y,)]= I(1+a)Al g(x,y)—9(x.Y,)]

: (3.16)

3.2.2. Local Fractional Partial Derivative of Higher-Order [68]

Let h( X,y ) has partial derivatives at each points ( X,y ) in the domain D
of the Xy — plane, then
o0“h(x,y) o 0 h(x,y)’
ox“ oy“

are themselves functions of X and Y, which may also have local fractional partial

derivatives.
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The 2 local fractional derivatives are denoted as given below,

0 0°h(x,y) 0°*h(X,y) , 2
= = 2 X! il

Ox” Ox* 1) 4ilo) & hx( y)
0% 0“h(Xx, 8%*h(x, «

_ (a y)= a( Z)zhjz(x’y)1
oy oy oy“oy
0% 8°h(x, 0% g(x, “

i (ay)= ga( ay)=hzx(x,y),
OX oy ox“oy y
0% 9°h(x, 8%*h( x, a

_ (ay)z a( ay)zhi (X,y).
oy 0 X oy “ox y

Similarly, we have

0% 0% 07h(x, 8%h( x, p
_ _ (ay)z _ (a yzzhis(x,y),
oX“ 0X o X OX“OX” OX
0% 0% 0°h(x, 8°“h( X, p
_ _ (Oly)= a(ayzzhix(x’y).
oxX“ oy 0 X 0 X“0y“ox y
If k is positive integer, then
o* 0 6k“h(x y) ka
h(x,y)=———"2=h .(X,y).
o o "= o o e (0Y)
k times k times
If kK and t are positive integers, then
o 0% 0“ 0 o7 h(x, +)a
a5y 5y V)5 6x“6§/“ ya)y“ - h% (%)
k ktimes k ttimes ktimes ttimes
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Theorem 3.5. [68]

2a 2a
it g yX( X,y ) and g o ( X,y )are local fractional continuous on the domain

D of the xy — plane, then we have

g, (xy)=g, (xy). @17)

3.2.3. The Total Local Fractional Differentials

Let non-differentiable function g = g( X,y )have the total increment

A“g =T (1+a)[g(x+Ax,y+Ay)—-g(x,y)].
which is expressed as [17]
A“g=K(AX)* + L(AY)*+O(p,),
where K and Lare independent on (Ax)” and (Ay )“, which are dependent on

X and Yy and

. = J(AX ) +(Ay > .

Then,g(X,y)is the «local fractional differential at a point (X,y) and

K(AX)* + L(Ay)“is the total local fractional differential at a point (X,y),
denoted by A“g = K(AX)“ + L(Ay )*.

Suppose thatg = g( X,y ) have the « local fractional differential at a point
(x,y)e D, then g=g(X,y) is the «alocal fractional differential in the region

D.If g=g(X,Yy) isthe «local fractional differential at a point ( X,y )€ D, then

we have

lim A“g=0. (3.18)

Pg—0
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Theorem 3.6. [17]
Suppose thatg = g(X,y) is the alocal fractional differential at a point

(X,y) , then the partial derivatives are

0" g(x,y) ”9g(xy)
axa ! aya

exist and there is the total local fractional differential at the point ( X,y ), denoted by

dag=aa%(x);’y)(dx)a+6ag()§'y)(dyy- (319)

Proof. [17]

Assume that function g =g(X,y) isthe « local fractional differential at a
point (X,Y). Any points of interval (X+ AX,y+Ay), the neighborhood of
(X,y), is always satisfied below

A“g=K(AX)* + L(AY)*+O(p,),

Suppose that, Ay =0,

A“g=K(AX)* +L(AY)*+O(p,),

existand p, = \/( AX )" +(Ay ) = ‘( AX )“‘ :
thus, we obtain the relation

A“g = K(AX)" +O(|(Ax)"

),

then

K= lim A“g 0 g(x,y)_

()"0 (AX)* ox”

2"g(x.y)

Similarly, if we take AX=0, then we obtain L = v
y

Hence, the proof of the Theorem is completed.
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Theorem 3.7. [17]

Suppose that h=h( X,y ) is the local fractional partial derivatives

o0“h(x,y) 0“h(x,y)

ox* = oy”®
and both o"h(xy) and o"h(xy) are local fractional continuous at the point
oXx“ oy”
(%), then d“h = TNV gy ye , ONXY) (v
ox“ oy”

Proof. [17]

0 h(x,y)anol 0“h(x,y)
ox” oy

are local fractional continuous at

Assume that

the point (X,Y).
At any point of the neighborhood, there is the total increment, denoted by
A“h=T(1+a)[h(x+AX,y+Ay)-h(x,y)]
=F(1+a){[ h(X+Ax, y+Ay)— h(x,y+Ay)]+[h(x,y+Ay)- h(x,y)]}.
By using the mean value theorem we have the following identity,

h'“)(x,y + Ay)

h(x+ AX,y+Ay)-h(x,y+Ay)= T(lra)

(Ax)“,

which yields

h(“(x+AX, y+Ay)
INl+a)

h(x+AX,y+Ay)—h(x,y+Ay)= (Ax)”.

Suppose that h.(“’( X,y )is local fractional continuous at a point ( X,y ), we

have
h(x+AXx,y+Ay)—h( x,y+Ay),

which is translated into
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I(14a)[h(x+Ax,y +Ay) —h(x,y+Ay)]=h'(x+ Ax,y + Ay )( Ax )"
=[n'(x,y)+& |(AX)".

Here, &, is dependent on (Ax)” and (Ay)” and &, & 0 as (Ax)* >0
and (Ay)“ > 0.

Similarly, we have the following relation,

F(1+a)[h(x, y+Ay)-h(x,y)]=[h(xy)+e |(Ay),
where &, is dependenton (Ay)” and &, &0 as (Ay)* — 0.

Hence, the total increment of h( X,y )is expressed as

A*h=h(xy)(AX) +h(x,y )(Ay )"

+&,(AX) +&,(AY)”

From (3.20), we obtain

& (AX)" + &,(Ay )*
Pa

(3.20)

<g+é,,

Therefore, &,(AX)* + &,(Ay)* >0 asp, = 0and
A'h=h(x,y)(AX)" +h (xy)(Ay)".
Considering (Ax)* =(dx)“,(Ay)* =(dy)” and Ay=d“y

we have
d*h=h(x,y)(dx)* +h “(x,y)(dy)". (3.21)
Considering (1.86), h=h(X,y) has the « local fractional differential at a

point( X,y).
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Theorem 3.8. [17]

Suppose that h="h(X,y,z) has the « local fractional differential at a point

(X,Y,2), then the local fractional partial derivatives [17],

o“h(x,y,z) 0“h(x,y,z) 0“h(x,y,z)

ox* ' oy* ' o0z°
exist and there is the total local fractional differential at the point ( X,Yy,Z),denoted
by
d“h= 0 h(X,y,Z)(dX)a + 0 h(X,y’Z)(dy)a + 0 h(X!y7Z)(dZ)a. (3.22)
ox* oy” 07"

Proof. See [17].
Theorem 3.9. [17]

If h=h(X,Yy,z) has the local fractional partial derivatives

o“h(x,y,z) 0“h(x,y,z) 0“h(x,y,z)
ox* ' oy* ' o0z°

0°h(x,y,z) ao‘h(x,y,z)anol o“h(x,y,z)
ox* ' oy 01°

continuous at the point ( X,y ) , then [17]

and if are local fractional

=6 h(x,y,z)(dx)a+6 h(x,y,z)(dy)a+a h(x,y,z)
o X“ oy” 0z”

d“h (dz )"

Proof. [17]
Taking the notation of local fractional differential into account, we conclude

the result.
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3.2.4. Local Fractional Derivative of Composite Function
Theorem 3.10. [17]

Suppose that g=g(X,y) and its local fractional partial derivatives
9,“%(x,y) and g,'“)(x,y )are local fractional continuous, and X = X(t) and

y= y(t) are themselves differentiable functions of t .

Let
d“G . _ _ .
G(t)=g(x(t),y(t)),then 7o is local fractional differentiable and
s _drg(w) vy ). o2
dt*  dx* \ dt dy* \_dt
Proof. [17]

Assume that g=g(X,y)and its local fractional partial derivatives
9. ) (x,y) and gy(“)(x,y)are local fractional continuous. We obtain the
following formula
A"g=0, (X y) (M) + 9,/ (X Y )AY )" + & (AX)" +&,(Ay)”,
when AX—>0 and Ay >0 as ¢, >0 and ¢, > 0.

When AX—0 and Ay — 0 , we have

& - % and ﬂ - ﬂ as At >0,
At dt At dt
d’G .. A’G

= 1m
dt*  at-0(At)*

(%) 53(2)
—dxe Ldt dy Ldt ) °

This finish the proof of the theorem.

AX Ay
—q (@) a («) a
g, (X y ) Olt) +0, (x,y)(dt)
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3.3. Local Fractional Fourier Series
3.3.1. Fractional Trigonometric Forms of Local Fractional Fourier Series

Suppose that f(x) is a periodic function which 27 is the period of f(X).
For me Z, the local fractional Fourier series of f(X) is explained by the
following expression as [17],

f(x)=%+i(amcosa(mx)“+bmsina(mx)“), (3.24)

m=1

where the Fourier coefficients have the forms;

a = ia]i f(x)cos, (mx)“(dx)*,
72- _
- (3.25)
b = ij f(x) sin, (mx)“(dx)*.
7 -

3.3.2. Generalized Fractional Trigonometric Forms of Local Fractional Fourier

Series

Suppose that f(X) be a periodic function which 2t is the period of f(X).
For me Z, the local fractional Fourier series of f(X) is explained by the

following expression as [17]
= “(mx)” . orf(mx)*
f(x)=3+z amcoswu+bmsmau . (3.26)
2 = t” t”

where the Fourier coefficients are

( x)"

—jf(x)cos 227 (dx)e,

(3.27)

( x)"

—jf(x)sm 23 (dx)e
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We consider (3.27), the weights of the fractional trigonometric functions are

given below [44]

1/r(1+a)jf(x)cos m“( Xye(dx )

a = ,
1/r(1+a)jcos§m“(t)a(dx)“
-t (3.28)
1/r(1+a)j f(x)sin, m"‘( Xy«(dx )“
b, =
1/r(1+a)jsm m ( Xye ()
3.4. The Local Fractional Laplace Transform
3.4.1. Definition of the Laplace Transform
The Laplace transform of (X )is given as [17,20]
L {f(x)}="f""(s :_— E (=s*x*)f(x)(dx)*, 0<a<l.
ATO}=170)= 2, )j =X (X)), 0<a
(3.29)

3.4.2. Inverse of the Laplace Transforms [20]

We can define the inverse Laplace transform of f(X) given in (3.29) as [20]

—1 Lo 1
LA Ot =),

where $” = % +1%0” and Re(s”)= % >0“.

[ E (xR (s)(as )",
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CHAPTER 4

4.1. Fractal Heat Conduction [52]

Our aim here is to show how the variational iteration method [66] can be applied
to local fractional heat conduction equation.
The non-linear equation, which is
O°*N(x,t) 0“N(
x> ot
with a fractal boundary condition
9“N(0,t)
ox”

ax’t)=0 xe[0,1], (4.1)

=E_(t“),N(0,t)=0,

reads as a sum of linear K“ and non-linear M “ local fractional operators
KN+M“N =0,
which permits the following correction functional to be constructed. In [66], the

given correction functional is
N,..(t)= N, (t)+, It(“){g”[K“Nn(sHM “Nn(s)]}. 4.2)

In (4.2), Nn is a restricted local fractional variation and &£%is a fractal

Lagrange multiplier. The determination of £“ needs the stationary conditions of the
functional, which is 6“N, =0.
In (4.2), the given equation becomes

2a a
Nn+1(x)=Nn(x)+o|§a’{5“[a Ny 9 N}} @3

ox** - or”

and the stationary condition allow:
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o°N,

SNy (x)=[1=(&" ) ]| 6N, +&| & v
7=X 7=X X (44)
+OI£“>{(5“)‘2“> 5“Nn}

In (4.4), we have
[1-(& )]0, &]=0 , (£))|=0,
then, the Lagrange multiplier is obtained as

o« _ (7=X)°

=—. 4.5
d IN'l+a) (43)

Thus, the equation in (4.3) becomes

(r—x)" {aZ“NnZ(X’T)—aaNn(X’T)}}' 4.6)
INl+a) ox™ or”

Nn+1(x)= Nn(x)+ Olia){

Choosing an initial approximation N(x,t)=x“E_(t* )/ I"(1+ ) ,we

obtain

(r—t) [62“N0(x,r)_6“No(x,r)}}

nl(X,t)=l’lO(X,t)+O|t(a){r(l+a) aXZa 01"

t(2m+l)a

=E( )éf(l+(2m+l)a) ’

(r-t)" {GZ“Nl(X,f)_éaNl(x,r)}}

n2<x,t)=nl(x,t>+o'f“){r(1+a) x or

t( 2m+l)a

ZE“(ta)mZ:gr(u(zmu)a)’

Hereby, the local fractional series solution N = lim N becomes
n—o
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(2m+1)e

(04 : X
Na(xt)=E,(t )mzz(;l“(1+(2m+1)a)'

Then, we obtain (4.7).

(4.7)

X( 2m+l)a

N(xt)= ,[Lrg[Ea(t“ )mZ;p(1+(zm+1)a)

}: E,(t*)sinh, (x“),

(4.8)
where

_E(X*)+E(=x")

sinha(x“) >

We know that the temperature field can be written in the form

E, (t“)—E, (t,") S E,(t“)t—t;|a < &”

and

‘sinha(x“)—sinha(xo"‘) < ‘cosha(xo"‘) x=%|" < &”.
Therefore, the fractal dimensions of both E_(t“) and Sinha(xa)are equal to

« . It is shown that the temperature describes transports processes in fractal media
[52].

4.2 Solutions of Diffusion and Wave Equation on Cantor Sets

Below, we apply the local fractional variational iteration method [66] to the sub-

diffusion and wave equation on Cantor sets.
4.2.1 Solution of Sub-Diffusion Equation on Cantor Sets [16]
Firstly, we can give the sub-diffusion equation on the Cantor sets

OPN(xt) 1 8"N(xt)
aXZa a2a ata -

0 (4.9)
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with a fractal boundary value conditions,
0“N(0,t)
ot”
We can take the initial value conditions by using (4.10), namely
No(x,t)= azaEa(t“ ).
We structure a correction local fractional iteration functional as

(z=x)" | 8**N,(zt) 1 &N (7t)
INl+a) or** a* ot '

=0, N(0,t)=a*"E_(t*). (4.10)

N...(xt)=N (xt)+, Ii"‘){

The first term has the form

(z—x)* azaNo(r,t)_ 1 0“Ny(7,t)
I'l+a) or*” a*  ot”

N,(x,t)= No(x,t)+olia){

(z—x)"
I'l+a)

) 1 1 t2ma
=a““E_(t* .
% >[§azmar(1+2ma>]

Similarly, the second approximation term can be calculated

(r=x)* {62“N1(z',t)_ 1 6“N1(r,t)}}

=a™E,(t)+ oli‘”{ (=B, (t° ))}

No(x,t)=N,(xt)+ 1)
2( ) 1( ) 0" x {F(l+0{) az_Za a2a ata

) 2 1 t2ma
=a”E_(t* :
o )[mZ:O a’™ I'(1+ Zma)]

The third approximation term is

(z=x)" [ 8% Ny(z.t) 1 8“Ny(z.t)
I'(l+a)| or* a’ ot

) 3 1 tha
=a"E_(t* :
o )[mzz(:) a®™ I'(1+ Zma)]

N,(x,t)=N,(xt)+ Oli""{
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If we continue, we obtain the fractional series solution as

Nn(x,t)=a2“Ea(t“)[Zn) L x™ ]

e 2™ (14 2me)

Hereby, the local fractional series solution N = lim N, is

N—»o0

N(x;t)=limN (xt)

) e 1 X2mzx
= lima*E_(t 4.11
N300 {Z( )[Z a2ma F(1+ 2m05 )) ( )

m=0
20 a Xa
=a“E,(t*)cosh,(—).
a
4.2.2 Solution of Wave Equation on Cantor Sets [16]

The wave equation can be written as

O“W(xt) 1 &W(xit)_

0, 4.12
aXZa aZa at2a ( )
with a fractal value conditions given by
“W(0,t
aT(ao’)=a2“Ea(t“), W(0,t)=0. (4.13)
We can take the initial value conditions by using (4.13)
2a a
E (t
WO( X,t ) - L“() )
INl+a)

We write a correction local fractional iteration functional, namely

(r—Xx)" |:62“Wn(z',t) 1 a“vvn(r,t)}}

W (Xt) =W (x,t)+,1{*)
n+1( ) n( ) 0" x {r(1+a) az_Za a2a atZoc

We find the first term as
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Wl( X’t)=Wo( X,t)+0|(”‘){(7_x)a |:62aWo(Z',t)_ 1 6“\No(r,t):|}

INl+a) or*” a* ot
zaz"‘x“Ea(t"‘)+ [ ] (£=X) (_x“Ea(t"‘))
I'l+a) °* |I'l+a) I'(l+a)

; c 1 1 X(2m+1)a
=a’“E (t“ :
A1) %a(zm”)“ r(1+(2m+1)a)

Similarly, the second approximation term can deem, that is

(r—x)" |:62“\N1(z',t) 1 aavvl(r,t)}}

INl+a) or’” a’* ot

=azo‘xo‘Ea(t“)jLx?’”‘Ea(t“) (@) (r=x)" (- 1 x3“Ea(t“))
I'l+a) T'(1+3a)** |Ir(l+ea) a* I'(1+3a)

W, (X,t)=W,(X,t)+, Ii‘”{

3 i ) 1 t(2m+1)0z
=a “ ta .
17) mZ;a(Zmﬂ)a r(1+(2m+l)a)

In the same way, the third approximation term is reported,

(7—x)" 62“W2(r,t)_ 1 0W,(7,t)
INl+a) or*” a’  ot* '

2 3 1 t(2m+1)a
=a™“E_(1%) :
mzz(; a®™e r(1+(2m+1)a)
If we continue, we obtain the fractional series solution, namely

W (X,t)= aSaE (ta) zn: 1 X(2m+1)a |
" “ et q2me P14 (2m+1)a)

W,(X,t)=W,(X,t)+, Ii“){

Thus, we can obtain the following local fractional series solution as
W(x,t)=IlimW (x,t)
n—o

— lima*E (t*) i 1 XA (4.14)
N “ L g2 e P14 (2m+1)a) '

=a3“Ea(t“)sinha(z—a).
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CHAPTER 5

5.1 Analysis of Fractal Wave Equations by Using Local Fractional Fourier

Series

Here,our purpose investigate the following local fractional wave equation by

using Local Fractional Fourier series [22]

0> W ( x,t) _OW(xt) O*W( x,t) _

0, 5.1
ot ot” ox > G1)
where initial and boundary conditions are given as
“W(r,0
W(o,t)=w(rt)=2Wr0)_o
OX

W(x,0)= f(x), (5.2)

oW (x,0)

— . =9(x).

ot

If there is a particular solution of (5.1) written as

W(x,t)=p(x)U(t), (53)

then, we obtain the equations

(2a) 2a
X)+ A u=0,

1(x) u (5.4

U@ +U“ 4+ 21U =0,
where the boundary conditions are given by

w(0)=4*)(r)=0.

Equation (5.1) has the following solution

u(x)=c,cos, A“X* +c,sin_A“X*, (5.5)

where C, and C, are constant numbers [22].

In (5.5), for X=0 and X =T we obtain
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#(0)= ¢, =0,
u(r)=pu(x)| =c,sin A“r* =0.

X=r
Clearly ¢, #0, otherwise 1(X)=0.
We attain
A =n"z”,

where N is an integer.

We get, the followings

. (X)=sin A*x"

=sinan"‘(ﬁTX)‘”, (n=0,1,2,3,...).
For A = A" and >0, (5.4) means that
00 [e o) ta " . "
ZUn(t)=ZEa(—E)x(A1cosa9t + B, sin, "), (5.6)
n=1 n=1

where

9_\/4(nﬁ/r)2“—
B 2

Thus, we have
W,(x,t)= u(x)J,(X)

5.7
= A COS,_ S(ﬁ—x)“ Ea(—lt“ )+ aninaS(ﬁ—X)“ Ea(—lt“ ). &7)
r 2 r 2
We suppose a local fractional Fourier series of (5.1) as
W(x,t)=D W (xt)
"=t (5.8)

iEa(——t“ )x( A cos, 9t° + B,sin ot )(ZX )

Thus, we get
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a“\N(x,t)_ia“\/\/ﬂ(x,t)
ot” ~  ot*

where
O0“W _(x,t) 1 1 . : X
—0  *=——E (—=t“ cos_ St” + B _sin_St“ )sin n“(—)*
ata 2 a( 2 )(Aﬂ a n a ) a ( r )
+ SEa(—%t“ )(—A, sin, t“ + B cos_ t“ )sinan“(”TX)“
with
gz\/4(n7z/r)2“—1.

2

Take into account (5.8) and (5.2) we obtain [22]

W(x0)=3W,(x0)

=3 Asin,n“(ZX) = £(x),

SW(X0)_& 1 e
ata _é( 2A1+198n )Slnan ( r ) —g(X). (59)

Thus, we report

3 9B,sin,n" (X ) = g(x)+ 3 = Asinn“(ZX )
= ' i 2 ' (5.10)
1
= g(x)+§ f(x).
We can take the function F(X)as
1
F(x)=g(x)+1(x).

Using (5.9) , we find that [22]
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ZAwsm n*(Z2 ) = f(x),

n=1

i B.sin n"‘( =F(x).

n=1

We write the local fractional Fourier coefficients of this functions,

respectively,

1/r(1+a)j f(x)sin n“(Z2 )“(dx)“
A = , (n=0,1,2,3..),

1/r(1+a)jsm ne( 2 )“(d )

(5.11)
1/r(1+a)j F(x)sin n“(Z2 )"‘(d )
9B = , (n=0,1,2,3..),
1/r(1+a)jsm ne(*2 )"‘(d )

and we can calculate as [22]
r(Z

Ism n"‘(—)“( X )” m.

F(1+ )%

Then, we report

2[’ f(x)sinana(”rx )( dx )

A, = " ,
2[ F(x)sin,n* (%22 )“(d )a
B, = gr

Therefore, we obtain the solution of (5.1) as
W(x,t)=D W, (xt)
n=1

=y Ea(—%t“ )( A cos, St“ + B_sin_9t“ )sinan“(ﬁTX)“
n=1
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and

) 2[’ f(x)sinan“(?()“(dx)“

A, = , (n=1,2,3..)
2["F(xsinn ("2 ) (dx)”
B, = — o r (n=1,2,3...)

with

F(x)=g(x)+%f(x).

5.2 The Factal Models for the One Phase Problems of Discontinuous Heat
Transfer
In [2], it was suggested a one phase fractal problem describes the melting of a
fractal solid semi-infinite material at its melt temperature. This problem comprises
the following equations:
o°m _ 9°“m
o X
(5.12) states the flow of heat in the fractal liquid region [46] and (5.12) is

, 0<x<s,t>0. (5.12)

derived from the local fractional one dimensional heat conduction equation, namely
o’m L d%s
(24 = ﬂ o
OX dt
In (5.13) the fractal Stefan condition is described and (5.13) expresses the

, Xx=5(t),t>0. (5.13)

absorption of heat , wherein £ is Stefan number

m=0,x>0,t=0, (5.14)
m=0, x=s(t),t>0, (5.15)
m=1, x=0,t>0. (5.16)

The condition (5.13) can be derived from the fact that the local fractional

derivative of the temperature at X = S(t )equal to zero. So, we have
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Dm(x.t) _

0.
Dt“
We obtain the following expression
md“s d*m
0 + =0. (5.17)
ox dt*  dt”
From (5.12) and (5.17), we conclude
d“m  9*m
ds _ dt* __ ox*
d om  om 19
OX OX

We can use the expression in (5.13) and we get

d“m )( ém , 0°7°m
Eee -

dx“
This result show that the fractal low is local fractional continuous at x. If m

is local fractional continuous and M is continuous, we conclude that the fractal

dimensionis ¢ =1.
(5.13) can be derived from the local fractional derivative of the temperature

at X = s(t)equals to zero. So, we have

D*m(x,t) _o.
Dt“
We obtain the following expression
0 m(ﬁj +d m=O. (5.19)
ox” L dt dt”
From (5.12) and (5.19), we finally obtain
0°“m
(E) 1 d%s_ 1 e (5.20)
dt I'l-g)dt®* I(1-a) OM
OX
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By using (5.13), (5.18) and (5.20), we get the final form,

o 2 a 20
d'm) ___ BT O ) ,t>0. (521)
dx“ I'l-oa) ox*™

5.3 Fractional Complex Transform Method in Order to Wave Equations

In this application, it was considered [1] the fractional complex transform
method for differential equations. Firstly, some propositions are presented

concerning the fractional complex transform method below.

Proposition 5.1 [1]

a 3

_ X
(14
( 3 “) > (5.22)
__ Y
I'(l+a) |
and
OT(xy)  0(Xy)_o
ox“” oy “
such that
OT(M,N)  8T,(M.N)_. 529
oM ON
Proof. [1]
Let us mention about the fractional complex transform in (5.22), then we can
obtain,
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OT(xy) _0T(M,\N)3“M &T(M,N)§“N _aT,(M.N)

)

ox” oM ox” ON o x” oM
G“TZ(X,y)_aTZ(M,N ) 0“ M +aTZ(M,N )0“N _6T2(M,N)
oy” oM oy” ON oy” ON '
Thus, we get (5.23).
Proposition 5.2 [1]
We consider (5.22), then we can convert
0T, (xy) , O T(xY) 8™ T(xy) O*Ty(xy)_,
aXZa axa aya ayaaxa ayZa
into
2 2 2 2
0 TZ(MZ,N )+ 0T,(M,N) . o0T,(M,N) . o0T,( MZ,N ) =0.(5.24)
oM OMON ONOM oM
Proof. [1]

Similarly with the previous proposition, we have;

0> T,(xy) _8T(M,N)&"M T (M,N)&“N _&*T(M,N)

ox** oM?  ox~

ON° ox“ oM ?

0°T,(x,y) _8T,(M,N)a“N N oT,(M,N)&*M _ 8°T,(M,N)

ayZ(x aN 2 aya

oN?  ay” oM?

0T (x.y) _°T(M N)&“N  &°T,(M,N) N _3°T(M,N)

Oy“Ox” OMON  ay”

O*T(xy)_8°T,(M,N)8"M

OMON  ox” oNoM

LOT(MN)8"M _8T,(M,N)

Ox“ By"” NOM  ax”

Thus, we obtain (5.24).

MM ay*  OMON
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Proposition 5.3 [1]

We suppose that there is the following fractional complex transform

-
(24

X
CI'(l+a)’

a

D S (5.25)
INl+a)

Ko 2"
INl+a)

A

and we have

oT( x,y,z)+ oT,( X, y,z)+ oT,( x,y,2) _0
0 X oy 01 ’

such that

0“T,( x,y,z)+60‘T2(x,y,z)+6‘”T3(x,y,z)=O (5.26)
ox* oy” 0z” ' '

Proof. [1]
Let us use the fractional complex transform in (5.25), so we obtain

0Ty(x.y,2) _T(M.N,K)a"M _OT,(M.N,K)9“N 8T,(M.NK)aK

ox” oM ox” oN ox” oK ox“
_AT,(M,N,K)
B oM ’
OT,(x.y,2) _ OT,(M.N,K)3"M _ 8T,(M,N,K)3"N  8T,(M,N.K)@o°K
oy~ oM ay“ oN oy” oK oy°  (5.27)
_AT(X.Y,Z)
Y- ’
0T, (x.y.2) _OT,(M.,N,K)o"M &T,(M,N,K)3“N _T,(M,N,K)d°K
oz° oM oz” oN 0" oK oz°
_AT,(M,N K)
B oK '

We directly obtain (5.26) by using above equations.
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Proposition 5.4 [1]

When the fractional complex transform (5.25) is given,

o°T,(X,y,2) N 0°T,(X,y,z) N 0°T(x,y,2) _

0
Ox? oy’ 0z°
thus, we get
O*Ty(xy.,2) 8 Ty(xy.,2) 8*Ty(xy.2)_,
aXZzz ay2a 6220{ )

Proof. [1]

Let us use the fractional complex transform in (5.25), so we obtain,

62"T1(x,y,z)=62Tl(M ,N,K)o“M +62T1(M ,N,K)o“N +62 (M,N,K) oK

ox* oM ? ox” ON’? ox” oK? ox”
_0T(M,N,K)
- amr
0T, (xy,2) _ 9 T,(M,N,K) "M +62T2(M,N,K)6"‘N +62T2(M,N,K)6“K
ox* oM? x” ON’® x” oK’ ox”
_90T,(M,N K)
T am?
0" Ty(x,y.2) _ O°T(M,N.K)9*M  &°Ty(M,N,K)3"N  8°T,(M,N,K) 3K
ox*” oM? ox” oN’ ox” oK? ox”
_0'T,(M,N,K)
oM

Take into account (5.25) and (5.27), we have completed this proof.

5.3.1. Wave Equations on Cantor sets

We mention the fractional complex transform method to operate three

dimensional wave equations on Cantor sets.
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Let’s mention three dimensional wave equation. We write the fractional
complex transform by using local fractional derivatives.
4 ta
I'(l+a)’

_(ax)"

F(1+a)

(ay)”

F(1+a)
(az)"

F(1+a)

such that

o%u(M,N,K,T)
oT?

0? 0’ 0?

2+ 2+ 2"
oM° ON° oK

Let’s mention two dimensional wave equation. We write the fractional

+Vu(M,N,K,T)=0,

where,V =

complex transform by using local fractional derivatives [1]

r

ta
I(l+a)

(@)"

F(1+a)

(ay)"

L F(1+a)

A

82u(M ,N.T)

TZ

such that +Vu(M,N,T)=0,

0’ 0°
st a7
oM ON

where,V =
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If there is the mass function [47]
1 — o
——  _H%(F m(a,b))zM,
INl+a) INl+a)
then, we obtain the following formula;
| (b_a)a
I'l+a)

y“[F.ab]=

7/“[F,Ia,lb]= such that

ta

T=m=)/“[F,0,t],

M =%=y“[F,0,ax],

_ (ay)
N‘r(1+a)_y [Fo.ay]

K =%=y“[F,O,az].

From [47], we conclude
T(t)-T(t)|<ef, M(x)=-M(x,)|<&5,
INCY; )= N(y, )| ey [K(2)-K(z,)< e,

forany 0 <&, and ¢ € R ,which means that the fractal dimensions of transferring

pairs are o .
5.4 Local Fractional Sumudu Transform

The Sumudu transform can be used to solve the differential equations[44-48].

The aims of this applications are to connect the Sumudu transform and (LFC).
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We can take a new transform operator as
LFS, : f(x)—> F(1),

LFS,{ f(x)}=LFS, {iamx“m} = ir(u ma)a, z*".  (5.28)
m=0 m=0

We can give typical examples [20] as

jamoam

1"z

M

LFs,{E,(i“x")} =

Il
o

m

LFS, {—> t=z"
INl+a)

Definition 5.5 [20]

The local fractional Sumudu transform (LFST) of g(X)of order «ais

defined as [20]

1 ® _ g(x)
LFS XN =G (z)=———| E (-z7%x*)—=(dx)*, O0<a<l1
4900} =6 (D)= s [ Bl ) S22, 0<a
(5.29)
The inverse of LFST has the form

LFS;*{G,(z)}=9(x), O<a<l. (5.30)

Theorem 5.6 (The Linearity of LFST) [20]
Suppose that

LFS, {h(x)}=H,(2),
LFS, {g(x)}=G,(2),
then we get [20]

63



LFS, {h(x)+g(x)}=H_(z)+G,(z). (5.31)

Proof. [20]
We can get (5.31) by using the definition of LFST.

Theorem 5.7 [20] (Local Fractional Laplace-Sumudu Duality)
Suppose that
La{h( X)} =h-“(s) and LFSa{h( x)} =H_(z)
then, we obtain

LFS, {h(x)} = zial‘“{h(lj}’ (5.32)

X

LFS {h(1/s)}
s?

L {h( )}

(5.33)

Proof . [20]
The definitions of LFST and laplace transforms give directly (5.32) and
(5.33).

Theorem 5.8 [20] (Local Fractional Sumudu Transform of Local Fractional
Derivative)

Suppose that LFS,, { g(x )} =G,_(z), then

LFSa{dag(X)}= G,(2)-9(0)

dx“ yAl

(5.34)
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Proof. [20]

We take H(X)= d“g(ax) . From (5.32), we have
LFS, {H(x)}= La{HZ(a“X)}

and from [17]
L, {H(1/x)}=L, {a(1/x)}/z*-g(0),

L {H(1/x)} _ L, {9(1/x)}/z*-g(0)
z* z" (5.35)

LS, {H()} -

_G,(2)-9(0)
vAd '

Theorem 5.9 [20] (Local Fractional Sumudu Transform of the Local Fractional

Integral)

Suppose that LFS, {g(x)} =G,(z), then we have

LFS, {,1{”9(x)} =2°G,(z). (5.36)
Proof .[20]

We get LFSa{0 1{g(x )} = Si“ La{g( X)} from (5.32), namely

LFSa{h(x)}=ZiaLa{h(%)}= La{g(%)}= 2°G,z, (5.37)

where h(x)=,1{*g(x).

Thus, we complete this proof.

Theorem 5.10 [20,70] (Local Fractional Convolution)
Suppose that LFS, {h(x)} =H_(z) and LFS_{g(x)}=G,(z), then
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we have

LFS, {g(x)h(x)} =2°G,(2)H,(2).
where

g(x)h(x)=——

INl+a)

Proof. [20]

From (5.32), we conclude that

L, {9(x)h(x)}
2“ '

LFS, {g(x)h(x)} =
As [20], we can write

L, {9(x).h(x)}=L,{a(1/x)}.L,{h(1/x)}.

We obtain the followings

[T H@a(x—t)(dt)”.

LFS, {g(x)h(x)}= L“{g(llx)i;L"{h(llx)}
=1"G,(2)H,(2),
where G_(z)= La{gi(}/x)} and H (z)=

Thus, we complete this proof.

La{h(l/ X)}
- '

(5.38)

(5.39)

(5.40)
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CONCLUSION

The local fractional calculus is a new area of mathematics that studies the
derivative and integration of functions of arbitrary order defined on fractals. So, it

has attracted much attention of mathematicians, physicists and engineers.

In this thesis, we reviewed the basic definitions and theorems of local
fractional calculus. Also we reviewed some recent applications and we showed that
in both fields of physics and mathematics the local fractional calculus gives effective

results.

We hope that, this thesis will be a useful tool for researchers who would like

to work on the local fractional calculus and its applications.

67



REFERENCES

. Wei-Hua Su, Jafari H., Baleanu D., (2013), “Fractional Complex
Transform Method for Wave Equations on Cantor Sets within Local
Fractional Differential Operator”, Advances in Difference Equations,
2013:97.

Hu M. S., Baleanu D., Yang X. J., (2013), “One-Phase Problems for
Discontinuous Heat Transfer in Fractal Media.”, Mathematical Problems in
Engineering, vol. 2013, 358473.

Mandelbrot B. B., (1982), “The Fractal Geometry of Nature”, W. H.
Freeman and Company, New York, 1 Edition.

. Yang-Li Y., Zhao Y., Xie G. N., Baleanu D., Yang X. J., Zhao K., (2014),
“Local Fractional Poisson and Laplace Equations with Applications to
Electrostatics in Fractal Domain”, Advances in Mathematical Physics,
vol. 2014, 590574.

. Zhao Y., Cheng D. F., Yang X. J., (2013), “Approximation Solutions for
Local Fractional Schrodinger Equation in the One-Dimensional Cantorian
System”, Advances in Mathematical Physics, vol. 2013, 291386.

. Zhao Y., Baleanu D., Cattani C., Cheng D. F., Yang X. J., (2013),
“Maxwell’s Equations on Cantor Set: A Local Fractional Approach”,
Advances in High Energy Physics, vol. 2013, 686371.

. Yang X. J., Baleanu D., Machado J. A. T., (2013), “Mathematical Aspects
of the Heisenberg Uncertainty Principle within Local Fractional Fourier
Analysis”, Boundary Value Problems, 2013-131.

Ma X. J., Srivastava H. M., Baleanu D., Yang X. J., (2013), “A New
Neumann Series Method for Solving a Family of Local Fractional Fredholm
and Volterra Integral Equations”, Mathematical Problems in Engineering,
vol. 2013, 325121.

R1



10.

11.

12.

13.

14.

15.

16.

17.

Zhao Y., Baleanu D., Baleanu M. C., Cheng D. F., Yang X. J., (2013),
“Mappings for Special Functions on Cantor Sets and Special Integral
Transforms via Local Fractional Operators”, Abstract and Applied Analysis,
vol. 2013, 316978.

Hao Y. J., Srivastava H. M., Jafari H., Yang X. J., (2013), “Helmholtz and
Diffusion Equations Associated with Local Fractional Derivative Operators
Involving the Cantorian and Cantor-Type Cylindrical Coordinates”,
Advances in Mathematical Physics, vol. 2013, 754248.

Zhao Y., Baleanu D., Cattani C., Cheng D. F., Yang X. J., (2013), “Local
Fractional Discrete Wavelet Transform for Solving Signals on Cantor Set",
Mathematical Problems in Engineering, vol. 2013, 560932.

Su W. H., Baleanu D., Yang X. J., Jafari H., (2013), “Damped Wave
Equation and Dissipative Wave Equation in Fractal Strings Within the Local
Fractional Variational Iteration Method", Fixed Point Theory and
Applications, 2013:809.

Wang L-F., Yang X. J., Baleanu D., Cattani C., Zhao Y., (2014), “Fractal
Dynamical Model of Vehicular Traffic Flow within the Local Fractional
Conservation Laws”, Abstract and Applied Analysis, vol. 2014, 635760.

Baleanu D., Machado J. A. T, Cattani C., Baleanu M. C., Yang X. J.,
(2014), “Local Fractional Variational Iteration and Decomposition Methods
for Wave Equation on Cantor Sets within Local Fractional Operators”,
Abstract and Applied Analysis, vol. 2014, 535048.

Yang Y. J., Baleanu D., Yang X. J., (2013), “A local Fractional Variational
Iteration Method for Laplace Equation within Local Fractional Operators”,
Abstract and Applied Analysis, vol. 2013, 202650.

Yang X. J., Baleanu D., Kahn Y., Mohyud-din S. T., (2014), “Local
Fractional Variational Iteration Method for Diffusion and Wave Equations
on Cantor Sets”, Romanian Journal of Physics, vol. 59, pp. 36-48.

Yang X. J., (2011), “Local Fractional Functional Analysis and Its
Applications”, Asian Academic Publisher Limited, Hong Kong, 35.

R2



18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Yang X. J., Baleanu D., He J. H., (2013), “Transport Equations in Fractal
Porous Media within Fractional Complex Transform Method”, Proceedings
of the Romanian Academy, Series A, vol. 14, pp. 287-292.

Yang X. J., Baleanu D., Srivastava H. M., Machado J. A. T., (2013), “On
Local Fractional Continuous Wavelet Transform”, Abstract and Applied
Analysis, vol. 2013, 725416.

Srivastava H. M., Golmankhaneh A. K., Baleanu D., Yang X. J., (2014),
“Local Fractional Sumudu Transform with Application to IVPs on Cantor
Sets”, Abstract and Applied Analysis, vol. 2014, 620529.

Mehdi D., (2010), “dpplications of Fractional Calculus”, Applied
Mathematical Sciences, vol. 4, no. 21, pp:1021-1032.

Yang Y., Baleanu D., Yang X. J., (2013), “Analysis of Fractal Wave
Equations by Local Fractional Fourier Series Method”, Advances in
Mathematical Physics, vol. 2013, 632309.

Kolwankar K. M., Gangal A. D., (1996), “Fractional Differentiability of
Nowhere Differentiable Functions and Dimensions”, Chaos, 6(4), pp. 505-
513.

Kolwankar K. M., Gangal A. D., (1999), “Local Fractional Calculus: A
Calculus for Fractal Space-Time, In:Proc. of Fractals: Theory and
Applications in Engineering ”, Delft, The Netherlands, pp.171-178.

Jumarie G., (2005),“On the Representation of Fractional Brownian Motion
as An Integral with Respect to (dt )®”, Applied Mathematics Letters, vol. 18,
issue 7, pp. 739-748.

Wu G., (2010), “A Fractional Lie Group Method for Anomalous Diffusion
Equations ”, Communication Fractional Calculus, 1, pp. 27-31.

Parvate A., Satin S., Gangal A. D., (2009), “Calculus on Fractal Curves in
Rn”, ArXiv:0906.0676v1.

R3



28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Parvate A., Gangal A. D., (2005), “Fractal Differential Equations and
Fractal-Time Dynamical Systems”, Pramana, 64, pp. 389-409, doi:
10.1007/BF02704566.

Cresson J., (2002), “Scale Relativity Theory for One-Dimensional Non-
Differentiable Manifolds”, Chaos, Solutions and Fractals, 14, pp. 553-562.

Adda F. B., Cresson J., (2000), “Divergence D ’échelle et Différentiabilité”.
Comptes Rendus de I'’Académie des Sciences - Series | - Mathematics, vol
.330(1), pp. 261-264.

Yang X., (2012), “Expression of Generalized Newton Iteration Method via
Generalized Local Fractional Taylor Series”, Advances in Computer Science
and its Applications, vol. 1(2), pp. 89-92.

Podlubny 1., (1999), “Fractional Differential Equations”, Academic Press,
San Diego, California, USA, vol. 198.

Gao F., Yang X., Kang Z., (2009), “Local Fractional Newton’s Method
Derived from Modified Local Fractional Calculus™, In:Proc. of The Second
Scientific and Engineering Computing Symposium on Computational
Sciences and Optimization (CSA 2009), pp. 228-232.

Miller K. S., Ross B., (1993), “4n Introduction to the Fractional Calculus
and Fractional Differential Equations”, New York, USA, Wiley-
Interscience, Edition 1.

Yang X., (2011), “Local Fractional Integral Transforms®, Progress in
Nonlinear Science, Asian Academic Publisher, vol. 4:1-228.

Baleanu D., Diethelm K., Scalas E., Trujillo J. J., (2012), “Fractional
Calculus: Models and Numerical Methods”, Singapore, World Scientific,
vol. 3.

Zhang Y., Baleanu D., Yang X., (2014), “On a Local Fractional Wave
Equation under Fixed Entropy Arising in Fractal Hydrodynamics”, Entropy
16, 6254-6262, doi:10.3390/e16126254.

R4


http://www.sciencedirect.com/science/journal/07644442
http://dx.doi.org/10.3390/e16126254

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Yang X., Gao F., (2009), “The Fundamentals of Local Fractional Derivative
of the One-variable Non-Differentiable Functions”, World Sci-Tech R& D,
31(5), 920-921.

Yang X., (2009), “Research on Fractal Mathematics and Some Applications
in Mechanics”, M.S.Thesis, China University of Mining and Technology.

Malinowska A. B., Ammi M. R. S, Torres D. F. M., (2010), “Composition
Functionals in Fractional Calculus of Variations”, Communication
Fractional Calculus, 1, 32-40, ArXiv:1009.2671v2.

Atanockovic T. M., Pilipovic S., Stankovic B., Zorica D., (2014),
“Fractional Calculus with Applications in Mechanics:Vibrations and
DiffusionProcesses”, 1 Edition, doi:10.1002/9781118577530.biblio.

Frederico G. S. F, Torres D. F. M., (2007), “A Formulation of Noether’s
Theorem for Fractional Problems of the Calculus of Variations”, Journal of
Mathematical Analysis Applications, 334(2), 834-846.

Yang X., (2012), "Generalized Local Fractional Taylor’s Formula for Local
Fractional Derivatives”, Journal of Expert Systems (JES), Vol 1, No.1.

Watugala G. K., (1993), “Sumudu Transform: A New Integral Transform to
Solve Differential Equations and Control Engineering Problems”,
International Journal of Mathematical Education in Science and Technology,
vol 24, pp. 35-43.

Sabatier J., Agrawal O. P., Machado J. T., (2007), “Advances in
Fractional Calculus: Theoretical Developments and Applications in Physics
and Engineering”, Springer Publishing Company, US, 1. Edition.

Yang X. J., (2012), “Heat Transfer in Discontinuous Media”, Advances in
Mechanical Engineering and Its Applications, vol 1, 3-pp.47-53.

Hu, Agarwal M. S,, Yang R. P., (2012), “Local Fractional Fourier Series
with Application to Wave Equation in Fractal Vibrating String”, Abstract
and Applied Analysis, 567401.

RS



48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Belgacem F. B. M., Karabalh A. A, Kalla S. L., (2003), “Analytical
Investigations of Sumudu Transform and Applications to Integral Production
Equations”, Mathematical Problems in Engineering, no. 3-4, pp.103-118.

Yang X. J., (2012), “ A Short Note on Local Fractional Calculus of Function
of One Variable” , Journal of Applied Library and Information Science, vol.
1, no.1,, pp. 1-12.

Yang X. J., (2008), “Modified Local Fractional Derivative and its
Fundaments ”, http://paper.edu.cn.

Li Y., Chen Y., Podlubny 1., (2010), “Stability of Fractional-Order
Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized
Mittag-Leffler Stability”, Computers and Mathematics with Applications 59,
1810-1821.

Yang X. J., Baleanu D., (2013), “Fractal Heat Conduction Problem Solved
by Local Fractional Variation Iteration Method”, Thermal Science, vol. 17.
no:2, pp. 625-628.

Magin R. L., (2006), “Fractional Calculus in Bioengineering”, Begell
House Publishers Inc., U.S.; Illustrated Edition.

Baleanu D., Guvenc Z. B., Machado J. A. T., (2010), “New Trends in
Nanotechnology and Fractional Calculus Applications “,Springer.

Yang X., (2011), “Fractional Trigonometric Functions in Complex-valued
Space: Applications of Complex Number to Local Fractional Calculus of
Complex Function”, ArXiv:1106.2783v1.

Hilfer R., (1999), “Applications of Fractional Calculus in Physics”, World
Scientific, Singapore.

Bagley R. L., (1983), "Fractional Calculus- A Different Approach to the
Analysis of Viscoelastically Damped Structers.”, AIAA Journal, vol:21, no:5.

Yang X, (2012), “Advanced Local Fractional Calculus and its Applications”,
World Science, New York, USA.

R6



59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Debnath L., (2003), “Recent Applications of Fractional Calculus to Science
and Engineering”, International Journal of Mathematics and Mathematical
Science, Issue 54, Pages 3413-3442, doi:10.1155/S0161171203301486.

Podlubny I., Skovrinek T., Petri§ L., (2012), “Modeling of the National
Economies in State-space: A Fractional Calculus Approach”, Economic
Modelling, vol:29, Issue 4, pp:1322-1327.

Tseng C. C., (2001), “Design of Fractional Order Digital FIR
Differentiators”, |IEEE Signal Processing Letter, vol:8, no:3.

Yang X., (2011), “A Short Introduction to Local Fractional Complex
Analysis”, ArXiv:1106.301v1[math-ph].

Ortigueira M. D., Machado J. T., (2003), “Fractional Signal Processing
and Applications”, Signal Processing, vol:83, Issue 11, pp:2359-2365.

Yang X. “Analysis of Dimensional Homogeneity in Fractal Elasticity and its
Simplest Uniaxial Model”, http://www.paper.edu.cn.

Frederico G. S. F., Torres F. M., (2008), “Fractional Conservation Laws in
Optimal Control Theory”, Nonlinear Dynamics, vol:53, pp: 215-222.

Yang X., Zhang F. R., (2012), “Local Fractional Iteration Method and Its
Algorithms”, Advances in Computational Mathematics and its Applications,
vol 1, 3-pp, 139-145.

Falconer K., (2014), “Fractal Geometry: Mathematical Foundations and
Applications”, Wiley, USA, Third Edition.

Yang X. J., (2010), “dpplications ol Local Fractional Calculus to
Engineering in Fractal Time-Space: Local Fractional Differential Equations
with Local Fractional Derivative”, arXiv:1106.3010.

Yang X. J., (2012), “Local Fractional Calculus and Its Applications”, The
5t IFAC Workshop Fractional Differentiation and its Applications, pp:1-8,
http://works.bepress.com/yang_xiaojun/31.

R7


http://dx.doi.org/10.1155/S0161171203301486
http://www.paper.edu.cn/
http://arxiv.org/abs/1106.3010

70. Jarad F., Kaymakg¢alan B., Tas K., (2012), "A New Transform Method in
Nabla Discrete Fractional Calculus”, Advances in Difference Equations,
2012:190.

R8



CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Ozytirek, Metin

Nationality: Turkish (TC)

Date and Place of Birth: 3 January 1980 , Kayseri

Marital Status: Married

Phone: 0 505 663 98 38

email: metinozyurek@hotmail.com

EDUCATION

Degree Institution Year of Graduation
BS Ankara Univ. 2000

High School Kurtulus High School, Ankara 1996

WORK EXPERIENCE

Year Place Enrollment

2010- Present MEB Teacher

2006-2010 Ar Dershanesi Ankara Teacher

2004-2006 Pi Dershanesi Ankara Teacher

2003-2004 Bati Dershanesi Ankara Teacher

FOREIGN LANGUAGES

English

HOBBIES

Tennis, football, movies.

Al




