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Abstract
In this article, an efficient analytical technique, called Laplace–Adomian
decomposition method, is used to obtain the solution of fractional Zakharov–
Kuznetsov equations. The fractional derivatives are described in terms of Caputo
sense. The solution of the suggested technique is represented in a series form of
Adomian components, which is convergent to the exact solution of the given
problems. Furthermore, the results of the present method have shown close relations
with the exact approaches of the investigated problems. Illustrative examples are
discussed, showing the validity of the current method. The attractive and
straightforward procedure of the present method suggests that this method can
easily be extended for the solutions of other nonlinear fractional-order partial
differential equations.
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1 Introduction
Over the past decade, fractional differential equations (FDEs) have gained a lot of attention
of researchers due to their ability to enhance real-world issues, used in various fields of en-
gineering and physics. Numerous physical marvels in signal processing, chemical physics,
electrochemistry of corrosion, probability and statistics, acoustics and electromagnetic
are precisely modeled by DEs of fractional order [1]. Nonlinear partial differential equa-
tions (PDEs) can be considered the generalization of the differential equations of integer
order [2]. In the modern age it is impossible to imagine modeling of many real world prob-
lems without using fractional partial differential equations (FPDEs). Indeed, fractional
calculus can be called this century’s calculus [3] because of the diversity of applications
in different areas of science and technology. Many numerical and analytical techniques
have been suggested for the solutions of linear and nonlinear FPDEs [3]. Some emerg-
ing analytical approximate approaches for FDEs are homotopy analysis method (HAM)
[4], variational iteration method (VIM) [5], generalized fractional Taylor series method
[6–9], iterative fractional power series system to solve a number of fractional integro-
differential equations [10]; using the Kudryashov technique and trial solution technique,
we obtained traveling wave approaches to a fractional, nonlinear Schrodinger problem
[11–13]; analytical solution to solve a particular homogeneous time-invariant fractional
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original value problem [14]; Taylor power series solution method is used to obtain ap-
proximate 2D time-space fractional diffusion, wave-like, telegraph, time-fractional Phi-4
equation, and Burger models from both closed-form and supportive series alternatives [15,
16]; fractional temporal evolution of optical solitons [17], fractional generalized reaction
Duffing model by generalized projective Riccati equation method [18], ternary-fractional
differential transform [19], Adomian decomposition method (ADM) [20], and homotopy
perturbation method (HPM) [21].

The Korteweg–de Vries (KdV) equations play a vital role in application of sciences.
One of the notorious variations is the equations of Zakharov–Kuznetsov (ZK), the
electrostatic-acoustic pulses are analyzed in magnetized ions. It is an ocean-based coastal
waves investigation [3]. The ZK equation was initial obtained in the study of weak nonlin-
ear acoustic ion waves that significantly attract two-dimensional ion losses. In the present
work, we investigate the following fractional ZK equation:

Dγ
t1 u + θ

(
uη

)
x1

+ ψ
(
uρ

)
x1x1x1

+ τ
(
uκ

)
x1y1y1

= 0,

where u = u(x1, y1, t1), γ is the parameter defining the structure of the fractional derivative
(0 < γ≤ 1), and θ ,ψ , and τ are random constants [1]. η,ρ , and κ are integers responsible
for the conduct of weak nonlinear acoustic ion vibrations in a plasma comprising cool ions
and hot exothermic electrons in the systematic electric field [22].

Some successful analytical approaches for the well-known ZK equation are perturbation
iteration algorithm and continuous power series technique [22]. Nonlinear fractional ZK
calculation in two dimensions was discussed numerically in [23] using a new iteration
Sumudu transform method (NISTM). Exact solutions for traveling waves were obtaine
in [3] using the functional variable method for the first time. Another new method for
G′/G-expansion was studied in [24, 25]. A modified ZK equation successfully was obtained
by the homogeneous balance method [26] and the Riccati sub-equation technique was
used to approximate a Zakharov–Kuznetsov fractional model [27, 28]. The first integral
method was suggested in [29] for modified KdV-ZK equations. Analytical results of ZK
equation were obtained in [22] using the homotopy perturbation method. Solution of ZK
equation was studied in [30] using the mapping and ansatz methods. Perusing the above
development, contributed by many researchers, in this paper we discuss a new analytical
approach, i.e., the Laplace–Adomian decomposition technique.

George Adomian introduced a modern mathematical method to solve nonlinear dif-
ferential equations in the 1980s described as Adomian decomposition method (ADM)
[31]. Similarly, another powerful method found by Pierre-Simon Laplace to solve PDEs
was described as the Laplace transformation technique that transforms the initial DEs
into a mathematical expression [32]. The technique of Laplace–Adomian decomposi-
tion method (LADM) is the appropriate analytical approach for determining nonlinear
FPDEs. LADM is a mixture of two strong techniques: ADM and Laplace transform (LT).
This method is considered to be suitable for those equations that define nonlinear mod-
els. LADM has smaller parameters compared to other analytical methods, so LADM is
the best method, not needing discretion and linearization [33]. A comparison for the as-
sessment of FPDEs between the LADM and ADM is mentioned in [34]. In the modern
physics, the Kundu–Eckhaus solution deals with the analytical approach of these non-
linear PDEs using LADM in [31]. Multi-step LADM was defined for nonlinear FDEs in
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[35]. A fractional-order smoke scheme and Korteweg–de Vries equation evaluation have
been effectively analyzed using LADM [36, 37]. In the time fractional multi-dimensional
Navier–Stokes models, third-order dispersive equations and telegraph equations has been
solved by Laplace–Adomian decomposition method [38–40]. In this paper, motivated by
the above research, we extend LADM to solve the model of fractional ZK problems [1].

2 Preliminaries
Definition 2.1 The Laplace transformation of q(t1), t1 > 0, is represented as

Q(s) = L
[
q(t1)

]
=

∫ ∞

0
e–st1 q(t1) dt1.

Definition 2.2 The Laplace transform in a form of convolution is as follows:

L[q1 ∗ q2] = L
[
q1(t1)

] ∗L[
q2(t1)

]
,

here q1 ∗ q2 defines the convolution between q1 and q2,

(q1 ∗ q2)t1 =
∫ τ

0
q1(τ )q2(t1 – τ ) dt1.

Laplace transform is a fractional derivative

L
(
Dγ

t1 q(t1)
)

= sγ Q(s) –
n–1∑

k=0

sγ –1–kq(k)(0), n – 1 < γ < n,

where Q(s) is the Laplace transformation of q(t1).

Definition 2.3 (Riemann–Liouville fractional integral [41, 42])

Iγ
x1 g(x1) =

⎧
⎨

⎩
g(x1) if γ = 0,

1
Γ (γ )

∫ x1
0 (x1 – υ)γ –1g(υ·) dυ if γ > 0,

where Γ represents the gamma function as

Γ (ρ) =
∫ ∞

0
e–x1 x1

ρ–1 dx1, ρ ∈C.

Definition 2.4 The following mathematical expression is given to the Caputo of fractional
derivative of order γ for m ∈N, x1 > 0, g ∈Ct1 , t1 ≥ –1:

Dγ g(x1) =
∂γ g(x1)

∂tγ
1

=

⎧
⎨

⎩

Im–γ [ ∂γ g(x1)
∂tγ1

] if m – 1 < γ ≤ m, m ∈N,
∂γ g(x1)

∂tγ1
.

Lemma 2.5 If m – 1 < γ ≤ m with m ∈N and g ∈Ct1 with t1 ≥ –1, then [43]

Iγ Iag(x1) = Iγ +ag(x1), a,γ≥0,
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Iγ xλ
1 =

Γ (λ + 1)
Γ (γ + λ + 1)

xγ +λ
1 , γ > 0,λ > –1, x1 > 0,

Iγ Dγ g(x1) = g(x1) –
m–1∑

k=0

g(k)(0+)xk
1

k!
,

for x1 > 0, m – 1 < γ ≤ m.

Definition 2.6 Function of Mittag-Leffler Eγ (b) for γ > 0 is defined as follows:

Eγ (b) =
∞∑

m=0

bm

Γ (γ m + 1)
, γ > 0, b ∈C.

3 The procedure of LADM
In this section, the LADM is discussed for the solution of fractional nonlinear nonhomo-
geneous PDEs.

Dγ
t1ν(x1, y1, t1) + Lν(x1, y1, t1) + Nν(x1, y1, t1) = q(x1, y1, t1),

m – 1 < γ < m, (1)

where Dγ = ∂γ

∂tγ1
the operator of Caputo, in which L and N are operators.

With the initial guess

ν(x1, y1, 0) = k(x1), 0 < γ ≤ 1, t1 > 0, (2)

and using the Laplace transform differentiation property

L
[
Dγ ν(x1, y1, t1)

]
+ L

[
Lν(x1, y1, t1) + Nν(x1, y1, t1)

]
= L

[
q(x1, y1, t1)

]
, (3)

using the Laplace transform differentiation property, we get

sγL
[
ν(x1, y1, t1)

]
– sγ –1ν(x1, y1, 0)

= L
[
q(x1, y1, t1)

]
– L

[
Lν(x1, y1, t1) + Nν(x1, y1, t1)

]
,

L
[
ν(x1, y1, t1)

]
=

k(x1, y1)
s

+
1
sγ
L

[
q(x1, y1, t1)

]

–
1
sγ
L

[
Lν(x1, y1, t1) + Nν(x1, y1, t1)

]
. (4)

The given infinite series represents the LADM solution of ν(x1, y1, t1) as

ν(x1, y1, t1) =
∞∑

j=0

νj(x1, y1, t1). (5)

The nonlinear term in the problem can be expressed in terms of Adomian polynomial as
follows:

Nν(x1, y1, t1) =
∞∑

j=0

Aj, (6)
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Aj =
1
j!

[
dj

dλj

[

N
∞∑

j=0

(
λjνj

)
]]

λ=0

, j = 0, 1, 2, . . . . (7)

Substituting Eq. (5) and Eq. (6) in Eq. (4), we get

L
[ ∞∑

j=0

ν(x1, y1, t1)

]

=
k(x1, y1)

s
+

1
sγ
L

[
q(x1, y1, t1)

]

–
1
sγ
L

[

M
∞∑

j=0

νj(x1, y1, t1) +
∞∑

j=0

Aj

]

. (8)

Applying the Laplace transform linearity, we have

L
[
ν0(x1, y1, t1)

]
=

ν(x1, y1, 0)
s

+
1
sγ
L

[
q(x1, y1, t1)

]
= k(x1, y1, s),

L
[
ν1(x1, y1, t1)

]
= –

1
sγ
L

[
Lν0(x1, y1, t1) + A0

]
.

Usually, we will write as follows:

L
[
νj+1(x1, y1, t1)

]
= –

1
sγ
L

[
Lνj(x1, y1, t1) + Aj

]
, j ≥ 1. (9)

Transforming the inverse Laplace in Eq. (9)

ν0(x1, y1, t1) = k(x1, y1, t1),

νj+1(x1, y1, t1) = –L–1
[

1
sγ
L

[
Lνj(x1, y1, t1) + Aj

]]
.

(10)

4 Numerical results
Example 1 Consider the following equation of FZK (2, 2, 2):

Dγ
t1ν +

(
ν2)

x1
+

1
8
(
ν2)

x1x1x1
+

1
8
(
ν2)

x1y1y1
= 0, (11)

the initial condition is

ν(x1, y1, 0) =
4
3
η sinh2(x1 + y1), (12)

where η is an arbitrary constant.
Taking Laplace transform of Eq. (11), we obtain

L
[

∂γ ν

∂tγ
1

]
= L

[
–
(
ν2)

x1
–

1
8
(
ν2)

x1x1x1
–

1
8
(
ν2)

x1y1y1

]
,

sγL
[
ν(x1, y1, t1)

]
– sγ –1[ν(x1, y1, 0)

]
= L

[
–
(
ν2)

x1
–

1
8
(
ν2)

x1x1x1
–

1
8
(
ν2)

x1y1y1

]
.

Applying the inverse Laplace transform, we have

ν(x1, y1, t1) = L–1
(

ν(x1, y1, 0)
s

)
+ L–1

[
1
sγ
L

[
–
(
ν2)

x1
–

1
8
(
ν2)

x1x1x1
–

1
8
(
ν2)

x1y1y1

]]
,
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ν(x1, y1, t1) =
4
3
η sinh2(x1 + y1) + L–1

[
1
sγ
L

[
–
(
ν2)

x1
–

1
8
(
ν2)

x1x1x1
–

1
8
(
ν2)

x1y1y1

]]
.

Using the ADM procedure, we get

∞∑

j=0

νj(x1, y1, t1)

=
4
3
η sinh2(x1 + y1) + L–1

[
1
sγ
L

[
–N(ν)x1 –

1
8

N(ν)x1x1x1 –
1
8

N(ν)y1y1x1

]]
,

where N(ν) is Adomian polynomial representing nonlinear terms in the above equations.

N(ν) = ν2 =
∞∑

j=0

Aj(ν),

Adomian polynomials are given as follows:

A0 = ν2
0 ,

A1 = 2ν0ν1,

A2 = 2ν0ν2 + ν2
1 ,

ν0(x1, y1, t1) =
4
3
η sinh2(x1 + y1), (13)

νj+1(x1, y1, t1) = L–1

[
1
sγ
L

[

–

( ∞∑

j=0

Aj(ν)

)

x1

–
1
8

( ∞∑

j=0

Aj(ν)

)

x1x1x1

–
1
8

( ∞∑

j=0

Aj(ν)

)

y1y1x1

]]

,

for j = 0, 1, 2, . . . .

ν1(x1, y1, t1) = L–1
[

1
sγ
L

[
–
(
ν2

0
)

x1
–

1
8
(
ν2

0
)

x1x1x1
–

1
8
(
ν2

0
)

x1y1y1

]]
,

ν1(x1, y1, t1) =
(

–
224

9
η2 sinh3(x1 + y1) cosh(x1 + y1) –

32
3

η2 sinh(x1 + y1)

× cosh3(x1 + y1)
)
L–1

(
1

sγ +1

)

=
(

–
224

9
η2 sinh3(x1 + y1) cos h(x1 + y1) –

32
3

η2 sin h(x1 + y1)

× cos h3(x1 + y1)
)

tγ

Γ (γ + 1)
.

(14)
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The subsequent terms are

ν2(x1, y1, t1) = L–1
[

1
sγ
L

[
–(2ν0ν1)x1 –

1
8

(2ν0ν1)x1x1x1 –
1
8

(2ν0ν1)x1y1y1

]]

=
128
27

η3(1200 cos h6(x1 + y1) – 2080 cosh4(x1 + y1)

+ 968 cosh2(x1 + y1) – 79
) t2γ

Γ (2γ + 1)
,

ν3(x1, y1, t1) = L–1
[

1
sγ
L

[
–
(
2ν0ν2 + ν2

1
)

x1
–

1
8
(
2ν0ν2 + ν2

1
)

x1x1x1

–
1
8
(
2ν0ν2 + ν2

1
)

x1y1y1

]]

= –
2048

81
η4 sin h(x1 + y1) cos h(x1 + y1)

[
88,400 cos h6(x1 + y1)

– 160,200 cos h4(x1 + y1) + 85,170 cos h2(x1 + y1) – 11,903
]

× t2γ

Γ (2γ + 1)
.

(15)

The LADM solution is

ν(x1, y1, t1) = ν0(x1, y1, t1) + ν1(x1, y1, t1) + ν2(x1, y1, t1)

+ ν3(x1, y1, t1) + · · · ,

ν(x1, y1, t1) =
4
3
η sinh(x1 + y1) –

(
224

9
η2 sinh3(x1 + y1) cos h(x1 + y1)

+
32
3

η2 sin h(x1 + y1) cos h3(x1 + y1)
)

tγ

Γ (γ + 1)
+

128
27

η3(1200

× cos h6(x1 + y1) – 2080 cos h4(x1 + y1) + 968 cos h2(x1 + y1) – 79
)

× t2γ

Γ (2γ + 1)
–

2048
81

η4 sin h(x1 + y1) cos h(x1 + y1)
[
88,400 cos h6(x1 + y1)

– 160,200 cos h4(x1 + y1) + 85,170 cos h2(x1 + y1) – 11,903
] t2γ

Γ (2γ + 1)
.

For γ = 1,

ν(x1, t1) =
4
3
η sinh2(x1 + y1 – ηt1). (16)

Example 2 Consider the following equation of FZK (3, 3, 3):

Dγ
t1ν +

(
ν3)

x1
+ 2

(
ν3)

x1x1x1
+ 2

(
ν3)

x1y1y1
= 0, (17)

with the initial condition

ν(x1, y1, 0) =
3
2
η sinh

[
1
6

(x1 + y1)
]

, (18)

where η is an arbitrary constant.
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Taking the Laplace transform of Eq. (17), we have

L
[

∂γ ν

∂tγ
1

]
= L

[
–
(
ν3)

x1
– 2

(
ν3)

x1x1x1
– 2

(
ν3)

x1y1y1

]
,

sγL
[
ν(x1, y1, t1)

]
– sγ –1[ν(x1, y1, 0)

]
= L

[
–
(
ν3)

x1
– 2

(
ν3)

x1x1x1
– 2

(
ν3)

x1y1y1

]
.

Applying the inverse Laplace transform leads to

ν(x1, y1, t1) = L–1
[

ν(x1, y1, 0)
s

+
1
sγ
L

[
–
(
ν3)

x1
– 2

(
ν3)

x1x1x1
– 2

(
ν3)

x1y1y1

]]
,

ν(x1, y1, t1) =
3
2
η sinh

[
1
6

(x1 + y1)
]

+ L–1
[

1
sγ
L

[
–
(
ν3)

x1
– 2

(
ν3)

x1x1x1
– 2

(
ν3)

x1y1y1

]]
.

Using the ADM procedure, we get

∞∑

j=0

νj(x1, y1, t1) =
3
2
η sinh

[
1
6

(x1 + y1)t
]

+ L–1
[

1
sγ
L

[
–N(ν)x1 – 2N(ν)x1x1x1

– 2N(ν)x1y1y1

]]
,

where N(ν) is an Adomian polynomial representing nonlinear terms in the above equa-
tions.

N(ν) = ν3 =
∞∑

j=0

Bj(ν),

Adomian polynomials are given as follows:

B0 = ν3
0 ,

B1 = 3ν2
0ν1,

B2 = 3ν2
0ν2 + 3ν2

0ν2
1 ,

ν0(x1, y1, t1) =
3
2
η sinh

[
1
6

(x1 + y1)
]

, (19)

νj+1(x1, y1, t1) = L–1

[
1
sγ
L

[

–
∞∑

j=0

Bj(ν)x1

– 2
∞∑

j=0

Bj(ν)x1x1x1
– 2

∞∑

j=0

Bj(ν)x1y1y1

]]

,

for j = 0, 1, 2, . . . .

ν1(x1, y1, t1) = L–1
[

1
sγ
L

[
–
(
ν3

0
)

x1
– 2

(
ν3

0
)

x1x1x1
– 2

(
ν3

0
)

x1y1y1

]
]

,

ν1(x1, y1, t1) = –
[

3η3 sinh2
[

1
6

(x1 + y1)
]

cosh

[
1
6

(x1 + y1)
]
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+
3
8
η3 cosh3

[
1
6

(x1 + y1)
]]

, (20)

L–1
(

1
sγ +1

)
= –

[
3η3 sinh2

[
1
6

(x1 + y1)
]

cosh

[
1
6

(x1 + y1)
]

+
3
8
η3 cosh3

[
1
6

(x1 + y1)
]]

tγ

Γ (γ + 1)
.

The subsequent terms are

ν2(x1, y1, t1) = L–1
[

1
sγ
L

[
–
(
3ν2

0ν1
)

x1
– 2

(
3ν2

0ν1
)

x1x1x1
– 2

(
3ν2

0ν1
)

x1y1y1

]]

=
3

32
η5 sinh

[
1
6

(x1 + y1)
][

765 cosh4
[

1
6

(x1 + y1)
]

– 729 cosh2
[

1
6

(x1 + y1)
]

+ 91
]

t2γ

Γ (2γ + 1)
,

ν3(x1, y1, t1) = L–1
[

1
sγ
L

[
–
(
3ν2

0ν2 + 3ν2
0ν2

1
)

x1

– 2
(
3ν2

0ν2 + 3ν2
0ν2

1
)

x1x1x1
– 2

(
3ν2

0ν2 + 3ν2
0ν2

1
)

x1y1y1

]
]

= –
3

128
cosh

[
1
6

(x1 + y1)
][

171,738 cosh6
[

1
6

(x1 + y1)
]

– 349,884 cosh4
[

1
6

(x1 + y1)
]

+ 215,496 cosh2
[

1
6

(x1 + y1)
]

– 36,907
]

t2γ

Γ (2γ + 1)
.

(21)

The LADM solution is

ν(x1, y1, t1) = ν0(x1, y1, t1) + ν1(x1, y1, t1) + ν2(x1, y1, t1)

+ ν3(x1, y1, t1) + · · · ,

ν(x1, y1, t1) =
3
2
η sinh

[
1
6

(x1 + y1)
]

–
[

3η3 sinh2
[

1
6

(x1 + y1)
]

cosh

[
1
6

(x1 + y1)
]

+
3
8
η3 cosh3

[
1
6

(x1 + y1)
]]

tγ

Γ (γ + 1)
+

3
32

η5 sinh

[
1
6

(x1 + y1)
]

×
[

765 cosh4
[

1
6

(x1 + y1)
]

– 729 cosh2
[

1
6

(x1 + y1)
]

+ 91
]

t2γ

Γ (2γ + 1)

–
3

128
cosh

[
1
6

(x1 + y1)
][

171,738 cosh6
[

1
6

(x1 + y1)
]

– 349,884

× cosh4
[

1
6

(x1 + y1)
]

+ 215,496 cosh2
[

1
6

(x1 + y1)
]

– 36,907
]

× t2γ

Γ (2γ + 1)
+ · · ·
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Figure 1 The (a) exact and (b) LADM solutions of ν(x1, y1, t1) of Example 1, at γ = 1

Figure 2 The LADM solution of ν(x1, y1, t1) of Example 1, at (c) γ = 0.75 and (d) γ = 0.55

For γ = 1,

ν(x1, t1) =
3
2
η sinh

[
1
6

(x1 + y1 – ηt1)
]

. (22)

5 Result and discussion
Figure 1 (a) and (b) represent the exact and LADM solutions of Example 1 respectively.
Both of the graphs are almost identical and confirm the strong agreement of both exact
and LADM solutions. In Fig. 2, the plots c and d show the LADM solutions of Exam-
ple 1 at fractional order γ = 0.75, 0.55. The fractional-order solutions analyze different
fractional views of Example 1. In Fig. 3, the fractional-order solutions at fractional-order
γ = 0.25, 0.50, 0.75, 0.9, 1 are plotted for x1 = y1 = 1 see Table 1. Thus analysis has absorbed
the asymptotic behaviour of the effect of ascending varying the fractional order. It is in-
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Figure 3 The LADM solution of ν(x1, y1, t1) of Example 1 for different value of γ

Table 1 The LADM solution for a distinct value of γ when η = 0.001 and Example 1 Absolute Error
(AE)

LADM

x1 y1 t1 γ = 0.55 γ = 0.75 γ = 1 Exact(γ = 1) AE(γ = 1)

0.1 0.1 0.1 5.326967E-5 5.357024E-5 5.380024E-5 5.399349E-5 1.9325198E-7
0.3 5.263797E-5 5.296756E-5 5.330817E-5 5.388407E-5 5.7590300E-7
0.5 5.219367E-5 5.247366E-5 5.282125E-5 5.377477E-5 9.5351584E-7

0.6 0.6 0.1 2.965070E-3 2.991825E-3 3.013434E-3 3.037236E-3 2.3801556E-5
0.3 2.909727E-3 2.937942E-3 2.967189E-3 2.967189E-3 6.8589592E-5
0.5 2.851320E-3 2.875999E-3 2.903139E-3 3.033594E-3 1.3045515E-4

1 1 0.1 1.540570E-2 1.644689E-2 1.69445E-02 1.753518E-2 5.9062712E-4
0.3 1.036347E-2 1.443664E-2 1.58793E-02 1.752790E-2 1.6485437E-3
0.5 2.595877E-3 1.084553E-2 1.44731E-02 1.752063E-2 3.0474747E-3

Table 2 The LADM solution for a distinct value of γ when η = 0.001 and Example 2 absolute error
(AE)

LADM

x1 y1 t1 γ = 0.50 γ = 0.75 γ = 1 Exact(γ = 1) AE(γ = 1)

0.1 0.1 0.1 5.000913E-5 5.000918E-5 5.000922E-5 4.998424E-5 2.497599E-8
0.3 5.000903E-5 5.000909E-5 5.000914E-5 4.993421E-5 7.492792E-8
0.5 5.000896E-5 5.000901E-5 5.000907E-5 4.988419E-5 1.248797E-7

0.6 0.6 0.1 3.020038E-4 3.020039E-4 3.020039E-4 3.019785E-4 2.544951E-8
0.3 3.020037E-4 3.020037E-4 3.020038E-4 3.019274E-4 7.634800E-8
0.6 3.020036E-4 3.020036E-4 3.020037E-4 3.018764E-4 1.272462E-8

1 1 0.1 5.09310E-04 5.09310E-04 5.09310E-04 5.092844E-4 2.632114E-8
0.3 5.09110E-04 5.09310E-04 5.09310E-04 5.092316E-4 7.896253E-8
0.6 5.09310E-04 5.09310E-04 5.09310E-04 5.091788E-4 1.316031E-7

vestigated that as the fractional-order approaches integer-order, the solution of fractional-
order problems converges to the solution of integer-order problem. The procedure and
analysis can be represented in Figs. 4 and 5 (see also Table 2) for Example 2.
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Figure 4 The (a) exact and (b) LADM solutions of ν(x1, y1, t1) of Example 2, at γ = 1

Figure 5 The LADM solution of ν(x1, y1, t1) of Example 2, at (c) γ = 0.75 and (d) Absolute Error

6 Conclusion
We have investigated the analytical solution of fractional Zakharov–Kuznetsov equa-
tions using the Laplace–Adomian decomposition method. The procedure of the proposed
method is found to be reliable as compared to other analytical methods because of its small
number of calculations. The procedure is much understandable to the readers because it
consists of the direct implementation of the Laplace transform to the given problem and
then applying the Adomian decomposition method. The inverse Laplace transform is then
applied to obtain the analytical solution for the given problem. Illustrative examples are
also presented to support the theoretical procedure of the suggested method. For this pur-
pose, we plot four graphs, namely Figs. 1, 2, 3, and 4, to show the agreement of the obtained
results and exact solutions for the problems. The display of the figures has confirmed that
the results obtained by the present method are in good agreement with the exact solution
of Example 1 and 2 in the paper. Moreover, the plot of absolute error has been drawn and
discussed in the paper. It shows that even considering two terms of the series solution
of the presented method, it provided sufficient accuracy to the solution for the problem.
Thus, the proposed method is considered to be a suitable analytical technique to solve
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the fractional partial differential equations and a system of fractional partial differential
equations.
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29. Baleanu, D., Kılıç, B., Uğurlu, Y., Inc, M.: The first integral method for the (3 + 1)-dimensional modified Korteweg-de
Vries–Zakharov–Kuznetsov and Hirota equations (2015)

30. Krishnan, E.V., Biswas, A.: Solutions to the Zakharov–Kuznetsov equation with higher order nonlinearity by mapping
and ansatz methods. Phys. Wave Phenom. 18(4), 256–261 (2010)

31. González-Gaxiola, O.: The Laplace–Adomian decomposition method applied to the Kundu–Eckhaus equation (2017).
arXiv:1704.07730

32. Alhendi, F.A., Alderremy, A.A.: Numerical solutions of three-dimensional coupled Burgers’ equations by using some
numerical methods. J. Appl. Math. Phys. 4(11), 2011–2030 (2016)

33. Jafari, H., Khalique, C.M., Nazari, M.: Application of the Laplace decomposition method for solving linear and
nonlinear fractional diffusion–wave equations. Appl. Math. Lett. 24(11), 1799–1805 (2011)

34. Mohamed, M.Z.: Comparison between the Laplace decomposition method and Adomian decomposition in
time-space fractional nonlinear fractional differential equations. Appl. Math. 9(04), 448 (2018)

35. Al-Zurigat, M.: Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition
method. An. Univ. Craiova-Mat. Comput. Sci. Ser. 39(2), 200–210 (2012)

36. Haq, F., Shah, K., ur Rahman, G., Shahzad, M.: Numerical solution of fractional order smoking model via Laplace
Adomian decomposition method. Alex. Eng. J. 57(2), 1061–1069 (2018)

37. Shah, R., Khan, H., Kumam, P., Arif, M.: An analytical technique to solve the system of nonlinear fractional partial
differential equations. Mathematics 7(6), 505 (2019)

38. Mahmood, S., Shah, R., Arif, M.: Laplace Adomian decomposition method for multi dimensional time fractional model
of Navier–Stokes equation. Symmetry 11(2), 149 (2019)

39. Khan, H., Shah, R., Baleanu, D., Arif, M.: An efficient analytical technique, for the solution of fractional-order telegraph
equations. Mathematics 7(5), 426 (2019)

40. Shah, R., Khan, H., Arif, M., Kumam, P.: Application of Laplace–Adomian decomposition method for the analytical
solution of third-order dispersive fractional partial differential equations. Entropy 21(4), 335 (2019)

41. Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations (1993)
42. Hilfer, R.: Applications of Fractional Calculus in Physics. World Sci., River Edge (2000)
43. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential

Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier, Amsterdam (1998)

http://arxiv.org/abs/arXiv:1704.07730

	A novel method for the analytical solution of fractional Zakharov-Kuznetsov equations
	Abstract
	Keywords

	Introduction
	Preliminaries
	The procedure of LADM
	Numerical results
	Result and discussion
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


