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Fuzzy and fractional differential equations are used to model problems with uncertainty and memory. Using the fractional fuzzy
Laplace transformation we have solved the fuzzy fractional eigenvalue differential equation. By illustrative examples we have shown
the results.

1. Introduction

Fractional calculus is the generalization of the standard
calculus.That involves the derivative of functions to arbitrary
orders. But the fractional derivatives are nonlocal so they
provided the mathematical models to non-Markov processes
and memory processes. Fractional calculus has found many
applications in science, engineering, and so forth [1–15].
Fractional dynamics has been introduced and it can be one
of the models for the nonconservative systems. Fractional
Newtonian with the memory is modeled by heterogeneous
liquid [10]. Recently, fractional local derivative has been
studied and generalized so that it can be applied on fractals
[16]. Local fractional calculus and application in science and
engineering have been suggested on Cantor sets [17, 18].
The uncertainty is important subject in measurement of
quantities in physics. Fuzzy number can be used to show
the uncertainty in measurement. Fuzzy sets have been intro-
duced by Lotfi Zadeh in 1965 and since then they have been
used inmany applications [19–26]. As a consequence, there is
vast literature on the practical applications of fuzzy sets, while
theory has amoremodest coverage. Fuzzy fractional heat and
wave equation has been solved by using homotopy analysis
transform method [27]. This paper adopted fuzzy Laplace
transforms method to solve problems of fuzzy fractional
differential equations. Our motivation in this paper is due
to two reasons. Firstly, one of the important and interesting

transforms in the problems of fuzzy equations is Laplace
transforms. The fuzzy Laplace transform method solves
fuzzy fractional differential equations and fuzzy boundary
and initial value problems [28–35]. Secondly, this method
is practically the most important operational method and
also has advantage that it solves problems directly without
determining a general solution in the first step anddeveloping
nonhomogeneous differential equation in the second step.

This paper is arranged in the following manner.
After an introduction to the present work, in Section 2,

we recall some basic tools that involve the fractional calculus
and the fuzzy numbers. In Section 3, the fuzzy fractional
Laplace transformation is discussed. Finally, we present the
conclusions in Section 4.

2. Basic Tools

2.1. Fractional Calculus. Fractional calculus deals with gen-
eralizations of integer order derivatives integrals to arbitrary
order. In this section we present basic definitions and prop-
erties which will be used in the subsequent sections [1–13]. If
𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] and 𝛼 > 0, then
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(1)

are called the left sided Riemann-Liouville (RL), fractional
integral Riemann-Liouville, fractional derivative of order 𝛼,
and left sided Caputo fractional derivatives, respectively.

2.2. Fuzzy Numbers

Definition 1. A fuzzy number is a fuzzy set 𝑢 : R1 → 𝐼 =
[0, 1] such that

(i) 𝑢 is upper semicontinuous;
(ii) 𝑢(𝑥) = 0 outside some interval [𝑎, 𝑑];
(iii) there are real numbers 𝑏 and 𝑐, 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑, for

which

(1) 𝑢(𝑥) is monotonically increasing on [𝑎, 𝑏],
(2) 𝑢(𝑥) is monotonically decreasing on [𝑐, 𝑑],
(3) 𝑢(𝑥) = 1, 𝑏 ≤ 𝑥 ≤ 𝑐.

The set of all the fuzzy numbers (as given in Definition 1)
is denoted by 𝐸1 [19–26].

Definition 2. A fuzzy number V is a pair (V, V) of functions V(𝑟)
and V(𝑟), 0 ≤ 𝑟 ≤ 1, which satisfy the following requirements:

(i) V(𝑟) is a bounded monotonically increasing, left
continuous function on (0, 1] and right continuous at
0;

(ii) V(𝑟) is a bounded monotonically decreasing, left
continuous function on (0, 1] and right continuous at
0;

(iii) V(𝑟) ≤ V(𝑟), 0 ≤ 𝑟 ≤ 1.

A popular fuzzy number is the triangular fuzzy number
V = (V

𝑚
, V
𝑙
, V
𝑢
), where V

𝑚
denotes themodal value and the real

values V
𝑙
≥ 0 and V

𝑢
≥ 0 represent the left and right fuzziness,

respectively. The membership function of a triangular fuzzy
number is defined as follows:

𝜇V (𝑥) =

{{{{{
{{{{{
{

𝑥 − V
𝑚

V
𝑙

+ 1, V
𝑚
− V
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≤ 𝑥 ≤ V

𝑚
,

V
𝑚
− 𝑥

V
𝑢

+ 1, V
𝑚
≤ 𝑥 ≤ V

𝑚
+ V
𝑢
,

0, otherwise.

(2)

Its parametric form is

V (𝑟) = V
𝑚
+ V
𝑙
(𝑟 − 1) ,

V (𝑟) = V
𝑚
+ V
𝑢
(1 − 𝑟) , 0 ≤ 𝑟 ≤ 1.

(3)

Triangular fuzzy numbers are fuzzy numbers in 𝐿𝑅
representation, where the reference functions 𝐿 and 𝑅 are
linear.

3. Fuzzy Fractional Laplace Transformation

Initial value problems are considered in fractional differential
equations and solved by analytical and numerical methods
[12]. In recent works, dynamical processes are considered the
randomness anduncertainty. Stochastic and fuzzy differential
equations are mathematical model for such dynamical pro-
cesses, respectively. Suppose 𝛼 ∈ (0, 1], 𝐺 > 0 and 𝐹 is fuzzy
real number [24]. Then, the fractional fuzzy differential is

0
𝐷𝛼
𝑡
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 𝐺] , 𝑥

0
∈ 𝐹, (4)

where 𝑓[0, 𝐺]×𝐹 → 𝐹 is continuous in the case of 𝑓[0, 𝐺]×
𝑅 → 𝑅 and 𝑥

0
∈ 𝑅 so (4) reduces to a fractional differential

equation. And if one chooses 𝛼 = 1 in (4), we have a fuzzy
differential equation.

3.1. Fractional Differential Equations with Uncertainty. Let us
consider the fractional equation with fuzzy condition; that is,

0
𝐷𝛼
𝑡
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

lim
𝑡→0
+

𝑡1−𝛼𝑥 (𝑡) = 𝑥
0
∈ 𝐹 𝑡 ∈ (0, 𝐺] 𝑥

0
∈ 𝐹,

(5)

where 𝑓 : [0, 𝐺] × 𝐹 → 𝐹 is continuous [24]. For example,
if 𝜆 > 0 and 𝑓(𝑡, 𝑥) = 𝜆𝑥 + 𝑔(𝑡, 𝑥) with 𝑔 : [0, 𝐺] × 𝐹 → 𝐹
which is continuous, then the solution for (5) is

𝑥 (𝑡) = Γ (𝛼) 𝑡
𝛼−1𝐸
𝛼,𝛼
(𝜆𝑡𝛼) 𝑥

0

+ ∫
0

𝑡(𝑡 − 𝑠)
𝛼−1𝐸
𝛼,𝛼
(𝜆(𝑡 − 𝑠)

𝛼) 𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠,
(6)

where

𝐸
𝛼,𝛼
(𝑧) =

∞

∑
𝑘=0

𝑧𝛼

Γ (𝛼 (𝑘 + 1))
. (7)

As a pursuit of fractional fuzzy differential in the fol-
lowing section we generalized fuzzy Laplace transformation
method to fractional fuzzy Laplace method. Now, we solve
illustrated examples in the subsequence sections.

Example 3. Consider the following fuzzy fractional eigen-
value differential equations as

𝐷𝛼
0
+𝑦 (𝑥) + 𝜆𝑦 (𝑥) = 0

𝑥 ∈ 𝑅+ ∪ 0, 𝜆 ∈ 𝑅+, 𝛼 ∈ (0, 1)

𝐼1−𝛼
0
+ 𝑦 (0

+) = 𝛼RL 𝛼RL = (1 + 𝑟, 3 − 𝑟) ,

(8)

where 𝛼RL is the number of fuzzy triangular which is called
fuzzy Riemann-Liouville initial condition. Then, the above
equation is extended based on its lower and upper functions
as follows:

(𝐷𝛼
0
+𝑦 (𝑥) , 𝐷

𝛼

0
+𝑦 (𝑥)) + 𝜆 (𝑦 (𝑥) , 𝑦 (𝑥)) = 0

𝐼1−𝛼
0
+ (𝑦 (0

+) , 𝑦 (0+)) = (1 + 𝑟, 3 − 𝑟) .
(9)
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Now, we solve these equations according to the two fol-
lowing cases, using the generalized fractional fuzzy Laplace
transform (FFLT). The equation with lower functions is

𝐷𝛼
0
+𝑦 (𝑥, 𝑟) + 𝜆 (𝑦 (𝑥, 𝑟)) = 0

𝐼1−𝛼
0
+ (𝑦 (0

+, 𝑟)) = 1 + 𝑟
(10)

and with upper functions is

𝐷𝛼
0
+𝑦 (𝑥, 𝑟) + 𝜆𝑦 (𝑥, 𝑟) = 0

𝐼1−𝛼
0
+ 𝑦 (0

+, 𝑟) = 3 − 𝑟.
(11)

Now, we use the FFLT for solving (9):

𝐷𝛼
0
+𝑦 (𝑥, 𝑟) + 𝜆𝑦 (𝑥, 𝑟) = 0

𝐼1−𝛼
0
+ (𝑦 (0

+, 𝑟)) = 1 + 𝑟.
(12)

After using Laplace transform on (12), we get

𝑆𝛼𝑌 (𝑠, 𝑟) − 𝐼
1−𝛼

0
+ 𝑦 (0

+, 𝑟) + 𝜆𝑌 (𝑠, 𝑟) = 0,

(𝑆𝛼 + 𝜆)𝑌 (𝑠, 𝑟) = (1 + 𝑟) .
(13)

Thus, we have

𝑌 (𝑠, 𝑟) =
(1 + 𝑟)

𝑆𝛼 + 𝜆
. (14)

Taking the fuzzy inverse Laplace transform we obtain

𝑌 (𝑥, 𝑟) = (1 + 𝑟) ⋅ exp (−𝜆𝑥𝛼) . (15)

In a similar manner we are led to

𝑌 (𝑥, 𝑟) = (3 − 𝑟) ⋅ exp (−𝜆𝑥𝛼) . (16)

Therefore, the general solution will be

𝜓 = (𝑌 (𝑥, 𝑟) , 𝑌 (𝑥, 𝑟)) . (17)

In Figures 1, 2, 3, and 4 we have plotted the solutions for
the case of fractional, fractional fuzzy, and fuzzy, respectively.

Example 4. Let us consider the following fuzzy fractional
differential equation as

𝐷𝛼
0
+𝑦 (𝑥) + 𝜆𝑦 (𝑥) = 0 𝑥 ∈ 𝑅+ ∪ 0, 𝜆 ∈ 𝑅+, 𝛼 ∈ (0, 1)

𝑦 (0) = (1 − 𝑟, 3 + 𝑟) ,

(18)

where
0
𝐷
𝛼

𝑥
= 𝐷𝛼
0
+ and (18) is called fuzzy Caputo initial

condition. Then, (18) will be equivalent to

𝐷𝛼
0
+𝑦 (𝑥, 𝑟) + 𝜆𝑦 (𝑥, 𝑟) = 0 (1)

𝑦 (0, 𝑟) = 1 + 𝑟,
(19)

𝐷𝛼
0
+ (𝑦 (𝑥, 𝑟)) + 𝜆𝑦 (𝑥, 𝑟) = 0 (2)

𝑦 (0, 𝑟) = 3 − 𝑟.
(20)
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Figure 1: 𝛼 = 0.3 and 𝜆 = 2.
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Figure 2: 𝛼 = 0.8 and 𝜆 = 2.
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Figure 3: 𝛼 = 0.1 and 𝜆 = 2.
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Figure 4: 𝛼 = 1 and 𝜆 = 2.

Applying Laplace transform on (19), we obtain

𝑆𝛼𝑌 (𝑠, 𝑟) − 𝑆
𝛼−1𝑌 (0, 𝑟) + 𝜆𝑌 (𝑠, 𝑟) = 0,

(𝑆𝛼 + 𝜆)𝑌 (𝑠, 𝑟) − 𝑆
𝛼−1

(1 + 𝑟) + 𝜆𝑦 (𝑠, 𝑟) = (1 + 𝑟) .
(21)

In view of (21) we arrive at

𝑌 (𝑠, 𝑟) =
𝑆𝛼−1 (1 + 𝑟)

𝑆𝛼 + 𝜆
. (22)

Also, by taking inverse Laplace transform of (22) we
deduce that

𝑦 (𝑥, 𝑟) = (1 + 𝑟) 𝐸
𝛼,1
(−𝜆𝑥𝛼) . (23)

Likewise, by doing the same calculation (20) will be

𝑦 (𝑥, 𝑟) = (3 − 𝑟) 𝐸
𝛼,1
(−𝜆𝑥𝛼) . (24)

Therefore, we have the final solution

𝜓 = (𝑌 (𝑥, 𝑟) , 𝑌 (𝑥, 𝑟)) . (25)

In Figures 5, 6, 7, and 8 we have sketched the solutions for
the case of fractional, fractional fuzzy, and fuzzy, respectively.

Example 5. Consider the following fuzzy fractional differen-
tial equations with fuzzy Caputo initial condition as

𝐷2𝑦 (𝑥) + 𝜆𝐷
𝛼

0
+𝑦 (𝑥) = 0,

𝑥 ∈ 𝑅+ ∪ 0, 𝜆 ∈ 𝑅+, 𝛼 ∈ (0, 1)

𝑦 (0) = (1 − 𝑟, 3 + 𝑟)

𝑦󸀠 (0) = (4 + 𝑟, 6 − 𝑟) .

(26)
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Figure 5: 𝛼 = 0.3 and 𝜆 = 2.
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Figure 6: 𝛼 = 0.8 and 𝜆 = 2.

So (26) will become two equations with lower and upper
functions such as

𝐷2𝑦 (𝑥, 𝑟) + 𝜆
𝑙𝐷𝛼
0
+𝑦 (𝑥, 𝑟) = 0

𝑦 (0, 𝑟) = 1 + 𝑟

𝑦󸀠 (0, 𝑟) = 4 + 𝑟,

𝐷2𝑦 (𝑥, 𝑟) + 𝜆
𝑙𝐷𝛼
0
+𝑦 (𝑥, 𝑟) = 0

𝑦 (0, 𝑟) = 3 − 𝑟

𝑦󸀠 (0, 𝑟) = 6 − 𝑟.

(27)
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Figure 7: 𝛼 = 0.1 and 𝜆 = 2.
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Figure 8: 𝛼 = 1 and 𝜆 = 2.

Applying Laplace transform and inverse Laplace trans-
form on (27) one is led to

𝑦 (𝑥, 𝑟) = (1 + 𝑟) 𝐸
2−𝛼,1

(−𝜆𝑥2−𝛼)

+ (1 + 𝑟) 𝑥
2−𝛼𝐸
2−𝛼,3−𝛼

(−𝜆𝑥2−𝛼)

+ (4 + 𝑟) 𝑥𝐸
2−𝛼,2

(−𝜆𝑥2−𝛼) ,

𝑦 (𝑥, 𝑟) = (3 − 𝑟) 𝐸
2−𝛼,1

(−𝜆𝑥2−𝛼)

+ (3 − 𝑟) 𝑥
2−𝛼𝐸
2−𝛼,3−𝛼

(−𝜆𝑥2−𝛼)

+ (6 − 𝑟) 𝑥𝐸
2−𝛼,2

(−𝜆𝑥2−𝛼) .

(28)
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Figure 9: 𝛼 = 0.3 and 𝜆 = 2.
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Figure 10: 𝛼 = 0.8 and 𝜆 = 2.

Therefore, the general solution will be as follows:

𝜓 = (𝑌 (𝑥, 𝑟) , 𝑌 (𝑥, 𝑟)) . (29)

Figures 9, 10, 11, and 12 show the graphs of the solutions
for the cases of fractional, Fuzzy fractional, and fuzzy,
respectively.

Example 6. Suppose the following fuzzy fractional differen-
tial equation with fuzzy initial Riemann-Liouville condition:

𝐷𝛼
0
+𝑦 (𝑥) + 𝜆𝑦 (𝑥) = 𝐴 𝑥 ∈ 𝑅+ ∪ 0, 𝜆, 𝐴 ∈ 𝑅+

𝐼1−𝛼
0
+ 𝑦 (0

+) = (1 + 𝑟, 3 − 𝑟) .
(30)

So its lower and upper functions equations are

𝐷𝛼
0
+𝑦 (𝑥, 𝑟) + 𝜆𝑦 (𝑥, 𝑟) = 𝐴 (1)

𝐼1−𝛼
0
+ 𝑦 (0

+, 𝑟) = 1 + 𝑟,

𝐷𝛼
0
+𝑦 (𝑥, 𝑟) + 𝜆𝑦 (𝑥, 𝑟) = 𝐴 (2)

𝐼1−𝛼
0
+ 𝑦 (0

+, 𝑟) = 3 − 𝑟.

(31)
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Figure 11: 𝛼 = 0.3 and 𝜆 = 2.
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Figure 12: 𝛼 = 1 and 𝜆 = 2.

Using the same manner we get the solutions

𝑦 (𝑥, 𝑟) = (1 + 𝑟)
1

𝑥1−𝛼
𝐸
𝛼,𝛼
(−𝜆𝑥𝛼) + 𝐴𝑥𝛼𝐸

𝛼,𝛼+1
(−𝜆𝑥𝛼) ,

𝑦 (𝑥, 𝑟) = (3 − 𝑟)
1

𝑥1−𝛼
𝐸
𝛼,𝛼
(−𝜆𝑥𝛼) + 𝐴𝑥𝛼𝐸

𝛼,𝛼+1
(−𝜆𝑥𝛼) .

(32)

Finally, we obtain general solution

𝜓 = (𝑌 (𝑥, 𝑟) , 𝑌 (𝑥, 𝑟)) . (33)

Figures 13, 14, 15, and 16 indicate the graphs of the
solutions for the cases of fractional, fuzzy fractional, and
fuzzy, respectively.

Example 7. Let us consider the fuzzy fractional differential
equation involving fuzzy Riemann-Liouville initial condi-
tion:

𝐷𝛼
0
+𝑦 (𝑥) + 𝜆𝑦 (𝑥) = (4 + 𝑟, 6 − 𝑟)

𝛼 ∈ (0, 1) , 𝑥 ∈ 𝑅
+ ∪ 0, 𝜆 ∈ 𝑅+

𝐼1−𝛼
0
+ 𝑦 (0

+) = (1 + 𝑟, 3 − 𝑟) .

(34)
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Figure 13: 𝛼 = 0.3 and 𝜆 = 2.
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Figure 14: 𝛼 = 0.8 and 𝜆 = 2.
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Figure 15: 𝛼 = 0.3 and 𝜆 = 2.
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Figure 16: 𝛼 = 1 and 𝜆 = 2.
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Figure 17: 𝛼 = 0.3 and 𝜆 = 2.

Equation (34) will be system of two equations such as

𝐷𝛼
0
+𝑦 (𝑥, 𝑟) + 𝜆𝑦 (𝑥, 𝑟) = (4 + 𝑟) (1)

𝐼1−𝛼
0
+ 𝑦 (0

+, 𝑟) = 1 + 𝑟,

𝐷𝛼
0
+𝑦 (𝑥, 𝑟) + 𝜆𝑦 (𝑥, 𝑟) = 6 − 𝑟 (2)

𝐼1−𝛼
0
+ 𝑦 (0

+, 𝑟) = 3 − 𝑟.

(35)

The solutions for (34) are

𝑦 (𝑥, 𝑟) = (1 + 𝑟)
1

𝑥1−𝛼
𝐸
𝛼,𝛼
(−𝜆𝑥𝛼)

+ (4 + 𝑟) 𝑥
𝛼𝐸
𝛼,𝛼+1

(−𝜆𝑥𝛼) ,

𝑦 (𝑥, 𝑟) = (3 − 𝑟)
1

𝑥1−𝛼
𝐸
𝛼,𝛼
(−𝜆𝑥𝛼)

+ (6 − 𝑟) 𝑥
𝛼𝐸
𝛼,𝛼+1

(−𝜆𝑥𝛼) .

(36)

0
0.5

1

0

0.5

1

1.5

2

2.5

3

3.5

4

x

r

−2.5

−3

−3.5

−4

𝜓

Figure 18: 𝛼 = 0.8 and 𝜆 = 2.
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Figure 19: 𝛼 = 0.3 and 𝜆 = 2.

And the general solution will be as

𝜓 = (𝑌 (𝑥, 𝑟) , 𝑌 (𝑥, 𝑟)) . (37)

Figures 17, 18, 19, and 20 present the graphs of the
solutions for the cases of fractional, fuzzy fractional, and
fuzzy, respectively.

4. Conclusion

In this work, we have generalized the fractional Laplace trans-
formation to the fuzzy fractional Laplace transformation.
Then,we have solved the fractional fuzzy differential equation
using suggested fuzzy fractional Laplace transformation.
Riemann-Liouville and Caputo fractional derivatives were
used in the fractional fuzzy differential equations. Moreover,
Liouville and Caputo fractional initial condition is chosen in
the example to show the difference. The illustrated graphs
present the difference between fuzzy, fractional, and ordinary
differential equations.
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Figure 20: 𝛼 = 1 and 𝜆 = 2.
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