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Maxwell’s equations on Cantor sets are derived from the local fractional vector calculus. It is shown that Maxwell’s equations on
Cantor sets in a fractal bounded domain give efficiency and accuracy for describing the fractal electric and magnetic fields. Local
fractional differential forms of Maxwell’s equations on Cantor sets in the Cantorian and Cantor-type cylindrical coordinates are
obtained. Maxwell’s equations on Cantor set with local fractional operators are the first step towards a unified theory of Maxwell’s
equations for the dynamics of cold dark matter.

1. Introduction

Nondifferentiability, complexity, and similarity represent the
basic properties of the nature. Fractals [1] are the basic
characteristics of nature, which are that fractal geometry
of substances generalizes to noninteger dimensions. Micro-
physics reveals the fractal behaviors of matter distribution in
the universe [2] and soft materials [3].

Fractal time was used to describe the transport of charges
and defects in the condensedmatter [4]. In fractal space-time,
the geometric analogue of relativistic quantum mechanics
was presented in [5–8]. In fractal-Cantorian space-time
Ω
4𝛼

⊂ Ω
4 [9, 10], the unified field theory, quantum physics,

cosmology, and chaotic systems were discussed in [11–13].
Based on the fractal distribution of charged particles, the

electric and magnetic fields in time-space Ω3𝛼+1 ⊂ Ω
4 were

developed in [14] and fractional Maxwell’s equations were
proposed in [15]. In [16, 17], the concept of static fractional

electric potential was developed. Recently, based on the
Hausdorff derivative, fractal continuum electrodynamics in
time-space Ω

4𝛼
⊂ Ω
4 was proposed [18]. The fractional

differential form of Maxwell’s equations on fractal sets was
suggested in [19]. In [20], theMaxwell equations of fractional
electrodynamics in time-space Ω3+𝛼 ⊂ Ω

4 were considered.
The Maxwell equations on anisotropic fractal media in time-
space Ω3𝛼+1 ⊂ Ω

4 were developed in [21].
The local fractional calculus theory [22, 23] was applied

to model some dynamics systems with nondifferentiable
characteristics. In [22–26], the heat-conduction equation
on Cantor sets was considered. In [27], the Navier-Stokes
equations on Cantor sets based on local fractional vector
calculus were proposed. Helmholtz and diffusion equations
via local fractional vector calculus were reported in [28]. The
Fokker-Planck equation with local fractional space derivative
was suggested in [29]. In [30], Lagrangian and Hamiltonian
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mechanics with local fractional space derivative was pre-
sented.Themeasuring structures of time in fractal, fractional,
classical, and discrete electrodynamics are shown in Figure 1.

The aim of this paper is to structure Maxwell’s equations
on Cantor sets from the local fractional calculus theory [23,
27, 28] point of view. This paper is structured as follows. In
Section 2, we introduce the basic definitions and theorems
for local fractional vector calculus. In Section 3, Maxwell’s
equations onCantor sets in the local fractional vector integral
form are presented.Maxwell’s equations on Cantor sets in the
Cantorian and Cantor-type cylindrical coordinates are given
in Section 4. Finally, Section 5 is devoted to conclusions.

2. Fundaments

In this section, we recall the basic definitions and theorems
for local fractional vector calculus, which are used through-
out the paper.

Local fractional gradient of the scale function 𝜙 is defined
as [23, 27]

∇
𝛼
𝜙 = lim
𝑑𝑉
(𝛾)
→0

(
1

𝑑𝑉(𝛾)
∯
𝑆
(𝛽)

𝜙𝑑S(𝛽)) , (1)

where S(𝛽) is its bounding fractal surface,𝑉 is a small fractal
volume enclosing 𝑃, and the local fractional surface integral
is given by [23, 27, 28]

∬𝑢(𝑟
𝑃
) 𝑑S(𝛽) = lim

𝑁→∞

𝑁

∑

𝑃=1

𝑢 (𝑟
𝑃
)n
𝑃
Δ𝑆
(𝛽)

𝑃
, (2)

with 𝑁 elements of area with a unit normal local fractional
vector n

𝑃
, Δ𝑆(𝛽)
𝑃

→ 0 as𝑁 → ∞ for 𝛾 = (3/2)𝛽 = 3𝛼, and
∇
𝛼 is denoted as the local fractional Laplace operator [22, 23].
The local fractional divergence of the vector function u is

defined through [23]

∇
𝛼
⋅ u = lim
𝑑𝑉
(𝛾)
→0

(
1

𝑑𝑉(𝛾)
∯
𝑆
(2𝛼)

u ⋅ 𝑑S(𝛽)) , (3)

where the local fractional surface integral is suggested by [23,
27, 28]

∬ u (𝑟
𝑃
) ⋅ 𝑑S(𝛽) = lim

𝑁→∞

𝑁

∑

𝑃=1

u (𝑟
𝑃
) ⋅ n
𝑃
Δ𝑆
(𝛽)

𝑃
, (4)

with 𝑁 elements of area with a unit normal local fractional
vector n

𝑃
, Δ𝑆(𝛽)
𝑃

→ 0 as𝑁 → ∞ for 𝛾 = (3/2)𝛽 = 3𝛼.
The local fractional curl of the vector function u [23] is

defined as follows:

∇
𝛼
× u = lim

𝑑𝑆
(𝛽)
→0

(
1

𝑑𝑆(𝛽)
∮
𝑙
(𝛼)

u ⋅ 𝑑l(𝛼))n
𝑃
, (5)

where the local fractional line integral of the function u along
a fractal line 𝑙𝛼 is given by [23]

∫
𝑙
(𝛼)

u (𝑥
𝑃
, 𝑦
𝑃
, 𝑧
𝑃
) ⋅ 𝑑l(𝛼)

= lim
𝑁→∞

𝑁

∑

𝑃=1

u (𝑥
𝑃
, 𝑦
𝑃
, 𝑧
𝑃
) ⋅ Δl(𝛼)
𝑃
,

(6)
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Figure 1: Graph for comparison of the measuring structures of time
in fractal, fractional, and classical electrodynamics.

with the elements of line Δl(𝛼)
𝑃

requiring that all |Δ𝑙(𝛼)
𝑃
| → 0

as𝑁 → ∞ and 𝛽 = 2𝛼.
The local fractional Gauss theorem of the fractal vector

field states that [23, 27]

∭
𝑉
(𝛾)

∇
𝛼
⋅ u𝑑𝑉(𝛾) = ∯

𝑆
(𝛽)

u ⋅ 𝑑S(𝛽), (7)

where the local fractional volume integral of the function u is
written as [23]

∭ u (𝑟
𝑃
) 𝑑𝑉
(𝛾)

= lim
𝑁→∞

𝑁

∑

𝑃=1

u (𝑟
𝑃
) Δ𝑉
(𝛾)

𝑃
, (8)

with the elements of volume Δ𝑉(𝛾)
𝑃

→ 0 as 𝑁 → ∞ and
𝛾 = (3/2)𝛽 = 3𝛼.

The local fractional Stokes theorem of the fractal field
states that [23, 27]

∮
𝑙
(𝛼)

u ⋅ 𝑑l(𝛼) = ∬
𝑆
(𝛽)

(∇
𝛼
× u) ⋅ 𝑑S(𝛽). (9)

The Reynolds transport theorem of the local fractional vector
field states that [27]
𝐷
𝛼

𝐷𝑡𝛼
∭
𝑉
(𝛾)

𝐹 (𝑥, 𝑡) 𝑑𝑉
(𝛾)

= ∭
𝑉
(𝛾)

𝜕
𝛼

𝜕𝑡𝛼
𝐹 (𝑥, 𝑡) 𝑑𝑉

(𝛾)
+∯
𝑆
(𝛽)

𝐹 (𝑥, 𝑡) 𝜐 ⋅ 𝑑S(𝛽),
(10)

where 𝜐 is the fractal fluid velocity.

3. Local Fractional Integral Forms of
Maxwell’s Equations on Cantor Sets

According to fractional complex transform method [31], the
fact that the classical differential equations always transform
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into the local fractional differential equations leads to the idea
of yieldingMaxwell’s equations on Cantor sets using the local
fractional vector calculus.

3.1. Charge Conservations in Local Fractional Field. Let us
consider the total charge, which is described as follows:

𝑄 = ∭
𝑉
(𝛾)

𝜌 (𝑟, 𝑡) 𝑑𝑉
(𝛾)
, (11)

and the total electrical current is as follows

𝐼 = ∬
𝑆
(𝛽)

𝐽 (𝑟, 𝑡) ⋅ 𝑑S(𝛽), (12)

where 𝜌(𝑟, 𝑡) is the fractal electric charge density and 𝐽(𝑟, 𝑡) is
the fractal electric current density.

The Reynolds transport theorem in the fractal field gives

𝐷
𝛼
𝑄

𝐷𝑡𝛼
=

𝐷
𝛼

𝐷𝑡𝛼
∭
𝑉
(𝛾)

𝜌 (𝑟, 𝑡) 𝑑𝑉
(𝛾)

= ∭
𝑉
(𝛾)

𝜕
𝛼
𝜌 (𝑟, 𝑡)

𝜕𝑡𝛼
𝑑𝑉
(𝛾)

+∯
𝑆
(𝛽)

𝜌 (𝑟, 𝑡) 𝜐 ⋅ 𝑑S(𝛽)

= 0,

(13)

which leads to

∭
𝑉
(𝛾)

𝜕
𝛼
𝜌 (𝑟, 𝑡)

𝜕𝑡𝛼
𝑑𝑉
(𝛾)

+∯
𝑆
(𝛽)

𝜌 (𝑟, 𝑡) 𝜐 ⋅ 𝑑S(𝛽) = 0. (14)

From (14), we have

∭
𝑉
(𝛾)

𝜕
𝛼
𝜌 (𝑟, 𝑡)

𝜕𝑡𝛼
𝑑𝑉
(𝛾)

+∯
𝑆
(𝛽)

𝐽 (𝑟, 𝑡) ⋅ 𝑑S(𝛽)

= ∭
𝑉
(𝛾)

(
𝜕
𝛼
𝜌 (𝑟, 𝑡)

𝜕𝑡𝛼
+ ∇
𝛼
⋅ 𝐽 (𝑟, 𝑡)) 𝑑𝑉

(𝛾)

= 0,

(15)

where 𝐽 = 𝜌𝜐 represents the current density in the fractal
field.

Hence, from (15), we get

𝜕
𝛼
𝜌 (𝑟, 𝑡)

𝜕𝑡𝛼
+ ∇
𝛼
⋅ 𝐽 (𝑟, 𝑡) = 0. (16)

By analogy with electric charge density in the fractal
field, we obtain the conservation of fractal magnetic charge,
namely,

𝜕
𝛼
𝜌
𝑚
(𝑟, 𝑡)

𝜕𝑡𝛼
+ ∇
𝛼
⋅ 𝐽
𝑚
(𝑟, 𝑡) = 0, (17)

where 𝜌
𝑚
(𝑟, 𝑡) is the fractal magnetic charge density and

𝐽
𝑚
(𝑟, 𝑡) is the fractal magnetic current density in the fractal

field.

3.2. Formulation of Maxwell’s Equations on Cantor Sets. We
now derive Maxwell’s equations on Cantor set based on the
local fractional vector calculus.

3.2.1. Gauss’s Law for the Fractal Electric Field. From (3), the
electric charge density can be written as

∇
𝛼
⋅ 𝐷 = lim

𝑑𝑉
(𝛾)
→0

(
1

𝑑𝑉(𝛾)
∯
𝑆
(2𝛼)

𝐷 ⋅ 𝑑S(𝛽)) = 𝜌, (18)

where𝐷 is electric displacement in the fractal electric field.
From (7), (18) becomes

∭
𝑉
(𝛾)

∇
𝛼
⋅ 𝐷 𝑑𝑉

(𝛾)
= ∯
𝑆
(𝛽)

𝐷 ⋅ 𝑑S(𝛽),

∭
𝑉
(𝛾)

∇
𝛼
⋅ 𝐷 𝑑𝑉

(𝛾)
= ∭

𝑉
(𝛾)

𝜌 𝑑𝑉
(𝛾)
.

(19)

Hence, we obtain Gauss’s law for the fractal electric field
in the form

∯
𝑆
(𝛽)

𝐷 ⋅ 𝑑S(𝛽) = ∭
𝑉
(𝛾)

𝜌𝑑𝑉
(𝛾)
. (20)

3.2.2. Ampere’s Law in the Fractal Magnetic Field. Mathe-
matically, Ampere’s law in the fractal magnetic field can be
suggested as [23]

∮
𝑙
(𝛼)

𝐻 ⋅ 𝑑l(𝛼) = 𝐼, (21)

where𝐻 is the magnetic field strength in the fractal field.
The current density in the fractal field can be written as

∇
𝛼
× 𝐻 = lim

𝑑𝑆
(𝛽)
→0

(
1

𝑑𝑆(𝛽)
∮
𝑙
(𝛼)

𝐻 ⋅ 𝑑l(𝛼))n
𝑃
= 𝐽, (22)

which leads to

∮
𝑙
(𝛼)

𝐻 ⋅ 𝑑l(𝛼) = ∬
𝑆
(𝛽)

(∇
𝛼
× 𝐻) ⋅ 𝑑S(𝛽),

∬
𝑆
(𝛽)

𝐽 ⋅ 𝑑S(𝛽) = ∬
𝑆
(𝛽)

(∇
𝛼
× 𝐻) ⋅ 𝑑S(𝛽).

(23)

The total current in the fractal fried reads

𝐼 = ∬
𝑆
(𝛽)

(𝐽
𝑎
+ 𝐽
𝑏
) ⋅ 𝑑S(𝛽), (24)

where 𝐽
𝑎
is the conductive current and

𝐽
𝑏
=
𝜕
𝛼
𝐷

𝜕𝑡𝛼
, (25)

which satisfies the following condition:

𝐼
𝑏
= ∯
𝑆
(𝛽)

𝐽
𝑏
⋅ 𝑑S(𝛽)

= ∯
𝑆
(𝛽)

𝜕
𝛼

𝜕𝑡𝛼
𝐷 ⋅ 𝑑S(𝛽)

=
𝜕
𝛼

𝜕𝑡𝛼
∯
𝑆
(𝛽)

𝐷 ⋅ 𝑑S(𝛽).

(26)

Hence, Ampere’s law in the fractal field is expressed as
follows:

∮
𝑙
(𝛼)

𝐻 ⋅ 𝑑l(𝛼) = ∬
𝑆
(𝛽)

(𝐽
𝑎
+
𝜕
𝛼
𝐷

𝜕𝑡𝛼
) ⋅ 𝑑S(𝛽). (27)
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3.2.3. Faraday’s Law in the Fractal Electric Field. Mathemat-
ically, Faraday’s law in the local fractional field is expressed
as

𝐸 = −
𝜕
𝛼
𝜑

𝜕𝑡𝛼
, (28)

where 𝜑 is the magnetic potential in the fractal field and 𝐸 is
the electrical field strength in the fractal field.

From (28), we have

∇
𝛼
× 𝐸 = lim

𝑑𝑆
(𝛽)
→0

(
1

𝑑𝑆(𝛽)
∮
𝑙
(𝛼)

𝐸 ⋅ 𝑑l(𝛼))n
𝑃

= −
𝜕
𝛼

𝜕𝑡𝛼
(∇
𝛼
× 𝜑) = −

𝜕
𝛼
𝐵

𝜕𝑡𝛼
,

(29)

where 𝐵 is the magnetic induction in the fractal field.
In view of (9), we rewrite (29) as

∮
𝑙
(𝛼)

𝐸 ⋅ 𝑑l(𝛼) = ∬
𝑆
(𝛽)

(∇
𝛼
× 𝐸) ⋅ 𝑑S(𝛽),

∬
𝑆
(𝛽)

(∇
𝛼
× 𝐸) ⋅ 𝑑S(𝛽) = ∬

𝑆
(𝛽)

(−
𝜕
𝛼
𝐵

𝜕𝑡𝛼
) ⋅ 𝑑S(𝛽)

= −
𝜕
𝛼

𝜕𝑡𝛼
∬
𝑆
(𝛽)

𝐵 ⋅ 𝑑S(𝛽).

(30)

So, from (30), Faraday’s law in the fractal field reads as

∮
𝑙
(𝛼)

𝐸 ⋅ 𝑑l(𝛼) + 𝜕
𝛼

𝜕𝑡𝛼
∬
𝑆
(𝛽)

𝐵 ⋅ 𝑑S(𝛽) = 0. (31)

3.2.4. Magnetic Gauss’s Law for the Fractal Magnetic Field.
From (3), we derive the local fractional divergence of the
magnetic induction in the fractal field, namely,

∇
𝛼
⋅ 𝐵 = lim
𝑑𝑉
(𝛾)
→0

(
1

𝑑𝑉(𝛾)
∯
𝑆
(2𝛼)

𝐵 ⋅ 𝑑S(𝛽)) = 0. (32)

Furthermore, the magnetic Gauss’ law for the fractal
magnetic field reads as

∯
𝑆
(𝛽)

𝐵 ⋅ 𝑑S(𝛽) = 0. (33)

3.2.5. The Constitutive Equations in the Fractal Field. Similar
to the constitutive relations in fractal continuous medium
mechanics [23], the constitutive relationships in fractal elec-
tromagnetic can be written as

𝐷 = 𝜀
𝑓
𝐸,

𝐻 = 𝜇
𝑓
𝐵,

(34)

where 𝜀
𝑓
is the fractal dielectric permittivity and 𝜇

𝑓
is the

fractal magnetic permeability.

4. Local Fractional Differential Forms of
Maxwell’s Equations on Cantor Sets

In this section, we investigate the local fractional differential
forms of Maxwell’s equations on Cantor sets.

The Cantor-type cylindrical coordinates can be written as
follows [26]:

𝑥
𝛼
= 𝑅
𝛼cos
𝛼
𝜃
𝛼
,

𝑦
𝛼
= 𝑅
𝛼sin
𝛼
𝜃
𝛼
,

𝑧
𝛼
= 𝑧
𝛼
,

(35)

with 𝑅 ∈ (0, +∞), 𝑧 ∈ (−∞, +∞), 𝜃 ∈ (0, 𝜋], and 𝑥2𝛼 + 𝑦
2𝛼

=

𝑅
2𝛼.
Making use of (35), we have

∇
𝛼
⋅ r = 𝜕

𝛼
𝑟
𝑅

𝜕𝑅𝛼
+

1

𝑅𝛼

𝜕
𝛼
𝑟
𝜃

𝜕𝜃𝛼
+

𝑟
𝑅

𝑅𝛼
+
𝜕
𝛼
𝑟
𝑧

𝜕𝑧𝛼
,

∇
𝛼
× r = (

1

𝑅𝛼

𝜕
𝛼
𝑟
𝜃

𝜕𝜃𝛼
−
𝜕
𝛼
𝑟
𝜃

𝜕𝑧𝛼
) e𝛼
𝑅

+ (
𝜕
𝛼
𝑟
𝑅

𝜕𝑧𝛼
−
𝜕
𝛼
𝑟
𝑧

𝜕𝑅𝛼
) e𝛼
𝜃

+ (
𝜕
𝛼
𝑟
𝜃

𝜕𝑅𝛼
+

𝑟
𝑅

𝑅𝛼
−

1

𝑅𝛼

𝜕
𝛼
𝑟
𝑅

𝜕𝜃𝛼
) e𝛼
𝑧
,

(36)

where

r = 𝑅
𝛼cos
𝛼
𝜃
𝛼e𝛼
1
+ 𝑅
𝛼sin
𝛼
𝜃
𝛼e𝛼
2
+ 𝑧
𝛼e𝛼
3

= 𝑟
𝑅
e𝛼
𝑅
+ 𝑟
𝜃
e𝛼
𝜃
+ 𝑟
𝑧
e𝛼
𝑧
.

(37)

From (7) and (20), the local fractional differential form of
Gauss’s law for the fractal electric field is expressed by

∇
𝛼
⋅ 𝐷 = 𝜌, (38)

which leads to

𝜕
𝛼
𝐷
𝑅

𝜕𝑅𝛼
+

1

𝑅𝛼

𝜕
𝛼
𝐷
𝜃

𝜕𝜃𝛼
+
𝐷
𝑅

𝑅𝛼
+
𝜕
𝛼
𝐷
𝑧

𝜕𝑧𝛼
= 𝜌 (𝑅, 𝜃, 𝑧, 𝑡) , (39)

where𝐷 = 𝐷
𝑅
e𝛼
𝑅
+ 𝐷
𝜃
e𝛼
𝜃
+ 𝐷
𝑧
e𝛼
𝑧
.

In view of (9) and (27), we can present the local fractional
differential forms of Ampere’s law in the fractalmagnetic field

∇
𝛼
× 𝐻 = 𝐽

𝑎
+
𝜕
𝛼
𝐷

𝜕𝑡𝛼
,

(
1

𝑅𝛼

𝜕
𝛼
𝐻
𝜃

𝜕𝜃𝛼
−
𝜕
𝛼
𝐻
𝜃

𝜕𝑧𝛼
) e𝛼
𝑅
+ (

𝜕
𝛼
𝐻
𝑅

𝜕𝑧𝛼
−
𝜕
𝛼
𝐻
𝑧

𝜕𝑅𝛼
) e𝛼
𝜃

+ (
𝜕
𝛼
𝐻
𝜃

𝜕𝑅𝛼
+
𝐻
𝑅

𝑅𝛼
−

1

𝑅𝛼

𝜕
𝛼
𝐻
𝑅

𝜕𝜃𝛼
) e𝛼
𝑧

= 𝐽
𝑎
(𝑅, 𝜃, 𝑧, 𝑡) +

𝜕
𝛼
𝐷 (𝑅, 𝜃, 𝑧, 𝑡)

𝜕𝑡𝛼
,

(40)

where𝐻 = 𝐻
𝑅
e𝛼
𝑅
+ 𝐻
𝜃
e𝛼
𝜃
+ 𝐻
𝑧
e𝛼
𝑧
.
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Using (9) and (31), the local fractional differential forms
of Faraday’s law in the fractal electric field can be written as

∇
𝛼
× 𝐸 = −

𝜕
𝛼
𝐵

𝜕𝑡𝛼
,

(
1

𝑅𝛼

𝜕
𝛼
𝐸
𝜃

𝜕𝜃𝛼
−
𝜕
𝛼
𝐸
𝜃

𝜕𝑧𝛼
) e𝛼
𝑅
+ (

𝜕
𝛼
𝐸
𝑅

𝜕𝑧𝛼
−
𝜕
𝛼
𝐸
𝑧

𝜕𝑅𝛼
) e𝛼
𝜃

+ (
𝜕
𝛼
𝐸
𝜃

𝜕𝑅𝛼
+
𝐸
𝑅

𝑅𝛼
−

1

𝑅𝛼

𝜕
𝛼
𝐸
𝑅

𝜕𝜃𝛼
) e𝛼
𝑧

= −
𝜕
𝛼
𝐵 (𝑅, 𝜃, 𝑧, 𝑡)

𝜕𝑡𝛼
,

(41)

where 𝐸 = 𝐸
𝑅
e𝛼
𝑅
+ 𝐸
𝜃
e𝛼
𝜃
+ 𝐸
𝑧
e𝛼
𝑧
.

From (7) and (33), the local fractional differential forms
of the magnetic Gauss law for the fractal magnetic field read
as follows:

∇
𝛼
⋅ 𝐵 = 0,

𝜕
𝛼
𝐵
𝑅

𝜕𝑅𝛼
+

1

𝑅𝛼

𝜕
𝛼
𝐵
𝜃

𝜕𝜃𝛼
+
𝐵
𝑅

𝑅𝛼
+
𝜕
𝛼
𝐵
𝑧

𝜕𝑧𝛼
= 0,

(42)

where 𝐵 = 𝐵
𝑅
e𝛼
𝑅
+ 𝐵
𝜃
e𝛼
𝜃
+ 𝐵
𝑧
e𝛼
𝑧
.

5. Conclusions

In this work, we proposed the local fractional approach
for Maxwell’s equations on Cantor sets based on the local
fractional vector calculus. Employing the local fractional
divergence and curl of the vector function, we deduced
Maxwell’s equations on Cantor sets. The local fractional
differential forms of Maxwell’s equations on Cantor sets in
the Cantorian and Cantor-type cylindrical coordinates were
discussed. Finding a formulation of Maxwell’s equations on
Cantor set within local fractional operators is the first step
towards generalizing a simple field equation which allows the
unification ofMaxwell’s equations to the standardmodel with
the dynamics of cold darkmatter.Wenoticed that the classical
case was debated in [32].
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