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ABSTRACT 

 

 

FREDHOLM TYPE INTEGRAL EQUATIONS 

 

 

 

AL RETHA, Ahmed 

M.Sc., Department of Mathematics and Computer Science  

Supervisor: Prof. Dr. Kenan TAŞ 

 

April 2015, 55 pages 

 

 

 

The aim of this thesis is to provide a comprehensive study on Fredholm Integral 

Equations and the methods to find exact solutions. We also seek to present some 

effective methods to find the exact solutions for linear and nonlinear Fredholm 

Integral Equations. Moreover, in order to study the convergence between the 

numerical solution and the exact solution, we applied the Newton-Kantorovich 

method as a model to find a numerical solution for a special type of Fredholm 

Integral Equation and compared the results with the exact solution. The results 

showed the accuracy of the numerical result and proximity of the exact results, 

thereby proving the effectiveness and simplicity of the Newton-Kantorovich method. 

 

 

 

Keywords: Fredholm Integral Equations, First Kind, Second Kind, Special Kind, 

Analytical Methods of Solution, Newton-Kantorovich Method for Numerical 

Solution. 



ÖZ 

 

 

FREDHOLM TİPİ İNTEGRAL DENKLEMLER  

 

 

 

AL RETHA, Ahmed 

 Yüksek Lisans, Matematik ve Bilgisayar Anabilim Dalı 

Tez Yöneticisi: Prof. Dr. Kenan TAŞ 

 

 

Nisan 2015, 55 sayfa 

 

 

 

Bu tezin amacı, Fredholm Tümlevsel Denklemleri ve kesin çözümlerini bulma 

yöntemleri hakkında geniş kapsamlı bir çalışma yapmaktır.   Bunun yanı sıra diğer 

bir amacımızda doğrusal olan ve olmayan Fredholm Tümlevsel Denklemlerinin kesin 

sonuçlarını bulmaya yarar bazı etkili yöntemlerde sunmaktır.   Bundan başka, 

rakamsal çözüm ile kesin çözüm arasındaki yakınsaklığı irdelemek, özel türden olan 

bir Fredholm Tümlevsel Denkleminin rakamsal çözümünü bulmak için model teşkil 

etmek üzere Newton-Kantorovich yöntemini uyguladık ve sonuçları kesin çözüm ile 

karşılaştırdık.   Sonuçlar rakamsal sonucun doğruluğunu ve kesin sonuçların 

yakınlığını gösterdi; böylece Newton-Kantorovich yönteminin etkililiği ve kolaylığı 

kanıtlanmış oldu.   

 

Anahtar Kelimeler: FredholmTümlevsel Denklemler, Birinci Tür, İkinci Tür,Özel 

Tür, Çözümün Analitik Yöntemleri, Rakamsal Çözümün Newton-Kantorovich 

Yöntemi. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 

 

There is no doubt that integral equations have great importance in scientific and 

practical fields. The first integral equation was produced in 1825 by an Italian 

mathematician named Abel, who produced an integral equation relating to the 

problem of tautochrone [1]. In fact, the emergence of these equations was the result 

of the presence of a number of problems and issues in fields such as physics, heat 

and mass transfer, chemical engineering, as well as in economics, medicine, etc. 

[1,2,5]. 

Most integral equations closely connected with differential equations are Fredholm 

Integral Equations [4]. Therefore, Fredholm Integral Equations are derived from 

boundary value problems for differential equations and then solved by many 

simplified methods. A strong motivation existed to discover this kind of equation by 

Fredholm. The equations were renamed Fredholm Integral Equations after being 

discovered by Fredholm. It was the point of departure to resolve important obstacles 

which were impeding the development of mathematics [3]. Finally, we mention that 

Fredholm Integral Equations are also found in linear and non-linear forms, including 

the homogeneous and non-homogeneous variety [1, 2]. 

 

1.2 Organization of the Thesis 

 

We can summarize what has been organized in this thesis as follows: 

In Chapter 2, the study is about definitions and basic concepts that would show the 

way to enter into the world of integral equations of the Fredholm type in addition to 

the method which can derive the Fredholm Integral Equation from boundary value 



problems. In Chapter 3, the researcher provides some theorems which prove the 

existence and uniqueness of solutions to Fredholm Integral Equations. 

Chapter 4 is dedicated to the study of the methods of finding solutions to the 

Fredholm Integral Equation and the system of Fredholm Integral Equations 

according to the classification of the Fredholm Integral Equation. It is worth 

mentioning that we will often use the Fredholm Integral Equation of degenerate or 

separable kernels. 

Chapter 5 will present a study of numerical solutions to special nonlinear Fredholm 

Integral Equations using the Newton-Kantorovich method, after which the numerical 

results are compared with the analytical results. 

Finally, in Chapter 6 expounds the conclusion that has been reached, according to the 

idea of thesis. 

 

  



 

 

 

CHAPTER 2  

 

DEFINITIONS 

 

In this chapter, we will review some definitions and mathematical concepts for 

integral equations and we will classify and identify the types of integral equations. In 

particular, we will present the Fredholm Integral Equation and their types. Finally, 

we will discuss how to derive the Fredholm Integral Equation from boundary value 

problems with examples. 

 

2.1 Basic Definition 

 

Definition 1. [1-4] An equation which includes the integral of an unknown function 

u(x) appearing inside the integral sign is called an integral equation. The general 

formula of integral equations is as follows: 


)(

)(
)(),()()(

x

x
dyyuyxFxhxu




 ,      (2.1) 

where ),( yxF  represents the kernel of the integral equation, the limits of integration 

are )(x  and )(x and   is a fixed parameter [1,2]. The functions h(x) and ),( yxf  

are given. The limits of integration )(x  and )(x  might together be variables, 

constants or a combination of both, and they may be in one, two or more dimensions. 

 

Definition 2. [1-4] In integral equations, when the unknown function inside the 

integral sign has an exponent of one, this integral equation is referred to as a linear 

equation for example: 

 
1

0
)()(

3

7

2

5
)( dyyuyxxxu  .      (2.2) 

 

Definition 3. [1-4] In integral equations, when the unknown function inside the 

integral sign has an exponent not equaling one or includes nonlinear functions, such 



as cos u, e
u
 , ln(7 + u), this integral equation is called a nonlinear integral equation 

[3]; for example: 

dyyuyxxu )()1(5)(
1

0

4

  .      (2.3) 

 

2.2 Classification of Integral Equations [1,2,4] 

 

We can classify certain types of integral equations based on the kernel of the 

equation and the limits of integration. Therefore, in this chapter we will present the 

following four major types of integral equations [2,4]: 

1. Fredholm Integral Equations 

2. Volterra integral equations 

3. Singular integral equations 

4. Integro-differential equations 

Because the subject of this thesis is Fredholm type Integral Equations, we will focus 

on these integral equations. 

 

2.2.1 Fredholm integral equations 

 

The integral equation (2.1) is called a Fredholm Integral Equation when

bxax  )(,)(  ; a, b are constant; in other words, the limits of integration are 

fixed in the following form: 


b

a
dyyuyxfxhxuxk )(),()()()(  .     (2.4) 

It should be noted that there are three types of Fredholm Integral Equation according 

to the following: 

 

2.2.1.1 Fredholm integral equations of the first kind 

 

The integral equations (2.1) is called a Fredholm Integral Equation of the first kind 

when k(x)=0 as follows: 

 
b

a
dyyuyxkxh 0)(),()(   .      (2.5) 

 



2.2.1.2 Fredholm integral equations of the second kind 

 

The integral equations (2.1) is called a Fredholm Integral Equation of the second 

kinds when k(x)=1 as follows 


b

a
dyyuyxkxhxu )(),()()(        (2.6) 

 

2.2.1.3 Fredholm integral equations of the third kind 

 

If k(x) is neither 0 nor 1, then (1.2) is referred to as a Fredholm Integral Equation of 

the third kind [2]. 

 

2.3 Homogeneity of Integral Equations [1,2,4] 

 

Proceeding from the principle of homogeneity of integral equations, integral 

equations of the second kind can be classified as either homogeneous or non-

homogeneous. 

 

2.3.1 Homogeneous integral equations 

 

Suppose that we have the Fredholm Integral Equation of the second kind as follows: 


b

a
dyyuyxkxhxu )(),()()(  .      (2.7) 

The equation (2.7) is called homogeneous if the given function h(x) is identically 

zero. The following is an example of such an equation: 

 
1

0

2 )()()( dyyuyxxu .       (2.8) 

In this equation h(x)=0; therefore, it is homogeneous. 

 

2.3.2 Non- homogeneous integral equation 

Fredholm Integral Equations of the second kind (2.7) are called non-homogeneous 

Fredholm Integral Equations if the function h(x) is nonzero; for example 


1

0
)(sin)( dyyxyuxxu .       (2.9) 

In this equation, h(x)= sin x . Therefore, it is non-homogeneous. 



 

2.4 Converting Boundary Value Problem to Fredholm Integral Equations  [2,4] 

 

There is a connection between integral equations and boundary value problem where 

one can convert the boundary value problems to the Fredholm Integral Equation. In 

order to prove that, we will consider the following example 

 

Example 2.1 

 

Suppose that we have the following boundary value problem  

),()()()( xhxyxgxy  10  x ,     (2.10) 

with the following conditions: 

)0(y , )1(y .        (2.11) 

We will show how we can reduce the boundary value problem to the Fredholm 

Integral Equation: 

At first, we put 

)()( xuxy  .          (2.12) 

By integrating both sides of (2.12) from 0 to x, we get 

dttudtty
xx

)()(
00   .       (2.13) 

The result is 


x

dttuyxy
0

)()0()( .       (2.14) 

It is noted that in a boundary value problem, the initial condition )0(y  is not given. 

Therefore, by using the boundary condition at x=1, this condition will be determined 

later. Now, we will integrate both sides of (2.14) from 0 to x to get 

.)()0()0()(
00 
xx

dttuyxyxy       (2.15) 

By substituting y(0)=α, we obtain 

.)()()0()(
0 
x

dttutxyxxy        (2.16) 

As mentioned above, to determine )0(y , we substitute x=1 into both sides of 

equation(2.16) and using the boundary condition at y(1)=β, we find  

.)()1()0()1(
1

0  dttutyy       (2.17) 



By substituting )1(y , we obtain 

,)()1()0(
1

0  dttuty       (2.18) 

which gives 

.)()1()()0(
1

0  dttuty        (2.19) 

By substituting Equation (2.19) into (2.16), we get 

.)()()1()()(
0

1

0  
x

dttutxutdttxxxy     (2.20) 

Also, by substituting equation (2.12)and (2.20) into (2.10), we get 

 
1

0
)()1)(()()()()( dttutxxgxxgxgxu   

 
x

xfdttutxxg
0

)()())(( .                                                                             (2.21) 

we can use the formula 

  
1

0 0

1

(.),(.)(.)
x

x
         (2.22) 

to carry equation (2.21) to 

,)()1()1()(

)()()()()()()()(

0

1

0





 



 


x

x

x

dttututdttxxg

dttutxxgxxgxgxhxu 

    (2.23) 

that gives 

  
x

x
dttuxgtxdttuxgxtxfxu

0

1

.)()()1()()()1()()(    (2.24) 

This in turn leads to the Fredholm Integral Equation: 


1

0
,)(),()()( dttutxfxhxu       (2.25) 

where 

)()()()()( xxgxgxfxh   ,     (2.26) 

and the kernel ),( txf is represented by 










),()1(

),()1(
),(

xgtx

xgxt
txf

.1

,0





tx

xt
     (2.27) 

From the above, it can be concluded that it is special case of (2.10) where 

0)1()0(  yy or 0  . Since the two boundaries of a moving string are fixed, 

we see clearly that )()( xhxf   in this case, thereby implying that the homogeneity 

concept to the Fredholm equation in (1.25) depends on the case of the boundary 



value problem in (2.10); that is, if the boundary value problem is homogeneous, then 

the Fredholm equation is also homogeneous, and if the boundary value problem is 

non-homogeneous, then the Fredholm equation is non-homogeneous when 

0  .  

 

  



 

 

 

CHAPTER 3 

 

THE EXISTENCE AND UNIQUENESS OF THE SOLUTION 

 

In a mathematical concept, there are several integral equations which may have one 

solution, multiple solutions, infinite solutions or even no solution. In this chapter, we 

will present some theorems which prove the existence and uniqueness of the solution 

of the Fredholm Integral Equation. 

 

3.1 Basic Theorems 

 

Theorem 1. (Fredholm Alternative Theorem) [2,5,21] 

 

This theorem states that if the homogeneous Fredholm Integral Equation as in the 

following formula has only the trivial solution i.e. u(x)=0 

,)(),()( 
b

a
dyyuyxfxu         (3.1) 

then the corresponding non-homogeneous Fredholm equation 


b

a
dyyuyxfxhxu )(),()()(        (3.2) 

always has a unique solution. 

 

Theorem 2. (Uniqueness of the Solution) [2,5,21] 

 

Suppose we have the following Fredholm Integral Equation 


b

a
dyyuyxfxhxu )(),()()(  .      (3.3) 

It follows that: 

1. the kernel f(x,y) in equation (3.3) is continuous in the square 

);,{( yx ,bxa  },bya   

2. )(xf  is a continuous real valued function, 



Then the following condition  

)( abM  <1,                                                (3.4) 

where 

.),( RMyxf       (3.5) 

should be available for the existence of a unique solution for equation (3.3). In the 

case of the contrary, if the necessary condition (3.4) is not achieved, then a 

continuous solution may exist for the Fredholm Integral Equation.  

To illustrate this theorem, we will discuss the following example 

 

Example 3.1 

 

Assume that we have the Fredholm Integral Equation 

 
1

0
.)()3(32)( dttutxxxu       (3.6) 

We can understand that 4),(,1  txf  and )( ab  =1. This means 

)( abM  = 4 > 1,        (3.7) 

Consequently, the value of the exact solution to equation (3.6) is 

xxu 6)(  .         (3.8) 

 

3.2 Basic Definition: Complete Metric Spaces 

 

We should be fully aware of the following topics where this topic represents the 

fundamentals necessary for the concept of a fixed point theorem. 

 

3.2.1 Metric space [4,22] 

A metric space, which is specified as ),,( dM is a set M  and a distance function d

):( RMMd   such that this distance (or metric) satisfies the following three 

conditions: 

a) For every x, y M, ),(0 yxd and 0),( yxd if and only if x=y.         (3.9) 

This means that the distance between any two elements is always nonnegative, and 

the distance is identical. 



b)  For all Myx , ),(),( xydyxd  .     (3.10) 

That is, the distance is symmetric in xand y  

c) Mzyx  ,, ),(),(),( zydyxdzxd  .                                 (3.11) 

This means that the present general definition of distance still satisfies an inequality 

that parallels the usual triangle inequality 

zyyxzx  .       (3.12) 

The triangle inequality (3.11) will be used very often in proofs of the basic theorems. 

 

3.2.2 Fixed point of a mapping [4,22] 

 

Suppose that we have a metric space ),( dM  and S  a subset of M with the mapping  

,: MST  vuT )( . 

When T( 0u )= 0u , it leads an element Su 0 , which is a fixed point of the mapping T. 

For all elements Su  , in particular elements 0u  are not affected under the 

transformation T, that is 

)( 00 uTu           (3.13) 

 

3.2.3 Cauchy sequence [4,22] 

 

A sequence is called a Cauchy sequence if all the elements become arbitrarily close 

to each other as the sequence progresses more precisely,( nx ) is said to be a Cauchy 

sequence if 0,0  N  such that in the case of real numbers

 nm xxNnm, Ɛ. 

 

 

 

3.2.4 Contractive mapping 

 



The mapping T in (u0=T(u0) is called contractive if there is a nonnegative real 

number α; 0 ≤ α <1, such that  u1, u2 S  we have d(T(u1) ,T(u2)) ≤ α d(u1,u2) 

 

3.2.5 Lipschitz condition 

 

For any real-valued function, this functions satisfies a Lipschitz condition on a set 

Q(a ,b)×R if the inequality yxMyfxf  )()(  holds  x, y Q(a ,b)×R, where 

M is a constant that is independent of x and y and R is the set of real numbers. 

 

3.3 Fixed Point Theorem [4,6] 

 

Suppose that we have a complete metric space ),,( dM  and we let the mapping 

,: MMT   be a contraction, then T has exactly one fixed point. 

Proof: We are to prove the following for the mapping )(uTu   

a) The uniqueness of the fixed point when it exists. 

b) The existence of the fixed point, where we show first that the sequence of the 

successive approximations )(1 nn uTu   is Cauchy convergent due to its being 

in a complete metric space and thus being convergent. We show that the limit 

point for this convergent sequence n
n

uu


 lim is indeed the fixed point of the 

actual problem )(uTu  . 

a) To prove the uniqueness of the fixed point, we assume that there are two 

distinct points u and v ,u ≠ v, implying u=T(u) and v=T(v), u ≠ v. Since u≠ v, 

the distance between them is not zero: d (u ,v) ≠0. Because u and v are fixed 

points of T, we also have 

d(T(u),T(v))=d(u, v) ≠0. 

However, since the mapping T is also contractive, we have according to 

d(T(u1),T(u2)) ≤ α d(u1,u2), 

d(T(u),T(v)) ≤ α d(u, v), 0≤ α ≤1. 

If we combine d(T(u),T(v))=d(u, v) ≠0 with d(T(u),T(v)) ≤ α d(u ,v), we see clearly 

that it is a contradiction of d(u ,v)= d(T(u),T(v)) ≤ α d(u ,v), (1- α) d(u ,v) ≤ 0. 



since d(u,v)>0 by assumption (1–α) ≤ 0, α ≥ 1, which contradicts the assumption of 

contraction mapping whose α is strictly less than 1. Hence the distance d(u ,v)>0 

must be identically zero, which is equivalent to u being equal to v. This proves the 

uniqueness of the fixed point when it exists. 

b) To prove the existence of a limit point as a fixed point for u=T(u), we will 

first prove that the sequence un of the iterative process un+1=T (un) is a 

Cauchy sequence. 

with the help of the contraction property, we will find the distance d(un,un+1) between 

two consecutive approximations in terms of the distance d(u1,u2) between the first 

two approximations (input estimates) u1and u2. 

The next step is to find the distance d(un, un+p), that we need to use in proving the 

Cauchy convergence(d(un, um) < Ɛ ) for n, m>N(Ɛ). From the following form 

,))(,,()(1  dyyuyxFxu nn  

we have 

d(u2,u3)=d(T(u1),T(u2))≤ αd(u1,u2). 

By the same reasoning, 

d(u3,u4)=d(T(u2),T(u3))≤ α d(u2,u3). 

And if we invoke on the right side the previous result for d(u2,u3), we have 

d(u3,u4) ≤ α d(u2,u3) ≤ α 2d(u1,u2). 

If we continue this to un and un+1,we have 

d(un,un+1) ≤ α
n-1

d(u1,u2), 

where clearly the higher-orderconsecutivetermsun.un+1are much closer together than 

the first ones, u1 and u2, due to the geometric factor αn-1. Still, we need to show the 

Cauchy convergence, which will entail the use of the previous result and the triangle 

inequality of the metric d(un ,un+p). Observe that 

d(un, un+p) ≤ d(un,un+1)+ d(un+1,un+2)+ d(un+2,un+3)+…+ d(un+p-1,un+p) 

after repeated use of the triangle inequality. Now, we use property 

d(un,un+1) ≤ αn-1 d(u1,u2) 

on each of the terms on the right side, which are distances for consecutive sequences. 

Therefore, 

d(un, un+p) ≤ d(un,un+1)+ d(un+1,un+2)+ d(un+2,un+3)+…+ d(un+p-1,un+p) 

≤ α
n-1

d(u1,u2)+ α
n
d(u1,u2)+ α

n+1
d(u1,u2) +…+ α

n+p-2
d(u1,u2) 

=[ α
n-1

+ α
n
+ α

n+1
+…+ α

n+p-2
]d(u1,u2) 



=α
n-1

(1+ α+ α
2
+…+ α

p-1
) d(u1,u2) 

= ),(
1

1
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1 uud
p

n







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After realizing that we have a geometric series in the parentheses above, and since 

 0 ≤ α ≤ 1,the right side would clearly approach zero as n , which makes 

d(un,un+p) 0  as n  (i.e., the sequence converges in the Cauchy sequence). 

Since this sequence un is an element of a complete metric space, it will converge to a 

limit u in this space (i.e., ).lim uun
n




What remains is to show that this limit point u is 

indeed the fixed point of our equation; that is, it must satisfy u=T(u), in other words, 

d(u ,T(u))=0, hence we have un+1=T(un) and from the proof of the existence of the 

limit point above, we can say that 

,limlim 1 uuu n
n

n
n





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or 

d(u, T(un))=d(u,un+1)  , d(u, un) 0 as n . 

with these results, we will use the triangular inequality to have 

d(u ,T(u)) ≤ d(u, T(un))+ d(T(un),T(u))≤ d(u, T(un))+αd(un ,u) 

                                    ≤ d(u,un+1)+ α d(un, u) 

After using the contraction property of the operator T in the last term, as n  each 

of the two terms on the right would approach zero, which makes d(u ,T(u)) ≤ 0. 

However, since the metric d is nonnegative by definition, we must have d(u, T(u))=0, 

which means that u=T(u), the desired result of the fixed point theorem. 

Next, we will illustrate the important Banach fixed point theorem to prove the 

existence of unique solutions to linear and nonlinear Fredholm Integral Equations 

that exhibit contraction. 

 

 

3.3.1 Existence of the solution for fredholm integral equations [2,4,5] 

 

3.3.1.1 Existence solution for linear fredholm integral equations 

 

 

Suppose the linear Fredholm Integral Equation 




b

a
dyyuyxfxhxu )(),()()(  .      (3.14) 

First we should found α 

We suppose that h(x) is continuous on the interval [a ,b] and f(x, y) is continuous on 

the square D={(x ,y): x[a ,b],y x[a ,b]}. For such functions we shall work with the 

complete metric space C[a, b] of continuous functions and its metric d(x, y) as in the 

metric 

;)()(max))(),(( ],[ xgxfxgxfd bax  
 f  , g C[a, b].   (3.15)  

To find a sufficient condition for the mapping T(u) of (3.15) to be contractive, we 

first indicate that the kernel f(x ,y) here is bounded which means that [f(x ,y)≤ M] 

since it is continuous on the bounded domain D (3.14) of the square in the following 

figure 3.1. 

 

Figure 3.1 Domain D (3.14) 

 

To show the contraction property of T, we use the metric of (3.15) on the images 

))(( xT  and ))(( xT   of the two continuous functions )(),( xx  in C[a ,b], 
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))(),(())(),(()( xxdxxdabM   .     (3.16) 



After using the upper bound M for f(x, y).Hence with  

1)(  abM  .       (3.17) 

The mapping of the linear Fredholm equation (3.14) becomes contractive after we 

found in (3.17) that α=µM(b-a),which gives a contractive mapping if we insist that 

α<1 (i.e.,
)(

1

abM 
  ), where M is the upper bound of f(x,y) on the square of 

Fig.(3.1). In this case the un estimate as an input would produce an output un+1 that 

has a maximum error bounded.  
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)(1

)(
max 12],[1],[ uu

abM

abM
uu bax
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nbax 
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
 




                 (3.18) 

where  1)(  abM
.    

    

In terms of the maximum difference between the first two estimates, u2 and u1. 

 

3.3.1.2 Existence solution for nonlinear fredholm integral equation [2] 

 

Suppose the nonlinear Fredholm Integral Equation 

.))(,,()()( 
b

a
dyyuyxFxhxu        (3.19) 

There are special conditions under which the solution exists for the nonlinear 

Fredholm Integral Equations as follows: 

1. The function h(x) is bounded, |h(x)| < R, in a ≤ x ≤b. 

2. The function F(x,y,u(y)) is integrable and bounded where 

,))(,,( MyuyxF   in a ≤ x, y ≤ b. 

3. The function F(x,y,u(y)) satisfies the Lipschitz condition 

2121  )zy,F(x,-)zy,F(x, zzM 
. 

 

Theorem 3.3 [21] 

 

Suppose the nonlinear Fredholm Integral Equation 

.))(,,()()( 
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dyyuyxFxhxu        (3.20) 



And suppose that the function F(x,y,z) is defined and continuous on the set Q(a ,b)×R 

and satisfies a Lipschitz condition 

2121  )zy,F(x,-)zy,F(x, zzM 
.
 

Then the nonlinear Fredholm Integral Equation (3.19) has a unique solution on the 

interval [a ,b] whenever 

 
)).(/(1 abM 

  

Proof: the proof can be found in [21].  



 

 

 

CHAPTER 4 

 

METHODS OF SOLUTIONS 

 

In this chapter, we will review the solution methods for the Fredholm Integral 

Equation and the system of Fredholm Integral Equations according to the 

classification or type of the Fredholm Integral Equation in terms of being a linear 

F.I.E or non-linear F.I.E and the methods to solve system of Fredholm Integral 

Equation according to the type of equation. It is worth mentioning that we will often 

use the Fredholm Integral Equation of degenerate or separable kernels. 

 

4.1 Methods to Solve Linear Fredholm Integral Equations 

 

In this part, we will study linear Fredholm Integral Equations and method of their 

solutions. Also, we will study the system of nonlinear Fredholm Integral Equations 

and method of their solutions. 

 

4.1.1 Methods to solve fredholm integral equations of the second kind 

 

In this section, the study will be on Fredholm Integral Equation of the formula  


b

a
dyyuyxfxhxu )(),()()( 

,
      (4.1) 

where  u(x) is an unknown function, f(x, y) and )(xh are known function, x and y are 

real variable varying in the interval (a, b), and  is a parameter. 

In the following we shall present the various methods of solutions to the Fredholm 

Integral Equation (4.1). 

 

 

 

 

4.1.1.1 The successive approximations method [1,2,5] 



 

The method of successive approximations grants us a scheme that can be used for 

solving integral equations or initial value problems. Moreover, the technique of this 

method is finding successive approximations to the solution of issue by starting with 

an initial guess these are called the zeroth approximation. As a matter of fact, the 

zeroth approximation can be any real valued function u0(x) that will be used in a 

recurrence relation to determine the other approximations. Also, we can select any 

real-valued function for the zeroth approximation; the most frequently used values 

are 0, 1, or x. To illustrate more, let consider Fredholm Integral Equation of the 

second kind (4.1). We have put u0(x)=h (x). It must be remembered that the zeroth 

approximation can be any selected real valued function u0(x), a ≤ x ≤b. As a result, 

the first approximation u1(x) of the solution of u(x) is defined by 


b

a
dyyuyxfxhxu )(),()()( 01  .      (4.2) 

We can get the second approximation u2(x) of the solution u(x) by replacing u0(x) in 

equation (4.2) by the previously obtained u1(x);thus, we find 


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dyyuyxfxhxu )(),()()( 12   .     (4.3) 

These steps can be continued in the same technique above to get the n
th

 

approximation. In other words, the successive approximations method can be 

summed up by u0(x) = any selective real valued function 



b

a
nn dyyuyxfxhxu )(),()()(1  , .0n     (4.4) 

we obtain the final solution by 

)(lim)( 1 xuxu n
n




 .        (4.5) 

In other words, according to this method, we get a solution if it exists by (4.5). To 

illustrate this method we will study the following example. 

 

Example 4.1 

 

Solve the following Fredholm Integral Equation 


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1
1 )()( dyyxyuxxu         (4.6) 

by using the successive approximation method. 

To start with, for the zeroth approximation u0(x), we can select 



u0(x) =x,        (4.7) 

and use the iteration formula to get  

 
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1
1 0,)()( ndyyxyuxxu nn        (4.8) 

Substituting (4.7) into(4.8)we get 
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The solution u(x) of (4.6) is given by 
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4.1.1.2 The adomian decomposition method [1,2,7] 

 

This method was recently introduced by George Adomian [7]. This method offers the 

solution in a series form, according to the decomposition series [1]: 


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
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),()(
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n xuxu         (4.11) 

Which means that, this method is composed of decomposing the unknown function 

u(x) into a sum of an infinite number of components u0(x), u1(x), u2(x), u3(x),. . .[2]. 

The components un(x), n≥0 will be determined recurrently. Beside, this method 

concerns itself with finding the components u0, u1, u2,...individually. At the 

connected meaning, we can establish the recurrence relation by substitute (4.11) into 

the Fredholm Integral Equation (4.1) to get 
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Or equivalently 
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The components u0(x), u1(x), u2(x), u3(x), … are completely determined by setting the 

recurrence relation 
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Thus, for other components, the zeroth component u0(x) is identified by all terms that 

are not included under the integral sign. It is clear to us, when the previous u0(x) is 

known, then it is easy to successively determine u1(x), u2(x), u3(x),. . . ., and so on for 

other components. According to equation (4.14) the components uj(x), j≥0 follow 

immediately. Once these components are determined, the solution u(x) can be 

obtained using the series (4.11). It is very clear that the decomposition method 

converted the integral equation into an neat determination of computable 

components, when an exact solution exists for the problem, so the obtained series 

converges very rapidly to that exact solution. By studying the following example, 

this method will be clear. 

 

 

 

 

Example 4.2 

 

Use the Adomian decomposition method to solve the following Fredholm Integral 

Equation 

1

0
( ) ( ) .xu x e x x yu y dy           (4.16) 



According to the Adomian decomposition method, the solution u(x) was assumed to 

be a series form given in (4.11). When substituting the decomposition series (4.11) 

into both sides of (4.16), we get 
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or equivalently 
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Then we identify the zeroth component by all terms that are not included under the 

integral sign. For that reason, we obtain the following recurrence relation 

,)(0 xexu x  
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Consequently, we obtain 
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and so on. using (4.11) gives the series solution 
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We note that the infinite geometric series at the right side has a1 = 1, and the ratio 

 r =
3

1
.The sum of the infinite series will be on the following formula 
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The series solution (4.21) converges to the closed form solution 

xexu )( ,         (4.23) 

We obtained it by substituting(4.22) into (4.21). 

 



4.1.1.3 The modified decomposition method [2,8]: 

 

According to the above, the solutions from the Adomian decomposition method are 

an infinite series of components. Also, it is easy to compute the components 

0, ju j  if the inhomogeneous term h(x) in the Fredholm Integral Equation 


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consists of a polynomial of one or two terms. In addition, if the function h(x) consists 

of a combination of two or more of polynomials, trigonometric functions, hyperbolic 

functions, and others, the evaluation of the components uj, j ≥0 requires more work. 

It is worth mentioning that there is a reliable modification of the Adomian 

decomposition method that was developed by Wazwaz [2]. Where the amendment as 

presented before, the modified decomposition method depends mainly on splitting 

the function h(x) into two parts, and as a result, this method cannot be used if the h(x) 

consists of only one term. To illustrate more of this method, we remember that the 

standard Adomian decomposition method uses the recurrence relation 
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,  (4.25) 

where the expression of the solution u(x) by an infinite sum of components is defined 

by 
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According to the (4.25), the components un(x), n ≥ 0 are easily obtained. The 

modified decomposition method offers a simple variation to the recurrence relation 

(4.25) to determine the components of u(x) in the easiest and fastest style. For many 

cases, we can set 

)()()( 21 xhxhxh  ,        (4.27) 

where we put the function h(x) as the sum of two partial functions, namely h1(x) and 

h2(x). By means of the modified decomposition method, the zeroth component u0(x) 

is delimited by one part of h(x), namely h1(x) or h2(x). The other part of h(x) can be 

added to the component u1(x) that exists in the standard recurrence relation. The 

modified decomposition method acknowledges the use of the modified recurrence 

relation: 
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In view of (4.25)and (4.28), we find that the difference between them rests only in 

the formation of the first two components u0(x) and u1(x). Moreover, we note that the 

remaining components uj ,j ≥0 are still lingering in the two recurrence relations. In 

addition, we find that the slight difference between the formation of u0(x) and u1(x) is 

useful for accelerating the convergence of the solution and reducing the size of the 

calculations. Moreover, the effects of reducing the number of terms in h1(x) occur not 

only in the component u1(x) but also in the other components. As a result of the study 

of the modified decomposition method, we can make two remarks: 

if we make the proper choice of functions h1(x) and h2(x), the exact solution u(x) may 

be obtained by using very few iterations, and sometimes by evaluating only two 

components. This means that the success of this method depends mainly on the 

proper choice of h1(x) and h2(x) [10], and this we can find by trials only. The 

modified decomposition method cannot be used if the case of h(x) consists of one 

term only. 

 

 

 

Example 4.3 

 

Solve the Fredholm Integral Equation 

.)(
4

sec)( 4

0

222 dyyxuxxxxxu  












    (4.29) 

By using the modified decomposition method. 

It is clear that the function h(x) consists of three terms. Therefore, we can split h(x) 

thus: 

 .sec)( 22 xxxxh        (4.30) 

Now, we put the function h(x) as the sum of two partial functions, namely h1(x) and 

h2(x): 
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Then, using the modified recurrence formula (4.28) gives 
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As a result, the exact solution is given by 

2( ) secu x x .        (4.33) 

 

4.1.1.4 The noise terms phenomenon method [2] 

 

Noise terms are defined as the identical terms, with opposite signs that may appear 

between components u0(x) and u1(x). Furthermore, they may appear between other 

components. These noise terms, if they appear, are very useful as they provide us 

with effective tools to find solutions quickly by using only two iterations. When the 

noise terms exist between the components u0(x) and u1(x), they provide the exact 

solution by using only the first two iterations. By means of canceling the noise terms 

between u0(x) and u1(x), even though u1(x) contains further terms, the remaining non-

canceled terms of u0(x) may give the exact solution of the integral equation. 

Moreover, canceling the noise terms between u0(x) and u1(x) is not always sufficient 

to obtain the exact solution in spite of the appearance of these noise terms. Therefore, 

it is necessary to show that the non-canceled terms of u0(x) satisfy the given integral 

equation. The necessary condition for the appearance of the noise terms is required. 

In other words, the zeroth component u0(x) must contain the exact solution u(x) 

among other terms. The following example clarifies this further: 

 

Example 4.4 

 

By using the noise terms phenomenon, we solve the Fredholm Integral Equation 
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0
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According to the Adomian method, we have the recurrence relation 
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This gives 
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After the cancellation of the noise terms x, which appears within u0(x) and u1(x). 

Specifically, with the zeroth component u0(x), we obtain the exact solution 

xxxu sin)(  .         (4.47) 

 

4.1.1.5 The variational iteration method [2,9,10] 

 

The variational iteration method was applied to the second kind of Fredholm Integral 

Equation, and this was useful to provide us with an approximate solution. The 

technique of this method lies in the direct dependence on the construction of a 

convergent sequence of functions which approaches the exact solution with less 

iteration [12]. In order for this method to work effectively, it is necessary for the 

kernel f(x, y) to be separable so it can be written in the form f(x ,y) = g(x)v(t). The 

Fredholm Integral Equation should be converted to an identical Fredholm integro-

differential equation by differentiating both sides. It is important to note that an 

integro-differential equation needs an initial condition to be defined. We will 

mention here that the study will only be in the cases where g(x) = xn, n ≥ 1.To 

illustrate this method, assume that we have the second kind of the Fredholm Integral 

Equation: 
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or equivalently 
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a
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We can note that the integral within the right side is a constant value, and by 

differentiating both sides of (4.49) with respect to x, we obtain 
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a
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The correction functional for the integro-differential equation (4.50) is 
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Using the method of variational iteration requires applying two basic steps. It first 

requires identifying the Lagrange multiplier µ(ξ) that can be identified optimally by 

means of integration by parts and secondly by using a restricted variation. The 

Lagrange multiplier for first order integro-differential equations isµ(ξ) = −1. As a 

result, we obtain the following iteration formula: 
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(4.52) 

This formula is used to fix successive approximations ),(1 xun 0n of the solution 

u(x). It is worth mentioning that we can take the zeroth approximation u0of any 

selective function. For a selective zeroth approximation u0,it is prefer able to use the 

given initial value u(0). Therefore, the solution is given by 

 )(lim)( xuxu n
n 

 .      (4.53) 

By studying the following example, the variational iteration method will be 

illustrated. 

 

 

 

Example 4.5 

 

By using the variational iteration method, solve the Fredholm Integral Equation 
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First, we differentiate once from both sides of equation (4.54) with respect to x: 
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By applying the variational iteration method to equation (4.55), the correct function 

can be written in the following form: 
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where we use µ = −1 for first order integro-differential equations. We obtain an 

initial condition u(0) = 1 by substituting x = 0 into (4.54).Also, with this initial 



condition, we select u0(x) = u(0) = 1. Consequently, using this selection in the 

correction functional gives the following successive approximations u0(x)=1, 

,
32

1
)(1)()()(

,
32

1
)(1)()()(

,
2

1
)(1)()()(

20

1

0
2223

0

1

0
1112

0

1

0
0001

xeddrrrueuxuxu

xeddrrrueuxuxu

xeddrrrueuxuxu

x
x

x
x

x
x








 








 






 

 

 

 













.0,
32

1

..................

,
32

1
)(1)()()(

1

30

1

0
3334















 



 

nxeu

xeddrrrueuxuxu

n

x

n

x
x

 

          ( 

4.57) 

Thus, we have 
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4.1.1.6 The direct computation method [1,2] 

 

This method can be applied to solve Fredholm Integral Equations effectively. With 

this method, the exact solution is determined in a closed form and not in a series 

form. It is worth mentioning that the direct computation method will be applied to 

the separable or degenerate kernels of the form 
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This method can be applied as follows: 

By substituting(4.59) into the Fredholm Integral Equation of the form 
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We get 
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In equation (4.61), each integral at the right side is equivalent to a constant and we 

can set 


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a
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According to equation (4.62), the equation (4.61) becomes 

),(...)()()()( 2211 xgxgxgxhxu nn     (4.63) 

We have a system of n algebraic equations when substituting (4.63) into (4.62). This 

can be solved to determine the constants αi,1≤ i ≤ n. Then substituting (4.62) into 

(4.63) gives the exact solution. 

To illustrate this method, we will study the following example: 

 

Example 4.6 

 

Solve the Fredholm Integral Equation 
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using the direct computation method. 

The kernel yxyxp 2),(  is separable. Therefore, we can rewrite the above 

equation(4.64) as 
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We note that the integral within the right side relies only on the variable t with 

constant limits of integration for t, so it is equivalent to a constant. Hence, we rewrite 

(4.65) as 
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where 
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To obtain the value of α, we substitute (4.66) into (4.67) to obtain 
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Integrating the right side of (4.68), we get 
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Which gives 

.2          (4.70) 

Now, substituting (4.70) into (4.66) to find the exact solution 

 243)( xxxu         (4.71) 

 

4.1.1.7 The series solution method [2] 

 

The conceptual basis of the Series Solution Method comes basically from the Taylor 

series of analytical functions, where it should be noted that Taylor series need to 

have the derivatives of all orders, which is why we also calculate these. In addition, 

Taylor series at any point b in its domain converges to h(x) in a neighborhood of b. 
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When x=0,theTaylor series can be written as 
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Now suppose we have the Fredholm Integral Equation 
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We will suppose that the solution of the Fredholm Integral Equation is analytic. To 

solve (4.74) by the Series solution method, we first substitute(4.73) into both sides of 

(4.74), which gives 
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Or we can simplify the previous form, to become 
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Where T(h(x)) is the Taylor series for h(x). In this manner, the integral equations are 

transformed into a traditional integral in (4.75) or (4.76), where instead of integrating 

the unknown function u(x), terms of the form y
n
, n ≥ 0 will be integrated. It is 

important to note that the Taylor expansions for functions contributing to h(x) should 

be used if h(x) contains elementary functions, such as exponential functions, 

trigonometric functions, etc. This method can be applied by using the following 

steps: 



 Merge the right side of the integral in(4.75)or (4.76)to obtain a recurrence relation 

in aj ,j ≥ 0. 

 We collect the coefficients of such as powers of x and equate these coefficients 

on both sides of the resulting equation. 

 To complete the determination of the coefficients aj, j ≥ 0, we will seek to 

solve the recurrence relation. 

After applying the above steps, we can note that the Series solution method is more 

effective at providing the exact solutions when the solution u(x) is a polynomial. In 

other words, when the solution u(x) is not a polynomial such as cos x, sin x, e
x
, etc., 

the exact solution may be obtained after rounding a few of the coefficients aj, j ≥ 0. 

To illustrate this method, we will study the following example: 

 

Example 4.7 

 

Solve the Fredholm Integral Equation 
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By using the series solution method. 

We first substitute u(x) with the series 







0

,)(
n

n

n xaxu         (4.78) 

into both sides of equation (4.77) and get 
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After simplification by using the three steps mentioned earlier in this method, we get
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As a result, the exact solution is 
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4.1.1.8 The homotopy perturbation method (HPM) [2,11] 

 

This method has been provided and developed by Ji-Huan He in [11]. In fact, the 

homotopy perturbation method was used recently in order to solve linear and 

nonlinear problems. Moreover, this method works to combine a perturbation 

technique and a homotopy technique of topology. Additionally, a homotopy with an 

embedding parameter p ∈ [0, 1] is constructed, which is considered to be a small 

parameter [11]. Furthermore, the limitations of the traditional perturbation technique 

have been eliminated due to the coupling between the perturbation method and the 

homotopy method. Finally, HPM can deal with the first kind and the second kind of 

Fredholm Integral Equation. However, in this section, we will discuss a special case 

of the Fredholm Integral Equation of the second kind according to what will be 

explained as follows: 

First of all, let us consider the Fredholm Integral Equations of the Second Kind 
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Second, we define the operator 
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where u(x) =v(x). Then we define the homotopy H(u, p), p∈ [0, 1] via : 

)()0,( uFuH  and )()1,( uLuH  .      (4.84) 

F(u) represents a functional operator. Now we establish a convex homotopy 

according to the following form: 

H(u, p) = (1 − p)F(u) + p L(u) = 0       (4.85) 

This homotopy satisfies (4.84) for p = 0 and p = 1 respectively. By including the 

parameter p ,u increases monotonically from zero to one such as the trivial problem 

L(u) = 0. Additionally, the HPM admits the use of the following expansion: 
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When the solution exists, it leads to the series (4.87), which converges to the exact 

solution. By substituting (4.86) into (4.85) and using the formula F(x) = u(x)−h(x) 

and using mathematical operations of equating conditions with like powers of the 

embedding parameter p, we obtain the following recurrence relation: 
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When we notice the recurrence relation above, we find that it is identical to the 

standard adomian decomposition method previously mentioned. 

 

4.1.2 Methods to solve fredholm integral equation of the first kind [1-5,12] 

 

As stated in Chapter two, we have defined the Fredholm Integral Equation of the first 

kind as the following form 
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where Ω is a bounded and closed set and h(x) is the data. The equation above (4.89) 

is determined by the occurrence of the unknown function h(x) only inside the integral 

sign and this causes special difficulties[2,12]. Fredholm integral equation of the first 

kind is considered ill-posed problem , postulated the following three properties [2]: 

1. Existence of a solution. 

2. Uniqueness of a solution. 

3. Continuous dependence of the solution on the data u(x). 

This property means that small errors in the data u(x) should cause small errors. Now 

we will offer some of the methods which will be used to find a solution to the 

Fredholm Integral Equation of the first kind. 

 

 

4.1.2.1 The method of regularization [2,12,16] 

 

Tikhonov and Phillips [2,12] established this method independently. This method 

transforms the linear Fredholm Integral Equation of the first kind 
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To an approximation of a Fredholm Integral Equation of the second kind 
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where  is a small positive parameter. It can be also noted that the Fredholm Integral 

Equation of the second kind (4.91) maybe expressed as follows: 
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Furthermore, it was proved that the solution u of the Fredholm Integral Equation of 

the second kind (4.92) converges to the solution u(x) of the linear Fredholm Integral 

Equation of the first kind (4.90) as 0 , which means that the exact solution 

u(x)may be obtained by 
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4.1.2.2 The homotopy perturbation method (HPM) [2,16] 

 

As previously stated in this chapter, we discussed this method and how to deal with 

the second type of Fredholm Integral Equation. In this section, we will discuss this 

method and how to deal with the first type of Fredholm Integral Equation. We first 

assume the following Fredholm integral equations of the first kind: 
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Second, we define the operator 
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Now, we establish a convex homotopy according to the following form: 
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To include the parameter p monotonically increasing from zero to one. The HPM 

admits the use of the following expansion: 
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When a solution exists, it leads to that series and (4.98) converges to the exact 

solution. Substituting (4.97) into (4.96) and by re-applying the same previous steps, 

we obtain the recurrence relation 
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Then the following condition must be a justification for convergence when the kernel 

is separable: 
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4.1.3 Methods to solve systems of fredholm integral equations [2,13,14] 

 

There are two systems of Fredholm Integral Equation according to the following 

The system of Fredholm Integral Equations of the first kind, as in the following 

formula 
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Where a and b are constants and the functions u(x) and v(x) are the unknown, which 

will be here just under the integral sign [2]. 

The system of Fredholm Integral Equations of the second kind, as in the following 

formula 







,...))(),()(),(()()(

,...))(),()(),(()()(

222

111

dyyvyxFyuyxFxhxv

dyyvyxFyuyxFxhxu

b

a

b

a









   (4.102) 

where a and b are constants and the functions u(x),v(x),... are the unknowns that will 

be determined. The function hi(x) and the kernels Fi(x ,y), ),(1 yxF


are given a real-

valued function. Now, we will apply some of the methods that were previously used 

in solving the Fredholm Integral Equations. 

 

4.1.3.1 Adomian decomposition method [1,2]: 

 



As presented before, this method offers the solution in a series form[1]. In fact, this 

method comprises decomposing the unknown function u(x) of any equation into a 

sum of an infinite number of components defined by the decomposition series[2]. 

Suppose that we have a system of Fredholm Integral Equations of the second kind 
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As explained previously, the Adomian decomposition method provides the solution 

in a series form, which means that 







0

),()(
n

n xuxu and 





0

).()(
n

n xvxv      (4.104) 

Where un(x), n ≥ 0 is the components of u(x), and vn(x), n ≥ 0 is the components of 

v(x). By substituting (4.104) into (4.103) and using the modified decomposition 

method to obtain the recursive relation and set values u0(x), u1(x), uk+1(x) and v0(x), 

we havev1(x), vk+1(x) where 1k . Consequently, we obtain the exact solutions by 

canceling the noise terms ∓2 from u0(x) and from v0(x). 

 

4.1.3.2 The direct computation method [1,2] 

 

The direct computation method was offered previously to solve Fredholm Integral 

Equations, now we will apply this method to solve systems of Fredholm Integral 

Equations of the second kind. It is important to note, the direct computation method 

will be applied for the separable or degenerate kernels, which means that 
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This method can be applied as follows: 

Substitute (4.105) into the system of Fredholm Integral Equations of the form 
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This substitution gives 
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Every integral on the right side is equal to a constant because of it relies on only the 

variable y with constant limits of integration for y. Accordingly, the equation (4.104) 

becomes 
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where 
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where1≤ i ≤n. Finally, substituting (4.105) into (4.106) in turn gives a system of n 

algebraic equations which can be simplified and resolved to find the constants ,i
i ,

,i i . 

 

 

4.2 Method to Solve Nonlinear Fredholm Integral Equations [1,2,5] 

 

Previously in this chapter, linear Fredholm Integral Equations and methods of their 

solutions were presented in addition to systems of the linear Fredholm Integral 

Equations and methods of their solutions. Here, we study nonlinear Fredholm 

Integral Equations and systems of nonlinear Fredholm Integral Equations. 

 

4.2.1 Method to solve nonlinear fredholm integral equations of the second kind 

 



The general form of the nonlinear Fredholm Integral Equation of the second kind can 

be represented by the following formula 
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Where F(x, y) and h(x)are given real-valued functions. Moreover, G(u(x)) is a 

nonlinear function of u(x)and it is clear that the unknown function u(x), which is to 

be determined, occurs inside and outside the integral sign. In the following, we shall 

present the various methods of solutions of the nonlinear Fredholm Integral Equation 

(4.107). 

 

 

 

4.2.1.1 The direct computation method [1,2,5] 

 

As we know, this method was applied before in this chapter to solve linear Fredholm 

Integral Equations. The Direct Computation Method is an efficient method which 

can be applied to solve nonlinear Fredholm Integral Equations. In this method, the 

exact solution is determined in a closed form and not in a series form[1,2]. It is worth 

mentioning that the direct computation method can be applied to separable or 

degenerate kernels of the form 
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By substituting(4.108) into the nonlinear fredholm integral equation of the form 
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In equation(4.110), each integral on the right side is equivalent to a constant. 

Accordingly, equation (4.110) becomes 
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where 
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We get a system of n algebraic equations when substituting (4.111) into (4.112), 

which will be solved to determine the constants αi, 1 ≤ i ≤ n. 

Therefore, when we obtain the values of αi substituted into (4.111) to obtain on the 

solution u(x) of the nonlinear Fredholm Integral Equation (4.109). It is important to 

note, the solution u(x) of the nonlinear Fredholm Integral Equation is not necessarily 

unique because we may get more than one value for one or more of αi, 1≤ i ≤n. 

 

 

 

4.2.1.2 The series solution method [2,5] 

 

As mentioned previously, the main role in this method is the Taylor series that can be 

written at x = 0 as 
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Suppose we have the nonlinear Fredholm Integral Equations 
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Which has an analytic solution. Then, each coefficient an will be determined 

recurrently by using the form (4.113). Then substituting(4.113) into both sides of 

(4.114) gives 
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Or we can simplify the previous form, to becomes 
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Where T(h(x)) is the Taylor series for h(x). In this manner, the integral 

equation(4.114) is transformed into a traditional integral in (4.115) or (4.116). Where 

in lieu of the integrating, the nonlinear term F(u(x)) terms of the form yn, n ≥ 0 will 

be integrated. It is important to note that, the Taylor expansions for functions 

contributory in h(x) should be used if h(x) contains elementary functions such as 

exponential functions, trigonometric functions, etc. This method can be applied by 

using the following steps: 



The first step starts dealing with the right side of equation (4.115) or (4.116), where 

we work to integrate this side. In the second step, we work to collect the coefficients 

of like powers of x, and then process the equality for these coefficients on both sides 

to obtain a recurrence relation in aj, j ≥ 0. We then work on solving the recurrence 

relation to determine of the coefficients aj, j ≥ 0, directly followed by the series 

solution when substituting the derived coefficients into (4.113). Moreover, we can 

use the series which we obtained for numerical purposes if an exact solution is not 

possible to find. The series solution method gives exact solutions effectively when 

the solution u(x) is a polynomial. However, if the solution u(x) is not a polynomial, 

such as any other elementary function, by using the series solution method the exact 

solution is given after approximation of a few of the coefficients aj,  j ≥ 0. 

 

4.2.1.3 The adomian decomposition method [2,15] 

 

As we know, in this chapter we presented this method previously, where it was 

applied to find a solution to the linear Fredholm Integral Equations. In this section, 

we will apply this method to the nonlinear Fredholm Integral Equation 
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We assume that G(u(y)) is a nonlinear function of u(y). That means that the nonlinear 

Fredholm Integral Equation (4.117) contains the nonlinear function represented by 

G(u(y)) and the linear term is represented by u(x). In fact, we can represent the linear 

term u(x) with the following decomposition series 
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As explained previously, a recursive technique can easily compute the components 

un(x), n ≥ 0. Moreover, the so-called Adomian polynomials should be An, which 

represents the nonlinear G(u(y)) in equation(4.119). This process occurs by using the 

following algorithm 
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When substituting (4.118) and (4.119) into (15.84), we get 
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Adomian’s decomposition method uses the following recursive relations to 

determine the components u0(x), u1(x)... 
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where n 0. With a reminder that the modified recurrence relation uses the formula 

h(x) =h1(x)+h2(x) when h(x) is decomposed into two components h1(x) and h2(x). 

This means the modified recurrence relation becomes 
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When a solution exists, the above series solution that we obtained may converge to 

the exact solution; otherwise, the above series solution can be used for numerical 

results. 

 

4.2.1.4 The successive approximations method [2,5] 

 

The method of successive approximations was applied previously in this chapter. In 

this section, it will be applied to the nonlinear Fredholm Integral Equation. In fact, 

this method grants a scheme that can be used to solve integral equations or initial 

value problems. Moreover, the technique of this method is to find successive 

approximations to the solution of the issue by starting with an initial guess, which is 

called a zeroth approximation. As a matter of fact, the zeroth approximation can be 

any real valued function u0(x), which will be used in a recurrence relation to 

determine the other approximations. Additionally, we can select any real-valued 



function for the zeroth approximation; the most frequently used values are 0, 1, or x. 

To illustrate how to apply this method, we consider the nonlinear Fredholm Integral 

Equation 
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where u(x) is the unknown function to be determined, F(x ,y) is the kernel, G(u(y)) is 

a nonlinear function of u(y), and µ is a parameter. As explained, the successive 

approximations method uses the following recurrence relation: 

u0(x) = any selective real valued function 
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where f is larger of the two numbers F(1+
)( abF

R


)and M. At the finish, we 

obtain the final solution by using the limit 
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4.2.2 Method to solve a nonlinear fredholm integral equation of the first kind 

 

The general form of the nonlinear Fredholm Integral Equation of the first kind maybe 

represented with the following formula: 
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where the kernel F(x ,y)and h(x)are given real-valued functions and G(u(x)) is a 

nonlinear function of u(x) [19] .When we want to determine a solution for this type 

of equation, equation (4.126) needs to be converted to a linear Fredholm Integral 

Equation of the first kind of the following form: 

,)(),()( 
b

a
dyyvyxFxh        (4.127) 

by using the transformation 
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On the assumption that G(u(x)) is invertible, it can be set as 
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As we mentioned earlier, the linear Fredholm Integral Equation of the first kind tends 

to be an ill-posed problem because it does not satisfy certain properties and such a 

solution may not exist, or may not be unique even if it exists [19]. Now we will offer 

some of the methods which we will use to find a solution of the first kind of 

Fredholm Integral Equations. 

 

4.2.2.1 The method of regularization [2,13,16] 

 

This method was established independently by Tikhonov and Phillips [17,18]. The 

method transforms the linear Fredholm Integral Equation of the first kind 
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to the approximation Fredholm Integral Equation 
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where  is a small positive parameter. It can also be noted that, the Fredholm 

Integral Equation of the second kind (4.131)can be represented as the following 

formula 


b

a
dyyuyxfxhxu )(),(

1
)(

1
)( 


     (4.132) 

Furthermore, it was proved in [2] that the solution u of the Fredholm Integral 

Equation of the second kind (4.132) converges to the solution u(x) of the linear 

Fredholm Integral Equation of the first kind (4.130) as 0 . This means that the 

exact solution u(x) can be found by 
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4.2.2.2 The homotopy perturbation method [2,19] 

 

As previously stated, the method of homotopy perturbation in this chapter was 

discussed as to how this method can handle Fredholm Integral Equations of the 

second kind and linear Fredholm Integral Equations of the first kind. Now we will 

discuss this method and how to handle on linear Fredholm Integral Equations of the 

first kind. Firstly, assume we have the following nonlinear Fredholm Integral 

Equation of the first Kind: 
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Second, we determine the operator 
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Now we establish a convex homotopy according to the following form 
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The embedding parameter p monotonically increases from zero to unity as the trivial 

problem L(u) = 0. The embedding parameter p∈ [0,1] can be considered to be an 

expanding parameter[22]. The HPM admits the use of the following expansion 
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Then 
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When the solution exists, it leads to the series (4.138) and converges to the exact 

solution. Substituting (4.137) into (4.136) and by re-applying the same previous 

steps, we get the recurrence relation 
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Then the following condition must be a justification for convergence when the kernel 

is separable: 
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4.2.3 Method to solve systems of nonlinear fredholm integral equation [2,20] 

 

In this section, our study will be limited to systems of nonlinear Fredholm Integral 

Equation of the second kind. These systems can be written in the following manner: 
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Where a and b are constants, the functions u(x),v(x) are the unknowns that will be 

determined. The function hi(x)and the kernels ),( yxFi , ),(1 yxF


are given a real valued 

function. Now, we will apply some of the methods that were previously used to solve 

systems of nonlinear Fredholm Integral Equations of the second kind. 

 

4.2.3.1 The direct computation method [2]: 

 

This method, as we presented previously, is an efficient method which can be applied 

to solve Fredholm Integral Equations. In this section, we will be applying this 

method to solve systems of nonlinear Fredholm Integral Equations of the second 

kind. In this method, the exact solution is determined in a closed form and not in a 

series form. It is worth mentioning that the direct computation method will be 

applied to the separable or degenerate kernels of the form 
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This method can be applied as follows: 

We substitute (4.142) into the systems of nonlinear Fredholm Integral Equations of 

the second kind (4.141)to obtain 
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Every integral within the right side is equal to a constant because relies on only the 

variable y with constant limits of integration for y. Accordingly, the equation (4.143) 

becomes 
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where 
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where 1≤ i ≤ n. Finally, substituting (4.144) into (4.145) in turn gives a system of n 

algebraic equations which can be simplified and resolved to find the constants ,i ,i

,i i and by substituting these constants into (4.144), we obtain the exact solutions. 

 

4.2.3.2 The modified adomian decomposition method [2,21] 

 

This method has been used previously in this chapter, where it was applied to find a 

solution to the linear Fredholm Integral Equations of the second kind. Let us assume 

that we have a system of nonlinear Fredholm Integral Equations of the second kind 

as follows: 
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By this method, the above linear terms u(x) and v(x) will be decomposed by a certain 

number of components in the following form: 
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By recurring, the components vn(x), un(x) will be determined. Moreover, the modified 

adomian decomposition method can be used combined with the noise terms 

phenomenon or used independently. In the systems of nonlinear Fredholm Integral 

Equations of the second kind (4.146), the nonlinear functions Gi and iG


, i=1, 2, 

should be replaced by An, where An represents the Adomian polynomials defined by 
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Before using the recurrence relations, we should substitute the above suppositions 

into the systems of nonlinear Fredholm Integral Equations of the second kind (4.146) 



in order to determine the components un(x) and vn(x). These procedures lead us to 

obtaining the exact solutions. 

  



 

 

 

CHAPTER 5 

 

NUMERICAL SOLUTION FOR SPECIAL NON-LINEAR FREDHOLM 

INTEGRAL EQUATION 

 

In this chapter we will apply the Newton-Kantorovich method to compute a 

numerical solution for a special non-linear integral equation of the Fredholm type. 

Then we will compare between the results which we obtain by the numerical solution 

method and the results of the exact solution. Firstly, let us know the form of the 

special non-linear integral equation of the Fredholm type: 
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where h(x) is a given continuous function defined in [a ,b], f(x ,y) is a continuous 

function in [a, b] × [a ,b] and µ is a real number. 

 

5.1 Method of Solution 

 

As we previously stated, the nonlinear Fredholm Integral Equation of second kind is 

as follows: 
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where u(y) is an unknown function, F(x,y,u(y)) is the kernel of the integral equations, 

with the assumption that all functions in (5.2) are continuous on [a ,b]×[a ,b], In the 

following, we will discuss the method of the solution. 

 

5.1.1 The newton – kantorovich method [21,24] 

 

This method is applied to find a solution for nonlinear Fredholm Integral Equation of 

second kind (5.2) using an iteration process as follows: 
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This means that from above equations (5.3),(5.4) and (5.5), we have 
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Moreover, in this method, we need to know the concept of the quadrature method, 

which will be applied in order to solve the linear integral equation in equation (5.4) 

so that we can find an approximation of )(1 xt . 

 

5.1.2 The quadrature method 

 

In order to construct an approximate solution of an integral equation, the quadrature 

method has been used. This method is based on finding an alternative to integrals, 

where it works to replace the integrals by finite sums depending on the quadrature 

formula. In general, we have the following form: 
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 ,      (5.7) 

where Ai ≥0, (i=1,...,n) are numerical coefficients specific to the choice of the 

function )(x ,xi (i=1,...,n)which are the coordinates of the partition affiliate points 

to the integration interval [a ,b]. Simpson’s Rule is the most flexible in terms of 

practice, where it is simplest and makes it the most common. The use of this method 

is as follows: 
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As for the convergence of the algorithm and its existence, it is according to [22] that 

we can see that all conditions relating to establishing the convergence of the 

algorithm and its existence; for more details, see [22]. 

 

 

 

5.2 Numerical Solutions Using The Newton-Kantorovich Method 

 



In this part, we will apply Newton-Kantorovich method to a special non-linear 

integral equation of the Fredholm type of the form (5.1) in order to find a numerical 

solution. To illustrate this, we consider the following example: 

 

Example 5.1 

 

Solve the following non-linear Fredholm Integral Equation by applying the Newton-

Kantorovich method: 

],1,0[,))()(sin()cos(
5

1
)sin()(

1

0

3   pdyyyppp     (5.9) 

whose exact solution is )cos(
3

39120
)sin()( ppp 


 [23]. 

Now first of all, for the initial approximation we take 

)sin()(0 ppu   .                                                               (5.10) 

According to equation (5.5), we find the residual 
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From (5.10), we have 

)(sin)()sin()( 33

0 yyuyyuo     .                                            (5.12) 

Substituting (5.12) into (5.11), we get 
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.
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)cos(3 p
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we need to calculate the kernel ),,( uypF  . Therefore, ),,( uypF   has the form 

).()cos()sin(3),,( 2 yuypuypF       (5.17) 

According to equation (5.4), we form the following equation for )(0 p ,so 
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By applying the quadrature method to (5.8), we can obtain the solution for equation 

(5.18) such that 
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After simplification of (5.19), we get 
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By computing )
2

1
(0  in (5.19), we get 0)

2

1
(0  , and by substituting this result into 

(5.20), we get 

40

)cos(3
)(0

p
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
  .        (5.21) 

Now we can define the first approximation to become the following function: 

).cos(
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By repeating the same previous processes, we get )(),( 21 pp  as follows: 
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0
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Also, by substituting (5.12) into (5.22) and integrating, we get 
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and 
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By similar above computation, we get 

).cos(
64000

27
)(1 pp          (5.26) 

Then we can define the second approximation to become the following function: 

 

)cos(
64000

27
)cos(

40

3
)sin()()()( 112 pppppupu      

)cos(
64000

4827
)sin( pp       (5.27) 

To find )(3 pu  (final iteration), again we compute ),(2 p )(2 p  
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0
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Also, by the same previous computational procedures, we get 
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Again in the same previous manner, we solve this integral equation to obtain 

),cos(
001638400000
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)(2 pp         (5.31) 

Then we can define the third approximation as the following function: 

)cos(
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We stop the iteration at the third step. The table below shows the approximate 

solutions obtained by applying the Newton-Kantorovich method for three iterations 

according value of p, which is confined between zero and one. We compared these 

results with the results which were obtained by the exact solution for this example, 

where the results are very close. Moreover, we can see the convergence of solutions 

in Figure 5.1,which is shown clearly. 

 

 

 

 

 

 

 

 

 

 

p The exact solution Newton–Kantorovich 

solution 

Error=1.0e-007 * 

0 0.075426688904937 0.075426634442139 0.544627982018708 

0.1 0.380752038360555 0.380751986563356 0.517971990854349 

0.2 0.648806725445999 0.648806681384670 0.440613293628545 

0.3 0.853351689742522 0.853351657730092 0.320124295960511 

0.4 0.974364644996211 0.974364628166281 0.168299302272246 

0.5 1 1 0 



0.6 0.927748387594096 0.927748404424026 0.168299302272246 

0.7 0.764682299007373 0.764682331019803 0.320124295960511 

0.8 0.526763779138947 0.526763823200276 0.440613293628545 

0.9 0.237281950389340 0.237282002186539 0.517971991131905 

1 -0.075426688904937 -0.075426634442139 0.544627982018708 

 

Table (5.1) Convergence of Solutions 

 

 

Figure 5.1 (Convergence of Solutions) 

  



 

 

 

CHAPTER 6 

 

CONCLUSION 

 

No one disagrees on the importance of integral equations in our practical and 

scientific life. In fact, with these equations, we can identify various natural 

phenomena which may confront us. Moreover, from a scientific perspective, there 

are many physical, engineering and electrical phenomena the meaning and concept 

of which may be found with these integral equations, which represent the main 

players in these fields. A typical example of such equation is the Fredholm Integral 

Equation. 

In this thesis after that we presented a detailed study about Fredholm Integral 

Equations. In particular, we identified the form of this equation and the definition of 

their types. In addition, we presented effective methods to find the exact solutions for 

each type of equation. Finally, we presented a special case of a Fredholm Integral 

Equation and applied the Newton-Kantorovich method to find a numerical solution 

which was then compared with the numerical results obtained by the exact solution 

method. We have shown that the solutions are convergent and closed. From this, it 

can be concluded that the Newton-Kantorovich method can be applied to find the 

exact solutions due to the method's high accuracy and convergence to the results of 

the exact solution. Computations and drawings of the functions were carried out with 

the MATLAB R2010a program. 
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