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ABSTRACT In the present research article, a modified analytical method is applied to solve time-fractional
telegraph equations. The Caputo-operator is used to express the derivative of fractional-order. The present
method is the combination of two well-known methods namelyMohan transformation method and Adomian
decomposition method. The validity of the proposed technique is confirmed through illustrative examples.
It is observed that the obtained solutions have strong contact with the exact solution of the examples.
Moreover, it is investigated that the present method has the desired degree of accuracy and provided the
graphs closed form solutions of all targeted examples. The graphs have verified the convergence analysis
of fractional-order solutions to integer-order solution. In conclusion, the suggested method is simple,
straightforward and an effective technique to solve fractional-order partial differential equations.

INDEX TERMS Mohand transformation, telegraph equations, Adomian decomposition method, Caputo
operator.

I. INTRODUCTION
The fractional calculus (F.C) was created in 1695, with a
problem about the value of the half-order derivative. While
F.C is the subject that has about 300 years of history.
The growth of fractional calculus is a bit slow at early
stage and focuses primarily on pure mathematics. At the
early growth theory of F.C, it has only discovered in the
latest decade that by using fractional differential systems,
the behaviors of many structures can be defined, such as frac-
tional kinetics, quantum evolution of complex system, vis-
coelastic system, dielectric polarization, electrode-electrolyte
polarization, colored noise, electromagnetic waves, quan-
titative finance, phenomenon in power-law regarding fluid
and network, applications in biology and ecology allomet-
ric laws scaling, the effects of boundary layer in ducts,
and so on [1]–[4]. Many authors have been solved differ-
ent types of fractional models, such as the fractional-order
diffusion and Buckmaster’s equation are solved by different
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mathematics [5], fractional-order telegraph equations [6],
third-Order dispersive fractional partial differential equations
(PDEs) [7], KdV-Kuramoto-Burger equation of fractional-
order [8], fractal flow of traffic [9], Drinfeld-Sokolov-Wilson
equation [10], time-fractional sub-diffusion and anomalous
equations [11], heat equations of fractional-order [9], [12],
fractional option pricing problems [13], [14], fractional cou-
pled viscous Burgers’ equation [15], hepatitis B virus frac-
tional dynamic model [16], fractional model for tuberculosis
[17], pine wilt disease fractional order model [18], fractional
diabetes model [19], fractional-order Navier-Stokes equa-
tions [20], [21] etc.

In this new era of technology, communication system is
considering a powerful system which plays a vital role in
many real world problems. For example, engineering prob-
lems involved the transmission of a signal from one place to
another. So, a specific class in the form of hyperbolic PDEs,
which depict the vibrations within objects and the phenom-
ena of wave propagation in medium, is known as telegraph
equation [22]. In electrical circuit propagation the study of
such type of telegraph equations are used extensively [23].
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The interaction among convection and diffusion process and
its reciprocal narrate many non-linear problems that fre-
quently occurs in physical, biological and chemical phe-
nomenons [24]–[26]. In fact, for such branches of science the
telegraph equation is more relevant as compared to diffusion
reaction phenomenawhich ismodeled of ordinary differential
equation. For example, in the field of biology, biologists
encounter these mathematical modelings to study the behav-
iors of pulsatile blood flow in arteries and in one dimensional
random mosquito movement along with the shield [27]. Also
in the field of physics, the acoustic wave’s propagation in
Darcy-type porous media [28], and Parallel Maxwell fluid
flows [29] are few of the physical processes that have been
defined by telegraph models [30]–[32]. The telegraph mathe-
matical models also have been implemented in other fields as
well. For instance, the model transport of charged particles
is used as a substitute for the diffusion equation [33], [34],
the transmission lines with high frequency [2], [35], solar cos-
mic rays [36], anomalous and chemical diffusion [37], [38],
the population dynamics and hydrology [39]. It too has been
employed in the theory of hyperbolic heat transfer [40], [41].

In the current article, we have applied the Mohand trans-
formation (M.T) with decomposition procedure for the ana-
lytical treatment of fractional telegraph model as

∂βu(ξ1, η1, γ1, τ1)

∂τ
β

1

= κ
∂2u(ξ1, η1, γ1, τ1)

∂ξ21

+ λ
∂2u(ξ1, η1, γ1, τ1)

∂η12

+ ρ
∂2u(ξ1, η1, γ1, τ1)

∂γ12
+ $

∂u(ξ1, η1, γ1, τ1)
∂τ1

+ `u(ξ1, η1, γ1, τ1), 1 < β ≤ 2, (1)

with some initial source

u(ξ1, η1, γ1, 0) = u(ξ1, η1, γ1),
∂

∂τ1
u(ξ1, η1, γ1, 0) = u(ξ1, η1, γ1),

where κ, λ, ρ, ` and $ > 0 are real numbers.
TheM.T is one of themodern integral transformations used

to analyze various physical phenomenon formed by differen-
tial equations (DEs), PDEs and fractional partial differential
equations (FPDEs). Recently Sudhanshu Aggarwal, Mohand
and Aboodh transforms comparatively studied for the mathe-
matical solution of the integer order of DEs. The mathemati-
cal outcomes and implementations show the close connection
between both the transformations Mohand and Aboodh [42].
The various transformation and their comparison such as
Mohand, Laplace, Sumudu and Mahgoub transforms are
briefly discussed by Sudhanshu Aggarwal [43]–[45] and sim-
ilarly explained the Bessel’s functions of order zero, one
and two with the help of M.T [46]. Using M.T, the exact
solution of second kind linear Volterra integral equations
is obtained. M.T is said to take little period and has no
significant mathematical work [47]. The theory of Bessel,s
function is extremely important for the solution of several

spherical equations such as wave schemes and heat system.
Abel’s solution is found by using M.T with the help of an
integral equation. The obtained results have confirmed the
importance of M.T to handle Abel’s solution [48].

II. PRELIMINARY CONCEPTS
This section is concerned with some definitions and prelimi-
naries which are important for the current research work.

A. DEFINITION
M.T was developed by Mohand and Mohgoub in 2017.
This transformation is named as M.T. The transformation is
defined for a function with exponential order which is defined
in the set A of the form

A = {f (τ1) : ∃M , k1, k2 > 0.|f (τ1)| < Me
|τ1|
kj ,

if τ1 ∈ (−1)j × [0,∞)}. (2)

where k1, k2 are finite or infinite for a factor to be in set A
and M must be a finite number define [49], [50].

M{u(x, τ1)}=R(υ)=υ2
∫
∞

0
u(τ1)e−υτ1dτ1, k1≤υ≤k2.

(3)

The M.T of a u(τ1) function is R(υ), so u(τ1) is considered
the inverse of R(υ).

M−1{R(υ)} = u(τ1), (4)

M−1 is the inverse operator of Mohand transform.

B. DEFINITION
M.T of the derivatives of the function F(τ1)

IfM{F(τ1)} = R(υ) then

(a) M{F ′(τ1)} = υR(υ)− υ2F(0)

(b) M{F ′′(τ1)} = υ2R(υ)− υ3F(0)− υ2F ′

(c) M{F (n)(τ1)} = υnR(υ)− υn+1F(0)− υnF ′(0)

− · · · − υ2F (n−1)(0). (5)

C. DEFINITION
Fractional-order derivative in term of Caputo definition [51]

Dβτ1 f (τ1) =


∂nf (τ1)
∂τ n1

, β = nεN ,

1
β(n− β)

∫ τ1
0 (τ1 − φ)n−β−1f (n)(φ)∂φ,

n− 1 < β < n.

(6)

D. DEFINITION
Function of Mittag-Leffler, Eκ (x) for κ > 0 is described as

Eκ (x) =
∞∑
m̃=0

xm̃

0(κm̃+ 1)
κ > 0 x ∈ C.
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III. IMPLEMENTATION OF THE M.T
DECOMPOSITION METHOD
In this sectionwe considered the following telegraph equation

∂βu(ξ1, η1, γ1, τ1)
∂τ1β

= κ
∂2u(ξ1, η1, γ1, τ1)

∂ξ1
2 + λ

∂2u(ξ1, η1, γ1, τ1)
∂η12

+ ρ
∂2u(ξ1, η1, γ1, τ1)

∂γ12
+ $

∂u(ξ1, η1, γ1, τ1)
∂τ1

+ `u(ξ1, η1, γ1, τ1), 1 < β ≤ 2, (7)

subject to the initial conditions

u(ξ1, η1, γ1, 0) = u(ξ1, η1, γ1),

∂

∂τ1
u(ξ1, η1, γ1, 0) = u(ξ1, η1, γ1),

where κ, λ, ρ, ` and $ > 0 are real numbers.
Applying Mohand transformation on both sides of equa-

tion (7), we get

M
{
∂βu(ξ1, η1, γ1, τ1)

∂τ1β

}

= M{κ
∂2u(ξ1, η1, γ1, τ1)

∂ξ1
2

+ λ
∂2u(ξ1, η1, γ1, τ1)

∂η12
+ ρ

∂2u(ξ1, η1, γ1, τ1)
∂γ12

+ $
∂u(ξ1, η1, γ1, τ1)

∂τ1
+ `u(ξ1, η1, γ1, τ1)}, 1<β≤2.

(8)

Using the differential property of Mohand transformation,
we have

υβ{R(υ)− υu(0)− u′(0)}

= M{κ
∂2u(ξ1, η1, γ1, τ1)

∂ξ1
2 +}

× λ
∂2u(ξ1, η1, γ1, τ1)

∂η12
+ ρ

∂2u(ξ1, η1, γ1, τ1)
∂γ12

+ $
∂u(ξ1, η1, γ1, τ1)

∂τ1
+ `u(ξ1, η1, γ1, τ1)}. (9)

After simplification, equation (9) can be written as

R(υ) = υu(0)+ u′(0)+
1
υβ

M
{
κ
∂2u(ξ1, η1, γ1, τ1)

∂ξ1
2

+ λ
∂2u(ξ1, η1, γ1, τ1)

∂η12
+ ρ

∂2u(ξ1, η1, γ1, τ1)
∂γ12

+ $
∂u(ξ1, η1, γ1, τ1)

∂τ1
+ `u(ξ1, η1, γ1, τ1)

}
. (10)

Taking inverse Mohan transforation of equation (10)

u(ξ1, η1, γ1, τ1)

= u(0)+ τ1u′(0)

+M−1
[
1
υβ

M
{
κ
∂2u(ξ1, η1, γ1, τ1)

∂ξ1
2

+ λ
∂2u(ξ1, η1, γ1, τ1)

∂η12

+ ρ
∂2u(ξ1, η1, γ1, τ1)

∂γ12
+ $

∂u(ξ1, η1, γ1, τ1)
∂τ1

+ `u(ξ1, η1, γ1, τ1)}] . (11)

At the end, we obtained the following recursive formula by
using Adomian decomposition method.

u0(ξ1, η1, γ1, τ1) = u(0)+ τ1
∂

∂τ1
u(0), m = 0

um+1(ξ1, η1, γ1, τ1)

= M−1
[
1
υβ

M
{
κ
∂2um(ξ1, η1, γ1, τ1)

∂ξ1
2 v

+ λ
∂2um(ξ1, η1, γ1, τ1)

∂η12
+ ρ

∂2um(ξ1, η1, γ1, τ1)
∂γ12

+ $
∂um(ξ1, η1, γ1, τ1)

∂τ1
+`um(ξ1, η1, γ1, τ1)

}]
, m≥0.

(12)

IV. APPLICATIONS AND DISCUSSION
Example 1: Consider (1+1) dimensional fractional tele-

graph model

∂βu(ξ1, τ1)
∂τ1β

=
∂2u(ξ1, τ1)

∂ξ1
2

− 2
∂u(ξ1, τ1)
∂τ1

− u(ξ1, τ1), 1 < β ≤ 2, (13)

with initial conditions

u(x, 0) = eξ1 , uτ1 (ξ1, 0) = −2e
ξ1 .

Applying M.T on both sides of equation (13)

υβ{R(υ)− υu(0)− u′(0)}

= M{
∂2u(ξ1, τ1)

∂ξ21

− 2
∂u(ξ1, τ1)
∂τ1

− u(ξ1, τ1)}. (14)

After simplification

R(υ) = υu(0)+ u′(0)+
1
υβ
{M{

∂2u(ξ1, τ1)
∂ξ1

− 2
∂u(ξ1, τ1)
∂τ1

− u(ξ1, τ1)}}. (15)

Using inverse M.T, we have

u(ξ1, τ1) = u(0)+ τ1u′(0)+M−1{
1
υβ

M{
∂2u(ξ1, τ1)

∂ξ1

− 2
∂u(ξ1, τ1)
∂τ1

− u(ξ1, τ1)}}. (16)
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Furthermore, by using the recursive system of equation (12),
we have

u0(ξ1, τ1) = υu(0)+ u′(0) = eξ1 − 2τ1eξ1 , (17)

um+1(ξ1, τ1)

= M−1
{

1
υβ

M

{
∂2um(ξ1, τ1)

∂ξ21

− 2
∂um(ξ1, τ1)

∂τ1
− um(ξ1, τ1)

}}
, m = 0, 1, · · · (18)

Eq. (18) implies,
for m = 0

u1(ξ1, τ1)

= M−1
{
1
υβ

M

{
∂2u0(ξ1, τ1)

∂ξ21

−2
∂u0(ξ1, τ1)

∂τ1
−u0(ξ1, τ1)

}}
,

u1(ξ1, τ1)

= 4eξ1
τ
β

1

β!
, (19)

for m = 1

u2(ξ1, τ1) = M−1
{

1
υβ

M

{
∂2u1(ξ1, τ1)

∂ξ21

− 2
∂u1(ξ1, τ1)

∂τ1
− u1(ξ1, τ1)

}}
,

u2(ξ1, τ1) = −8eξ1
(β)(β − 1)!τ 2β−11

(2β − 1)!(β)!
, (20)

for m = 2

u3(ξ1, τ1) = M−1
{

1
υβ

M

{
∂2u2(ξ1, τ1)

∂ξ21

− 2
∂u2(ξ1, τ1)

∂τ1
− u2(ξ1, τ1)

}}
,

u3(ξ1, τ1) = 16eξ1
(β)(β − 1)!(2β − 1)(2β − 2)!τ 3β−21

(2β − 1)!(3β − 2)!(β)!
,

(21)

for m = 3

u4(ξ1, τ1)

= M−1
{

1
υβ

M

{
∂2u3(ξ1, τ1)

∂ξ21

− 2
∂u3(ξ1, τ1)

∂τ1
− u3(ξ1, τ1)

}}
,

u4(ξ1, τ1)

=−32eξ1
(β)(β−1)!(2β−1)(2β−2)!(3β−2)(3β−3)!τ 4β−31

(2β−1)!(3β−2)!(β)!(4β−3)!
,

... (22)

Thus for the example 1, the M.T result is

u(ξ1, τ1) = u0(ξ1, τ1)+ u1(ξ1, τ1)+ u2(ξ1, τ1)

+ u3(ξ1, τ1)+ u4(ξ1, τ1)+ · · · . (23)

By putting the corresponding values, we get

u(ξ1, τ1)

= eξ1 − 2τ1eξ1 + 4eξ1
τ
β

1

β!
− 8eξ1

(β)(β − 1)!τ 2β−11

(2β − 1)!(β)!

+ 16eξ1
(β)(β − 1)!(2β − 1)(2β − 2)!τ 3β−21

(2β − 1)!(3β − 2)!(β)!

−32eξ1
(β)(β−1)!(2β−1)(2β−2)!(3β−2)(3β−3)!τ 4β−31

(2β−1)!(3β−2)!(β)!(4β−3)!
,

(24)

For particular case β = 2, the M.T solution become as

u(ξ1, τ1) = eξ1 − 2τ1eξ1 + 4eξ1
τ 21

2!
− 8eξ1

τ 31

3!

+ 16eξ1
τ 41

4!
− 32eξ1

τ 51

5!
+ · · · . (25)

The determined result provides the exact solution

u(ξ1, τ1) = eξ1−2τ1 . (26)

Example 2: Consider (2+1) dimensional linear fractional
telegraph model

∂βu(ξ1, η1, τ1)
∂τ1β

=
∂2u(ξ1, η1, τ1)

∂ξ1
2 +

∂2u(ξ1, η1, τ1)
∂η12

−3
∂u(ξ1, η1, τ1)

∂τ1
−2u(ξ1, η1, τ1), 1<β≤2 (27)

with initial conditions

u(x, y, 0) = eξ1+η1 , ut (ξ1 + η1, 0) = −3eξ1+η1 ,

the exact solution is

u(ξ1, η1, τ1) = eξ1+η1−3τ1 .

Applying M.T on both sides of eq. (27)

υβ{R(υ)− υu(0)− u′(0)}

= M{
∂2u(ξ1, η1, τ1)

∂ξ2ε1
+
∂2u(ξ1, η1, τ1)

∂η12
− 3

∂u(ξ1, η1, τ1)
∂τ1

− 2u(ξ1, η1, τ1)}. (28)

After simplification, equation (28) is modified

R(υ) = υu(0)+ u′(0)+
1
υβ
{M{

∂2u(ξ1, η1, τ1)

∂ξ1
2

+
∂2u(ξ1, η1, τ1)

∂η12
− 3

∂u(ξ1, η1, τ1)
∂τ1

− 2u(ξ1, η1, τ1)}}, (29)

VOLUME 8, 2020 25641



I. Ali et al.: Approximate-Analytical Solution to Analyze Fractional View of Telegraph Equations

Applying inverse M.T and simplified equation (29) implies

u(ξ1, η1, τ1)

= u(0)+ τ1u′(0)+M−1[
1
υβ

M{
∂2u(ξ1, η1, τ1)

∂ξ1
2 }]

+
∂2u(ξ1, η1, τ1)

∂η12
− 3

∂u(ξ1, η1, τ1)
∂τ1

− 2u(ξ1, η1, τ1)}},

(30)

Using the recursive system of the equation (12), we get

u0(ξ1, η1, τ1) = u(0)+ τ1u′(0) = eξ1+η1 − 3τ1eξ1+η1 , (31)

and

um+1(ξ1, η1, τ1)

= M−1{
1
υβ

M{
∂2um(ξ1, η1, τ1)

∂ξ1
2 +

∂2um(ξ1, η1, τ1)
∂η12

− 3
∂um(ξ1, η1, τ1)

∂τ1
− 2um(ξ1, τ1)}}. (32)

equation (32) implies that,
for m = 0

u1(ξ1, η1, τ1)

= M−1{
1
υβ

M{
∂2u0(ξ1, η1, τ1)

∂ξ1
2 +

∂2u0(ξ1, η1, τ1)
∂η12

− 3
∂u0(ξ1, η1, τ1)

∂τ1
− 2u0(ξ1, τ1)}}.

u1(ξ1, η1, τ1) = 9eξ1+η1
τ
β

1

β!
, (33)

for m = 1

u2(ξ1, η1, τ1)

= M−1{
1
υβ

M{
∂2u1(ξ1, η1, τ1)

∂ξ1
2 +

∂2u1(ξ1, η1, τ1)
∂η12

− 3
∂u1(ξ1, η1, τ1)

∂τ1
− 2u1(ξ1, τ1)}}.

u2(ξ1, η1, τ1) = −27eξ1+η1
(β)(β − 1)!τ 2β−11

(2β − 1)!(β)!
, (34)

for m = 2

u3(ξ1, η1, τ1)

= M−1{
1
υβ

M{
∂2u2(ξ1, η1, τ1)

∂ξ1
2 +

∂2u2(ξ1, η1, τ1)
∂η12

− 3
∂u2(ξ1, η1, τ1)

∂τ1
− 2u2(ξ1, τ1)}}.

u3(ξ1, η1, τ1)

= 81eξ1+η1
(β)(β − 1)!(2β − 1)(2β − 2)!τ 3β−21

(2β − 1)!(3β − 2)!(β)!
, (35)

for m = 3

u4(ξ1, η1, τ1)

= M−1{
1
υβ

M{
∂2u3(ξ1, η1, τ1)

∂ξ1
2 +

∂2u3(ξ1, η1, τ1)
∂η12

− 3
∂u3(ξ1, η1, τ1)

∂τ1
− 2u3(ξ1, τ1)}}.

u4(ξ1, η1, τ1)

= −243eξ1+η1

×
(β)(β−1)!(2β−1)(2β−2)!(3β−2)(3β−3)!τ 4β−31

(2β−1)!(3β−2)!(β)!(4β−3)!
,

... (36)

Thus for the example 2, the M.T solution is

u(ξ1, η1, τ1) = u0(ξ1, η1, τ1)+ u1(ξ1, η1, τ1)

+ u2(ξ1, η1, τ1)+ u3(ξ1, η1, τ1)+ · · · . (37)

By putting the corresponding values, we get

u(ξ1, η1, τ1)

= eξ1+η1 − 3τ1eξ1+η1 + 9eξ1+η1
τ
β

1

β!

− 27eξ1+η1
β(β − 1)!τ 2β−11

(2β − 1)!(β)!

+ 81eξ1+η1
β(β − 1)!(2β − 1)(2β − 2)!τ 3β−21

(2β − 1)!(3β − 2)!(β)!

− 243eξ1+η1

×
β(β − 1)!(2β − 1)(2β − 2)!(3β − 2)(3β − 3)!τ 4β−31

(2β − 1)!(3β − 2)!(β)!(4β − 3)!
.

(38)

Particularly, if β = 2, the M.T solution is

u(ξ1, η1, τ1)

= eξ1+η1 − 3τ1eξ1+η1 + 9eξ1+η1
τ 21

2!
− 27eξ1+η1

τ 31

3!

+ 81eξ1+η1
τ 41

4!
− 243eξ1+η1

τ 51

5!
+ · · · . (39)

The exact solution provides the closed-form.

u(ξ1, η1, τ1) = eξ1+η1−3τ1 . (40)

Example 3: Consider (3+1) dimensional fractional telegraph
model

∂βu(ξ1, τ1)
∂τ1β

=
∂2u(ξ1, τ1)

∂ξ1
2 +

∂2u(η1, τ1)
∂η12

+
∂2u(γ1, τ1)
∂γ12

− 2
∂u(ξ1, τ1)
∂τ1

− 3u(ξ1, τ1), 1 < β ≤ 2, (41)

with initial conditions

u(ξ1, η1, γ1, 0) = sinh(ξ1) sinh(η1) sinh(γ1),

uτ (ξ1, η1, γ1, 0) = −2 sinh(ξ1) sinh(η1) sinh(γ1),

the exact solution of equation (41) is

u(ξ1, η1, γ1, τ1) = e−2τ sinh(ξ1) sinh(η1) sinh(γ1).
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Applying M.T on both sides of eq. (41)

υβ{R(υ)− υu(0)− u′(0)}

= M{
∂2u(ξ1, τ1)

∂ξ1
2 +

∂2u(η1, τ1)
∂η12

+
∂2u(γ1, τ1)
∂γ12

− 2
∂u(ξ1, τ1)
∂τ1

− 3u(ξ1, τ1)}, (42)

Equation (42) is modified after further evaluations by M.T as

R(υ) = υu(0)+ u′(0)+
1
υβ

M{
∂2u(ξ1, τ1)

∂ξ1
2 +

∂2u(η1, τ1)
∂η12

}

+
∂2u(γ1, τ1)
∂γ12

− 2
∂u(ξ1, τ1)
∂τ1

− 3u(ξ1, τ1)}. (43)

By implementing the inverse transform of Mohand, we get

u(ξ1, η1, γ1, τ1)

= u(0)+ u′(0)+M−1{
1
υβ

M{
∂2u(ξ1, τ1)

∂ξ1
2 +

∂2u(η1, τ1)
∂η12

+
∂2u(γ1, τ1)
∂γ12

− 2
∂u(ξ1, τ1)
∂τ1

− 3u(ξ1, τ1)}}, (44)

Thus, by using the recursive equation (12) scheme, we get it

u0(ξ1, η1, γ1, τ1) = u(0)+ τ1u′(0)

= sinh(ξ1) sinh(η1) sinh(γ1)

− 2τ sinh(ξ1) sinh(η1) sinh(γ1), (45)

For m ≥ 0

um+1(ξ1, η1, γ1, τ1)

= M−1{
1
υβ

M{
∂2u(ξ1, τ1)

∂ξ1
2 +

∂2u(η1, τ1)
∂η12

+
∂2u(γ1, τ1)
∂γ12

− 2
∂u(ξ1, τ1)
∂τ1

− 3u(ξ1, τ1)}}, (46)

Recursive formula (46),
for m = 0

u1(ξ1, η1, γ1, τ1) = 4 sinh(ξ1) sinh(η1) sinh(γ1)
τ
β

1

β!
, (47)

for m = 1

u2(ξ1, η1, γ1, τ1)

= −8 sinh(ξ1) sinh(η1) sinh(γ1)
(β)(β − 1)!τ 2β−11

(2β − 1)!(β)!
, (48)

for m = 2

u3(ξ1, η1, γ1, τ1)

= 16 sinh(ξ1) sinh(η1) sinh(γ1)

×
(β)(β − 1)!(2β − 1)(2β − 2)!τ 3β−21

(2β − 1)!(3β − 2)!(β)!
, (49)

for m = 3

u4(ξ1, η1, γ1, τ1)

= −32 sinh(ξ1) sinh(η1) sinh(γ1)

×
(β)(β−1)!(2β−1)(2β−2)!(3β−2)(3β−3)!τ 4β−31

(2β−1)!(3β−2)!(β)!(4β−3)!
,

... (50)

For example 3, the M.T solution is

u(ξ1, η1, γ1, τ1)

= u0(ξ1, η1, γ1, τ1)+ u1(ξ1, η1, γ1, τ1)

+ u2(ξ1, η1, γ1, τ1)+ u3(ξ1, η1, γ1, τ1)+ · · · . (51)

We get the solution as

u(ξ1, η1, γ1, τ1)

= sinh(ξ1) sinh(η1) sinh(γ1){1− 2τ1 sinh(ξ1)+ 4
τ
β

1

β!

− 8
(β)(β − 1)!τ 2β−11

(2β − 1)!(β)!

+ 16
(β)(β − 1)!(2β − 1)(2β − 2)!τ 3β−21

(2β − 1)!(3β − 2)!(β)!

− 32
(β)(β−1)!(2β−1)(2β−2)!(3β−2)(3β−3)!τ 4β−31

(2β−1)!(3β−2)!(β)!(4β−3)!

+ · · · . (52)

In the specific case of β = 2,the M.T solution becomes the
same as

u(ξ1, η1, γ1, τ1)

= sinh(ξ1) sinh(η1) sinh(γ1){1− 2τ1 +
τ 21

2!

− 8
τ 31

3!
+ 16

τ 41

4!
− 32

τ 51

5!
+ · · · }. (53)

The exact solution provides the closed-form

u(ξ1, η1, γ1, τ1) = e−2τ1 sinh(ξ1) sinh(η1) sinh(γ1). (54)

Example 4: Consider space-fractional non-linear
telegraph model

∂βu(ξ1, τ1)
∂τ1β

=
∂2u(ξ1, τ1)

∂ξ1
2 +

∂u(ξ1, τ1)
∂τ1

− u2(ξ1, τ1)

+ ξ1u(ξ1, τ1)uξ1 (ξ1, τ1), 1 < β ≤ 2, (55)

with initial conditions

u(ξ1, 0) = ξ1, uτ1 (ξ1, 0) = ξ1,
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FIGURE 1. Exact solution of example 1 at β = 1.

FIGURE 2. Analytical solution of example 1 β = 1.

Applying M.T on both sides of eq. (55)

υβ{R(υ)− υu(0)− u′(0)}

= M{
∂2u(ξ1, τ1)

∂ξ1
2 +

∂u(ξ1, τ1)
∂τ1

− u2(ξ1, τ1)+ ξ1u(ξ1, τ1)uξ1 (ξ1, τ1)}, (56)

Equation (56) is modified after several evaluations as

R(υ) = υu(0)+ u′(0)+
1
υβ

M{
∂2u(ξ1, τ1)

∂ξ1
2 +

∂u(ξ1, τ1)
∂τ1

− u2(ξ1, τ1)+ ξ1u(ξ1, τ1uξ1 (ξ1, τ1)}, (57)

FIGURE 3. The solutions of example 1 at different fractional order β.

FIGURE 4. Exact solution of example 2 at β = 1.

By applying the M.T inverse,

u(ξ1, τ1)

= u(0)+ τ1u′(0)+M−1{
1
υβ

M{
∂2u(ξ1, τ1)

∂ξ1
2

+
∂u(ξ1, τ1)
∂τ1

− u2(ξ1, τ1)+ xu(ξ1, τ1)uξ1 (ξ1, τ1)}},

(58)

using recursive system of equation (12), we have

u0(ξ1, τ1) = u(0)+ τ1u′(0) = ξ1 + ξ1τ1, (59)
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FIGURE 5. Analytical solution of example 2.

FIGURE 6. The solutions of example 2 at different fractional order β.

um+1(ξ1, τ1) = M−1{
1
υβ

M{
∂2um(ξ1, τ1)

∂ξ1
2 +

∂um(ξ1, τ1)
∂τ1

− um2 (ξ1, τ1)+ ξum(ξ1, τ1)
∂um(ξ1, τ1)

∂ξ1
}}},

m = 0, 1, · · · (60)

Recursive formula (60),
for m = 0

u1(ξ1, τ1) = ξ1
τ
β

1

0(β + 1)
, (61)

FIGURE 7. Exact solution of example 3 at β = 1.

FIGURE 8. Analytical solution of example 3.

for m = 1

u2(ξ1, τ1) = ξ1
τ
β+1
1

0(β + 2)
, (62)

for m = 2

u3(ξ1, τ1) = ξ1
τ
β+2
1

0(β + 3)
, (63)

for m = 3

u4(ξ1, τ1) = ξ1
τβ+3

0(β + 4)
,

... (64)
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FIGURE 9. The solutions of example 3 at different fractional order β.

TABLE 1. The comparison of exact and analytical solutions of different
values of β at τ1 = 1.

Hence for the example 4, the M.T solution is

u(ξ1, τ1) = u0(ξ1, τ1)+ u1(ξ1, τ1)+ u2(ξ1, τ1)

+ u3(ξ1, τ1)+ u4(ξ1, τ1)+ · · · (65)

By putting the corresponding values,

u(ξ1, τ1) = ξ1[1+ τ1 +
τ
β

1

0(β + 1)
+

τ
β+1
1

0(β + 2)

+
τ
β+2
1

0(β + 3)
+

τ
β+3
1

0(β + 4)
+ · · · .]

The exact solution of equation (55) is u(ξ1, τ1) = ξ1 eτ1 .

V. RESULTS AND DISCUSSION
The exact and analytical solutions of example 1 are repre-
sented in Figures 1 and 2. It is observed that the solution

FIGURE 10. Exact solution of example 4.

FIGURE 11. Analytical solution of example 4.

obtained by the proposed technique is in good contact with
the exact solution of the problem. The solutions of problem
1 at fractional-orders β = 2, 1.7, 1.5 and 1.25 are plotted
in Figure 3. It is observed that the solution fractional-order is
approached toward the solutions of integer-order. Similarly,
Figure 4 and 5 show the exact and approximate solutions
of example 2. In Figure 6, we displayed the fractional-order
solutions of problem 4.2. The similar representation of exam-
ple 3 has been expressed with help of Figures 7,8 and 9.
At the end problem 4 represents the non-linear telegraph
equations, where the exact and approximate solutions are
expressed in Figures 10 and 11. Figures 12 has provided the
fractional-order solutions of problem 4.4 at β = 0.6 and
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FIGURE 12. The solution of example 4 at different fractional order β.

β = 0.3 respectively. In conclusion, the graphical repre-
sentations have confirmed the accuracy and reliability of the
suggested technique.

VI. CONCLUSION
It is concluded that M.T with decomposition method is a
new developed technique to solve various fractional telegraph
models. The procedure of the proposed method is quite new
and effective for both linear and nonlinear fractional differ-
ential equations. To investigate the validity of the presented
method, few examples of telegraph equation are considered
for analytical solutions. It is observed that the current method
provides the closed form solutions, which are fastly conver-
gent toward the exact solution of the problems. Moreover,
the suggested method has a relatively small number of cal-
culations as compared to the other contemporary techniques
available in literature. Thus it may be considered one of the
best analytical tools to solve fractional partial differential
equations.
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