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1. Introduction

Fractional differential equations (FDEs) have been gainedmuch attention recent years. Compared with differentialmodels, they can better describe variety of phenomena
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such as optical soliton, diffusion phenomena and stabilityof the control system, etc.Then, various numerical and analytic methods have beendeveloped from ordinary calculus and play crucial roleswhen solving FDEs. See, for example, the numerical meth-ods [1–7] and the analytical methods [8–14] which havebeen extensively applied in fractional calculus. Severalexcellent monographs [15–17] are available now.The variational iteration method (VIM) was first appliedto FDEs as early as 1998 [13] among which the term withfractional derivatives in the correction functional was as-sumed as a restricted variation. Recently, the method wasextended to other types [14, 18, 19] and the Lagrange mul-tipliers were determined explicitly from Laplace transform.On the other hand, to the best of our knowledge, there isless use of the method in numerical calculus especiallyin the fractional case. This study reveals the method’snew role in seeking integral equations of fractional order.Now various numerical methods for integral equations canbe used directly. The famous predicator-corrector formulais considered and some new iterative schemes are newlyproposed to solve the FDEs numerically.
2. Preliminaries
2.1. Variational iteration method in fractional
calculus
Definition 1 The Riemann-Liouville (R-L) integral [15] isdefined as

0Iαt u(t) = 1Γ(α)
∫ t

0 (t − τ)α−1u(τ)dτ,
0 < t, 0 < α.

(1)
Definition 2 The Caputo derivative [15] of u(t) is definedby

C0Dα
t u(t) =0 Im−αt u(m)(t)

= 1Γ(m− α)
∫ t

0 (t − τ)m−α−1u(m)(τ)dτ,
0 < t, m ∈ Z+, m − 1 < α ≤ m.

(2)

The variational iteration method was initially developedby He in (1998) [13]. Since then the method became aneffective mathematical tool in nonlinear science and oftenused in fractional calculus. A systemical description ofthe method and its applications were summarized in somereview articles [20, 21]. It can be concluded that the crucialstep of the method is to identify the Lagrange multipliers

in a more accurate way. In view of this point, severalmodified versions and new applications were suggestedrecently, see for example [22–27].Consider the following often used FDE to illustrate thebasic idea of the method,
C0Dα

t u = f (u, t), u(k)(0) = ck , k = 0, 1, · · · dαe − 1 (3)
where f (u, t) is a nonlinear term.Construct the iteration formula as
un+1(t) = un(t) + ∫ t

0 λ(t, τ) (C0Dα
τ un(τ)− f (un(τ), τ))dτ.

From Laplace transform, we successfully identified the La-grange multiplier λ(t, τ) and suggested a variational iter-ation formula [14, 18]


un+1(t) =un(t) + ∫ t

0 λ(t, τ)(C0Dα
t un(τ)

− f (un(τ), τ))dτ,
λ(t, τ) = − (t − τ)α−1Γ(α)

(4)

which is equal to
un+1(t) = dαe−1∑

k=0 ck
tk
k! +0 Iαt f (un, τ)dτ. (5)

For n → ∞ resulting in un → u, the above iteration tendsto the Volterra integral equation of fractional order
u(t) = dαe−1∑

k=0 ck
tk
k! +0 Iαt f (u, τ)dτ. (6)

One may note the method indeed provides a potential toolto construct equivalent integral equations. Consider thefollowing FDE
C0Dα

t u(t) +C0 Dβ
t u(t) = f (u, t),

u(k)(0) = ck , k = 0, 1, · · · dαe − 1, 0 < β < α.
(7)

The system covers many famous models of fractional or-der, for example, the Riccati equations, the Bagley-Torvikequation of fractional order. As is well known, it has asimilar equivalent integral equation (6). In this paper, wefind some new equivalent equations which can be used toobtain numerical solutions of higher accuracies and thisis the main purpose of the present work.
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2.2. Construction of integral equations using the VIM
We first consider the construction of the variational iteration formula for the FDE (7). Then we prove the uniformconvergence from which the equivalent integral equations can be derived.
Lemma 3 Eq. (7) has an explicit Lagrange multiplier

λ = −(t − τ)α−1Eα−β,α (− (t − τ)α−β)
and the variational iteration formula is given as

 un+1(t) = un(t) + ∫ t

0 λ(t, τ) (C0Dα
τ un(τ) +C0 Dβ

τ un(τ)− f (un(τ), τ))dτ, 0 < β < α,

λ = −(t − τ)α−1Eα−β,α (− (t − τ)α−β) , (8)
where Eα,β (−t) is the Mittag-Leffler function with two parameters. Readers who feel interested in the details are refereedto [14, 18, 19].
Lemma 4 Suppose f (u, t) satisfies the Lipschitz condition

| f (x, t)− f (y, t) |≤ L | x − y | (9)
where L is the Lipschitz constant and L > 0. Assume that: I = [0, T ], D := I × [u(0) − b, u(0) + b]. If f (u, t) ∈ C (D)with some h > 0, and some b > 0, satisfying the condition of (9) and LKhα < 1, then Eq. (7) has a unique solution
u(t). C (D) is the class of all continuous functions defined on D, h = min[T , (b/MK )1/α , (1/KL)1/α ], M and K are positiveconstants.Proof. The main idea comes from the reference [28]. We assume that uk (t) is continuous and satisfies
| uk (t)− u0 |≤ b for k = 0, 1, 2, ..., n.Taking Laplace transform to both sides of Eq. (8), we can have the variational iteration formula

un+1(t) = u0(t) + ∫ t

0 (t − τ)α−1Eα−β,α (− (t − τ)α−β) f (un(τ), τ)dτ (10)
where u0 = L −1 [∑dαe−1

k=0 ck sα−k−1+∑dβe−1
k=0 ck sβ−k−1

sα+sβ
], s is the complex variable of Laplace transform and L −1 denotes theinverse Laplace transform.Since f (un, t) is continuous on [0, T ], we have

|un+1(t)− u0| = ∣∣∣∣∫ t

0 (t − τ)α−1Eα−β,α (−(t − τ)α−β) f (un(τ), τ)dτ∣∣∣∣ ≤ MtαEα−β,α+1 (−tα−β) ≤ MKhα ≤ b
where M and K are positive constants and large enough so that

|f (un(τ), τ)| ≤ M, ∣∣Eα−β,α+1 (−tα−β)∣∣ ≤ K
and u1(t), ..., un(t) are continuous on [0, T ].From Eq. (10), we obtain the following relation

| un+1(t)− un(t) | ≤ M
L

(LKhα )n+1 .
In fact, from (10), for n = 1 we have

| u1(t)− u0(t) |≤ MKhα .
1394



Yi-Hong Wang, Guo-Cheng Wu, Dumitru Baleanu

More generally, in the case of n, we can calculate
|un(t)− un−1(t)| = ∣∣∣∫ t0 (t − τ)α−1Eα−β,α (− (t − τ)α−β) (f (un−1(τ), τ)− f (un−2(τ), τ))dτ∣∣∣

≤ MKhα (LKhα )n−1 = M
L (LKhα )n.

Then, using the above equation, we derive
| un+1(t)− un(t) |= ∣∣∣∫ t0 (t − τ)α−1Eα−β,α (−(t − τ)α−β) f (un(τ), τ)− f (un−1(τ), τ)dτ∣∣∣

≤
∣∣∣∫ t0 (t − τ)α−1Eα−β,α (−(t − τ)α−β) L∣∣∣un − un−1 |dτ|

≤
∣∣∣∫ t0 (t − τ)α−1Eα−β,α (−(t − τ)α−β) LMKhα (LKhα )n−1 dτ∣∣∣= tαEα−β,α+1 (−tα−β) LMKhα (LKhα )n−1

≤ MKhα (LKhα )n = M
L (LKhα )n+1

It follows that
u0(t) + n−1∑

i=0 (un+1(t)− un(t)) = un(t) (11)
is uniformly convergent on [0, h]. As a result, we can obtain

lim
n→∞

un(t) = u(t).
On the other hand, since f (u, t) is uniformly continuous on D, f (un, t) is convergent uniformly on [0, h] for n → ∞.
Theorem 5 Eq. (7) has an equivalent integral equation


u(t) = g(t) + ∫ t

0 (t − τ)α−1Eα−β,α (−(t − τ)α−β) f (u(τ), τ)dτ, 0 < β < α,

g(t) = L −1 [∑dαe−1
k=0 ck sα−k−1+∑dβe−1

k=0 ck sα−k−1
sα+sβ

]
.

(12)
The inhomogeneous term g(t) of the above Volterra integral equation can be determined by taking Laplace transform toboth sides of Eq. (8).
2.3. The predictor-corrector formula
Firstly, the product trapezoidal quadrature formula is applied to replace the integral of (12). Set h = T /N, tn = nh, n =0, 1, . . . , N ∈ Z+. Considering the following integration

Iαn = ∫ tn+1
0 (tn+1 − τ)α−1+k(α−β)f (u(τ), τ)dτ,

the above quadrature can be approximated by
∫ tn+1

0 (tn+1 − τ)α−1+k(α−β)f (u(τ), τ)dτ ≈ ∫ tn+1
0 (tn+1 − τ)α−1+k(α−β)fn+1(u(τ), τ)dτ.

If fn+1(u(τ), τ)dτ is determined by
fn+1(u(τ), τ)dτ |[tj ,tj+1]= tj+1 − t

tj+1 − tj f
(
u
(
tj
)
, tj
) + t − tj

tj+1 − tj f
(
u
(
tj+1) , tj+1) , 0 ≤ j ≤ n,
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then the fractional trapezoidal formula is derived
u(tn+1) = u0 + ∞∑

k=0
(−1)kΓ(k(α − β) + α) hk(α−β)+α(k(α − β) + α)(k(α − β) + α + 1) n+1∑

j=0 aj,n+1f (tj , u (tj)) , (13)
where

aj,n+1 =

nα+1+k(α−β) − (n − α)(n+ 1)α+k(α−β), j = 0,(n − j + 2)α+1+k(α−β) + (n − j)α+1+k(α−β) − 2(n − j + 1)α+1+k(α−β), 1 ≤ j ≤ n,1, j = n+ 1.

Eq. (13) is equal to
u(tn+1) = u0(t) + ∞∑

k=0
hα+k(α−β)(−1)kΓ(α + k(α − β))(α + k(α − β))(α + k(α − β) + 1) f (u (tn+1) , tn+1)

+ ∞∑
k=0

hα+k(α−β)(−1)kΓ(α + k(α − β))(α + k(α − β))(α + k(α − β) + 1) n∑
j=0 aj,n+1f (u (tj) , tj) .

(14)

The right hand side of system (14) contains the term u(tn+1). In order to start the Adams-Moulton iterative method, thesolution is accomplished by first “predicting” (up(tn+1)) the result using the explicit Adams-Bashforth formula, and then“correcting” (u(tn+1)). It is consistent in the predictor-corrector algorithm in [1]. The truncated error estimate is
max

j=0,1···N
∣∣u (tj)− un (tj)∣∣ = O(hp)

in which p = min(2, 1 + α).We carry over Deng’s technique to get the values up(tn+1)∫ tn+1
0 (tn+1 − τ)α−1+k(α−β)f (u(τ), τ)dτ ≈ ∫ tn

0 (tn+1 − τ)α−1+k(α−β)f (u(τ), τ)dτ
+ ∫ tn+1

tn
(tn+1 − τ)α−1+k(α−β)f (u(tn), tn)dτ. (15)

Similarly, using the standard quadrature technique, the right hand side of (15) can be recast as
∫ tn

0 (tn+1 − τ)α−1+k(α−β)fn(u(τ), τ)dτ + ∫ tn+1
tn

(tn+1 − τ)α−1+k(α−β)f (u (tn) , tn)dτ
= hα+k(α−β)(α + k(α − β))(α + αk + 1) n∑

j=0 bj,n+1f (u (tj) , tj) (16)
where

bj,n+1 =

α + k(α − β) + 1, j = 0,
aj,n+1, 1 ≤ j ≤ n − 1,2α+k(α−β)+1 − 1, j = n.

Together with (14) and (16), a new predictor corrector approach for solving (7) is derived and it has numerical accuracy
O(h)p, p = min(2, 1 + 2α). The present predictor corrector approach has two benefits:
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I. The VIM is employed to establish new numerical iterative schemes and memory kernel functions are constructed.II. For the predictor formula, the numerical approximation is more accurate since the product trapezoidal quadrature ruleis used instead of the product rectangle one for the integral in the interval [0, tn], and almost half of the computationalcost is reduced since the most expensive computation∑n
j=0 aj,n+1f (u(tj ), tj ) just needs to be computed one time insteadtwo.

3. Numerical example
The Bagley-Torvik equation of fractional order reads
d2u
dt2 +C0 Dα

t u+u(t) = f (t), 1 < α ≤ 2, u(0) = 0, u′ (0) = 0,(17)which has the exact solution [15]
∫ t

0
∞∑
j=0

(−1)j
j! (t − τ)2j+1E (j)2−α,2+αj (−(t − τ)2−α) f (τ)dτ.

(18)We can obtain the following three variational iteration for-mulae. The first variational iteration formula is identifiedas
un+1(t) =u0(t) + ∫ t

0 λ(t, τ)(C0Dα
t un + un

− f (τ))dτ, u0(t) = 0 (19)
where the Lagrange multiplier is

λ = τ − t (20)
and it comes across as the one for differential equationsof second order [23].This iteration formula leads to the integral equation (VIM-A)

u(t) = ∫ t

0 (τ − t) (C0Dα
t u(τ) + u(τ)− f (τ))dτ.

The comparison between the numerical results by meansof the classic Predictor-Corrector method and the exactsolution (18) is made which shows the validness of theLagrange multipliers (20) and the VIM-A in Figure 1.The second one can be derived as
un+1(t) = u0(t) + ∫ t

0 λ(t, τ)(un(τ)− f (τ))dτ, u0 = 0(21)where the Lagrange multiplier reads
λ = (τ − t)E2−α,2 (− (t − τ)2−α) ;

The integral equation of second kind (VIM-B) can be ob-tained accordingly

u(t) = ∫ t

0 (τ − t)E2−α,2 (−(t − τ)2−α) (u(τ)− f (τ))dτ.(22)The third variational iteration formula is given as
un+1(t) = u0(t) + ∫ t

0 λ(t, τ)(−f (τ))dτ, u0(t) = 0, (23)
and the Lagrange multiplier is identified as
λ(t, τ) = − ∞∑

j=0
(−1)j
j! (t − τ)2j+1E (j)2−α,2+αj (−(t − τ)2−α)

where E (j)
α,β is defined as

E (j)
α,β (t) = dj

dtj Eα,β (t) = ∞∑
k=0

(k + j)!tk
k!Γ(αk + αj + β) .

For (23), since the Lagrange multiplier is explicit enough,the exact solution (VIM-C) (18) is obtained within oneiteration. The reference [23] suggested the variational it-eration formula in the integral forms: the VIM-I, II andIII for analytical solutions of ODEs. This study aims atthe method’s new role in establishing integral equationsof fractional order from which various numerical methodsand rich numerical schemes can be applied. Then one canchoose the best one for numerical solutions.We set f (t) = 8 and apply the numerical algorithm inthe Section 2 to the integral equations. The results areshown in Figure 2, respectively. It can be concluded thatall of the three numerical schemes are efficient. Further-more, the more explicit the Lagrange multipliers is, thehigher the accuracy of the corresponding numerical solu-tion. Especially for integral equations, the VIM-B and theVIM-C, numerical methods become more convenient sincethere are no terms containing fractional derivatives.
4. Conclusion
As is well known, the calculation of the analytic solutionsof the FDEs becomes tedious even impossible in high or-der case. In this paper, we consider the combination of
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Figure 1. Comparison between the numerical solutions of the VIM-A
and VIM-C for α = 1.5 and the step size h = 1/16.

Figure 2. Comparison among the numerical solutions of the VIM-
A (the classical predictor-corrector method), VIM-B (our
predictor-corrector method) and VIM-C for α = 1.9 and
the step size h = 1/32.

the VIM and numerical methods. The VIM plays a cru-cial role in constructing new integral equations and theAdams-Moulton formula is then used to establish a newiterative scheme which is accurate and stable with enough“memorized” values. This is consistent with the non-localstructure of the fractional differential operators. On theother hand, this also makes the VIM more powerful sincethe numerical method developed here can overcome thedifficulty arising in the analytical calculus when the La-grange multiplier is complicated and analytical solutionsbecome impossible.
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