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ABSTRACT

VOLTERRA TYPE INTEGRAL EQUATIONS

ALTAMEEMI, Ali

M.Sc., Department of Mathematics and Computer Science

Supervisor: Prof. Dr. Billur KAYMAKÇALAN

January 2015, 51 pages

It is truism that, Volterra integral equations have many applications in various 

disciplines of sciences. Therefor, these equations have been attracted the attention of 

a huge number of mathematicians and scientists who work in the areas in which 

these equations appear. Hence, it is worth of note to study these equations from 

theoretical and computational points of views. Because of the significance and 

broadly usage of these equations in numerous fields of mathematics.

So, in this thesis, the first and the second kind of Volterra integral equations have 

been defined. The uniqueness theorems of these equations are discussed by using the 

fixed point theory. Many methods to solve linear as well as nonlinear Volterra 

integral equations are being considered. Then, methods of solving systems of such 

equations are also mentioned. In addition to the above mentioned, an attention is paid 

to the singular Abel Volterra integral equation. 

Keywords: Volterra Integral Equations, First Kind, Second Kind, Linear, Nonlinear.
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ÖZ

VOLTERRA TİPİNDEN İNTEGRAL DENKLEMLERİ

ALTAMEEMI, Ali

Yüksek Lisans, Matematik-Bilgisayar Anabilim Dalı

Tez Yöneticisi: Prof. Dr. Billur KAYMAKÇALAN

Ocak 2015, 51 sayfa

Volterra integral denklemleri, çeşitli bilim dallarında birçok uygulama alanına sahip 

olduğundan, çok sayıda matematikçi ve bilim adamının dikkatini çekmektedir.

Volterra integral denklemlerinin önemi ve birçok alandaki yaygın kullanımları göz 

önüne alındığında, bu denklemleri hem teorik hemde hesaplama açısından incelemek 

önemlidir.

Bu tezde, hem birinci hem de ikinci tipten Volterra integral denklemleri tanımlanır. 

Sabit nokta teorisi kullanılarak, bu denklemler için teklik teoremleri tartışılır.

Doğrusal olmayan Volterra integral denklemlerinin yanı sıra doğrusal olan Volterra 

integral denklemlerini çözmek içinde birçok yöntem ele alınır. Bu tip denklemleri 

içeren sistemleri çözme yöntemlerinden de bahsedilir. Ayrıca, tekil Volterra integral 

denklemleride dikkate alınır.

Anahtar Kelimeler: Volterra İntegral Denklemleri, Birinci Tip, İkinci Tip, 

Doğrusal, Doğrusal Olmayan.
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CHAPTER 1

INTRODUCTION

1.1 Background

It is clear that, if someone works in a scientific discipline, this field will enhance us 

to understand the world we are living in. However, one should encounter differential 

equations, integral equations and integro-differential equations [1]. Among these 

equations, integral equations occur naturally in many fields of science such as 

elasticity, heat transfer, fluid dynamics, game theory, etc… [2].

Here, J. Fourier in this sense, set out to initial the theory of integral equations when 

he worked on the well known Fourier transform and its inversion formula. Abel in 

accordance with this, devoted his time to the solution of the so called "Abel's integral 

equation". Abel's efforts encouraged many scientists in this area like Rouche', 

Sonine, Bois Reymond, Goursat, Tamalin and Tonellito who worked on integral 

equations. They completed the work which has been done by Abel who considers the 

various types of integral equations in the late years of the 19th. century and the first 

years of the 20th. century [3].

Accordinglly, Liouville was also one of the mathematicians who worked on integral 

equations. He discovered in 1840's that a certain type of second order linear ordinary 

differential equation under some initial conditions is equivalent to an integral 

equation known later as a Volterra-type integral equation of the second type [3].

However, in 1895 a new era for the theory of integral equations started under the 

term of Volterra, not like other mathematicians who tried to formulize the solutions 

of integral equations or worked on special cases. Thus, they paid efforts on the type 

of equations named later by Lalesco and picard as Volterra equations. Volterra 
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studied these equations from a functional analytic point of view. So, he was 

interested in the existence of the solutions of these equations. Moreover to that, he 

was also interested in the applications of these equations. One of the most interesting 

applications is 'hereditarary mechanics' which was observed when Volterra was 

inspecting a population growth model [4].

Later in the early years of the last century, it was found that Volterra integral 

equations have many applications. Since that period of time, the theory of Volterra-

type equations have called attention of many scientists from different countries. 

These scientists have been contributing to the development of the theory of these 

equations from all aspects until this moment of time [5].

In this thesis, the researcher has studied linear and nonlinear Volterra type equations 

and presented their uniqueness theorems and some methods of solutions of these 

equations.

1.2 Organization of the Thesis

In this current study, there are six independent chapters which include the sufficient 

and major relevant information to the topic ( Volterra Type Integral Equations ). 

The researcher covers the kinds, properties, the possible solutions, and the set of 

theorms which proved the uniqueness of solution. Therefore, this thesis is organized 

as follows:

Chapter one is dealing with the background of the Volterra Integral Equations

affairs.

In chapter two, the study conductor focuses attention on some important definitions 

which are related to a scope of understanding the properties of integral equations and 

Volterra integral equations. 

In chapter three, the researcher presents a set of theorms that confirm the uniqueness 

of solution to the Integral Equations in general and to the Volterra Type of Integral 

Equations in particular.
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In chapter four, the study conductor employs the possible efforts to produce variable 

authentic methods to solve the targeted Equation. These methods will deal with these 

Equation ( linear and nonlinear ), whether it was isolated or as a system.

Chapter five, is designed to deal with Singular Volterra Integral Equation as well as 

their features, trying to find a possible solution in terms of dealing with such 

Equations.

Finally, chapter six is assigned to conclusion part of what related to the study 

concerns.



4

CHAPTER 2 

DEFINITIONS

In this chapter, we will present some definitions in order to help us to understand the 

content of this thesis. 

2.1 Basic Definitions

Definition 1. [4-6] An integral equation is an equation that involves the unknown 

function )(xu that appears inside of an integral sign. The most standard type of an 

integral equation in )(xu is of the form


)(

)(

)(),()()(
xh

xg

dttutxKxfxu  (2.1)

Definition 2. [4-5] If the exponent of the unknown function )(xu inside the integral 

sign in (2.1) is one, the integral equation is called linear. If the unknown function 

)(xu has exponent other than one, or if the equation contains nonlinear functions of 

),(xu the integral equation is called nonlinear.

Definition 3. If the function 0)( xf in equation (2.1), then equation (2.1) is called 

homogeneous. Otherwise it is called inhomogeneous [7]. 

Definition 4. [4-6] Equation (2.1) is called singular if one of the limits of integration 

),(xg ),(xh or  both are infinite, or if the kernel ),( txK becomes unbounded at one 

or more points in the interval of integration.  

Definition 5. [8] If at least one limit of the integral in equation (2.1) is a variable so,

is called a Volterra integral equation.



5

These types of equations are classified into two types, the general form of Volterra 

integral equation of the first kind is


x

dttutxKxf
0

)(),()(  (2.2)

where, the unknown function )(xu appears inside the integral sign.

The second kind given by


x

dttutxKxfxu
0

)(),()()(  (2.3)

where, the unknown function )(xu appears inside and outside the integral sign.

Generally, it is quite hard to transact with Volterra equations of the first kind [9]. So, 

we will convert Volterra integral equations of the first kind to Volterra integral 

equations of the second kind by two methods according to the following section of 

this thesis.

Here, in the first method, we assume that ),( txK and )(xf are sufficiently 

differentiable in (2.2) [2], [4-5]. Then by differentiating both sides of (2.2) with 

respect to x one finds


x

x dttutxKxuxxKxf
0

)(),()(),()( (2.4)

the equation (2.4) can be reduced to an equation of the second kind if  0),( xxK

.)(
),(

),(
)(

),(

)(

0

dttu
xxK

txK
xu

xxK

xf x
x



In the second method, equation (2.2) can be reduced to an equation of the second 

type by assuming that


x

dttx
0

)()(

and execute an integration by parts in (2.2) [2,4]. 

Then

 
x

x dtttxKxxxKxf
0

)(),()(),()(

thus, if                      



6

,0),( xxK

then

,)(
),(

),(
)(

),(

)(

0

dtt
xxK

txK
x

xxK

xf x
x  

the last equation is Volterra integral equations of the second kind.
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CHAPTER 3

UNIQUENESS THEOREMS OF SOLUTIONS OF INTEGRAL EQUATIONS

Before we proceed thinking about the current methods to solve Volterra integral 

equations, we must contemplate of whether the solution exists and whether or not it

is a single solution.

Henceforth, in this chapter, we will submit a set of theorems that ensure that we have 

the solution and guarantee its uniqueness.

3.1 Fixed Point Theorems  

We will show in this section some properties of a class of alleged contraction 

operators. These properties enable us to get a number of existence and uniqueness 

theorems for the solution of integral equation [9]. 

Definition 1.

Let B be a Hilbert space and N a limited operator on .B N may not be a linear 

operator. If  there exists a positive constant 1

such that

2121 ffNfNf   (3.1)

for all 1f , 2f in ,B then N is called a contraction operator [9].

Theorem 1. 

The equation

fNf  (3.2)
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has a unique solution f in B if N a contraction operator on .B Such a solution is 

said to be a fixed point of N [9].

Proof.   Let f and h be a fixed points so that

fNf 

hNh 

Then

hfNhNfhf  

and

0)1(  hf

because hf  must be non-negative, then

0 hf

thus

.hf 

It is being concluded that if (3.2) does have a solution it should be unique. To show 

that (3.2) has a solution so that, we shall constitute an iteration procedure. Choose

any 0f and then set up a sequence  mf defıned by

,1 mm Nff    ,...2,1,0m

First we shall show that this sequence is a Cauchy sequence, and then that its limit is 

actually a solution of (3.2). That it has a limit to be followed from the certainty that a 

Cauchy sequence essential has a unique limit in a Hilbert space. The limit will 

separate of the initial select ,0f because it will be a solution of (3.2), which is

necessary to be unique. 

We note first that

11   mmmm NfNfff

                                                             1 mm ff

By the above successive application, we get

11   mmmm ffff 

                                                             21
2

  mm ff

                                                              ...



9

                                                              01 ffn 

So we have in general, if ,rm 

)(...)()( 1211 rrmmmmrm ffffffff  

                                    )(...)()( 1211 rrmmmm ffffff       

                                     )()...( 0121 ffrmm   

                                   )(...)( 012 ffrr  

                                    011
ff

r









so that

0)(lim 1
,

 rm
rm

ff

we obtained that,  mf is a Cauchy sequence, and we denote its limit by .f

We shall have to proof  that the limit f is a solution of (3.2). In opinion of the fact 

that N is a continuous operator so, we have

)(lim mfNNf 

                                                          mNflim

                                                          1lim  mf

                                                          f

thus

fNf 

it follows that

0lim fNf m
m 

There is a generalization of the previous theorem that will show to be specially

favorable for Volterra operators.

Theorem 2. 

If mN is a contraction operator where N an operator on B and m is the nth power 

of N . Then the equation
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fNf                                                       (3.3)

has a unique solution f in B [9].

Proof.   We can assure that, the equation 

ffN m 

has a unique solution by the preceding theorem. We can get the solution by finding

ffN km

k


 0lim

for an arbitrary initial function .0f

In special, we see that, by allowing

Nff 0

.lim fNfN km

k




But we have

ffN m 

and                        

ffN km 

hence

fNNNfN km

k

km

k 
 limlim

                                                              Nf
k 

 lim

                                                               Nf

thus        

.fNf 

To prove that, this solution is unique so, we note that if

,fNf       hNh 

then also we have

,ffN m       hhN m 

hence mN is a contraction operator with a unique fixed point 

hf  .
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3.2 Uniqueness Theorems for Volterra Integral Equations

The results in the previous section can be applied to Volterra integral equations as 

well [9].

Theorem 3. 

Let ]1,0[)( 2Lxf  (we consider a finite interval let it be ]1,0[ and without loss of 

generality) and assume that ),( txK is continuous for ]1,0[, tx and consequently

uniformly bounded, say .),( AtxK  Then the equation


x

dttutxKxfxu
0

)(),()()(  (3.4)

for all  and )(xf in ]1,0[2L , has a unique solution )(xu [6].

Proof.   We consider the operator


x

dttutxKxfNu
0

)(),()( 
If Nu has a fixed point, such a fixed point should be a solution of (3.4). And to 

prove that, such a fixed point exists we will prove that mN is a contraction operator

for some m . Then N will have a unique fixed point by theorem 2. 

So now

uKfKKffuN mmmmm    11...

where


x

m
m dttutxKuN

0
)(),(

Thus

dttututxKuTuT
x

m

nmm ))()()(,( 20 121  

We can use the equation

,),(),(),(
0 1 dztzKzxKtxK
x

mm       ,...3,2m

),(),(1 txKtxK 
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to determine ),( txKm

By hypothesis AtxK ),(1 and one can then prove inductively that

,
)!1(

)(
),(

1







m

txA
txK

mm

n     xt 0

For 1m , the above is clearly true. If it is true for m , then



x

t

mm dztzKzxKtxK ),(),(),(1

                dztz
m

A x

t

m
m

 





 1
1

)(
)!1(

       .
!

)(1

m

txA mm 




Thus

  



xmm

mm dttutu
n

A
uTuT

0

2121 )()(
)!1(



                                                   .
)!1( 21 uu

n

Amm







                       

For m sufficiently large

,1
)!1(


n

Amm

so that mN is a contraction operator, and therefore (3.4) has a unique solution.

Theorem 4. 

Let ]1,0[)( 2Lxf  , and assume that ),( txK is such that

.),( 2
1

0

1

0

  dxdttxK

Then the equation


x

dttutxKxfxu
0

)(),()()(  (3.5)
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for all  , in ]1,0[2L has a unique solution [9].

Proof.   We assume

,),()( 2

0

2 dttxKxC
x

           dxtxKxD
t

1

22 ),()(

and both )(2 xC and )(2 tD are integrable by hypothesis.

Let E be such that

,)(
1

0

2 EdxxC 

.)(
1

0

2 EdttD 

In addition, we define the function )(xq by

,)()(
0

2 dttCxq
x

 where Nq )1(

As in the proof of theorem 3 we consider alternatively of (3.5) the equivalent 

equation

uKfKfKKfxfxu mmmm    1122 ...)()( (3.6)

where

dttutxKuK
x

m
m )(),(

0


To estimate mK we examine ),( txKm .

Now

dztzKzxKtxK
x

t

),(),(),(2 

and by use inequality of the Cauchy-Schwarz 

dttxKdzzxKtxK
x

t

x

t

222

2 ),(),(),( 

                                                     ).()( 22 tDxC

Similarly,
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dttzKzxKtxK
x

t

),(),(),( 23 

So that

dztzKdzzxKtxK
x

t

x

t

2
2

22

3 ),(),(),( 

                                                   dzzCtDxC
x

t

)()()( 222 

                                                   dzzC )(2

                                                    )()()()( 22 tqxqtDxC 

It is easy to carry through an inductive argument to prove that

 
.2,

)!2(

)()(
)()(),(

2
222 







n
n

tqxq
tDxCtxK

n

m

Thus, (3.6) can be written as

uNu m      

where    

KufNu 

 
2

210

2

21 )()(),( dttututxKuNuN
x

m
mm  

                                                    
 

dt
m

tqxqtDxC
mx 2

0

22

)!2(

)()()()(


 




                                                            
x

dytutu
0

2

21 )()(

                                                        
  2

21

1

0

2
22

)(
)!2(

)()(
uudttD

m

xqxC m




 


                                 

By an integration we then find

  2

21

1
2

21 )!1(

)1(
uu

m

Eq
uNuN

m
mm 






                                                            ,
)!1(

2

21 uu
m

E m






so that if 
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,1
)!1(


m

E m

then N is a contraction operator.

For large m that will be the case so that (3.6) and therefore (3.5) as well will have a 

unique solution in ].1,0[2L
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CHAPTER 4

METHODS OF SOLUTIONS

In this chapter, we are going to consider some methods and techniques for solving 

Volterra integral equations.

     
                   4.1 Methods to Solve Linear Volterra Integral Equations

There are many methods to solve linear Volterra integral equations. Some of them

are old and the others are new. As aresult, we will explain the most important of 

these methods in this section.

4.1.1 Methods to solve the second kind of the Volterra integral equations

4.1.1.1 The Adomian decomposition method

The Adomian decomposition method (ADM) was developed and introduced by 

Adomian in 1990. This method arises to work for linear, nonlinear integral equations, 

differential equations and integro-differential equations [4,10].

We shall explain the technique of this method by expressing )(xu in the form of a 

series

),()(
0

xuxu
n

n




 (4.1)

or equivalently

...)()()()( 210  xuxuxuxu (4.2)

and the value of )(0 xu as the term outside the integral sign of equation (2.3),

hence,

)()(0 xfxu 
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To establish the recurrence relation, we substitute (4.1) into the Volterra integral 

equation (2.3) to obtain:

dtxutxKxfxu
x

n
n

n
n   
















 0 00

)(),()()( 

                                 
or equivalently

 dttututxKxfxuxuxu
x

 
0

10210 ...)()(),()(...)()()( 

We can get the value of the components ),(0 xu ),(1 xu ),(2 xu ..., ),(xun ... of the 

unknown function )(xu as follows

)()(0 xfxu 

dttutxKxu
x

)(),()(
0

01  

dttutxKxu
x

)(),()(
0

12  

dttutxKxu
x

)(),()(
0

23  

.0,)(),()(
0

1   ndttutxKxu
x

nn  (4.3)

Then, we can get the solution )(xu by

...)()()()()( 3210  xuxuxuxuxu

that converges to a closed form solution.

In the next example, we will explain the technique of this method. Let us suppose 

that, we have the following equation

.)(1)(
0

dttuxu
x

 (4.4)

Hence,

,1)( xf       ,1       .1),( txK

By substituting (4.2) into both sides of (4.4) gives

 dttutuxuxuxu
x

 
0

10210 ...)()(1...)()()(
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then we set

1)()(0  xfxu

to get the value of the other components, we will apply the recurrence relation (4.3)

xdtdttuxu
xx

 
00

01 1)()(

2

00

12 !2

1
)()( xdttdttuxu

xx

 

3

0

2

0

23 !3

1

!2

1
)()( xdttdttuxu

xx

 

and so on.

Thus, by using (4.2)

...
!3

1

!2

1
1)( 32  xxxxu

the series solution  )(xu converges to the closed form solution

xexu )(

4.1.1.2 The modified decomposition method

If the function )(xf consists of a mixture of two or more of trigonometric functions, 

hyperbolic functions, polynomials, and others. The evaluation of the components

0, ju j requires long time and difficult work [5].

We can set the function )(xf as the sum of two partial functions, such as )(1 xf and 

).(2 xf In other words, we can set 

)()()( 21 xfxfxf 

we identify the component )(0 xu by one part of )(xf to minimize the size of 

calculations. We will use the other part of )(xf to find the value of the component

).(1 xu In other words, the modified decomposition method introduces the modified 

recurrence relation

)()( 10 xfxu 
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dttutxKfxu
x

)(),()(
0

021  

.)(),()(
0

1 dttutxKxu
x

kk   (4.5)

We can get the exact solution )(xu by correct selection of the functions )(1 xf and 

)(2 xf and by using very few iterations, and may be by evaluating only two or three

components. The success of this method depends only on the correct choice of )(1 xf

and ),(2 xf and this can be made through experience only. A rule that may help for 

the correct choice of )(1 xf and )(2 xf could not be found until now.

We can not use this method if )(xf consists of one term only, in this case the 

standard decomposition method can be used.

The following example will illustrate the technique of this method. Let us suppose 

that, we have the following equation

.)()1(2)(
0

222

dttueexxu
x

txx   

Hence, 

)1(2)(
2xexxf 

we set 

                                                   ,2)(1 xxf 

),1()(
2

2
xexf 

thus

,2)()( 10 xxfxu 

using (4.5) gives

dtteexu
x

txx   
0

1 2)1()(
222

                                                  xtxx ee 0][1
222  

                                                 ][1
22 0 xx eee  

                                              
22

11 xx ee  

                                                  0
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,0)(),()(
0

1   dttutxKxu
x

kk     .1k

Thus,

.2)( xxu 

4.1.1.3 The noise terms phenomenon method

The congruent terms with opposite signs that appear in the components )(0 xu and 

)(1 xu in Adomian decomposition method are called the noise terms. Among others

components may arise other noise terms. These noise terms may exist for some 

equations, and may not arise for other equations [5,11].

The technique of this method is done by canceling the noise terms between )(0 xu

and ),(1 xu the non-canceled remaining terms of ),(0 xu after processing the 

cancellations may give the exact solution of the integral equation. The appearance of 

the noise terms between )(0 xu and )(1 xu is not permanently adequate to get the 

exact solution by canceling these noise terms. So, it is needful to show that the non-

canceled remaining terms of )(0 xu satisfy the given integral equation.

It was officially proved that, for specific cases of inhomogeneous integral equations 

the noise terms arise, while homogeneous integral equations do not give rise to the 

noise terms. The conclusion about the self-canceling noise terms was based on 

solving several specific integral models.

It was officially proved that necessary condition is governed the appearance of the 

noise terms. The component )(0 xu should contain the exact solution )(xu among 

other components. Moreover, it was proved that, the inhomogeneity condition of the 

equation does not always guarantee the appearance of the noise terms.

In the next example, we will explain the technique of this method. Let us suppose 

that, we have the following equation

.)(26)(
0

3 dtttuxxxu
x



Hence

326)( xxxf 
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3
0 26)()( xxxfxu 

dttttxu
x

 
0

3
1 ]26[)(

                                                      
x

tt
0

53

5

2
2 



 

                                                      ,
5

2
2 53 xx 

the noise terms 32x arise in )(0 xu and ).(1 xu

Thus, by canceling these terms from the zeroth component )(0 xu gives the exact 

solution

xxu 6)( 

4.1.1.4 The successive approximations method

In the successive approximations method, we substitute any selective real-valued 

continuous function ),(0 xu called the zeroth approximation, instead of the unknown 

function )(xu under the integral sign of the Volterra equation (2.3). The most usually 

selected function for )(0 xu are ,0 ,1 and x [2,4], [12].

We will obtain the first approximation )(1 xu by this substitution


x

dttutxKxfxu
0

01 )(),()()(  (4.6)  

It is evident that, )(1 xu is continuous if ),(xf ),,( txK and )(0 xu are continuous.

The second approximation )(2 xu can be obtained similarly by replacing )(0 xu in

equation (4.6) by )(1 xu obtained above. And we find


x

dttutxKxfxu
0

12 )(),()()( 

we obtain an infinite sequence of functions ),(0 xu ),(1 xu ),(2 xu ..., ),(xun ... by 

continuing in this technique which satisfies the recurrence relation

,...3,2,1,)(),()()(
0

1    ndttutxKxfxu
x

nn  (4.7)
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The solution )(xu is obtained of the equation (2.3) as

)(lim)( xuxu n
n 



The following example will illustrate the technique of this method. Let us suppose 

that, we have the following equation

dttuxxu
x

)()(
0
 (4.8)

first,we set

xxu )(0

then apply (4.7) gives

2

0

1 !2

1
)( xxtdtxxu

x

 

                                             ,
!3

1

!2

1
)

!2

1
()( 32

0

2
2 xxxdtttxxu

x

 

and so on.

The solution )(xu of  (4.8) is given by 

)(lim)( xuxu n
n 



                                                           1 xe

4.1.1.5 The method of successive substitutions

In this method, we substitute successively for )(xu its value as given by equation 

(2.3) [4,13].We find that

dtdttuttKtftxKxfxu
x t

 









0 0

111 )(),()(),()()( 

                               dtdttuttKtxKdttftxKxf
x tx

11

0 0

1

0

2 )(),(),()(),()(    

                                dtdttfttKtxKdttftxKxf
x tx

11

0 0

1

0

2 )(),(),()(),()(    

                                    )...,(),(...
0

1

0

tx

n ttKtxK
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                                     ),(....)(),( 11

0

1112

2

xRdtdtdttfttK n

t

nnnn

n

  


where,

dtdtdttuttKttKtxKR nn

t t

nn

x
n

n

n

1

0 0

11

0

1
1 ...)(),()...,(),(

1

 





  

is the remainder after n terms. It can be easily shown that 0lim 1  n
n

R [14].

Thus, the general series for )(xu can be written as


x

dttftxKxfxu
0

)(),()()( 

                                                    dtdttfttKtxK
x t

11

0 0

1
2 )(),(),(  

                                                   ...)(),(),(),( 12221

0 0 0

1
3

1

    dtdtdttfttKttKtxK
x t t

                           

It is being noted that here, the unknown function )(xu in this method is substituted 

by the given function )(xf that makes the assessment of the multiple integrals easily 

computable.

In the next example, we will explain the technique of this method. Let us suppose 

that we have the following equation

,)(1)(
0

x

dttuxu (4.9)

by substitute successively for )(xu its value as given by equation (4.9), we find that

...1)(
0 0 0

3

0 0

2

0

    
x x xx xx

dtdtdtxu

                                            ...
!3!2

1
32


xx

x

                                              .xe

4.1.1.6 The Laplace transform method

The general form of the Volterra integral equation of convolution type is
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 
x

dttutxKxfxu
0

)()()()(  (4.10)

where the kernel ),( txK is of convolution type. txetxtx  ),(),cos( are examples of 

such kernel [2,4], [15].

So, we can easily solve (4.10) by using the Laplace transform method. 

The first step is assigned to begin the solution process, we determine the Laplace 

transform of )(xu

  



0

)()( dxxuexuL sx

By using the Laplace transform of the convolution integral, we get

   )()()()(
0

xuLxKLdttutxKL
x












So, taking the Laplace transform of equation (4.10), we get

       )()()()( xuLxKLxfLxuL 

and the solution for  )(xuL is given by

   
 )(1

)(
)(

xKL

xfL
xuL


 (4.11)

by taking the inverse Laplace transform of both  sides of (4.11) we will get the 

solution ),(xu where

 
x

dttftxxu
0

)()()(  (4.12)

where it is presumed that

  ).(
)(1

11 x
xKL

L 














The equation (4.12) is the solution of the second kind Volterra integral equation of 

convolution type. The following example will illustrate the technique of this method.

Let us suppose that we have the following equation

.)()(1)(
0

dttutxxu
x

  (4.13)

Taking Laplace transform of both sides (4.13) gives

       ,)()(1)( xuLtxLLxuL 
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thus

   ,)(
11

)(
2

xuL
ss

xuL 

the solution for  )(xuL is given by

  .
1

)(
2 


s

s
xuL (4.14)

By taking the inverse Laplace transform of both sides of (4.14), we will get the exact

solution

xxu cos)( 

4.1.1.7 The series solution method

We apply this method if )(xu is an analytic function, i.e. )(xu has a Taylor’s 

expansion around 0x [4].

Accordingly, we can express the function )(xu by a series expansion given by

n

n
n xaxu 






0

)( (4.15)

where the coefficients x and a are constants that are desired to be determined.

Substitution of equation (4.15) into (2.3) we get

dttatxKxfxa n
x

n
n

n

n
n  










0 00

),()( 

by using a few terms of the expansion in both sides, we get

......3
3

2
210  n

n xaxaxaxaa

                                       tdtatxKdtatxKxf
xx

1

00

0 ),(),()(   

                            ....),(...),(
00

2
2   dttatxKdttatxK n

n

xx

            (4.16)

The integral equation (2.3) will be converted to a traditional integral in (4.16) where 

terms of the form 0, nt n will be integrated alternatively of integrating the 

unknown function )(xu [5].

Notice that, if )(xf includes elementary functions such as exponential functions,

trigonometric functions, etc., then Taylor expansions for functions involved in )(xf
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must be used because we are seeking series solution. In the integral equation (4.16)

we first integrate the right side and then collect the coefficients of like powers of .x

Then, we equate the coefficients of like powers of x in both sides of the resulting 

equation to get a recurrence relation in .0, nan This will determine the unknown 

coefficients ,...,...,,, 210 naaaa [4-5]. Accordingly, substituting these coefficients

,0, nan which are determined in equation (4.16), will get us the solution as a series 

form.

We will solve the following example to illustrate the technique of this method. Let us 

suppose that we have the following equation

.)(sin1)(
0

dtttuxxxu
x



We will write the solutio )(xu and xxsin in the form of Taylor series to find 

....)(...
!3

1... 3
3

2
210

0

3
3

3
2

210 dttatataat
x

xxxaxaxaa
x









 

Thus, integrating the right side and collecting the like terms of x we find

     ....)
4

1

6

1
(

3

1
)1

2

1
(1... 4

2
3

1
2

0
3

3
2

210  xaxaxaxaxaxaa

Comparing the coefficients of the same power of x gives the following set of values

                                                 ,10 a               

                                                  ,01 a

,
!2

1
1

2

1
02  aa

                                                  ,0
3

1
13  aa

                                                   ,
!4

1

4

1

6

1
24  aa                  

and so on, generally

,012 na

.0,
)!2(

)1(
2 


 n

n
a

n

n

Hence, the solution is given by
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...
!6

1

!4

1

!2

1
1)( 642  xxxxu

thus, the exact solution is

.cos)( xxu 

4.1.1.8 A special case of Volterra integral equation

In the second kind, Volterra equation (2.3) if the kernel ),( txK can be written as [4]

)(

)(
),(

tA

xA
txK 

such that the equation takes the form

dttu
tA

xA
xfxu

x

)(
)(

)(
)()(

0
 

and upon dividing throughout by )(xA yields

dt
tA

tu

xA

xf

xA

xu x




























0 )(

)(

)(

)(

)(

)(  (4.17)

Now define

)(
)(

)(
1 xu

xA

xu


and                

)(
)(

)(
1 xf

xA

xf


then equation (4.17) can be written as

dttuxfxu
x

)()()(
0

111   (4.18)

Assuming that

,)()(
0

12 dttuxu
x



equation (4.18) can be reduced to an ordinary differential equation

)(12
2 xfu

dx

du


the general solution of which can be obtained as
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.)()( 11

0

)(
2 Cdttfexu

x
tx    (4.19)

Using the initial condition 0)0(2 u at ,0x the equation (4.19) reduces to

.)()( 1

0

)(
2 dttfexu

x
tx  

But,

dx

du
xu 2

1 )( 

and so the above equation can be reduced to an integral equation in terms of 1u by 

differentiating according to the Leibnitz rule to yield 

)()()( 11

0

)(
1 tfdttfexu

x
tx   

Hence, the solution to the original problem can be obtained multiplying throughout

by )(xA

.)()()(
0

)( dttfexfxu
x

tx  

Obviously, this formula can also be obtained by the previous method of successive 

approximation.

4.1.2 Methods to solve the first kind of the Volterra integral equations

Before we explain methods to solve the first kind, we have to recall that the unknown 

function )(xu arises only inside the integral sign for the first kind of the Volterra 

integral  equations. The usefulness in this section is to point out that, we have two 

methods to convert Volterra integral equations of the first kind to the second kind.

So, after the conversion process, we can use the methods in which we presented 

previously to solve Volterra integral equations of the second kind. In the next pages

of our research, we will explain two principle methods that are usually used for 

solving the first kind of the Volterra integral equations [5].
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4.1.2.1 The series solution method

If the solution )(xu has derivatives of all orders, we will consider it to be analytic,

and it has Taylor series at 0x [5]. So, the solution )(xu can be written as follows

.)(
0

n

n
n xaxu 





 (4.20)

By substituting (4.20) into (2.2) will be obtained

  dttataatxKxfT
x

...))(,()( 2
21

0

0   (4.21)

where the Taylor series for )(xf is  .)(xfT

The idea in this method is the integral equation (2.2) which will be changed to an

imitative integral in (4.21), where terms of the form 0, nt n will be integrated 

alternatively of integrating the unknown function ).(xu

We have to note that, if )(xf contains elementary functions such as exponential 

functions, trigonometric functions, etc., then Taylor expansions for functions 

involved in )(xf must be used because we are seeking series solution.

In integral equation (4.21), we firstly integrate the right side and then collect the 

coefficients of like powers of .x And the next step is to equate the coefficients of 

like powers of x in both sides of the resulting equation to get a recurrence relation in

.0, nan This will determine the unknown coefficients ,...,...,,, 210 naaaa .

Accordingly, substituting these coefficients ,0, nan which are determined in 

equation (4.21), get us the solution as a series form.

4.1.2.2 The Laplace transform method

If the kernel ),( txK is of convolution type, in other words, the the kernel ),( txK in 

the form of ),( txK  then Volterra integral equation of the first kind can be written 

as follows [5]

.)()()(
0 
x

dttutxKxf (4.22)
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The first step in this method is taking the Laplace transform of both sides of (4.22) 

we get

),()()( sUsKsF  (4.23)

where 

 ,)()( xuLsU 

 ,)()( xKLsK 

 .)()( xfLsF 

Solving (4.23) for U(s) gives

.0)(,
)(

)(
)(  sK

sK

sF
sU (4.24)

By taking the inverse Laplace transform of both sides of (4.24), we will get the 

solution )(xu where

.
)(

)(
)( 1









 

sK

sF
Lxu

                         

4.1.3 Systems of Volterra integral equations

It is well known that the systems of integral equations (nonlinear or linear) arise in 

the scientific applications in populations growth models, chemistry, physics, and

engineering.

The study of system of integral equation has attracted the attention of many 

researchers in applied sciences. The general ideas and the fundamental attributes of 

these systems are of extensive applicability [5].

4.1.3.1 Systems of Volterra integral equations of the second kind

The general form of Systems of Volterra Integral Equations of the Second Kind is

given by [5]
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  
x

dttvtxKtutxKxfxu
0

111 ...)(),(
~

)(),()()(

                                   (4.25)

  
x

dttvtxKtutxKxfxv
0

222 ...)(),(
~

)(),()()(

                                    .

                                    .

                                    .

And we will use two methods to solve this systems.

4.1.3.1.1 The Adomian decomposition method

The technique for this method boils down to making each solution in the form of an 

infinite sum of the components as follows [5]

         ),()(
0

xuxu
n

n




        ),()(
0

xvxv
n

n




 (4.26)

where )(xu and )(xv are determined recurrently.

By substitute (4.26) into (4.25) we get
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
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


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











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

x

n
n

n
n

n
n dtxvtxKxutxKxfxv

0 0
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0
22

0

)(),(
~

)(),()()(

the value of the zeroth components )(0 xu and )(0 xv are terms that are not included 

under the integral sign

)()( 10 xfxu 

)()( 20 xfxv 

we can get the value of the other components by the following recursive relations

  

x

kkk dttvtxKtutxKxfxu
0

1111 )(),(
~

)(),()()(

  

x

kkk dttvtxKtutxKxfxv
0

2221 )(),(
~

)(),()()(
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thus, after determining the value of the components )(xun and ),(xvn get a solution 

through the equation (4.26). This method can be used in its standard form, or 

combined with the noise terms phenomenon. Moreover, the modified decomposition 

method will be used wherever it is appropriate.

4.1.3.1.2 The Laplace transform method

If the kernels ),( txKm and ),,(
~

txKm 2,1m is of convolution type then, the system 

(4.25) will be written in the following form [5]

  
x

dttvtxKtutxKxfxu
0

111 ...)()(
~

)()()()(

                                   (4.27)

  ....)()(
~

)()()()(
0

222  
x

dttvtxKtutxKxfxv

By taking Laplace transform of both sides of each equation in (4.27) get us

)()(
~

)()()()( 111 sVsKsUsKsFsU 

),()(
~

)()()()( 222 sVsKsUsKsFsV 

where 

 ,)()( xuLsU     ,)()(1 xfLsF     ,)()( 11 xKLsK 

                        ,)(
~

)(
~

11 xKLsK   ,)()( xvLsV 

                        ,)()( 22 xfLsF     ,)()( 22 xKLsK   .)(
~

)(
~

22 xKLsK 

Thus

)()(
~

)()())(1( 111 sVsKsFsUsK 

(4.28)

).()()()())(
~

1( 222 sUsKsFxVsK 

Solving system (4.28) for )(sU and )(sV gives
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)(1
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~
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




(4.29)
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




The final step to get the solutions is done by taking the inverse Laplace transform of 

both sides of each equation in (4.29)












 

)(1

)()(
~

)(
)(

1

111

sK

sVsKsF
Lxu

.
)(

~
1

)()()(
)(

2

221












 
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Thus, the exact solutions are given by 
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sK

sVsKsF
Lxvxu

  

4.1.3.2 Systems of Volterra integral equations of the first kind

The general form of the systems of Volterra integral equations of the first kind can be 

written as follows

  
x

dttvtxKtutxKxf
0

111 ...)(),(
~

)(),()(

                                                                                                                               (4.30)

  
x

dttvtxKtutxKxf
0

222 ...)(),(
~

)(),()(

                                          .

                                          .

                                           .

where the kernels ),( txKi and ),,(
~

txKi and the functions )(xfi are given real-

valued functions in advance, and ),...(),( xvxu are functions that seek to be 

determined. We have provided previously that, the unknown functions arise just

inside the integral sign for the Volterra integral equations of the first kind [5]. 
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4.1.3.2.1 Conversion to a Volterra system of the second kind

We have provided in chapter (2) that, there are two methods to convert Volterra 

integral equations of the first kind to Volterra integral equations of the second kind. 

We will use the first technique to convert system of Volterra integral equations of the 

first kind to system of Volterra integral equations of the second kind.

By differentiating both sides of each equation in (4.30), and using Leibnitz rule, we 

get

)(),(
~

)(),()( 111 xvxxKxuxxKxf 

                                                    dttvtxKtutxK
x

xx 
0 11 ...)(),(

~
)(),(

)(),(
~

)(),()( 222 xvxxKxuxxKxf 

                                                    ....)(),(
~

)(),(
0 22 dttvtxKtutxK
x

xx 

That can be rewritten as 

                      
),(

)(),(
~

)(
)(

1

11

xxK

xvxxKxf
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                                     dttvtxKtutxK
xxK

x

xx 
0 11
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...)(),(
~

)(),(
),(

1

                        
),(

~
)(),()(

)(
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22

xxK

xuxxKxf
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


                                       ....)(),(
~

)(),(
),(

~
1

0 22

2

dttvtxKtutxK
xxK

x

xx 

The last system is a system of Volterra integral equations of the second kind. This 

system can be handled by many different methods such as, Laplace transform

method as we have explained previously. Here it is useful and necessary to recall that

which must be 0),(1 xxK and 0),(
~

2 xxK for the system to be converted to a 

system of Volterra integral equations of the second kind. But if 0),(1 xxK and 

,0),(
~

2 xxK we can do the derivation process again [5].
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4.2 Methods to Solve Nonlinear Volterra Integral Equations

Our aim in this section is to study the nonlinear Volterra integral equations of the 

first and the second kind. The unknown function )(xu arises outside and inside the 

integral sign in the nonlinear Volterra integral equations of the second kind. The

general form of nonlinear Volterra integral equation of the second kind is

.))((),()()(
0
x

dttuFtxKxfxu  (4.31)

While, the nonlinear function ))(( xuF arises only inside the integral sign in the 

nonlinear Volterra integral equations of the first kind. The general form of nonlinear 

Volterra integral equation of the first kind is

.))((),()(
0
x

dttuFtxKxf  (4.32)

The function )(xf and the kernel ),,( txK in these two kinds of equations are given 

real-valued functions and ))(( xuF is a nonlinear function of )(xu such as, ))(sin( xu , 

)(xue and )(2 xu [5].

                 

4.2.1 Nonlinear Volterra integral equations of the second kind

In this section, we will use three different methods to solve the nonlinear Volterra 

itegral equation (4.31). These methods are the successive approximations method, 

the series solution method, and the Adomian decomposition method (ADM).

4.2.1.1 The successive approximations method

Technique of this method is to start with an initial guess which is called zeroth 

approximation to finding successive approximations to the solution ).(xu Any real-

valued function to suffice for the zeroth approximation that will be used in a 

recurrence relation to get the other approximations. Suppose that, we have the 

following nonlinear Volterra integral equation of the second kind (4.31), the 

recurrence relation [5]



x

nn dttuFtxKxfxu
01 ))((),()()(  (4.33)
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will be used to get the unknown function ).(xu Where, any real- valued function to 

suffice for the zeroth approximation ),(0 xu often we use ,x ,0 or 1 for ).(0 xu By 

using this value of )(0 xu into (4.33), several successive approximations 1, nun

will be determined in the following


x

dttuFtxKxfxu
0 01 ))((),()()( 


x

dttuFtxKxfxu
0 12 ))((),()()( 


x

dttuFtxKxfxu
0 23 ))((),()()( 

                                          .

                                           .

                                          .



x

nn dttuFtxKxfxu
01 ))((),()()( 

by using

)(lim)( 1 xuxu n
n




the solution )(xu is obtained.

                        

4.2.1.2 The series solution method

We apply this method if )(xu is an analytic function, i.e. )(xu has a Taylor’s 

expansion around 0x [5].

Accordingly, we can express the function )(xu by a series expansion given by

n

n
n xaxu 






0

)( (4.34)

where the coefficients na will be determined recurrently. By substituting (4.34) into 

both sides of (4.31) we get

  dttataaFtxKxfTxaxaa
x

 
0

2
210

2
210 ...),())((... (4.35)

where the Taylor series for )(xf is )).(( xfT
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The integral equation (4.31) will be changed to an imitative integral in (4.35) where

terms of the form 0, nt n will be integrated alternatively of integrating the 

unknown function )).(( xuF

We have to note that, if )(xf contains elementary functions such as exponential 

functions, trigonometric functions, etc., then, Taylor's expansions for functions 

involved in )(xf must be used because we are seeking series solution.

In itegral equation (4.35) we firstly integrate the right side and then collect the 

coefficients of like powers of .x And the next step is to equate the coefficients of 

like powers of x in both sides of the resulting equation to get a recurrence relation in

.0, ja j This will give us a complete determination of the unknown coefficients

,....,...,,, 210 naaaa Accordingly, substituting these coefficients 0, nan which are 

determined in equation (4.35), that gets us the solution as a series form.

4.2.1.3 The Adomian decomposition method

In this method, the unknown function )(xu is commonly decomposes into an infinite 

sum of components that will be determined recursively by iterations as debate before.

The nonlinear terms such as ,,cos,, 65 ueuuu etc. that arise in the equation must be 

expressed by a particular representation which is named the Adomian polynomials 

.0, nDn Adomian gives us a formal algorithm to establish an authoritative

representation for all nonlinear terms forms. The Adomian technique remains the 

usually used one to evaluate Adomian polynomials in spite of the development of 

other techniques.

To handle the nonlinear integral equations in an authoritative way, we will use the 

Adomian algorithm to evaluate Adomian polynomials [5]. 

To explain the technique for this method, suppose that, we have the nonlinear 

Volterra integral equations of the second kind (4.31) and we assumed that, the 

function )(xf and the kernel ),( txK are analytical functions. The standard 

technique for this method is started by decomposing )(xu in (4.31) into 

,...,,,, 3210 uuuu and assuming that
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)()(lim xuxu
m

j
j

m











and we set







0

)(
m

mDuF

for the non-linear function ),(uF where )0(, mDm are particular polynomials 

known as Adomian polynomials [16]. In [5],  close formulas of these polynomials, 

for any non-linear function )(uF introduced as follow
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in other words, the Adomian polynomials nD is defined by
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 

Thus, equation (4.31) is read as follows

dtuuuuuDtxKxfxu
x

m
mm

m
m   
















 0 0
3210

0

),...,,,,(),()()(

now let

)()(0 xfxu 

and we can get the ,...2,1),( jxu j by using the recurrent formula

  .)(),...,(),(),(),()(
0

2101 dttutututuDtxKxu
x

jjj  (4.36)

Therefore, the solution of the integral equation (4.31) in the series form that can be

determined forthwith by using (4.36). 

As for the modified Adomian method, there are two techniques [16], in the first 

modified technique we assume that, the function )(xf can be splitted as follows
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)()()( 21 xfxfxf 

then, we calculate the value of )(),( 10 xuxu as following

)()( 10 xfxu 

dttDtxKxfxu
x

)(),()()(
0

021 

.1,)(),()(
0

1   mdttDtxKxu
x

mm

The idea of the second modified technique is replacing the function )(xf by a series 

of infinite components. It is obvious to express that, in [17] the function )(xf in 

terms of the Taylor series and introduces the recursive formula

)()( 00 xfxu 

0,)(),()(
0

11   mdttDtxKfxu
x

mmm

where ),...,2,1,0(),( mjxf j  represents the Taylor series components of ).(xf

In [17-18] the modified technique reduces the computational difficulties and 

accelerates the convergence which is better than the standard Adomian technique.

4.2.2 Nonlinear Volterra integral equations of the first kind

The first stept to solve equation (4.32) is done by converting it to a linear Volterra 

integral equation of the first kind of the form


x

dttvtxKxf
0

)(),()(  (4.37)

by using the transformation

))(()( tuFtv 

Consequently, this means                                               

))(()( 1 tvFtu 

And we can use any method that we studied to solve the Volterra integral equation of 

the first kind (4.37) [5].
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4.2.2.1 The Laplace transform method

The technique of this method is the same technique that has been used in the method 

of Laplace transform for solving Volterra integral equations of the second and the 

first kinds. We presume that, the kernel ),( txK is a difference kernel [5]. 

We will get

)}({)}({)}({ xvLtxKLxfL 

By taking the Laplace transforms of both sides of equation (4.37).

Thus

)(

)(
)(

sK

sF
sV  (4.38)

where

 ,)()( xvLsV 

 ,)()( xfLsF 

 .)()( xKLsK 

To get )(xv we taking the inverse Laplace transform of both sides of (4.38)
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)(

)(
)( 1

sK

sF
Lxv

thus, by using

))(()( 1 tvFtu 

The solution )(xu is obtained.

                                        

4.2.2.2 Conversion to a Volterra equation of the second kind

There are two steps to convert the nonlinear Volterra integral equation of the first 

kind (4.32) to a Volterra integral equations of the second kind. Where the first step is

to convert the nonlinear Volterra integral equation of the first kind to a linear 

Volterra integral equation of the first kind as explained in the previous section. The 

second step is to convert a linear Volterra integral equation of the first kind to a 

linear Volterra integral equation of the second kind  as explained in chapter (2). 
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After completion of the conversion process we can use one of the methods that have 

been presented in this research to solve linear Volterra integral equation of the 

second kind [5].

4.2.3 Systems of nonlinear Volterra integral equations

In this section we will study the systems of nonlinear Volterra integral equations of

the second kind and the first kind. Commonly to handle the two kinds of systems

many analytical and numerical methods are used. However, to handle the nonlinear 

Volterra integral equations of the second kind and the first kind, we will use the 

successive approximations method and the Adomian decomposition method [5].

4.2.3.1 Systems of nonlinear Volterra integral equations of the second kind

The general form of system of nonlinear Volterra integral equations of the second 

kind given by

  
x

dttvFtxKtuFtxKxfxu
0 11111 ))((

~
),(

~
))((),()()(

                                                                                                                      (4.39)

  
x

dttvFtxKtuFtxKxfxv
0 22222 ))((

~
),(

~
))((),()()(

The functions iF and iF
~

for 2,1i are nonlinear functions of )(xu and ).(xv The

function )(xfi and the kernels ),( txKi and ),(
~

txKi are given real-valued functions, 

for .2,1i The unknown functions )(xu and ),(xv that will be determined, arise

outside and inside the integral sign [5]. 

Every solution decomposes as an infinite sum of components as presented before. In 

Adomian decomposition method where these components are determined 

recurrently. This method can be used in its standard form or combined with the noise 

terms phenomenon. Moreover, the modified decomposition method will be used 

wherever it is appropriate.

The technique of this method to solve system (4.39) as follows

first, we express )(xu and )(xv in the form of a series                 
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where ,nC nD are the Adomian polynomials which we have explained in a previous

section. Thus system (4.39) becomes
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then we set

)()( 10 xfxu 

to obtain the other components of the solution ),(xun we will use the following

recursive relations
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x

mmm   0 111 )(),(
~

)(),()(

similarly                         
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the solution )(xu is obtained by
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Similarly, the solution )(xv is obtained by
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4.2.3.2 Systems of nonlinear Volterra integral equations of the first kind

The general form of the systems of nonlinear Volterra integral equations of the first 

kind is given by 

 dttvFtxKtuFtxKxf
x

 
0 11111 ))((

~
),(

~
))((),()(

                                                                                                                    (4.40)

 dttvFtxKtuFtxKxf
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 
0 22222 ))((
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~
))((),()(

where the functions )(xfi and the kernels ),( txKi and ),(
~

txKi are given real-valued 

functions. So, the unknown functions )(xu and ),(xv that will be determined which

arise just inside the integral sign for the Volterra integral equations of the first kind.

We need firstly to convert this system to a system of nonlinear Volterra integral 

equation of the second kind. The conversion process is done by differentiating both 

sides of each portion of the system and using Leibnitz rule [5]. 

Differentiating both sides of each equation in (4.40), and using Leibnitz rule, we get
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That can be rewritten as 
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The last system is a system of nonlinear Volterra integral equations of the second 

kind. This system can be handled by many different methods.

Here are useful and necessary to recall that which is must be 0),(1 xxK and 

0),(
~

2 xxK for the system to be converted to a system of Volterra integral equations 

of the second kind.

But if 0),(1 xxK and ,0),(
~

2 xxK we can do the derivation process again [5].
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CHAPTER 5

THE SINGULAR VOLTERRA INTEGRAL EQUATIONS

It is evident that, there are variables of scientific applications in order to deal with 

such brand of equations such as radar ranging, bio-mechanics, satellite photometry

and seismology [19-20].

In the integral equation of the first kind

,)(),()(
)(

)(
x

x
dttutxKxf




 (5.1)

or the integral equation of the second kind

,)(),()()(
)(

)(
x

x
dttutxKxfxu




 (5.2)

if the kernel ),( txK becomes infinite at one or more points in the domain of 

integration then, the equations (5.1) and (5.2) is called singular. In addition, if )(x

or ),(x or both limits of integration are infinite then the equations (5.1) and (5.2) 

are also called singular equations.

The following are examples of the first type and second type of singular integral 

equations, respectively [4-5]





0

)(),()( dttutxKexu x

.)(
1

)(
0 


x

dttu
tx

xf

5.1 Abel’s Problem

The general form of Abel’s integral equations is given by [5,21]

.)(
1

)(
0 


x

dttu
tx

xf (5.3)
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At the same time, the equation (5.3) is Volterra integral equation of the first kind 

with

,
1

),(
tx

txK




where

,),( txK    as  .xt 

To get the solution of equation (5.3), we will use the Laplace transform method [4].

Taking the Laplace transform of both sides of the above equation which yields

 









 

x
dt

tx

tu
LxfL

0

)(
)(

Using the convolution theorem and after a little reduction, the transformed equation

can be written in a simple form

   )()( xfL
s

xuL




Here, we have used the result of 

.)
2

1
( 

The above transform cannot be inverted as it stands now.We rewrite the equation as 

follows:

   




 )(
1

)( xfL
s

s
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Using the convolution theorem, it can be at once inverted to yield
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d x

)(
111

0 
  

                                             dt
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tf
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d x

 


0

)(1



Note that, the Leibnitz rule of differentiation cannot be used in the above integral.

So, we have to integrate the integral firstly and then to take the derivative with 

respect to .x

Then this gives
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)()0(1
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This is the desired solution of Abel’s problem [4].

5.2 The Generalized Abel’s Integral Equation of the First Kind

The integral equation is given by [2-4], [5,21]
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)(

)(

0

xf
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
       10 

Taking the Laplace transform of both sides with the help of convolution theorem,

we obtain
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Thus, to rearranging the terms we have
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By using the convolution theorem of Laplace transform, the equation (5.4) can be

obtained as
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This is the desired solution of the integral equation. 
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Here, it is to be noted that,

.
)sin(

)1()(

 

The definition of Gamma function is [4]

                                  .)( 1

0

dxxen nx 


           

5.3 Abel’s Problem of the Second Kind Integral Equation

The second kind Volterra equation in terms of Abel’s integral equation is written as

                                     ,)(),()()(
0
x

dttutxKxfxu

 
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x
dt

tx

tu
xf

0

)(
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The solution of this integral is attributed by the convolution theorem of Laplace

transform [4]. 

Taking the Laplace transform of both sides of (5.5)
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and after reduction, this can be expressed as
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The inversion of equation (5.6) is given by
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where,
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In reference [22], the Laplace inverse of
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here, it is noted that,
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Thus, the solution of the problem is given by equation (5.7) [4].

5.4 The Weakly-Singular Volterra Equation

The general form of weakly-singular Volterra-type integral equations of the second 

kind, is [4-5]

 


x
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xfxu

0
)()()(


(5.8)

arises frequently in many applications of  chemistry and mathematical physics like 

electrochemistry, heat conduction, and crystal growth. In (5.8)  is a constant 

parameter. We will ensure access to a unique solution for equation (5.8), because we 

assume that, the function )(xf is sufficiently smooth. 

The kernel 

tx
txK




1
),(

is a singular kernel.



50

We shall use the decomposition method to evaluate this integral equation. To 

determine the solution, we usually adopt the decomposition in the series form

),()(
0

xuxu n


 (5.9)

into both sides of equation (5.7) to get
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The components ,...,, 211 uuu are immediately determined upon applying the 

following recurrence relations
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It is easy to get into the solution )(xu of equation (5.8) when we determine the 

components ,...,,,, 2110 uuuu etc. in the form of a rapid convergence power series by 

substituting the derived components in equation (5.9). 

It is important to note that, the noise terms may appear between various components

)(xu , and by canceling these noise terms between the components )(0 xu and )(1 xu

which may give the exact solution that should be justified through substitution. 

Commonly, the appearance of these terms minimizes the size of the computational 

work and speeds the convergence of the solution. The use of modified decomposition 

method would be appropriate for us sometimes [4-5].      
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CHAPTER 6

CONCLUSION

It is worth of note that, differential equations and integral equations are the most 

significant types of mathematical equation that occur naturally in the sciences to help 

us to understand the natural phenomena and modeling them, mathematically. It 

turned out that, numerous significant phenomena in electrical engineering, dynamical 

systems of economics, and biology can be modeled by Volterr type integral 

equations.

Since Volterra started his work on integral equations, the theory of Volterra type 

integral equations have attracted the attentions of many scientists. These scientists 

worked in terms of the development of this theory and its applications in numerous 

disciplines.

In this thesis, the researcher studied the existence and uniqueness theorems of 

Volterra type equations and discussed some methods that solve linear and nonlinear 

Volterra integral equations. Systems of these equations are discussed as well. So, this 

thesis can be considered as a survey on methods of solutions of Volterra type 

equations and systems of both linear and nonlinear.

The study conductor hopes in this research is to enlighten the students in this huge 

fields to work forwardly on Volterra type equations.
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