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Abstract
In this paper, the transient response of the parallel RCL circuit with Caputo–Fabrizio
derivative is solved by Laplace transforms. Also, the graphs of the obtained solutions
for the different orders of the fractional derivatives are compared with each other and
with the usual solutions. Finally, they are compared with practical and laboratory
results.

MSC: Primary 34A08; secondary 34A12

Keywords: Caputo–Fabrizio derivative; Fractional differential; Transient response

1 Introduction
The idea of fractional calculus coincides with that of classical calculus. Leibniz and
l’Hopital first raised this issue in 1695 and in 1730 Euler’s attention was drawn to it, fol-
lowed by Lagrange in 1772 and Laplace in 1812. The first concept of arbitrary derivation
was introduced by Lacroix and later by Fourier, Abel, Liouville, Grunewald, Letnikov and
Riemann. Various fractional derivatives were thus introduced. Grunewald and Krug intro-
duced the work of Riemann and Liouville and introduced another integral and derivative
called Riemann–Liouville. Caputo introduced a new derivative by rewriting the Riemann–
Liouville formula. In 2014, the conformable derivative was introduced, which was in fact
a generalization of the classical derivative and so far, many researchers have used them
[13, 22, 25, 31, 32]. In 2015 Caputo and Fabrizio introduced a new fractional derivative
using the exponential function. This derivative has no singularity [20] and [36]. In [4] the
derivative properties of Caputo–Fabrizio were developed by Atangana. In [5] the advan-
tages of the new differential operators are explained. Following this same process, Atan-
gana and Baleanu introduced another derivative of Caputo–Fabrizio by introducing the
Mittag-Leffler function into the fractional derivative, which many researchers have used
in their papers. Many important discussions are presented in [7] and [8]. New extensions
and generalizations of the Caputo–Fabrizio derivative and other fractional derivatives can
be found in articles [10, 11, 14–16]. New entries in other areas of fractional calculus are
presented in articles [1, 2, 12, 17, 18, 23, 35]. In this paper, we will investigate the parallel
RCL circuit with the Caputo–Fabrizio fractional derivative.
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A circuit including resistance, capacitor and inductor RCL is an important circuit which
is used in most electronic devices. By considering the importance of this circuit, we are
going to examine the transient response of parallel RCL circuit with the Caputo–Fabrizio
derivative. The RCL, RL, RC and LC series circuits with Caputo–Fabrizio and other frac-
tional derivative have already been examined by some researchers like in [3, 6, 9, 19, 21,
24, 26–28, 31, 34, 37, 38].

First, we provide some basic notions as regards the Caputo–Fabrizio derivative. Let 0 <
α < 1 and f ∈ H1(a, b). The Caputo–Fabrizio derivative is defined by

D(α)
t f (t) =

M(α)
(1 – α)

∫ t

0
f ′(s) exp

(
–

α

1 – α
t
)

ds,

where M(α) is a normalization function such that M(0) = M(1) = 1 [20]. For n ≥ 1, the
Caputo–Fabrizio derivative of order n + α is defined by D(α+n)

t f (t) = D(α)
t (D(n)

t f (t)) and the
Laplace transform of the Caputo–Fabrizio derivative is defined by

L
[
D(α)

t f (t)
]

=
1

1 – α

∫ ∞

0
exp(–st)

∫ t

0
f ′(τ ) exp

(
–

α(t – τ )
1 – α

)
dτ dt

=
1

1 – α
L

[
f ′(t)

]
L

[
exp

(
–

αt
1 – α

)]
.

Then we have L[D(α)
t f (t)] = sL[f (t)]–f (0)

s+α(1–s) ,

L
[
D(α+1)

t f (t)
]

=
1

1 – α
L

[
f ′′(t)

]
L

[
exp

(
–

αt
1 – α

)]
=

s2L[f (t)] – sf (0) – f ′(0)
s + α(1 – s)

,

and

L
[
D(α+n)

t f (t)
]

=
1

1 – α
L

[
f (n+1)(t)

]
L

[
exp

(
–

αt
1 – α

)]

=
sn+1L[f (t)] – snf (0) – sn–1f ′(0) – · · · – f (n)(0)

s + α(1 – s)
.

Finally, the fractional integral of order α is defined by Iαf (t) = (1 – α)f (t) + α
∫ t

0 f (s) ds [36].

2 RCL circuit
The RCL circuit is used frequently in many branches of science such as computer science
and electronics. We know that boost circuits and bucks are used in power supply of op
and amp circuits, cpu’s etc. According to Ohm’s law, the voltage of the conductor is pro-
portional to the intensity of the current it passes through. The mathematical formula can
be written V (t) = RI(t), where I(t) is the current flowing through the conductor measured
in ampère (A), V (t) is the potential difference measured between two points of the con-
ductor in units of volts (V) and R is the resistance of the conductor measured in [Ohm]
(�). The change in the charge q with respect to time t is I(t) = dq

dt . Thus, Ohm’s law can be
written as V (t) = R dq

dt . Now we use the fractional time derivative operator

dα

dtα
:= D(α)

t (0 ≤ α < 1) (1)
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where α is an accord parameter close to 1, which represents the order of the derivative
and in the case α = 1 it becomes the ordinary derivative operator [30]. However, the ordi-
nary time operator has dimensions of inverse second [ 1

s ] [30], while Eq. (1) has dimension
[D(α)

t ] = 1
sα . Thus, it is different from the ordinary time derivative. There has been intro-

duced a new parameter σ by

[
1

σ 1–α
D(α)

t

]
=

1
s

(0 ≤ α < 1) (2)

such that, for the case α = 1, Eq. (2) becomes an ordinary derivative [30]. This is true if the
parameter σ has the dimensions [σ ] = s [30]. Therefore, we can change the ordinary time
derivative operator by d

dt → 1
σ 1–α D(α)

t and d2

dt2 → 1
σ 2(1–α) D

(2α)
t , where n – 1 ≤ α < n. By using

these expressions, Ohm’s law becomes the fractional Ohm law, V (t) = R × 1
σ 1–α D(α)

t q(t).
Since the energy can be stored in the capacitor and inductor, the primary inductor current
and primary capacitor voltage both can be non-zero. Consider Figs. 1 and 2.

In Fig. 2, similar to [33], we can use Kirchhoff’s law (KCL) as

V
R

+
1
L

∫ t

t0

V dt – i(t0) + C
dV
dt

= 0, (3)

where I(0) = I0 and V (0) = V0. If we use normal derivative for (3), then we obtain the
following differential equation:

C
d2V
dt2 +

1
R

dV
dt

+
1
L

V = 0. (4)

Figure 1 RCL circuit with battery and switch is
open

Figure 2 RCL circuit after switch is closed
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Figure 3 Graph of transient response in overdamped, critically damped and underdamped case

Note that its solution is a natural response of the circuit which we need. For solving Eq. (4)
with normal derivative, we consider three cases. In this way, put a = 1

2RC and ω0 = 1√
LC .

Note that, for avoiding computations in numerical examples, non-laboratory inductor and
capacitor values have been selected by researchers usually.

The overdamped case concerns a > ω0.
In this case, the transient response of the circuit has the form V (t) = A1es1t + A2es2t ,

where s1 = –a +
√

a2 – ω2
0 and s2 = –a –

√
a2 – ω2

0. For example put R = 6 �, C = 1
42 F

and L = 7 H. Then we get s1 = –1 and s2 = –6. Hence, V (t) = A1e–t + A2e–6t . Thus, V (0) =
A1 + A2 = 0 and dV

dt |t=0 = –A1 – 6A2. Since the voltage of the resistor is zero at t = 0, we
have iR(0) = 0 and dV

dt |t=0 = iC (0)
C = I(0)+iR(0)

C = I(0)
C = 420(V /S) and so A1 = 84 and A2 = –84.

Hence, V (t) = 84e–t – 84e–6t .
The critically damped case concerns a = ω0.
In this case the response has the form V (t) = (A1 + A2t)e–at . For example put R = 8.57 �,

C = 1
42 F, L = 7 H, i(0) = 10 A and V (0) = 0. Then we have V (t) = 420te–

√
6t .

The underdamped case concerns a < ω0.
In this case the roots of the characteristic equation are complex and may be expressed

as s1,2 = a ± jωd , where ωd =
√

ω2
0 – a2 and j =

√
–1. In this case, the transient response of

the circuit has the form V (t) = e–at(A1 cosωdt + A2 sinωdt). For example put R = 10.5 �,
C = 1

42 F, L = 7 H, i(0) = 10 A and V (0) = 0. Then we have V (t) = 210
√

2e–2t sin(
√

2t).
Check Fig. 3 and compare the cases.

3 Main result
Now by Eq. (4) and changing the ordinary time derivative operator by d

dt → 1
σ 1–α D(α)

t and
d2

dt2 → 1
σ 2(1–α) D

(2α)
t , we obtain the following equation

1
σ 2(1–α) D

(2α)
t V (t) +

1
RCσ (1–α) D

(α)
t V (t) +

1
LC

V (t) = 0. (5)
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For simplicity, put A = σ (1–α)

RC and B = σ 2(1–α)

LC . Thus, we have

D(2α)
t V (t) + AD(α)

t V (t) + BV (t) = 0. (6)

We suppose in Fig. 2 that only the inductor has primary energy, that is, V (t0) = V (0) = 0.
Now, put U(t) = D(α)

t V (t). Thus, D(2α)
t V (t) = D(α)

t U(t) and so

L
[
D(2α)

t V (t)
]

= L
[
D(α)

t
(
D(α)

t V (t)
)]

= L
[
D(α)

t
(
U(t)

)]

=
sL[U(t)] – U(0)

s + α(1 – s)
=

sL[U(t)]
s + α(1 – s)

. (7)

Note that U(0) = M(α)
1–α

∫ 0
0 V ′(t) exp(– α(t–x)

1–α
)dx = 0 and

L
[
U(t)

]
=

sL[V (t)] – V (0)
s + α(1 – s)

=
sL[V (t)]

s + α(1 – s)
. (8)

Thus, by using (7) and (8) we get L[D(2α)
t V (t)] = s2L[V (t)]

(s+α(1–s))2 . Now by applying the Laplace

transform on both sides of (6), we obtain s2L[V (t)]
(s+α(1–s))2 + A sL[V (t)]

(s+α(1–s)) + BL[V (t)] = 0 and

L[V (t)]( s2

(s+α(1–s))2 + As
(s+α(1–s)) + B) = 0. Hence, L[V (t)]( s2+As(s+α(1–s))+B(s+α(1–s))2

(s+α(1–s))2 ) = 0. If
L[V (t)] = 0, then V (t) = 0 is an obvious solution for Eq. (6). Thus, we should have
s2 + A(s2 + αs(1 – s)) + B(s + α(1 – s))2 = 0 and so

(
1 + A(1 – α) + B(1 – α)2)s2 + α

(
A + 2B(1 – α)

)
s + Bα2 = 0.

Thus, s1, s2 = –(α(A+2B(1–α)))±[(α(A+2B(1–α)))2–4(1+A(1–α)+B(1–α)2)(Bα2)]
1
2

2(1+A(1–α)+B(1–α)2) . Hence, we obtain the so-
lution. For example, let R = 6 �, L = 7 H, I(0) = 10A, V (0) = 0, C = 1

42 F, α = 1 and σ be
a non-negative constant. Then we have A = σ (1–α)

RC = 7, B = σ 2(1–α)

LC = 6, s1 = –1 and s2 = –6.
Thus, the transient response of Eq. (5) for α = 1 is equal to the transient response of Eq. (4)
and we have

V (t) = 84e–t – 84e–6t . (9)

In Figs. 4(a) and 4(b), we observe the graph of (9) for σ = 1
4 , 1

2 , 3
4 , 1, 5

4 and α = 1
4 , 1

2 , 3
4 , 1. It is

clear that the graphs of (9) for α = 1 and each σ are the same.
Now suppose in Fig. 1 the inductor and the capacitor both have primary energy. Then

we get V (0) 	= 0 and

L
[
D(2α)

t V (t)
]

=
s2L[V (t)] – sV (0)

(s + α(1 – s))2 (10)

and so Eq. (6) gets the form

s2L[V (t)] – sV (0)
(s + α(1 – s))2 + A

sL[V (t)] – V (0)
(s + α(1 – s))

+ BL
[
V (t)

]
= 0 (11)

and from the above equation we have

s2L
[
V (t)

]
– sV (0) + A

(
s + α(1 – s)

)[
sL

[
V (t)

]
– V (0)

]
+ B

(
s + α(1 – s)

)2L
[
V (t)

]
= 0;



Alizadeh et al. Advances in Difference Equations         (2020) 2020:55 Page 6 of 19

Figure 4 Graphs of Eq. (9) with selected α and σ values

Figure 5 Graphs of Eq. (13) with L = 7 H, R = 6 �, C = 1
42 F

then

L
[
V (t)

](
s2 + As

(
s + α(1 – s)

)
+ B

(
s + α(1 – s)

)2) = sV (0) + A
(
s + α(1 – s)

)
V (0)

and

L
[
V (t)

]
=

sV (0) + A(s + α(1 – s))V (0)
s2 + As(s + α(1 – s)) + B(s + α(1 – s))2)

. (12)

By the inverse Laplace transform we have

V (t) = L–1
[

sV (0) + A(s + α(1 – s))V (0)
s2 + As(s + α(1 – s)) + B(s + α(1 – s))2)

]
. (13)

In the following we consider the graph of Eq. (13) in Fig. 5(a) with σ = 1 and α = 1 and
(b) with σ = 1 and α = 1/4, 1/2, 3/4, 1. Figure 6 shows the graphs of Eq. (13) with L = 7 H,
R = 6 �, C = 1

42 F, α = 1/4, 1/2, 3/4, 1 and σ = 1/4, 1/2, 3/4, 1.
Now we want to study the graph of voltage function on the capacitor when the switch

is on in Fig. 7.
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Figure 6 Graphs of Eq. (13) with L = 7 H, R = 6 �, C = 1
42 F

Figure 7 RCL circuit

Thus for L = 7 H, R = 6 � and C = 1
42 F we have

a =
1

2RC
= 3.5

(
1
s

)
and ω0 =

1√
LC

=
√

6
(

rad
s

)

and s1 = –1( 1
s ) and s2 = –6( 1

s ) so the total solution is

V (t) = A1 exp–t +A2 exp–6t . (14)
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Figure 8 RCL circuit with switch off and on

We suppose that the switch has been turned up during 0– < t < 0+ and we isolate the
voltage source and resistance (9 �) from the circuit. We must calculate Vc(0+) and dVC

dt |t=0+ ,
and to do this we need Fig. 8.

In Fig. 8(a) t = 0– and in Fig. 8(b) t = 0+ so in Fig. 8(a) we have

IL
(
0–)

=
–150
6 + 9

= –10 A, VC
(
0–)

= 6 × (10) = 60 V,

and

dVC

dt

∣∣∣∣
t=0+

=
1
C

IC
(
0+)

=
1
C

(
–IC

(
0+)

– IR
(
0+))

= 42
(

10 –
60
6

)
= 0;

now set this values to VC(t) and dVC
dt |t=0+ in t = 0+, then from (14) we have

VC
(
0+)

= 60 = A1 + A2,
dVC

dt

∣∣∣∣
t=0+

= 0 = –A1 – 6A2, t > 0,

so A2 = –12 and A1 = 72 and thus

VC(t) = 72 exp–t –12 exp–6t , t > 0. (15)

In Fig. 9 the graph of Eq. (15) is considered.
So Eq. (13) with α = 1 and σ = non-zero is equal to Eq. (15).
Now we return to Eq. (3) and try to solve it in three cases.
Case 1: apply the Laplace transform to both sides of (3):

L
[

V
R

+
1
L

∫ t

0
V (p) dp – I(0) + C

dV
dt

]
= 0,

1
R
L

[
V (t)

]
+

1
Ls

L
[
V (t)

]
–

I(0)
s

+ C
(
sL

[
V (t)

]
– V (0)

)
= 0,

L
[
V (t)

]( 1
R

+
1
Ls

+ Cs
)

=
I(0)

s
+ CV (0),

L
[
V (t)

]
=

I(0)
s + CV (0)

1
R + 1

Ls + Cs
,
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Figure 9 Graph of Eq. (15)

Figure 10 Graph of Eq. (16) with V(0) = 0, L = 7 H, I(0) = 10 A, C = 1
42 F

V (t) = L–1
[ I(0)

s + CV (0)
1
R + 1

Ls + Cs

]
. (16)

Figure 10 is the graph of Eq. (16) with V (0) = 0, L = 7 H, R = 6, 8.57 and 10.5 �, C = 1
42 F

and I(0) = 10 A.
With considering Figs. 3 and 10 we can see that Eq. (16) with V (0) = 0 and R = 6 � is

equal to Eq. (9), which is the overdamped case. The critically damped case and the under-
damped case are the results of Eq. (16) with resistance 8.57 � and 10.5 � and the initial
zero voltage.

So Eq. (13) with α = 1 and σ = non-zero is equal Eq. (15) and equal Eq. (16) with V (0) =
60, L = 7 H, R = 6 �, C = 1

42 F and I(0) = 10 A.
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Figure 11 Graph of Eq. (16) with V(0) = 60 V, L = 7 H, R = 6 �, C = 1
42 F and I(0) = 10 A

Case 2: in this case we want to replace the last term of (3) with the Caputo–Fabrizio
fractional derivative and then apply the Laplace transform so we have

V
R

+
1
L

∫ t

0
V (p) dp – I(0) +

C
σ 1–α

Dα
t V (t) = 0,

1
R
L

[
V (t)

]
+

1
Ls

L
[
V (t)

]
–

I(0)
s

+ C
sL[V (t)] – V (0)
σ 1–α(s + α(1 – s))

= 0,

1
R
L

[
V (t)

]
+

1
Ls

L
[
V (t)

]
+

Cs
σ 1–α(s + α(1 – s))

L
[
V (t)

]
=

I(0)
s

+
CV (0)

σ 1–α(s + α(1 – s))
,

L
[
V (t)

]
=

I(0)
s + CV (0)

σ 1–α (s+α(1–s))
1
R + 1

Ls + Cs
σ 1–α (s+α(1–s))

, (17)

V (t) = L–1
[ I(0)

s + CV (0)
σ 1–α (s+α(1–s))

1
R + 1

Ls + Cs
σ 1–α (s+α(1–s))

]
. (18)

Now we want to consider the graph of Eq. (18) with V (0) = 0.
Case 3: in Eq. (3) we replace the integration 1

L
∫ t

0 V (p) dp with Caputo–Fabrizio integra-
tion IαV (t) = (1 – α)V (t) + α

∫ t
0 V (p) dp, t ≥ 0, and the ordinary derivative with Caputo–

Fabrizio fractional derivative so we have

1
R

V (t) +
1
L

IαV (t) – I(0) +
C

σ 1–α
DαV (t) = 0,

1
R

V (t) +
1 – α

L
V (t) +

α

Ls

∫ t

0
V (p) dp – I(0) +

C
σ 1–α

DαV (t) = 0.

On applying the Laplace transform we have

1
R
L

[
V (t)

]
+

1 – α

L
L

[
V (t)

]
+

α

Ls
L

[
V (t)

]
–

I(0)
s

+
C

σ 1–α

(L[V (t)] – V (0))
(s + α(1 – s))

= 0,

L
[
V (t)

]( 1
R

+
1 – α

L
+

α

Ls
+

Cs
σ 1–α(s + α(1 – s))

)
=

I(0)
s

+
CV (0)

σ 1–α(s + α(1 – s))
,
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Figure 12 Graphs of Eq. (18) with V(0) = 0

Figure 13 Graphs of Eq. (18) with V(0) = 60

L
[
V (t)

]
=

I(0)
s + CV (0)

σ 1–α (s+α(1–s))
1
R + 1–α

L + α
Ls + Cs

σ 1–α (s+α(1–s))

, (19)

and applying the inverse Laplace transform then

V (t) = L–1
[ I(0)

s + CV (0)
σ 1–α (s+α(1–s))

1
R + 1–α

L + α
Ls + Cs

σ 1–α (s+α(1–s))

]
(20)

in Eq. (20) when V (0) = 0, then its graph is Fig. 15.

4 Some Note
Is it possible to fit the obtained data with some real data taken from the laboratory?
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Figure 14 Graph of Eq. (20) with V(0) = 60 V

Figure 15 Graph of Eq. (20) with V(0) = 0

For this, as mentioned earlier, in most articles and books, the values used for the inductor
and capacitor are relatively large (7 Henry for the inductor and 1/42 Farad for the capaci-
tor) and the reason is to avoid working with negative powers of ten [3, 6, 9, 19, 27, 29, 33]
However, it is not possible to study the transient parallel transmissions in very large quan-
tities in the laboratory and in principle these very large amounts are not applicable in the
real world, so we are looking for values that we can easily examine in the lab and we can
examine in the software. For this work we used the schematics in Fig. 16.

The values of 900 micro-Henry for the inductor and 1 micro Farad for the capacitor and
10, 15 and 20 � for the resistance were selected for the overdamping, critical damping
and underdamping modes. Measurement tools used in this project include Digital Oscil-
loscope GDS-1102B and digital Multimeters Victor VC9808 and DEC330FC and power
supply PS-305D. FQPF10N20C N-Channel enhancement mode power field effect transis-



Alizadeh et al. Advances in Difference Equations         (2020) 2020:55 Page 13 of 19

Figure 16 Schematic circuit used in the project

Figure 17 Details of switch signal

Figure 18 Overdamping mode measured values: V = 44 mV and I = 12.2 mA

tors with approximate frequency of 175 Hz and 8.8 percent Duty Cycle square signal were
used (Fig. 17).

An oscilloscope with a sample rate of ten thousand points per second was used and the
following results were obtained. For the overdamping mode the value of the voltage 44 mV
and the current intensity 12.2 mA, for the critical damping mode the value of the voltage
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Figure 19 Critical damping mode measured values: V = 48 mV and I = 13.43 mA

Figure 20 Underdamping mode measured values: V = 51 mV and I = 18.65 mA

Figure 21 Solve Eq. (4) with MATLAB software

48 mV and the current intensity 13.43 mA and finally for the underdamping mode the
value of the voltage 51 mV and the current intensity 18.65 mA were measured (Figs. 18,
19 and 20).

In the first simulation, we solve the differential Eq. (4) with MATLAB software and plot
its graph with the measured values and compare them with the graphs drawn by the os-
cilloscope to see how the simulation of MATLAB software matches the actual results.

According to Fig. 21, the following simulation results are obtained for the measured
values (Fig. 22).

By comparing the outputs of the software with the outputs of the oscilloscope, the soft-
ware simulation defects are observed in parts of the graphs in which the curvature is not
smooth (Figs. 23, 24 and 25).
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Figure 22 Outputs of oscilloscope

Figure 23 Overdamping mode comparison

Figure 24 Critical damping mode comparison

Figure 25 Underdamping mode comparison
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Figure 26 The graph of Eq. (4) for the values measured in the overdamping, critical damping and
underdamping mode

Figure 27 Comparison of the graphs of Eq. (18) for the measured values

To solve the problem of the unevenness of the curve in the previous simulation, we will
use another simulation method. We intend to apply contrivance to obtain an acceptable
match for the simulation output with an oscilloscope output for α = 1 and then examine
the simulation output behavior for less or more alpha values. In Fig. 26, Eq. (4) is plotted
with the first simulation values using the plot command in MATLAB software.

By comparing the graph in Fig. 26 with the extracted oscilloscope graphs, the second
simulation is more consistent. In the following, we will compare the graphs of Eqs. (18)
and (20), in which the alpha is larger or smaller than 1, for the measured values, with
Fig. 26.

With consideration of Figs. 27 and 29, we see that, with increasing alpha in Eqs. (18) and
(20), the curves are narrower and taller than normal, and also shifted slightly to the right
of the x-axis. In Figs. 28 and 30, by decreasing the alpha value, the curves are shorter and
wider and slightly shifted to the left of the x-axis.

Also, the difference between Eqs. (18) and (20) is that in Eq. (20), the differences with
the normal state are slightly greater than Eq. (18).
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Figure 28 Comparison of the graphs of Eq. (18) for the measured values

Figure 29 Comparison of the graphs of Eq. (20) for the measured values

Figure 30 Comparison of the graphs of Eq. (20) for the measured values

Note For alpha values greater than 1.000006 and less than 0.999994, the transfer value of
the curves to the right and left is much higher and eliminates the possibility of comparison
with normal mode.
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5 Conclusion
In order to find the transient response of the parallel RCL Circuit with Caputo–Fabrizio
derivative and use of the inverse Laplace transformations when only the inductor has pri-
mary energy, it gives an obvious response, but it is used to find s1 and s2 in the equation
V (t) = A1es1t + A2es2t .

When the capacitor also has primary energy, the transient response is obtained with
the Laplace transforms and the inverse Laplace transformations. When σ takes values
less than 1, the transient response curve is reduced. Most graphs are compared with each
other when σ = 1. Of course, with α = 1, the transient response in all states is identical to
the transient response of the ordinary derivatives. To find the transient response of the
parallel RCL circuit, the solution of Eq. (3) is much easier to find than Eq. (4).

The simulation part of MATLAB software did not perform well for laboratory values.
By using the Caputo–Fabrizio fractional derivative with a derivative order slightly higher
than 1, the voltage curve changes faster and with a larger amplitude. Conversely, with the
use of the derivative of Caputo–Fabrizio with a derivative of less than 1, the curve changes
the voltage more slowly and occurs with a smaller amplitude.

Question What is the physical interpretation of the Sigma with the opposite values 1?
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