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ABSTRACT 
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FILTERS  
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M.Sc., Department of Computer Engineering 

Supervisor: Asst. Prof. Dr. Yuriy ALYEKSYEYENKOV 

 

September 2014, 46 pages 

 

 

 

Linear-phase finite impulse response (FIR) filters are excessively utilized in digital 

signal processing programs due various advantage. These advantages include that 

there is no distorted phase, unrestricted stability, and lower filter-coefficient 

insecurity. Most important shortcoming of linear-phase FIR filter is that the total 

group delay is (N-1)/2 where N is scope of filter. The amount becomes large to filter 

orders that are higher in telecommunication programs. Many algorithms have been 

proposed to reduce this delay and its distortion. Typically, block involution 

mechanism like overlap-add method (OAM) and overlap-save method (OSM) are 

used for a long input sequence. Yet, with respect to input, by using these techniques, 

the output series includes a finite group delay. In this thesis, the performance of 

enhanced modified overlap and save method is investigated. First, the impulse 
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response is made causal and then it is shifted left (circular) by an amount of    

     for   odd and     for   even. Finally, the samples to be excluded from the 

final convolution are defined. It is expected that this results in a reduction in the 

causal delay and also in the group delay. Simulations are carried out by MATLAB. 

The performance of the method is compared with the results obtained from the OSM 

based filter.                               

 

 

Keywords: Impulse Response, FIR Filter, Linear Phase FIR Filter, Group Delay. 
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ÖZ 

 

 

 

SONLU DÜRTÜ CEVAPLI  DİJİTAL FILTRELERINDE GRUP GECİKME 

AZALTMA YÖNTEMLERİ   
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Tez Yöneticisi: Yrd. Doç. Dr. Yuriy ALYEKSYEYENKOV  
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Doğrusal fazlı sonlu dürtü cevaplı (FIR) süzgeçler çok çeşitli avantajlarından dolayı, 

sayısal sinyal işleme uygulamalarında yaygın olarak kullanılmaktadırlar. Bu 

avantajlar, faz bozunumu içermeyen, sınırsız kararlılık ve süzgeç katsayılarına olan 

az duyarlılık olarak sıralanabilir. Ancak, doğrusal fazlı FIR süzgeçlerinin en önemli 

dezavantajı ise toplam grup gecikmesinin (N-1)/2 olarak ortaya çıkmasıdır. Buradaki 

N, süzgeçteki katsayı sayısını temsil etmektedir. Haberleşme uygulamalarında, 

toplam gecikmenin miktarı süzgeç katsayılarının sayıları ile doğru orantılı olarak 

artmaktadır.  
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Bu gecikmeyi ve ondan dolayı oluşan bozunumu azaltmak için birçok algoritma 

önerilmiştir. Tipik olarak, uzun giriş dizileri için blok konvolüsyon olarak bilinen 

üstüste binik toplama metodu (OAM) ve üstüste binik saklama metodu (OSM) 

kullanılır. Bu metodlar kullanıldığında, çıkış dizisinin girişe göre sonlu bir grup 

gecikmesi vardır. 

Bu tezde, iyileştirilip modifiye edilmiş üstüste binik saklama metodunun performansı 

incelemiştir. İlk olarak, süzgeçin dürtü cevabı nedensel yapılmıştır ve bu dürtü 

cevabı daha sonra, N tek olduğu zaman (N-1)/2 kadar sola, çift olduğu zaman ise N/2 

kadar yine sola kaydırılmıştır. 

Son olarak, son konvolüsyon sonucundan dışlanacak olan örnekler tanımlanmıştır. 

Bunun, nedensel gecikme ve grup gecikmesinin azalmasına neden olacağı 

beklenmektedir. Benzetim çalışmaları MATLAB ortamında yapılarak, bu metodun 

performansı, OSM metodundan elde edilen sonuçlarla karşılaştırılmıştır. 

 

Anahtar kelimeler: Dürtü Cevabı, FIR Süzgeç, Doğrusal Fazlı FIR Süzgeç, Grup 

Gecikmesi. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Finite impulse response (FIR) filter is defined as the digital filters execute 

mathematical procedures at piece of detached-time signal due changes some of its 

characteristics in a desired manner. Linear-phase FIR filters are preferred in digital 

signal treating programs due to their various advantages. These advantages include 

stabilization, and that there is no any distorted phase and lower filter-coefficient 

insecurity.  

The linear-phase FIR filter also has a main disadvantage which is the overall group 

delay           in specific applications, where N represents the filter length. It is 

obvious that this amount becomes larger when high order filters are considered. 

Also, such a large amount of group delay leads to untolerable echoes of the 

transmitted signals in communication applications. There are a lot of important 

applications of linear phase filters, in which the most delayed groups caused by 

linear phase is important (for instance in electrocardiography in which modification  

could be applied for the delay location of the QRS complex [1], in two- route speech 

telecommunication systems calling for a low round-trip delay).  

On the other hand, large delay in discrete-time control applications is also 

unacceptable. The group delay slows down the speed of processor. A multirate 

digital signal processing approach has been suggested to minimize this delay in 

active noise control systems [2].  
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A recent category of maximally nonsymmetrical the improvement has been effective 

for the flat FIR lowpass filter as in [3] to improve performance of the designing of 

the filter. In comparative manner, this improvement gives a constant of group delay, 

unlike the symmetric filter with no collapse of frequency response volume. A robust 

non-iterative algorithm is presented in [4] in order to plan optimum minimum-phase 

digital FIR filters with arbitrary magnitude responses depending on discrete Hilbert 

transform (DHT). When the DHT is extended to the complicated case where the 

minimum-phase filters require less memory and lower arithmetic computation than 

linear-phase filters in order to satisfy the same restrictions on the response of delay 

and volume. So through this algorithm, the magnitude scale of the amputated 

minimum-phase series would differ from the actual magnitude scale. As a result, it is 

possible to compute the minimum delayed outcome response without making any 

change in the impulse response (IR) of the filter. It looks like unattainable in 

accordance with the most common filtering algorithms, for instance overlap add 

method (OAM), and overlap save method (OSM) mentioned in [5] and this technique 

is utilized by the following convolution equation: 

     ∑           

 

   

 (1.1) 

   

Here x(n)  represents  the input signal which  will be filtered, h(n)  represents the 

filter impulse response, y(n)  represents  filtered signal, and  N is the filter length. 

The design of low delay FIR bandpass filters with maximally flat passband and 

equiripple stopband by doing consecutive projections approach which is shown in 

[6]. It is well known that linear-phase FIR filter delay increases by increasing the 

filter length. A weighted least squares (WLS) technique has been proposed to design 

a near-equiripple FIR filter having variable fractional delay [7]. On the other hand, 

the design of arbitrary variable fractional-delay FIR filters has been achieved which 

is based on the complex version of WLS [8]. 

Apaydin showed a new method for decreasing the delay in FIR digital filters with 

equiripple passband, and peak restrained minimum squares stop-bands for programs 

in the actual time [9]. In this technique, the reduction of the group delay that can be 
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reached is between 12-22 % in passband compared with the present techniques. Kene 

[10] proposed doing some adjustments to overlap-save method (OSM) and overlap-

add method (OAM) algorithms to be used for filtering real signals by an N tap FIR 

filter. This technique requires two complex 2N-point discrete Fourier transform 

(DFT) in order to get two blocks of N samples, unlike the actual method which only 

needs four real 2N-point DFT to generate the exact data quantities. In this method, 

when it is compared with the classical algorithms, the time needed for processing the 

delay increases by N samples. Although the polyphase decomposition method 

reduces the delay considerably, it increases the computational complexity. A recent 

filtering algorithm has been designed using the DFT based orbicular involution and 

OSM ways of block involution when the series of the data are long and need to be 

filtered [11]. Zero group delay has been obtained by zero delay modified overlap-

save method (ZDMOSM). Although this method achieves a zero group delay, it 

needs some changes in the acquisition duration in the process period, which is not 

likely preferred. Furthermore, J., S. Fouda [11] proposed a reduced delay modified 

overlap-save method (RDMOSM), in which the group delay reduction was achieved 

by a factor of 0.5 compared to OSM. 

Group delay has some importance in the audio field and especially in the sound 

reproduction field. Many components of an audio reproduction chain, notably 

loudspeakers and multiway loudspeaker crossover networks, introduce group delay 

in the audio signal. It is therefore important to know the threshold of audibility of 

group delay with respect to frequency, especially if the audio chain is supposed to 

provide high fidelity reproduction. 

 In this thesis, the RDMOSM technique has been enhanced by defining the samples 

again and exclude them from the result of the final circular involution. According to 

the simulation results, the proposed method is very close to that of OSM with small 

alterations in the delay. Subsequently, it can be compared to linear involution. This 

thesis is organized as follows: Chapter 2 deals with the FIR filter structures and their 

types. In Chapter 3, the reduction of group delay will be explained with delay 

reduction methods such as RDMOSM and ZDMOSM and the proposed enhanced 

http://en.wikipedia.org/wiki/Loudspeakers
http://en.wikipedia.org/wiki/Audio_crossover
http://en.wikipedia.org/wiki/High_fidelity
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  𝑁       𝑁              0  

𝑥 𝑛  

RDMOSM (ERDMOSM) technique will be discussed.  In Chapter 4, results and 

discussions will be discussed. Finally, Chapter 5 gives conclusions of the work. 

 

 

 

 

CHAPTER 2 

 

FIR FILTERS 

 

 

2.1 Structures of FIR Systems 

 

A polynomial system function in     for a basic FIR filter is: 

 (z) ∑        

 

   

 (2.1) 

the function of the transfer FIR filter is     , impulse response is h(n), a delay of 

one sample time denoted by     , N represents the filter length (number of 

coefficients) and n represents discrete time. For an input      , the output is as 

follows: 

y(n) ∑           

 

   

 (2.2) 

Equation (2.2) is identified as the convolution sum equation. Computation of this 

sum requires   additions and         multiplications for every n value. 

2.1.1 Direct Form 

The realization of equation (2.2) by using a tapped delay line method is shown in 

Fig. 1. 

 

 𝑧   𝑧   𝑧   
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𝑏2    
𝑏     

𝑏     

𝑏𝑁𝑠    

𝑏𝑁𝑠    

𝑥 𝑛  𝑦 𝑛  
𝐴 

 

Figure 1 Direct Form Structure 

Each output sample      needs   additions,        multiplications, and   delays. 

Otherwise, if any similarity appears in the response of the factory sample .we have 

the ability to make the multiplication number less than it where. 

  

2.1.2 Cascade Form 

 

While for basic FIR filter, transfer orders we could put them into first-instruction 

factors, 

 (z) ∑          ∏     

 

   

 

   

     (2.3) 

While    for              are the zeros of      . The complex roots of      

happen in complex conjugated pairs if      is real and the conjugated couples can be 

mixed to make a second- instruction factors with real coefficients, 

 (z)  A∏        

  

   

           2  (2.4) 

the structure of equation (2.4) is illustrated in Figure 2. 

   

 

 

 

 

Figure 2 An FIR Filter Implemented as a Cascade of Second-order Systems 

 

𝑧   

𝑧   

𝑧   
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𝑧   
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  0  

  𝑁         𝑁     

𝑥 𝑛  

𝑦 𝑛  

 𝑎  

       0     𝑁  3        𝑁        𝑦 𝑛  

 𝑏  

𝑥 𝑛  

2.1.3 Linear Phase Filters 

Impulse responses of linear phase filters are either symmetric or anti-symmetric  

            (2.5) 

             (2.6) 

respectively. The harmony could be exploit to make a simple network building. For 

instance, if      is symmetric, and N is even (type I filter),  

     ∑            ∑                        (
 

 
)  (  

 

 
)

 
2
  

   

 

   

                 

( 
 

 

Consequently, making the combination                           before 

multiplying by      reduces the multiplications number. The out coming building is 

in Fig. 3 (a). While, if N is odd and      symmetric (type II filter), resulting building 

is presented in Fig. 3(b). We have many identical anti-symmetric buildings (type III 

and IV) linear phase filters. 
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𝑧   𝑧   

𝑧   

    

    

𝑧   

  

𝑧   
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-  for type III 

± ± ± 

𝑧   𝑧   𝑧   

𝑧       

𝑧   𝑧   

    

𝑧   

      

+ for type II 

 

-  for type IV 

± ± ± ± 
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Figure 3 Direct Form Implementations for Linear Phase Filters. (a) Type I, III (b) 

Type II, IV 

2.1.4 Frequency Sampling 

 

A filter is parameterized after the implementation of frequency sampling structure in 

terms of its discrete Fourier transform (DFT) coefficients. Particularly, if      is the 

            of an FIR filter with      0 for 0     , then the unit sample 

response of the filter written as: 

     
 

 
∑       2     

 

   

 (2.8) 

The transfer function can be written as  

 

     ∑         ∑ [
 

 
∑       2     

   

   

]    

   

   

   

   

 

           
 

 
∑     ∑   2        

   

   

   

   

 

(2.9) 

Computing the sum over   gives 

     
 

 
       ∑

    

    2        

   

   

 (2.10) 

which corresponds to an FIR filter cascade  
 

 
        with one-pole parallel 

network filters: 

     
    

             
 (2.11) 

For a filter in narrowband that has the majority of its DFT coefficients that match to 

zero, structure of frequency sampling will be effective way of applying. The 

structure of frequency sampling is given in Figure 4. If       is real,       

          , the structure could be simplified . For instance of     ,  if   is even 

[12] 
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 ∑

            

                   2
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+ (2.12) 

where  

                 (2.13) 

            2             2     (2.14) 

On the other hand, when   is odd, same definition results can be obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Frequency Sampling Filter Structure 
 

2.2 Linear Phase Response 
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Linear phase response is one of the most important properties of FIR filters. When an 

input signal is applied to filter, it appears at the output of the filter with modifications 

done in amplitude and/or phase. The extent of this modification depends on the 

amplitude and phase characteristics of the filter. The phase delay or group delay of 

the filter gives important information about how the filter makes this modification in 

the phase of the signal. The phase delay of the filter is defined as the part of delaying 

time for each frequency elements of the input signal bears in going  into the filter. On 

other hand, group delay is the middle time delay the complex signal bears in each 

frequency. Mathematically, the phase delay can be defined as the negative of the 

phase angle divided by frequency and the delays in the combination is recognized as 

the opposite of the derivative of phase with a considering to frequency.  

If a filter has nonlinear phase characteristics, it causes a phase distortion in the signal 

passing through it. Such a distortion is undesired in many applications such as music, 

data transmission, video, and biomedicine. Therefore, the filters having linear phase 

characteristics are widely used in these applications. A linear shift-invariant system 

has a linear phase response if it is written in the following form 

 (   )  |      |      (2.15) 

where α can be a real number which defines the group delay, 

        (2.16) 

A system have overall linear phase when the frequency replays as conceder in this 

equation 

 (   )   (   )          (2.17) 

 While α and β are constants. Now, consider the FIR system with an impulse 

response 

     {
 
0
         

  0     
    

 (2.18) 

The frequency response is 

 (   )       2 
   (   

2
 )

     
2
 

 (2.19) 

Thus, this system have an overall linear phase, with α = N / 2 and β = 0. 
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While for a normal system with a partial transfer function to own linear phase, 

impulse response have to be finite in length. FIR filter that has a real-valued impulse 

replays of length N + 1, has generalized linear phase if its impulse response is 

symmetric, 

            (2.20) 

At this situation, α = N / 2 and β   0 or π. In other appropriate circumstances that is 

h(n) be antisymmetric [12] 

             (2.21) 

which corresponds to case through which α = N/2 and β   π/2 or 3π/2. 

 

2.3 Types of Linear Phase FIR Filters 

 

Let us taken consideration the unique kinds of FIR filters when the coefficients      

of the transmit function is as follows: 

         ∑        

 

   

 (2.22) 

are supposed to be symmetric or anti-symmetric. As long as the organization of the 

polynomial in each of these two kinds we could either have it as odd or even, there 

are four kinds of filters with diverse characteristic, they will be explained next [13].  

Type I. Coefficients are symmetric [               ], and the order N is even. 

In general, coefficients can be expressed in some other forms. Let us assume that the 

order is even. The transfer function in equation (2.22) can be expanded as: 

       ∑        

 

   

 

   0                2                        

(2.23) 

For type I filter with   order, as shown in Fig. 5, it is noted that   0       

                         . Applying these relationships in the equation 

above, we get 

         0                             
 

 
   

  
2    

(2.24) 

This can also be shown as in the following form 
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2 {  0 [  

 
2   

  
2 ]      [    

 
2        

 
2 ]   

  (
 

 
)} 

(2.25) 

 

 

 

 

 

The frequency response of equation (2.25) is given by 

 (    )              (2.26) 

In this formula, the term       is an actual valued role; while it could be negative or 

positive in any frequency, so that when we are transmitting from a positive value to a 

negative value, the phase angle changes by amount of   radians    0  . The phase 

angle         3  is a linear role of ω, and the group delay   is the same as three 

patterns. Remember that the group delay is three patterns on the regular frequency 

standard, but real group delay is equal to 3  seconds, where   represents the period 

of the sampling. 

0         1         2                 
𝑁

2
           𝑁      𝑁      𝑁 

… … 

  𝑛 

) 

Figure 5 Unit Impulse Responses of the Type I FIR Linear Phase Filters 
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Generally,        can be expressed  in some other forms 

 (   )  ∑          

 

   

 

                0                 2                   

                      2    {   0    (
  

 
)

         ((
 

 
  ) )          ((

 

 
  )  )   

  (
 

 
)} 

(2.27) 

and now in a more compact form: 

 (   )        2    , (
 

 
)   ∑  [

 

 
  ]        

 2 

   

-             
(2.28) 

The total group delay is fixed          in the every case, for I           . 

         Coefficients are symmetric [               ], and the order N is odd. 

       ∑        

 

   

   0                2            (2.29) 

and due to symmetry 

  0                                              (2.30) 

Now, if we consider symmetric coefficients with N odd, the impulse response is 

shown in Figure 6. 

The frequency response is in the type II filter for general case can be written as 
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 (    )  ∑           
                  

    (
 
2
 ) , ∑   [

   

 
  ]    ((  

 

 
) )

     2 

   

- 

 

 

(2.31) 

which demonstrates a linear phase                  and a constant group delay 

       samples. 

 

 

 

 

 

 

 

Figure 6 Unit Impulse Responses of the Type II FIR of Linear Phase FIR Filters 

Type III. The coefficients are anti-symmetric                 , and the order 

N is even. Figure 7 shows that   0                               

         and        = 0 to preserve anti-symmetry for these samples: 
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This can also be shown as in the following form 
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(2.33) 

Here if we place        , and     –                          2        , we 

get the frequency response in the general case as 

 (    )            2  , ∑  [
 

 
  ]        

 2 

   

- 
(2.34) 

and it has a linear phase                      and the group delay τ = N/2 

samples. 

 

 

 

 

 

 

 

Figure 7 Unit Impulse Responses of the Type III FIR of Linear Phase FIR Filters 
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Type IV. Coefficients are anti-symmetric [                 , and the order N is 

odd. As in Figure 8, in which   0                          

                      . Its transfer function can be written as 

         0                             
   

 
   

–   
2    (2.35) 

The frequency response of the transfer function of the IV linear phase filter is often 

taken by 

 (    )            2  , ∑  [
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- (2.36) 
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Figure 8 Unit Impulse Responses of the Type IV FIR of Linear Phase FIR Filters 

2.4 Properties of Linear Phase FIR Filters 

 

Discussion of kinds of FIR filters showed that FIR filters with symmetric or anti-

symmetric coefficients offer equivalently constant group delay or (linear phase); 

these coefficients represent the impulse response samples. It was noticed before that 

an FIR filter with symmetrical or non-symmetrical coefficients has a linear phase and 

as a result a fixed group delay. Theoretically, [14] confirmed that an FIR filter with a 

fixed group delay is required to own symmetrical or non-symmetrical coefficients. 

These properties are practical in designing a FIR filters and their applications. The 

volume response of standard FIR filters with linear phase have been calculated to 

observe some extra properties of these four filter types [13] presented in Figure 9. 



 

17 
 

 
Figure 9 Magnitude Responses of the Four Types of Linear Phases FIR Filter 

The following explanations about these standard magnitude responses will be useful 

in creating suitable alternatives at the beginning of their design. For example, type I 

filters have a non-zero magnitude at     0 as well as a non-zero value at the 

normalized frequency         (corresponding to Nyquist frequency), while type II 

filters have non-zero volume at ω = 0 however a zero value at Nyquist frequency. 

Therefore, these filters are clearly not appropriate for the design of bandpass and 

highpass filters, while the two types are appropriate for lowpass filters. Type III 

filters is with zero volume at     0 and at   π    , thus they are appropriate for 

the design of bandpass filters nevertheless it is not appropriate for lowpass and 

bandstop filters. Whereas, type IV filters have zero volume at ω = 0 and a non-zero 

at   π    . They are not appropriate for the design of lowpass and bandstop filters 

however they can be used for bandpass and highpass filters. 

In Figure 10 (a), the linear relationship is shown by plotting filter phase response 

(type I). The phase responding presents a big gap of   radians at an identical 

frequency when the transfer role is with a zero unit circle in the   plane, and the plot 
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applies a big gap of    at any time the phase responding moves beyond ±  therefore 

the whole amount phase responding still in primary range of ±π. If on the unit circle 

there are no zeros, that is, if there are no big gap by π radians, the phase response, 

when it is unwrapped, becomes a constant function of ω. The result of unwrapping 

the phase (as shown in Figure 10 (a)) is to eliminate the big gap in phase response in 

such way that phase response stays in the rang of ±  (as shown in Fig. 10 (b)). Group 

delay is an integer multiple of samples match to     samples if the order   of the 

FIR filter is even. Whereas, when the order   is odd, the group delay is (an integer 

plus half) a sample. 

 

 
Figure 10 Linear Phase Responses of Type I FIR Filter 
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CHAPTER 3 

 

GROUP DELAY REDUCTION METHODS 

 

3.1 General Overview 

 

Fast Fourier Transform (FFT) based circular convolution is used by Overlap-Save 

Method (OSM) to construct equivalent results as in the linear convolution. After that, 

the aliasing that occurs because of the circular involution cannot be eliminated unless 

using zero padding after the last nonzero impulse response (IR) sample. The 

convolution length for two signals having size   and   is             . 

Therefore, the minimum number of added zeros for an IR with size  , is M − 1. For a 

considered piece period of signal with duration  ,      unwanted samples are to 

be deleted. While the OSM is in use, these patterns are first on the circular involution 

outcome provided by            OSM outcome will provide a group delay equal to 

               odd and     for N even if      is a linear phase IR. Nevertheless, 

it is seen that Discrete Fourier Transform (DFT) of a samples series relies on its 

layout and the phase can be reduced for a certain layout [11]. To prove that, consider 

a linear phase IR of length  , denoted      (Figure 11). Its DFT      is given by: 

     ∑       
   

   

   

 (3.1) 
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Figure 11 Linear Phase IR h(n) 

  

Figure 12 Circularly Shifted Linear Phase IR h1(n) 

 

with   
      2     ,            . During the calculation of the DFT, it is 

assumed that the samples series are periodic, and are situated on a circle. The circle 

has origin which synchronizes with the first pattern of     . The kind of 

     being     , its phase is presented by 

     
   

 
    (3.2) 

Therefore the group delay is (N −1)/2. So, by shifting IR of          samples 

circularly toward left the origin is changed as in Fig. 12. The DFT of the new IR is 

represented by       will be: 



 

21 
 

      ∑        
   

   

   

 (3.3) 

Equation (3.3) may be written also as below 

      ∑  (  
   

 
)  

   

   

   

 (3.4) 

The relation in equation (3.4), according to the DFT characteristics, lastly can be 

written as follows: 

        
       2

∑       
   

   

   

 (3.5) 

Equation (3.5) demonstrates that the phase of       compared to that of     , is 

given by 

     
   

 
  

(3.6) 

Which shows the cancellation of the dephasing φ because     . Consequently,       

shows a zero phase if N is odd and its phase is       if N is even. This type which 

is named as zero phase IR could be utilized in the     based circular convolution to 

achieve zero group delay in filtering. However, this kind of operation is impossible 

since OSM and overlap-add method (OAM) techniques which depends on utilizing 

   , advise zero padding at IR end. Thus, DFT phase of the IR  2    acquired after 

zero padding to       would become, as in Fig. 13, unspecified. Fig. 13 shows the 

frequency response of       after zero padding [11]. As a result, it appears essential 

in order to evolve a new algorithm according to employment of DFT, which keeps 

the zero phase IR properties [15]. 
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Figure 13 Frequency Response of h1(n) after zero padding: (a) magnitude response 

of h1(n), (b) magnitude response of h2(n), (c) phase response of h1(n), (d) phase 

response of h2(n). 

3.2 Modified Overlap and Save Method (MOSM) 

 

Here, a modern algorithm is presented for filtering with the use of the FFT based 

circular convolution and the OSM. The idea here is to make it easier to realize the 

zero group delay in the filtering. Here, no zero padding occurs after zero phase IR 

Means that we have the ability to contain it is ghostly futures [16]. Let      be the 

circular convolution result of      and     , its DFT will be written as 

              (3.7) 

According to the    , if the size of      is          –   ,   the size of     , 

and then   –    first samples of      must be deleted. Through determining the 

circular involution       of       and       one gets 

        
       2

         (3.8) 

This formula demonstrates that the result which is gotten by the zero phase IR is 

circularly shifted of          patterns to the left like      . As a result,     
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     patterns of the N − 1 to be omitted must be repressed by each of the two 

margins of the circular involution result. Next, it seems that after the       first 

samples of       are deleted by the     they will be not suitable to the employ of 

filters of the zero phase. Thus, we call the      whose idea is to omit          

samples at the two opposite edge of the circular involution result margins. It can be 

noticed that this involution result rotating will not make any changes of the group 

delay which is produced by the filter, thus the      produces similar conclusions 

compared with other involution filtering methods. In order to decrease the group 

delay, redefining of the patterns to be kept is needed. 

 

3.3 Zero Delay MOSM (ZDMOSM) 

 

It is possible to perform zero delay filtering by the use of the     . Therefore, 

rather than adding       zero patterns to the starting of file which will be filtered as 

proposed by the OSM,  as explained in Fig. 14, only  (N −1)/2 patterns will be 

considered [11]. Next, by deleting          patterns on the two sides of the 

filtered signal, the group delay is repressed. At this method it is called as the zero 

delay MOSM (ZDMOSM).  A filtered signal having no group delay is presented in 

Fig. 15 [17]. 
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Figure 14 Principle of the ZDMOSM 
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Figure 15 Zero Group Delay Filtering using the ZDMOSM  
 

3.4 Reduced Delay MOSM (RDMOSM)  

 

Here        method cannot be applied since it would need altering the acquisition 

time during the processing, which is not easy. Next, on beginning the filtering as in 

the OSM,        zero patterns are taken into consideration. In general, the       

deleted patterns show some vibrations. These vibrations, when emerging happened 

on filtered signal can create an inappropriate influence (as in filtering audio). But, 

their amplitude dropped slowly from left side to right side as it shown in in Fig. 16. 

In actual time processing, decrease of the group delay can be regarded by deleting, 

following orbicular involution with zero phase filter, rather than           samples 

each sides as explained in the     , however 3         at left end side and just 

         at right side of the result. This method maintains at right end side 

         of patterns which normally must be omitted, in accordance with the 

OSM. Whereas,          of samples carrying the group delay is deleted, this 

reduces the group delay into a half. This method is named as the reduced delay 

MOSM (RDMOSM). Fig. 17 shows a filtered signal example (in the actual time) 

where the groups delay was decreased [11]. 

output sequence in ZDMOSM 

output sequence in OSM 
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Figure 16 Evolution of the Ripples Amplitude 

 

Figure 17 The use of RDMOSM to Reduce Group Delay Filtering 

 

3.5 Enhanced RDMOSM (ERDMOSM) 

 

In this section, the new proposed filtering algorithm via circular involution which is 

based on     and the OSM will be examined. 

The primary purpose of this technique is to realize zero group delay filtering. In this 

method, there exists no zero padding to zero phase IR. Let us consider      as the 

n 

output sequence in RDMOSM 

output sequence in OSM 
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result of circular convolution of                 Now, the     of      can be 

written as follows 

              (3.9) 

According to the OSM, if the size of                 where N is the size of 

      after that leftmost     samples of       have to be deleted. By evaluating 

the circular convolution       of       and     , we are able to show that: 

                

                                        

               
       2  

         

(3.10) 

Taking inverse DFT gives 

 
 
    ( (  

   

 
)) (3.11) 

This equation demonstrates that result obtained by zero phase    is a orbicular wag 

version of      wag by         pattern to the left. Therefore,         pattern 

out of     pattern to be deleted have to be repressed on the two directions of the 

orbicular involution conclusion margins. After that, it is discovered that the     

which omits the     first samples of      is inappropriate to be used in zero phase 

filters. As a result, the MOSM method was defined and its working principle is to 

delete         samples on both ends of the orbicular involution result. The 

convolution result rotation       would not alter the group delay which is generated 

by the filter. Thus, the MOSM offers similar result to those gotten from the     or 

other usual filtering method. Afterward, it is noted that a reduction in the group delay 

could be gotten through re-defining the patterns to be kept from last rotated result of 

the circular involution.  

In situation of       , a reducing in the group delay can reach half. This 

technique has been extended to one where reduction in the group delay could be 

gotten using a factor which is higher than half. In performing     based orbicular 

involution the     zero patterns should be considered which will to be filtered as 

in case of the    . Following circular involution of      with      ,          
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and         0 of the patterns are deleted from the left end side. Similarly, 

        and        0 of the patterns are deleted from the right end side of the 

result. These are named as enhanced RDMOSM,          and         , 

respectively. This process preserves at the left end side                 

        samples in ERDMOSM1 case and               0     

    0 samples in the ERDMOSM2 case, which would usually be deleted according 

to the OSM. Whereas,          or         0 samples carrying the group 

delay are deleted, correspondingly, for the          or          cases. These 

lead to the reduction of the group delay by a factor given by 

(  

   
 

   
 

)  
3

 
 (3.12) 

and 

(  

   
 0

   
 

)  
 

 
 (3.13) 

Figures 18 and 19 show a sample of a filtered signal (in the actual time) in which 

reduction in the group delay happened by a factor 3/5 and 4/5, correspondingly, in 

ERDMOSM1 and ERDMOSM2 cases.  

 

 

 

 

 

 

 

 

 

 

output sequence in ERDMOSM1 

output sequence in OSM 
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Figure 18 Reduced Group Delay Filtering using ERDMOSM1  

 

 

 

 

 

Figure 19 Reduced Group Delay Filtering using ERDMOSM2 

It is noticed that for a filter with the order of  0, the result of the outgoing signal 

beginning from 3    pattern in the OSM case (see Fig. 17) or linear involution (the 

group delay is         30 patterns), where in the RDMOSM case (see Fig. 17), 

the output sequence begins from the      pattern (i.e., the group delay is 
 

2
     

        patterns) and in       , the output series starts from the     patterns 

which leads to that there is no group delay. On the opposing side, for the same input 

signal, the output sequence of ZDMOSM varies a lot from the     filtered output 

which shows a deviation from linear involution outcome. In the current 

ERDMOSM1 case (see Fig. 18), the filtered output series beginning from the  3   

pattern (i.e., the group delay is 
2

 
 

   

2
    samples) and for          case (see 

Fig 19), the filtered output sequence begins after 6 samples, from     sample (i.e, the 

group delay is 
 

 
            samples). 

The full algorithms are shown in Figures 20 and 21. The results obtained from each 

of these algorithms are better than the usual       . 

output sequence in ERDMOSM2 

output sequence in OSM 
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           Figure 20 Algorithm for                                              Figure 21 Algorithm for        

                    ERDMOSM1                                                               ERDMOSM2 

 

 

Input x(n) 

X=FFT(x) 

Append N-1 

Zeros to x 

L=length(x) 

H=FFT(h) 

y(n)=IFFT(H*X) 

Remove          

sample from left  

Output y(n) 

END 

START 

Remove  𝑁       

samples from right 

Input x(n) 

X=FFT(x) 

Append N-1 

Zeros to x 

L=length(x) 

H=FFT(h) 

y(n)=IFFT(H*X) 

Remove         0 

sample from left 

Output y(n) 

END 

START 

Remove  𝑁      0 

samples from right 
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In our present work, it has been observed that if the movement in the amount of 

patterns is grown from the left side of the orbicular involution outcome, there will be 

a reduction in the group delay that increases with the increase of the movement of the 

number of samples at the cost of increased ripple amplitude. If     samples are 

deleted from the left of the circular involution outcome side, group delay will be 

completely repressed so there will be no pattern that carries the group delay will stay, 

which shall raise the deviation of the resulting filtered series from the OSM outcome. 

Thus, the result shall be invalid. Therefore, patterns must be omitted from each sides 

of the circular involution result to get better efficiency. 

The reason of removing                0  numbers of samples from the right 

and                  0 numbers of samples from the left can be explained as 

follows. Three important conditions should be followed for re-defining the patterns 

to be kept after circular involution: 

 The overall number of patterns that will be deleted from the left side and the 

right side of final orbicular involution outcome of length           

have to be       as the original input length is M.  

 More patterns will be omitted from the left side instead of the right end side 

of the orbicular involution outcome since the reduction factor of the group 

delay depends on how many samples are deleted from the left. 

 Samples should be deleted from each sides of the circular convolution result 

to obtain better performance [17]. 
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CHAPTER 4 

 

COMPUTER SIMULATIONS 

 

In this chapter, two cases will be presented to show the effectiveness of group delay 

reduction to the recently suggested algorithms defined in chapter 3. In order to be 

able to compare these filtering methods with the traditional    , the results that 

have decreased delay are every time in comparison to those obtained with the    . 

The wrong signal represented by      could be defined as follows 

                (4.1) 

Where   (n) and  (n) represent the filtered output OSM and the filtered output 

regarding each filtering technique, respectively. The input signal that will be filtered 

is referred by      and the zero phase impulse responding is represented by     . In 

the simulation studies, sine and random waves are considered as the input. 
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4.1 Simulation Study 1: Sine Wave 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 Impulse Response of FIR Filter Lowpass Equiripple Filter & Actual 

Impulse Response and Zero Phase h1(n) 

Fig. 22 shows the desired impulse response, actual impulse response and zero phase 

impulse response of FIR filter. It is clear that zero phase impulse response can be 

obtained by circularly shifting the impulse response of the filter by (N-1)/2 samples 

toward left. 
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Figure 23 Comparison Between the Linear Convolution and OSM method 

 

Fig. 23 shows the comparison between linear convolution and OSM method. Since 

two methods are equivalent, the OSM method can be considered as the reference in 

the other parts of this discussion. It has been observed that for a filter length of 60 

coefficients, the resultant output signal starts from 3    sample in the case of OSM 

(or linear convolution) which shows that the group delay is (N-1)/2=30 samples. 
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Figure 24 Comparison between ZDMOSM and OSM methods 

Fig. 24 shows the output of the filter obtained by OSM and MOSM methods for the 

off-line processing case. The input signal,     , the output of the filter obtained by 

the ZDMOSM, the output of the filter obtained by the OSM are illustrated, from top 

to bottom, in Fig. 24. It is clear the output obtained by ZDMOSM is different from 

that of obtained by the OSM. 
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Figure 25 Comparison between RDMOSM and OSM methods. 

Fig. 25 shows the output of the filter obtained by OSM and RDMOSM methods for 

the same input shown in Fig. 24. If the output signals obtained by ZDMOSM in Fig. 

24 and by RDMOSM in Fig. 25 are compared, one can easily see that the group 

delay has been reduced by a factor of 1/2. Also, since the outputs obtained by OSM 

and RDMOSM are same, the resulting error signal becomes zero. The linear 

convolution can be approximated by using the MOSM method with the reduced 

group delay. However, this needs a zero phase filter which should be obtained by 

circularly shifting a linear phase impulse response. 
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Figure 26 Comparison between ERDMOSM1 and OSM methods. 

Fig. 26 and 27 show the results obtained from the OSM and enhanced-RDMOSM 

(ERDMOSM1 and ERDMOSM2). In Fig. 26, the results obtained by OSM and 

ERDMOSM1 are compared. Similarly, in Fig. 27, the results obtained from the OSM 

and ERDMOSM2 are compared. It can be clearly seen from these figures that 

ERDMOSM1 and ERDMOSM2 methods result in better delay reduction. However, 

the ripple amplitude in the error signal may increase slightly. The delay reductions 

obtained by the ERDMOSM 1 and ERDMOSM2 are approximately 3/5 and 4/5, 

respectively. 
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Figure 27: Comparison between ERDMOSM2 and OSM methods. 
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The performances of the group delay reduction methods are compared and the results 

are reported in Table 1. Except ZDMOSM, it is obvious that ERDMOSM1 and 

ERDMOSM2 performs better than the other methods. 

 
 

Methods Group Delay (samples) 

Linear Convolution 30 

OSM 30 

ZDMOSM 0 

RDMOSM 15 

ERDMOSM1 12 

ERDMOSM2 6 

 

Table 1 Comparison of Group Delay Reduction Methods 
 

 

4.2 Simulation Study 2: Random Wave 

Another FIR, equiripple filter having passband frequency of 5 kHz, stopband 

frequency of 6 kHz, patterning frequency of 45 kHz, maximum passband ripple of 

0.1 dB and lower stopband attenuation of 60.1 dB has been considered. 
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 Figure 28 Impulse Response (blue and solid), the Equiripple Linear-phase Filters 

(red and dash) same Filter after Zero Padding and Circular Left Shifting 

In this study, in order to make the filter length equal to the block length L=N+M-1, 

M-1 zeros have been added following the original filter coefficients. Also, the filter 

coefficients are circularly shifted to the left by an amount (N-1)/2. Fig. 28 shows the 

impulse response of the original filter and the modified filter. The parameters in this 

figure are: length of original filter (N)=121, data points in the segmented input 

sequence (M)=180, block length (L)=N+M-1=300. Thus, M-1=179 number of zeros 

have been added following the original filter coefficients. Also, the amount of the 

circular left shift is for (N-1)/2 = 60 number of samples. 



 

41 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 Comparison between OSM method and the linear convolution  

Fig. 29 shows the comparison between linear convolution and OSM method. Since 

two methods are equivalent, the OSM method can be considered as the reference in 

the other parts of this discussion.  
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Figure 30 Comparison between ZDMOSM and OSM methods 

 Fig. 30 shows the output of the filter obtained by OSM and MOSM methods for the 

off-line processing case. The input signal,     , the output of the filter obtained by 

the ZDMOSM, the output of the filter obtained by the OSM are illustrated, from top 

to bottom, in Fig. 30. It is clear the output obtained by ZDMOSM is different from 

that of obtained by the OSM. 
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Figure 31 Comparison between RDMOSM and OSM methods. 

Fig. 31 shows the output of the filter obtained by OSM and RDMOSM methods for 

the same input shown in Fig. 30. If the output signals obtained by ZDMOSM in Fig. 

30 and by RDMOSM in Fig. 31 are compared, one can easily see that the group 

delay has been reduced by a factor of 1/2. Also, since the outputs obtained by OSM 

and RDMOSM are same, the resulting error signal becomes zero. The linear 

convolution can be approximated by using the MOSM method with the reduced 

group delay. However, this needs a zero phase filter which should be obtained by 

circularly shifting a linear phase impulse response. 
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Figure 32 Comparison between ERDMOSM1 and OSM methods. 

Fig. 32 and 33 show the results obtained from the OSM and enhanced-RDMOSM 

(ERDMOSM1 and ERDMOSM2). In Fig. 32, the results obtained by OSM and 

ERDMOSM1 are compared. Similarly, in Fig. 33, the results obtained from the OSM 

and ERDMOSM2 are compared. It can be clearly seen from these figures that 

ERDMOSM1 and ERDMOSM2 methods result in better delay reduction. The delay 

reductions obtained by the ERDMOSM 1 and ERDMOSM2 are approximately 3/5 

and 4/5, respectively. 
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Figure 33 Comparison between ERDMOSM2 and OSM methods. 
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CHAPTER 5 

 

CONCLUSION 

Block involution methods like: overlap-add technique (OAM) and overlap-save 

technique (OSM) are usually used for a long input sequence to be filtered. In these 

technique, however, the output series has a finite group delay in terms of input. In 

this thesis, the performance of enhanced modified overlap and save method 

(ERDMOSM) has been investigated in reducing that group delay. In this method, the 

impulse response (IR) is made causal and then IR has been circularly shifted to the 

left by an amount of (N-1)/2 for N odd and N/2 for N even, where N is the longitude 

of the filter. This modified IR has been employed in OSM based block involution 

method. At the end, the patterns to be removed from the final convolution result have 

been defined. This leads to a minimized group delay. ERDMOSM1 permits a 

reduction of group delay by a factor of 3/5. On the other hand, ERDMOSM2 reduces 

the group delay by a factor of 4/5. Also, an adjustment between group delay reducing 

and the ripple amplitude is gotten. Despite the considerably reduction of the group 

delay, there is some phase troubles in passband which makes it ineffective for the 

actual time audio programs where group delay deviation in passband should be 

considered. So, the main advantage of this algorithm is in getting 83.33% group 

delay reducing devoid of employing whatever complex algorithm and retaining the 

volume responding similar to those of linear-phase filter. 

Continually of this work, in future the following points can be taken in consideration: 

i) Reduction of group delay deviation in pass band by employing order filters 

which are higher, therefore they raise to more selective filters. 

ii) Generalization of the approach to all linear-phase IIR filters to obtain an 

effective real-time audio application filter. 
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iii) Application of the proposed approach to filter banks and modification of the 

method to reduce the overall group delay. 

iv) Widening the consideration out to linear phase property of the stop band to 

optimize the overall delay performance of the filter. 
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