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Defining Image Memorability using the Visual Memory Schema

Erdem Akagunduz1, Member, IEEE, Adrian G. Bors1, Senior Member, IEEE, Karla K. Evans2

1Department of Computer Science, University of York, UK
2Department of Psychology, University of York, UK

Memorability of an image is a characteristic determined by the human observers’ ability to remember images they have seen.
Yet recent work on image memorability defines it as an intrinsic property that can be obtained independent of the observer. The
current study aims to enhance our understanding and prediction of image memorability, improving upon existing approaches by
incorporating the properties of cumulative human annotations. We propose a new concept called the Visual Memory Schema (VMS)
referring to an organization of image components human observers share when encoding and recognizing images. The concept of
VMS is operationalised by asking human observers to define memorable regions of images they were asked to remember during
an episodic memory test. We then statistically assess the consistency of VMSs across observers for either correctly or incorrectly
recognised images. The associations of the VMSs with eye fixations and saliency are analysed separately as well. Lastly, we adapt
various deep learning architectures for the reconstruction and prediction of memorable regions in images and analyse the results
when using transfer learning at the outputs of different convolutional network layers.

Index Terms—Image Memorability, Visual Memory Schema, Memory Experiments, Deep Features

I. INTRODUCTION

MEMORIES are an essential component of how we

define ourselves and play a crucial role in learning [1].

There are studies that argue for a massive capacity of human

episodic memory for visual information [2], [3]. The study

of human memory capacity for visual information such as

complex images has sparked interest in a number of different

scientific fields not only in psychology but in computational

intelligence, as well [4], [5], [6], [7], [8]. Understanding the

human ability to remember information from images has a

significant impact on furthering our knowledge about the

human mind, for the development of new technologies in

mental augmentation, information retrieval and marketing just

to name a few.

Within the last decade, there has been a growing interest in

understanding the memorability of an image as an intrinsic

property of the image itself. A pioneering study by Isola

et al. [4] found a high consistency among observers as to

which images were best remembered and demonstrated that

computer vision techniques allowed for good prediction of

image memorability. There have been other studies that have

related intrinsic image memorability to attribute annotations

[5], object annotations [9], [10], automatic semantics [7],

visual attention [11], [6], saliency [11] or image category

information [6]. Recently, Khosla et al. obtained memorability

scores using Mechanical Turk for a large image set and

achieved high prediction rates by using deep neural networks

[12]. All of the aforementioned studies collected data using the

same experimental methodology, in which participants view a

sequence of images and are asked to respond whenever they

see an identical repeat of an image at any time in the sequence.

The aim of their experiments is to measure the memorability

of the image as a global property, independent of the relations

among the local regions of the image. Although there are

Manuscript received ?????? !, 201?; revised ??????? !!, 201?. Corresponding
author: E. Akagunduz (email: akagunduz@ieee.org)

(a) Image (b) True VMS (c) False VMS (d) Combined VMS

Fig. 1: Visual memory schemas (VMSs) corresponding to

correct (b), false (c) and both correct and false retrievals (d)

of the image shown in (a). In this paper, visual memory

schemas correspond to human-annotated regions which are

pooled across observers, who are asked during a memory

experiment to indicate the regions of the image that made

them remember that image.

studies that focus on region-based memorability [7] and use

different experimental designs for this purpose [13] (such as

showing pre-segmented parts of images instead of identical

repeats), none of these studies have asked the human observers

to indicate the regions that made them remember the images.

In this paper, we propose a novel approach to investigating

image memorability in which we first ask 90 participants

to memorize 400 images and then during a test phase rate

how well they remember each of these images and select

those image regions that made them remember it. Our aim

is to further our understanding of how humans remember

images and what they find memorable in these images. Here,

we analyse statistically whether the regions, indicated by the

observers as being seen before, are consistent across different

groups of observers and how do they correlate with the

measure of image memorability defined by Isola et al. [4].

In this context, we define the accumulated memorable parts

of an image, selected across observers as the Visual Memory

Schema (VMS), a framework of mental representation that

observers use to organize their memory for future retrieval.

We further define true and false VMSs to indicate whether the
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selected regions are from an image that is correctly recalled

or from a image that was a false alarm (i.e. an image that the

participants remember as seeing but actually has never been

shown before). We then use machine learning techniques to

estimate the memorability of an image using VMS. Finally, by

using the image structures that emerge in the layers of deep

convolutional neural networks [12], [14], [15], we reconstruct

the VMS of an image and compare it to the human-collected

VMS.

The paper is organized as follows: Section II presents the

psychological origins of the proposed visual memory schema

concept and how this is operationalised. In Section III, we

provide the methodology of the memory experiment. The

fourth section presents an analysis on the proposed concept

compared to other concepts such as the visual saliency and the

overt attention. Section V provides an assessment of whether

an addition of visual memory schema enhances the power of

various computer vision features, estimated from images, to

predict image memorability. Section VI presents the analysis

of the reconstruction of the VMS selections in images using

five different deep learning architectures, while Section VII

outlines the conclusions of this study.

II. VISUAL MEMORY SCHEMA

Schema is a concept used in cognitive psychology that de-

scribes an organized pattern of thought or more specifically a

mental representation of a concept [16]. It embodies a structure

for organizing information into categories and relationships

among the categories. People use schemas to organize current

semantic and episodic knowledge that then in turn provide a

framework for future understanding. Examples of a schema

include categories, stereotypes, etc. A schema can also be

viewed as a tool for organizing our memories. For example

when we observe an image it is not the individual pixels or

their distribution in the the image that we extract in order to

remember that image. But rather the visual schemas associated

with the image category and composed of the key regions of

the image, objects and relations between those objects that are

idiosyncratic of that image [17].

Visual schemas are represented by objects and scene regions

in terms of their physical properties and the spatial arrange-

ments of their components. More specifically, they correspond

to mental representations of how different regions of a scene

and their content are related, organized and encoded into visual

memory. Memories organized in this manner are efficient and

allow for successful retrieval when a scene is seen again [17].

However, visual memory schemas, we hypothesize, can also

bring about proactive interference for information observed

in images with the previously accumulated information. This

proactive interference [18] may lead to false memories result-

ing in false alarms upon retrieval. For example certain parts

of an image being seen by a person, who actually has never

seen that image before, may resemble visual schemas related

to past life experiences. What is more, past experiments from

psychology on human long-term memory [19] clearly show

that humans are very bad in their memory for pure texture

without any semantics attached to it or image sets of only

homogeneous exemplars from one semantic scene category.

We hypothesize that the role of semantics organisation, i.e.

visual memory schemas is critical for memorability of images,

yet still unrecognised.

A Visual Memory Schema (VMS) in our experiment was

defined individually for each image as a map of visual regions

that are likely to be remembered from that image. VMS is

not just another map that depicts the regional memorability

strength of an image, but the organization of the visual

schemas defined by observers themselves. It carries knowledge

of both what the observers truly have encoded as well as what

they think an image should contain based on their semantic

knowledge and episodic experience of the world. People may

incorrectly think that they have seen an image, and may recall

regions that made them think they remember. Thus, there are

VMSs corresponding to both true and false image selections,

which can be assessed through a visual memory experiment,

as proposed in this research study.

In order to operationalise and define a VMS for images,

we used a standard episodic memory test paradigm [1] and

added a novel component in which the participants are asked to

select what parts of the image made them remember the image

they were asked to memorize. Then, VMS is constructed

for each image using the accumulated human annotations of

the image regions that represent these memorable regions as

shown in Figure 1. VMS is different from the memorability

map concept introduced in [7], in the sense that it is not a

computed map but an actual ground truth of human visual

memory as indicated by the participants in the visual memory

experiment. Since the human annotations may be actually

correct or false (e.g. regions identified in images correctly

or incorrectly recognized as seen before), we define visual

memory schemas for both true and false image recogni-

tion. The annotations obtained for an image which observers

correctly remembered are accumulated to construct the true

VMS, whereas the annotations obtained for an image which

observers were mistaken to think that they have seen in the

image, are accumulated to construct the false VMS (Figure 1).

VMSs are single channel maps having the same resolution as

the image. When constructing a VMS for an image, the human

annotations are added on top of each other and are normalized

by the number of participants that annotated the image. Thus,

VMS is a 2D probability distribution function (PDF) of the

spatial distribution of the pixels, corresponding to specific

scene information as visualized in the image. VMS indicate

the probability for specific image regions of being selected by

an observer as memorable. In other words, the higher value

(brighter) the pixels composing the VMS become, the more

likely they are to be remembered by a human observer. It

is important to note that the VMS is a map constructed by

using human observer responses, defining most memorable

regions of images, unlike the memorability maps in Khosla

et al. [7] that were based on automatic machine computations.

Furthermore VMS represents both true and false memorability

of a region, which provides a different and improved concept

of region memorability, when compared to previous studies on

the subject [7].

Our main motivation for introducing the VMS concept is its
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critical role in image memorability. Previous work has shown

that image memorability can be obtained independent of the

observer and can be predicted to a degree. There is sizeable

support for this conclusion [4], however it underestimates

the fact that an image is memorable only if it has cognitive

elements shared by the majority of people and it is these shared

cognitive elements that renders the image memorable. When

image memorability is defined as an intrinsic property of an

image, it refers to a low level property hidden within the image

signal. Although this pioneering approach proves to be very

instructive, it may lead us to omit the fact that memorability

is something that humans bring to the image. It is after all

human memory and predicting it that we are interested in.

We argue that VMSs are not only a statistics of signals, but

they embed a collection of human contribution as well. For

this reason we believe that, in addition to analysing image

memorability with signal processing techniques, a new concept

that encapsulates the cognitive organization that underpins

image memorability must be introduced. Although there have

been previous efforts to relate the semantics of an image

to memorability, scene categories or object labels are quite

primitive in defining cognitive organization of an image when

compared to the proposed VMS concept. In most cases the

visual schema hidden in an image is more complex than an

object label or scene category.

Thus far the the concept of visual attention is the only

concept from psychology that has been invoked to characterize

memorability in computer vision. Visual attention in computer

vision is approximated either as a collection of observers’ eye

fixations on a region, as measured by eye gaze using an eye

tracker or as a saliency map calculated by specific algorithms

such as bottom-up or top-down saliency [20], [21]. Such

measure of overt visual attention is only weakly correlated

with image memorability [5]. In the following sections, we

examine the correlations of VMS with other related concepts,

namely eye fixations and computed saliency. We also analyse

the consistency of the VMS and show that, similar to image

memorability, it has consistent results across various human

observers.

III. THE IMAGE MEMORY EXPERIMENT

In order to understand the visual memory schema concept

within the image memorability context, we have designed

a novel approach to a standard memory experiment. In this

section the image stimulus set and the methodology of the

experiment are described and compared with other memory

experiments.

A. The VISCHEMA Image Set

In this subsection, we explain how VISCHEMAa image

set, used during the memory experiments, was formed. The

memory experiment was conducted using 800 images selected

from the Fine-Grained Image Memorability (FIGRIM) set [6].

The FIGRIM image set is composed of 1754 target images

(i.e. images with memorability scores indicated by human

ahttp://www.cs.york.ac.uk/vischema

observers) from 21 different scene categories with more than

300 images of at least 700×700 pixels in resolution, selected

from among the images from the SUN image set [22]. A

subset of target images from the FIGRIM dataset addition-

ally includes corresponding mappings of the observers’ eye-

movement locations recorded during the memory test. For the

FIGRIM memory experiments, 120 images representing a mix

of target and filler images were presented to human observers

for one second each. Both inter-category and across-category

experiments were conducted, thus two separate memorability

scores exist for each image [6].

In the following we organize the images used during the

memory experiment in a hierarchical categorization structure

based on the principles of experimentally supported psycho-

logical prototype and exemplar theories [23] that indicate how

human observers categorize objects and ideas. This theory

postulates that categories form part of a hierarchical structure

that when applied to taxonomy has three basic levels: the

supra-ordinate or higher level, the base or middle level and the

subordinate or lower level. Humans remember the observed

information by creating organized patterns of thought. With

this new category structure, we aim at constructing relatively

balanced category definitions which will correlate stronger

with the way humans recognize, differentiate and understand

images.

The VISCHEMA dataset is organized in 12 image cate-

gories as shown in Figure 5. The image categories are orga-

nized within a hierarchical structure with the higher levels in

this hierarchy consisting of Indoor and Outdoor supra-ordinate

categories. Then, at the second level, each of these categories

were labelled as either Private or Public for the Indoor scenes,

while for the Outdoor scenes are labelled as Man-made and

Natural. The categorization continues with further dividing

into subordinate FIGRIM/SUN categories, such as: Kitchen

(100), Living room (100), Air terminal (100), Conference room

(100), Amusement park (44), Playground (56), House (66),

Skyscraper (34), Golf course (58), Pasture (42), Badlands

(47), Mountain (53), where the numbers of images in each

subcategory is indicated in the parentheses. Each leaf-category

include images from one or more of the original categories

of the FIGRIM/SUN image sets, with 100 images assigned

to each of the 8 basic (leaf) categories. For example, the

categories Badlands and Mountains are combined within the

Isolated category, which is a leaf of Outdoor/Natural scenes.

Similarly, the Airport terminal and Conference room categories

are renamed as Big and Small, respectively, which are self-

explanatory because they refer to the contextual space, while

being the leaf categories of Indoor/Public category.

For the sake of better understanding the difference be-

tween visual memory schemas of various scene categories,

we avoided using certain types of images (as defined below)

when selecting images from the FIGRIM set for the newly

created VISCHEMA set. Previous work [4] shows that these

types of images tend to dominate the composition, thus the

memorability of an image. Consequently, we exclude from the

VISCHEMA image set, the following types of images: images

containing any kind of large text (a banner, billboard, sign that

labels the image), direct shots of people posing and looking
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Fig. 2: The memory experiment has two stages. During the first stage, the participants in the experiment, are shown 400 images,

each for 3 seconds. During the second stage they are shown another 400 images, including 200 that are repetitions from the

first stage. Participants are also asked to rate how well they think they remember the image they see and select rectangular

regions from the image that made them remember it.

at the camera, photographic compositions of a single figure

(i.e. person, animal, statue etc.), any well-known architectural

structure (e.g. Empire State Building) or a well-known place

(e.g. The Trafalgar square), images with a digital date in the

corner, a direct shot of a flag or famous logo, or any overlaid

line drawing (e.g. a curve or an arrow ). The exclusion criteria

were based on findings of previous research reporting that

images with the aforementioned elements, are inherently more

memorable than the others, regardless of their scene category

[6].

B. Experimental Procedure

For the study 90 participants were recruited from the

population of students and staff at the University of York, UK

(age range 19-30 years) and engaged in a memory experiment,

consisting of two stages (Figure 2). During the first stage

(study phase), all participants were shown 400 images from 8

leaf (base) categories, in a randomized order. Each image was

shown for 3 seconds with the study phase of the experiment

lasting a total of 20 minutes. The participants were asked to

do their best to memorize the images they saw on a computer

screen, in a quiet and darkened room.

The first stage was immediately followed by the second

stage (test phase) in which the participants were shown another

group of 400 images, 200 of which were repetitions from the

first stage, in a randomized order. Similar to the first stage,

the category distribution was uniform, such that 50 out of

100 images from each 8 leaf categories were shown. During

the test phase, the participants were first asked to rate how

well they remembered the image using a continuous rating

bar from ”not seen” to ”definitely seen”. If they thought they

remembered the image well enough (i.e. by placing the rating

bar above the predefined threshold of 30%) they were asked

to select at least 1 and at most 3 rectangular regions, of size

determined by the observer, that made them remember that

image.

Each participant saw a total of 600 different images in a

single experiment including 200 repeat images (images shown

in the study and then again in the test phase), 200 non-repeat

(first-stage-fillers) and 200 new images representing second-

stage-filler images (thus making a total 400 images at each

stage). Each image was shown to the participants in the test

phase for region selection, for approximately 45 (90 subjects

× 400 second phase images / 800 total images) times across

0 30 40 100

Participant Rating Score Threshold

-0.1

0.01

ra
n
k
co
rr
.

Fig. 3: Spearman’s rank correlation between the hit rates and

the false alarm rates as a function of the participant rating score

threshold. At the selected threshold 40, ρ value is 0.0036.

participants, ensuring an equal probability of observation for

each image by the participants.

C. Measuring Image Memorability

When analysing the results of the experiment, image memo-

rability, or hit rate (HR), is defined as the proportion between

the number of images, which are correctly chosen as being

remembered by human observers, and the total number of their

occurrences as a repeat image [4]. Similarly, the false alarm

rate (FAR) is the proportion of the false hits of an image from

the total number of its occurrences as a second-stage-filler (i.e.

non-repeat) image. In previous experiments described in the

literature, a hit and a false alarm are easily determined since

the participants are asked to make a yes or no decision by

pressing the space bar [4], [6]. However in our experiments, by

using an indicative bar, the participants rated their confidence

in how well they remembered the image. Thus, the participants

were able to express whether their response of remembering

an image was vague or certain, and quantify the degree

of confidence in their decision. Using a confidence scale

allows us to produce ROC curves that provided us with a

sensitivity measure of the experiment. However, we had to

define a threshold in the confidence values, indicated by the

participants in the experiment, in order to be able to decide

eventually whether the image was remembered or not. This

threshold has a direct influence on the calculation of HR and

FAR values.

A range of 0-100 was used for rating the confidence in

the memorisation of a specific image. A confidence value of

0 indicated strong confidence that the image was not seen

before and 100 that it was definitely seen. There was a hard

threshold at the level of 30. When the participants in the

experiment rated above this level they were asked to select
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Fig. 4: Receiver operating characteristics (ROC) for the overall

experiment and for each participant separately. The thick-

dashed line is the estimated fourth-order Bézier curve of the

red dots, which together represent the ROC curve of the overall

experiment. The thin dashed lines of various colours stand for

the ROC curve results for each participant separately.

at least 1 and at most 3 regions that made them remember

the image. One might argue that this is a logical threshold,

indicating that the ratings above this value are the same as

saying yes in the previous experiments. However when we

analyse (after we post-processed the experimental data) how

HR and FAR values change with the memorability threshold, it

can be observed that the actual threshold should be around 40.

Figure 3 depicts the Spearman’s rank correlation (ρ) between

HR and FAR for any threshold value between 0 and 100.

According to signal detection theory, ρ between HR and FAR

must be a positive value, very close to zero (<0.01) in a

natural detection scheme [24]. In other words, HR and FAR

values must not increase or decrease together. Figure 3 shows

that ρ is 0.04616 when the threshold is equal to 31, which

is high for a signal detection experiment. At this threshold

the participant behaviour is different from what is expected,

because a participant may decide to rate below 30 because

she/he does not want to select a region, although remembers

seeing the image, or a participant may want to select a false

region so she/he selects above 30, although she/he does not

remember seeing the whole image.

Thus, following the analysis of how HR and FAR values

change according to the memorability threshold, we eventu-

ally select the value of 40 (ρ=0.0036), as the memorability

threshold. This threshold was chosen because the participants

in the experiment were not able to select regions when the

threshold was below 30. Moreover, 40 represents the smallest

threshold value for which the rank correlation ρ between HR

and FAR falls below 0.01. Choosing a higher threshold would

have produced HR values that are too small. Consequently,

from now on all the results from this study are calculated

using a confidence threshold of 40.

D. Comparison with Previous Experiments

Figure 4 depicts the receiver operating characteristics (ROC)

curve for the overall experiment and for each participant

separately. As seen from Figure 4, even though there is a

lot of expected individual variability, the ROC curve of the

overall experiment results in an area-under-curve of 0.677 and

sensitivity (d′) of 1.319, showing that the image memorability
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Fig. 5: Categories of images in a hierarchical structure used

for the experiments and average hit rates obtained from the

three memory experiments: proposed framework indicated by

circles and AMT1 [6] indicated by crosses and AMT2 [6]

indicated by plus sign. The number of images used for each

FIGRIM/SUN category is indicated next to the category labels

on x-axis. Results are indicated for each category separately.

TABLE I: Average HR and FAR values with their correspond-

ing standard deviations compared with the results from the

FIGRIM experiments [6].

µ (σ) VISCHEMA AMT1 AMT2

HR 0.451 (±0.175) 0.5405 (±0.157) 0.634 (±0.140)

FAR 0.075 (±0.094) 0.150 (±0.110) 0.111 (±0.090)

signal was significantly above chance and the experiment was

successful.

The average hit rate of the observers in the experiment we

conducted is lower than what was observed in the FIGRIM

experiments, reported in Table I, both in the inter-category

(AMT1) and across-category (AMT2) experiments. The aver-

age FAR for our experiment is also lower than that of AMT1

and AMT2, which have been reported in Bylinskii et al. [6].

Considering the fact that our experiment sessions took on

average 50 minutes overall (the study phase around 20 minutes

and the test phase around 30 minutes) for each participant,

whereas AMT1 and AMT2 took about 2 minutes each [6],

we would expect to see the differences between the results

provided in Table I. Moreover, in a single session we show

to the participants a total of 600 images, of which 400 are

different images, whereas AMT1 and AMT2 experiments

used only 120 images. Thus our experiment is considerably

more challenging than the previous experiments, resulting in

lower observed HRs. Furthermore, the relative difficulty and

the complex methodology of our experiment compelled the

participants to be more conservative when rating the memory

scores, which resulted in lower FARs. However, the rank

correlations of the HRs among different experiments show that

image memorability scores are consistent among experiments.

AMT1 and AMT2 experiments have a rank correlation of

0.594b while the rank correlations between our experiment

and AMT1/AMT2 are on the order of 0.5028/0.54066, respec-

tively.

bThe HRs and FARs for the AMT1 and AMT2 experiments are re-
calculated only for the 800 images from the VISCHEMA Image set. For
this reason these values differ from those reported in [6].
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IV. ANALYSING VISUAL MEMORY SCHEMAS

VMSs are constructed for each image by adding together all

region selections made by the participants in the experiment

for that image and then normalizing the result by dividing

with the number of times that the image was annotated. A

VMS corresponds to the probability density function (PDF)

of that decisions about their memories made for each image

by all participants. The participants may annotate both repeat

and second-stage filler (non-repeat) images. Therefore there

are two types of selections made by the participants in the

memory experiment: true or false. Consequently, we can define

a true VMS and a false VMS for each of the 800 images.

A VMS represents a PDF of the image selections made by

the participants in the experiment. The estimations of either

visual saliency or eye fixations can also be represented as

PDFs for a certain image, allowing us to compare VMS to

these measures. In the following we use two well-known

statistical measures for comparing two distribution functions in

order to measure the relationships between VMSs with either

visual saliency maps or with eye fixation maps.

The first measure used for this comparison is the Pearson

linear correlation coefficientc, denoted as ρ2D, which compares

two 2D maps with pixel values ranging between [0,1] and of

the same resolution, A and B. It is given by the following

equation:

ρ2DA,B =
1

n
·

∑

i,j

(A(i, j)− µA) · (B(i, j)− µB)

σA · σB

(1)

where n is the total number of pixels in A or B, µA and

µB are the average pixel values and σA and σB are the

standard deviations of the pixels of A and B, respectively. The

correlation ρ2D is a measure of linear dependence between

two maps and it ranges between [-1,+1] with +1 showing

complete positive dependence, -1 showing complete negative

dependence and 0 showing independence.

The second measure used is the mutual information (MI)

criterion, denoted as IA,B between the PDFs characterizing

the discrete random variables A and B:

IA,B =
∑

aǫB

∑

bǫB

p(a, b) · log

(

p(a, b)

p(a)p(b)

)

da db (2)

where p(x,y) is the joint probability distribution function of

A and B, and p(a) and p(b) are the marginal probability

distribution functions of A and B respectively. IA,B takes

values in the range [0,+∞). For example, if A and B are

independent of each other, then by knowing A we do not have

any information about B and vice versa, and consequently

their mutual information is zero. At the other extreme, if

A is a deterministic function of B (and vice versa) then all

information conveyed by A is shared with B, and the mutual

information is the same as the uncertainty contained in A or

B alone, which is actually their entropy.

cThe Pearson’s correlation coefficient, called also the normalized-cross
correlation, is used to calculate the relation between the true and false VMSs
with the eye fixation or with the saliency maps. It should not be confused with
the Spearman’s rank correlation that we use to calculate the relation between
the results of two memory experiments.

As a distance criterion, MI is more general when compared

to the correlation (ρ2D), because the correlation only takes

into account the linear relationships between two distributions

whereas MI can handle non-linear relationships as well. Never-

theless, we use both criteria considering that correlation gives

a normalized output, whereas MI depends on the entropy of

the distributions.

A. Analysis of VMS Consistency

In order to examine how strongly a VMS is shared among

different observers, one must first show that it is a consistent

signal among different observers. For this purpose, participants

are split into two randomly selected independent sets, equal

in numbers. For each image, two different VMS maps are

obtained from each split set. The correlation and MI between

the two different VMSs of each image are calculated separately

for both true and false VMSs. This procedure is rerun for 25

different random splits and the average correlation and MI

of 25 runs are calculated. Histograms of the resulting average

correlations and average MI values are shown in Figures 6.a-b

and 6.c-d, respectively.

The correlation histogram for true VMSs (Figure 6.a green)

with a mean (µ) of 0.67 and standard deviation (σ)d of ±0.202,

shows that the true VMS is highly consistent among observers.

On the other hand, the correlation histogram for false VMSs

(Figure 6.a red) has a lower histogram mean of 0.439 (and

a standard deviation of ±0.272) and has negative values for

some images. The results for the average MI histograms are

quite similar to those of the correlations as seen in Figure 6.c.

MI histogram for true VMSs (Figure 6.c green) shows higher

dependency compared to MI histogram for false VMSs (Figure

6.c red).

In order to understand if the red and green histograms in

Figures 6.a and 6.c are significantly different from each other,

we apply a bootstrapping test on the difference between these

two histograms. For this purpose, we calculate the sample-

based difference between the two histograms for a randomly

selected subset of images and check whether the difference

values span zero value within a 95% confidence interval.

We repeat this test for 10,000 times and if, for any test,

95% confidence interval of the difference values span 0, we

conclude that the two histograms are not significantly different.

We also use this bootstrapping technique in the statistical

analyses provided in the following subsections.

We observe a significant difference (p<0.0001) between the

distribution of correlations for true and false VMSs, suggesting

that the memorability of images is based on different types of

visual schemas for correctly and falsely remembered images.

True VMSs are more consistent across observers indicating

that they are based on widely shared knowledge and expe-

rience when compared to false VMSs. Consequently it can

be hypothesized that observers use more established schemas

or so called prototypical schemas, reliant on semantic knowl-

edge when encoding the correctly recalled images. Whereas,

dPlease note that this µ and σ are the mean and standard deviation of
the histograms for Figure 6.a. In this and the following two subsections, the
symbols µ and σ are always used to indicate the means and standard deviations
of the ”histograms” in figures 6, 7 and 8.
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(a) ρ
2D histograms for true-

green and false-red VMSs.
(b) ρ

2D histogram for the com-
bined VMSs.

(c) MI histograms for true-green
and false-red VMSs.

(d) MI histogram for the com-
bined VMSs.

Fig. 6: Histograms of the average correlation (ρ2D) and MI, between the VMS’s corresponding to two equally sized groups

of participants. The green histograms represent the correlation or MI for the true VMSs, while the red histograms correspond

to those of the false VMSs.

when observers falsely recognized images they rather relied

on visual schemas, rather derived from individual episodic

experience.

Figure 6.b and 6.d show the correlation and MI histograms,

respectively for combined VMSs. For this purpose, all VMS

selections are combined regardless of being true or false. The

mean of the combined correlation histogram is 0.7, much

higher than the true or false VMS histogramse considered

individually. We use this correlation value as a benchmark

when we compare the similarity of visual saliency and eye

fixations to VMS in the following subsections.

B. Analysis of VMS and Eye Fixation Relationship

In this section we examine the relationship between VMS

and observers’ eye fixation that stand as proxy to overt

attention. For this purpose, we calculate the distance between

VMS maps of an image and the eye fixations for the same

images but from a different group of observers. For a majority

of 745 images, out of the total of 800 from the VISCHEMA

image set, we have the corresponding eye fixation maps.

For these images we calculate the correlation (ρ2D) and MI

between the eye fixation maps and VMSs. Figures 7.a-b and

7.c-d show the correlation and MI histograms respectively and

separately for true (green), false (red) and combined (black)

VMSs.

The correlation histograms between the VMS and eye fix-

ations for true VMSs (Figure 7.a), is µ=0.474 and σ=±0.166

and for false VMSs is µ=0.385 and σ=±0.198. From this plot

it is evident that the average of the correlation histograms

for both the true and false VMS are quite similar and both

have values of less than 0.5, which are lower when compared

to VMS self-distance consistency of 0.7. This indicates that

neither type of VMS is highly correlated with eye fixations. We

see the same pattern for MI histograms with means relatively

closer to 0 when compared to VMS self-distance consistency,

as shown in Figure 7.c. Figures 7.b and 7.d display the

same histograms for combined VMSs and support the same

conclusions. Bootstrapping tests confirm that VMS and eye

fixation location distributions differ significantly from each

other (p<0.0001). These results indicate that VMS can not

be fully explained by overt attention.

eWhen calculating the distances among false VMSs, the empty selections,
i.e. the images with no false selections, are omitted because it is not possible
to calculate the correlation or MI for them. However when calculating the
combined VMSs, empty false VMSs are included, since they are always a
part of a group of non-empty true and false VMSs. That’s the reason why the
combined VMS consistency is higher than the sum of false and true VMSs.

C. Analysis of VMS and Saliency Relationship

In the following we examine the relationship between VMS

and visual saliency, as defined by graph-based visual saliency

algorithm (GBVS) [20], for the 800 VISCHEMA images.

GBVS is a bottom-up visual saliency model, which models

computationally the visual saliency in images. The algorithm

creates Markov chains over image maps and treats the equi-

librium distribution over map locations as saliency values. For

all 800 images from the VISCHEMA Image set, we construct

100 × 100 resolution graph-based visual saliency (GBVS)

maps using the algorithm proposed in Harel et al. [20]. After

constructing the GBVS maps for the VISCHEMA Image set,

the correlation (ρ2D) and MI between the saliency, on one

hand, and the true VMSs, the false VMSs and the combined

VMSs of each image, on the other hand, are calculated and

shown in Figures 8.a-b and 8.c-d, respectively.

It can be observed from the histograms from Figure 8 that

there is a non-significant relationship between the VMSs and

the visual saliency. Bootstrapping tests show that, compared

to VMS consistency of 0.702, there is no strong correlation

between saliency and the VMSs with an average correlation

distance of 0.581 for the combined VMSs versus the visual

saliency. This is far less than the average correlation self-

distance of 0.7 for the combined VMSs, as shown in Figure 6.

Thus, we conclude that visual saliency does not fully account

for the proposed visual memory schema concept.f

V. IMAGE MEMORABILITY TESTS

Previous studies [4] have shown that computer vision fea-

tures can be used to predict image memorability with rank

correlations of up to 0.5. Larger scale experiments using

convolutional neural networks [12] show that such results can

be further improved. However, despite the improvements in

the memorability rates achieved in such research studies, they

do not fully explain what makes an image memorable. In this

section we focus our analysis on the role played by the pro-

posed VMS concept in image memorability. More specifically

we assess how computer vision features are more effective

when they are spatially pooled within a VMS. Moreover,

we analyse the prediction results produced for each scene

category, separately.

fThe reader should note that the tests are carried out for a single type of
visual saliency algorithm, namely GBVS, and results may vary if a different
algorithm is used for computationally modelling the saliency in images.
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(a) ρ
2D histograms between the

true-green and false-red VMSs
and the eye fixations maps.

(b) ρ
2D histogram between the

overall combined VMSs and the
eye fixation maps.

(c) MI histograms between the
true-green and false-red VMSs
and the eye fixations maps.

(d) MI histogram between the
overall combined VMSs and the
eye fixation maps.

Fig. 7: Correlation (ρ2D) and MI histograms between the VMSs and eye fixations maps are depicted separately in green for

the true VMS, in red for the false VMS and the combined VMSs in black.

(a) ρ
2D histograms between the

true-green and false-red VMSs
and the saliency maps.

(b) ρ
2D histogram between the

overall combined VMSs and the
saliency maps.

(c) MI histograms between the
true-green and false-red VMSs
and the saliency maps.

(d) MI histogram between the
overall combined VMSs and the
saliency maps.

Fig. 8: Correlation (ρ2D) and MI histograms between VMS and saliency maps are depicted separately for true VMS , shown

in green, false VMS, shown in red, and combined VMSs, shown in black.

A. Test Setup

In this section we assess the contribution of visual memory

schemas when using machine learning algorithms to predict

image memorability. Similarly to previous studies [4], we

use Spearman’s rank correlation and the average empirical

memorability scores for the top 20, top 100, bottom 100 and

bottom 20 images, selected by the machine learning algorithms

for their memorability. The performance is evaluated over 25

random splits of the VISCHEMA image dataset, each split

containing an equal number of 400 training and 400 testing

images, in order to make these results consistent with those

provided by Isola et al. in [4]. These training and testing splits

were scored by different halves of the participants. The results

indicate consistency among observers with a rank correlation

of 0.5, when using the threshold of 40, which was adopted

as explained in section Section III.C. The effectiveness of

the prediction models are assessed by comparing the rank

correlation results to this score.

In order to estimate the memorability scores, a support

vector regression (SVR) machine is trained using LibSVM

[25]. Various well known computer vision features, such as

pixel histograms, the spatial envelope (GIST) [8], the scale

invariant feature transform (SIFT) [26] and histograms of

gradients (HoG) [27] are used to create feature vectors for

the images. Similarly to the study from Isola et al. [4], we

use RBF kernels for modelling the GIST features, histogram

intersection kernels for the pixel histograms, SIFT and HoG,

and a kernel product for the combination of these features. The

code used for the calculation of all these features is available

from our website a.

B. Using computer vision features from entire images as

inputs to Machine Learning Algorithms

VISCHEMA image set is a subset of the FIGRIM and SUN

image sets, as mentioned in Section 3, while certain images

TABLE II: The performance of computer vision features on

predicting image memorability and human consistency.

Humans Pixels GIST SIFT HoG Comb.

Top 20 67.86 47.48 53.29 54.35 54.07 56.10

Top 100 59.12 46.90 49.41 50.49 50.07 51.05

Bottom 100 33.14 44.17 39.76 38.77 37.23 37.90

Bottom 20 28.10 42.24 34.27 31.84 30.67 32.15

ρ 0.50 0.044 0.19 0.20 0.24 0.24

TABLE III: The performance of computer vision features

on predicting image memorability when spatially pooled and

weighted with saliency maps.

Sal. & Sal. & Sal. & Sal. & Sal. &
Pixels GIST SIFT HoG Combined

Top 20 46.70 50.29 53.12 51.71 51.86

Top 100 46.11 47.89 50.09 48.88 50.32

Bottom 100 43.48 40.30 38.29 36.88 37.51

Bottom 20 41.84 37.04 32.17 29.72 30.15

ρ 0.052 0.15 0.22 0.21 0.25

known to be highly memorable, are deliberately excluded. For

this reason, the average memorability scores obtained from

human observers for the VISCHEMA image set are lower then

those obtained in other memory experiments. Moreover, the

human consistency in our experiment is also lower, which is

expected when images are hard to remember. Table II shows

the prediction results on the VISCHEMA image set using

computer vision features calculated from entire images as in

the study from [4]. The rank correlations calculated previously

on a different image set reported in [4], are ρPixels=0.22,

ρGIST =0.38, ρSIFT =0.41, ρHoG=0.43, ρComb=0.46. When

we compare these results to those from Table II, we can

observe that the prediction results are much lower for the

VISCHEMA image set. When the stimuli set becomes chal-

lenging, in other words, when the easily memorable images are

left out, the results obtained from the human observers fall by
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TABLE IV: The performance of computer vision features

on predicting image memorability when spatially pooled and

weighted with eye-fixation maps.

Eye Fix. & Eye & Eye & Eye & Eye &
Pixels GIST SIFT HoG Combined

Top 20 46.80 51.82 51.48 54.44 53.38

Top 100 46.43 48.78 49.84 51.58 50.93

Bottom 100 43.07 42.05 38.67 37.05 37.36

Bottom 20 41.36 43.37 32.16 30.51 31.25

ρ 0.054 0.13 0.21 0.29 0.29

TABLE V: The performance of computer vision features on

predicting image memorability when spatially pooled and

weighted with VMS selections.

VMS & VMS & VMS & VMS & VMS &
Pixels GIST SIFT HoG Combined

Top 20 48.64 47.94 51.39 59.32 61.25

Top 100 46.95 47.33 49.85 53.45 55.42

Bottom 100 42.56 41.78 38.70 35.26 33.48

Bottom 20 41.06 39.42 32.67 27.40 24.87

ρ 0.085 0.10 0.21 0.34 0.41

10%, representing a significant drop in memorability. Thus,

it is expected that simple computer vision features, which

lack the semantic and syntactic information description of the

image, would provide a low performance for predicting image

memorability.

Tables III and IV provide the results when considering the

computer vision features pooled with saliency and eye-fixation

maps, respectively. It can be observed from these tables,

that pooling with saliency maps, generated by the GBVS

algorithm, does not increase the prediction success of the

computer vision features, whereas pooling with eye-fixation

maps would show an increase of only 5% in performance

results.

C. The Significance of VMS for Image Memorability in

Machine Learning Tests

Here we use the VMS selections for spatially pooling the

computer vision features. Similarly to the procedure described

in the previous section, after creating a histogram for each

of these features, its frequency for each bin is weighted by

the value of the average VMS selections falling into that

bin. In this way the computer vision features are spatially

pooled and their effect on predicting image memorability is

weighted by the VMS selections. The results from Table V,

indicate that, when using spatially pooled and weighted by the

VMS selection values, computer vision features’ prediction

performance is considerably increased, when compared to the

results provided by pooling the features from entire images. By

using a kernel product for representing GIST, SIFT and HoG

features, the SVR can predict image memorability with a rank

correlation of 0.41, which is close to the rank correlation of

0.5, obtained for the human observers. This significant result

shows that the overall VMS of an image represents a spatially

refined visual signal that carries the information related to the

memorability of an image.

Next we focus our analysis on image category-based results.

In order to understand how the VMS contributes to predicting
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Fig. 9: Plotting predicted against empirically obtained memo-

rability scores for each image category. The circles are the

average predictions results for VMS-weighted features, as

shown in Table V), whereas the plus signs are the average

prediction results when No VMS is used, as shown in Table II).

The ellipses, drawn around the small central circles, indicate

the error spreads of the VMS-weighted features with widths

corresponding to three standard deviations in the direction of

each eigen-vector.

image memorability, we compare the results of the proposed

VMS pooled features with the approach when using entire

images, for each image category. The predicted memorability

scores, when using VMSs, for each image category, are

compared against the empirical memorability and the results

are shown in Figure 9. In this figure, the small circles indicate

the average prediction results, obtained by using the VMS-

weighted combination of GIST, SIFT and HoG features, as

reported in the last column of Table V, for each category

separately. These results are referred as ”VMS & Combined”.

Similarly, the plus signs indicate the average prediction results

when the combinations of the computer vision features are

used without the VMS weighting, as reported in the last

column of Table II, again for each category separately. These

results are referred as ”No VMS”. The closer a circle or a

plus sign is to the x=y diagonal line, the more successful is

the average prediction for that image category. As it can be

observed in Figure 9, the circles are closer to the diagonal

for almost all image categories. The ellipses, which are drawn

around the circles as their centres, indicate the error spread

for the VMS-weighted results. The widths of these ellipses

represent three standard error deviations in the direction of

each eigen-vector. By looking at the circles and plus signs, it

is clear that the VMS-weighted features improve considerably

the memorability predictions for all image categories with the

exception of the work-home category.

In Figure 10 we provide examples of the least, the most,

and the moderately memorable images from three image cat-

egories, together with their HR and FAR values and their true

and false VMSs. Similarly to previous findings, such as those

from [4] and [6], it can be observed that while images with

plain backgrounds and no objects are easily forgotten, images

with specific, easily identifiable objects or with differentiating

visual contexts are better remembered. For example, the least

memorable image from the big image category, as shown in

Figure 10, completely lacks any objects. At the same time the

most memorable image from the work-home image category
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Fig. 10: The least memorable, moderately memorable and the most memorable image, are shown together with true and false

VMSs, where HR and FAR scores are indicated as well.

has a very distinct wall colour. Both of these images are good

examples of what may be the characteristic of either non-

memorable or memorable images.

We can observe from Figure 10, that images that have a

stereotypical group of objects or a distinct organization of

elements in the image that allows for the organization into

visual schemas not only are better remembered but elicit

also more false alarms. On the other hand a small difference

between the ”No VMS” results as opposed to the ”VMS

& Combined” results for the living room category images

depicted in Figure 9, indicates that VMS pooling does not

contribute much to predicting memorability for this specific

image category. This is because the visual schemas for the

aforementioned image category are too general. For example

every living room is expected to have a sofa, coffee table,

artwork rug and these are usually colourful and in most

cases located in the center of the room. The same logic can

explain the results obtained for the work-home category. In

this category although images of houses or skyscrapers create

distinctive image features, what people remember is actually

the organization of visual schemas in the image and less so

the features. The memorability of this image category is lower

because its organization of VMS is not distinct at all. An-

other good example can be found within the isolated scenes,

which usually carry simple visual schema organizations like

the work-home scenes. These plain and relatively featureless

images have the lowest prediction scores when considering

only computer vision features, because, unlike the work-home

category, they lack the variation in feature diversity. However,

computer vision features perform much better, when adding

VMSs, even when there is a very simple but distinguishing

visual schema organization that differentiates the image, such

as ”the white steep rock with a strange hole in it, under a blue

sky” and we observe that this is the most memorable image

in the isolated category in Figure 10.

These results show that computer vision based memorability

prediction algorithms can be improved by taking into account

the visual schemas. On the other hand, the organization

of visual schemas within the image represent the defining

information that makes an image memorable.

VI. RECONSTRUCTING THE VMS USING DEEP LEARNING

In this section, we present our experiments on automatically

reconstructing the VMS of an arbitrary image using deep

convolutional neural networks (CNN).

A. Image Structures in a Deep CNN

In order to reconstruct the VMS of an arbitrary image, we

utilize the output of a CNN, which is in part transferred and

in part trained with a limited number of image-VMS pairs.

The purpose of this new deep CNN is to reconstruct the VMS

of a given image after training with a given database. In this

section we analyse the self-emergent image structures that are

obtained as outputs of certain neurons in the deep convolution

layers of a CNN. Our intention is to analyse the relation

between the self-emergent image structures in a CNN and the

visual schemas defined by human observers in an image.

For this purpose, the convolution layers of a deep pre-trained

CNN are transferred to a new structure, in which new fully

connected layers with multiple neurons are added at the output

layer and then trained. The aim is to assess whether a CNN,

after training the appended layers, is able to reconstruct the

combined VMS, i.e. including both true and false VMSs, for a

given image. While CNNs have been used in various other ap-

plications, this study is the first to use them for reconstructing

memorable regions of an image. According to our previous

experiments, we can hypothesize that VMSs represent image

structures corresponding to semantically distinctive regions in

images that can be reconstructed by a deep enough CNN, if the

receptive fields of the neurons on each layer are wide enough.

There is still ongoing discussion on how similar and thus

transferable are features extracted from images by different

deep CNNs [28], [29]. According to the network structure, the

optimization method, and the training image set, the internal

representations in deep CNNs are expected to be different

from layer to layer. In the following we use transfer learning

at various suitable layers in five different CNN architectures,
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namely MemNet [12], VGG-S, VGG-M [15], VGG-VD-16L

and VGG-VD-19L [14].

Input Layer 224×224×3 RGB Image

initial pre-trained (MemNet or VGGs) layers up to a selected Lth layer

the appended layers

layer no. - (type) weight vector size output blob size

L+1 - (fully con.) m×n×f×256 1×1×256

L+2 - (fully con.) 1×1×256×256 1×1×256

L+3 - (fully con.) 1×1×256×400 1×1×400

Output Layer 400x1 vector (20x20 VMS)

TABLE VI: The generic structure of the CNNs used in the

experiments is given. For different pre-trained networks and

for different layers selected from these networks, the CNN

structures vary.

MemNet [12] is a deep CNN, trained using the output of a

large-scale memorability experiment, in which memory scores

of 60K images are collected from human observers. The reason

we choose this network is to understand whether the image

structures that emerge at the layers of MemNet are useful for

reconstructing the VMSs obtained in our image memory study.

For this purpose we compare the reconstruction performance

of MemNet with four different VGG networks of various

depths, which were originally used for category recognition

in [15] and [14].

VGG networks, namely VGG-S, VGG-M [15], VGG-VD-

16L and VGG-VD-19L [14] are four different CNNs of

various depths, which are trained with the ImageNet dataset

[30]. VGGVD-19L, the deepest of them with 19 layers was

the winner of the ImageNet, Large Scale Visual Recognition

Challenge in 2014. All VGG networks are composed of

varying numbers of convolutional layers succeeded by fully

connected layers. VGG type networks are well known in the

machine learning community and considered as appropriate for

searching for schema-like image structures at their deep layers,

because of two reasons. Firstly, the category recognition

problem has been shown to create abstract image structures

[31] on the ImageNet dataset. Secondly, VGGs of different

depths would give us a clue about the level of CNN’s depth

required for reconstructing VMSs.

B. Deep Learning in Image Memorisation

Twenty-one different CNN architectures from five afore-

mentioned pre-trained networks are adapted through transfer

learning in order to be used for replicating the memory results

obtained from humans. The generic structure of the CNNs

used in the experiments is given in Table VI, where the

transferred network is attached to a set of fully connected

layers having 256 nodes at each hidden layer and 400 nodes at

the output layer. The output layer provides the reconstructed

VMS structure as an image of resolution of 20×20 pixels,

ensuring a sufficient level of detail.

Since we use the output of the convolution layer of the

transferred CNN as an input to our newly created fully

connected head, we produce 21 different CNN structures for

our experiments: 3 using each MemNet, VGG-S, VGG-M,

VGG-VD-16L (thus a total of 3×4=12), and 9 based on the

VGG-VD-19L architecture. As seen in Table VI the initial

pre-trained layers upto a selected layer of a network are cut

and the neuron outputs are transferred as inputs to our new

learning structures. During each separate experiment, a new

CNN is created by transferring the layers up to a selected

layer, to be trained in order to reconstruct the VMS of an

image. The learning rates for the transferred layers are set

to zero, so their weights are kept constant during training.

The name used for each experiment from this study carries

the label of either MemNet or VGG layers which was cut

in order to be transferred. For example experiment conv-52

indicates that the first 14 convolution layers of VGG-VD-19L

network architecture are transferred, while the training takes

place for the fully connected layers, as given in Table VI.

1) Training and Data Augmentation

In order to train the CNNs, 80% of the VISCHEMA image

set is used for each experiment. Thus, 640 images, representing

80 images from each category, are used to train the fully

connected layers. Each experiment is executed five times,

using a different image subset containing 20% of the whole

image set. In the following we consider 21 network structures

based on the five pre-trained CNNs, each trained for 5 different

runs, when considering 2 different loss functions, leading to a

total of 210 experiments.

In order to enlarge the training set, we implemented a

procedure well known for CNNs, called augmentation, by

producing mirror images, dividing images into quarters and

their mirrors, resulting in a training set which is ten times

larger than the initial data. Augmenting by rotating or changing

the colour of the images is not used in these experiments

because the VMS is a structure, created by human participants,

which is susceptible to changes in colour or orientation. The

original resolution of the VISCHEMA image set is 700×700

pixels. Both the training and test images, as well as the

augmented image set, are resized to the resolution of 224×224

pixels which are then fed into the input layer of the pre-trained

networks.

The VMS maps of the VISCHEMA image set have a

resolution of 700×700 pixels. The VMS maps are resized

to 20×20 pixel resolution allowing us to reduce the amount

of data input that in turn reduces computational complexity

required during training. It is possible to do this since VMS’s

are human annotations that are generally rough and a 20×20

pixel image structures preserves well the VMS signal structure.

The output of the fully-connected network head consists

of a vector with 400 components, representing 20×20 pixels

image data. Training such as structure corresponds to a multi-

dimensional regression problem. To solve this problem, two

different loss functions, representing the l1-norm and the l2-

norm are implemented when training the CNNs using back-

propagation and stochastic gradient descent with momentum.

Batch normalization is used with a batch size of 40 images.

The trainingg is performed, using MatConvNet library [32],

on a desktop system with dual 2.6Ghz processors and GPU

support. Each epoch for an experiment takes approximately 10

gStochastic Gradient Descent (SGD) algorithm with momentum is em-
ployed, considering Momentum: 0.9, Initial Learning rate: 0.001 , Weight
Decay: 0.0005.
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Fig. 11: VMS reconstruction results when using transfer learning on different layers of the MemNet, VGG-S, VGG-M, VGG-

VD-16L and VGG-VD-19L when considering either l1 or l2 norms as cost functions, for different numbers of training epochs,

when considering the whole VISCHEMA image set and individually for two categories, as specified. The circles on the plots

indicate the best performing layer for that particular experiment. The names of the layers are specific to the pre-trained CNN

they belong to.

minutes for the VGG-VD-based networks and 1 minute for the

MemNet and VGG-S/M-based networks. All 210 experiments

are run for 30 epochs, resulting in a total of approximately 25

days of computation.

C. Reconstruction Results

The results of each experiment are evaluated by calculating

the 2D normalized-cross correlation, i.e. the Pearson’s cor-

relation coefficient: ρ2D, between each reconstructed VMS,

representing the emerging VMS calculated by the proposed

CNN computational architectures, and the VMSs empirically

provided by human observers during the memory experiment.

For each experiment we calculate 800 correlation values for

the whole VISCHEMA image set.

Figure 11 shows the reconstruction results for all experi-

ments, when using either l1 or l2 norms as a loss function,

after 10, 20 or 30 epochs, for the whole VISCHEMA image

set. In order to evaluate the reconstruction results of an

experiment, the average correlation between the reconstructed

and empirically collected VMSs is compared to the VMS

consistency as given in Figure 6.b (represented with dashed

line on Figure 11). This value indicates the upper limit for

the memorised image reconstruction based on deep learning

architectures.

The l1-norm performs significantly better than l2, when us-

ing transfer learning at any of the layers considered. Findings

indicate over-fitting occurring after epoch 20 in almost all

experiments. The best results are produced by transfer learning

at the Layer-14 (conv-52) of VGG-VD-19L with l1-norm loss

function, corresponding to ρ2D=0.588 at epoch 20. This layer

outperforms all other layers in all experiments when the entire

VISCHEMA image set is considered. Deeper layers of VGG-

VD-19L perform considerably better in reconstructing the

VMS when compared either to the other pre-trained networks,

or with the more incipient layers of VGG-VD-19L. MemNet’s

and VGG-VD-16L’s reconstruction success, similarly to VGG-

VD-19L’s first layers, is comparable to what we obtained when

we tested the similarity of the VMS with visual saliency.

On the other hand, VGG-S’s and VGG-M’s reconstruction

successes are poor. This indicates that the shallow layers of

a CNN, when compared to deeper layers, are unsuccessful in

creating the necessary image structures that represent visual

memory schemas.

In Figure 11, we also plot the results of VMS reconstruc-

tion using the CNN structure VGG-VD-19L, for two image

categories that show the highest and lowest memorability

scores, represented by work-home and living room image

categories, respectively. Although there is an exception for

the outstanding performance at Layer-15 (conv-53) for the

work-home category, corresponding to ρ2D=0.677 at epoch 20,

the results for structures that emerge at Layer-14 provide the

best VMS reconstruction performance across all categories.

Some examples when reconstructing VMSs from images,

using VGG-VD-19L, are shown in Figure 12. The most

veridical reconstruction of memorable regions for some images

is obtained when using transfer learning at certain layers of

the VGG-VD-19L, a CNN which was not originally trained

[14] for image memorability prediction purposes. Although

outstanding results are obtained for certain categories, such

as for work-home category, the reconstruction performance

is consistently low for some other categories, such as the

living room for example. We believe that one reason behind

these variations in performance for different image categories

is the fact that the image structures in VGG-VD-19L orig-

inally emerged for the purpose of category recognition and

memorable regions are not necessarily correlated with features

characterizing objects used for machine learning recognition.

Texture-like features, used by the VGG-VD-19L network, that

are decisive for differentiating the patterns of one cushion

cover from another, like the ones we see in the living-room

category, are not the ones that can reconstruct a schema of a

specific living-room scene. This observation is evident in the

results from Figure 9 for the living room category, where VMS

pooling did not increase the performance of machine learning



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, ??????? 2019 13

liv
in

g
 r

o
o

m
w

o
rk

-h
o

m
e

is
o

la
te

d

Fig. 12: Some examples of VMS reconstruction results when using transfer learning for the VGG-VD-19L structure at layer

conv-52, using l1-norm, for epoch 20. In each row, there are 3 images for 3 categories, each representing a poor, a moderate

and a successful reconstruction result, from left to right, respectively. For each sample image, the images show the empirically

collected VMS and that reconstructed using deep learning. The reconstruction accuracy is indicated by the correlation between

the empirically collected and reconstructed VMS.

predicting image memorability. These results indicate that the

Visual Memory Schemas can be reconstructed well for certain

categories of images, when using deeper CNNs, despite having

a rather small training set.

VII. CONCLUSIONS

The main goal of this paper is to characterize image memo-

rability. We introduce the concept of Visual Memory Schema

(VMS), and define it as the accumulated memorable parts of

an image shared across observers. Visual memory schemas,

a concept derived from the idea of a cognitive schema from

Psychology, comprise a mental representation, organization or

structure applied to an image, which are shared by observers,

allowing us to talk about concepts like the memorability of

an image. After conducting a standard episodic memory test

on human observers, VMSs were constructed from accumu-

lated human annotations of the memorable regions in each

image during the memory experiment. The results show a

strong inter-observer correlation for visual memory schemas

across all images independent whether they are correctly or

incorrectly rated as seen before. This fact suggests that what

observers find memorable in images is not only determined

by the intrinsic features of images themselves but also by

the schemas or mental representations shared by observers

about what an image should contain or look like. We show

that computational visual saliency and eye fixations are not

strongly correlated with what we think that we remember and

consequently are poor predictors of image memorability.

Previous studies considered image memorability only as an

intrinsic property of the image. In this study we show that

memorability of an image is a function of two main factors

both embodied in the VMS signal. One factor, known from

previous studies, are the intrinsic features of the image, which

can be extracted using computer vision algorithms. The other,

proposed in this paper, is the collection of visual information

structures, shared by human observers, likely to represent the

results of their shared experiences and knowledge. What makes

VMS more than just a reformulated intrinsic property of the

image is that they are general structures or organizational

rules for incoming information employed by human observers

that can generalize across images and are not directly tied

to a specific image per se. To this end we also show that

shared human experience can be collected via an improved

episodic memory experiment, and represented in the form of

Visual Memory Schemas. Using both the properties of com-

puter vision features and the shared human visual experience,

represented by VMSs, the memorability of an image can be

predicted more accurately.

In a second part of this research study we employed deep

learning in order to replicate the results provided by humans

during the memory experiment. Transfer learning was used

at various layers on CNN structures such as VGG-VD- 19L,

VGG-VD-16L, VGG-S, VGG-M and MemNet. As CNNs

get deeper, the features that emerge at their layers become

more abstract, conceptual and meaningful. The deep features

provided by VGG-VD-19L network lead to significantly better

reconstructions of the VMSs in certain image categories, when

compared with other VGGs as well as with MemNet, despite

the latter being specifically designed for image memorability.

The results are remarkable, given the limitations of the training

set, where we were not able to acquire data from thousands

of human subjects. The fact that it is these conceptual/abstract

layers that better characterise human memory representations

than the primitive/signal-based features alone, indicate the

limitations of the existing artificial structures in replicating

human memory capability. In order to better understand or

predict image memorability one needs to incorporate and

account for visual schemas intrinsically shared among human

observers.
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