DOI: 10.19113/sdufenbed.506918

Effect of Estimation on Simple Linear Profile Monitoring under Non-normality

Burcu AYTAÇOĞLU^{*1}, Özlem TÜRKER BAYRAK²

¹Ege University, Faculty of Science, Department of Statistics, 35040, İzmir, Turkey (ORCID: https://orcid.org/0000-0002-7164-9240) ²Çankaya University, Department of Inter-Curricular Courses, Statistics Unit, 06790, Ankara, Turkey (ORCID: https://orcid.org/0000-0003-0821-150X)

(Alınış / Received: 02.01.2019, Kabul / Accepted: 04.04.2019, Online Yayınlanma / Published Online: 26.04.2019)

Keywords Control chart, Run length, Exponentially weighted moving average, Profile monitoring, Statistical process control **Abstract:** In recent years, many control charts have been proposed to monitor profiles where the quality of a process/product is expressed as function of response and explanatory variable(s). The methods mostly assume that the in control parameter values are known in Phase II analysis and innovations are normally distributed. However, in practice, the parameters are estimated in Phase I analysis and innovations may be non-normal. In this study, the performance of T², EWMA-R and EWMA-3 methods for monitoring simple linear profiles is examined via simulation where the parameters are estimated and innovations have Student's t-distribution. As a performance measure, both the average and standard deviation of the run length is considered. Finally, some recommendations for practitioners are summarized in a table.

Normal Olmayan Dağılımlar Altında Tahminin Basit Doğrusal Profil İzleme Üzerine Etkisi

Anahtar Kelimeler

Kontrol şeması, Koşu uzunluğu, Üstel ağırlıklı hareketli ortalama, Profil izleme, İstatistiksel süreç kontrol **Özet:** Son yıllarda, bir ürün veya sürecin kalitesinin tepki ve açıklayıcı değişken(ler) arasındaki ilişkinin fonksiyonu ile ifade edildiği profillerin izlenmesi için pek çok kalite şeması önerilmiştir. Bu yöntemlerin çoğu Faz II analizlerinde kontrol parametre değerlerinin bilindiğini ve artıkların normal dağıldığını varsaymaktadır. Oysaki uygulamada parametreler Faz I analizlerinde tahmin edilir ve artıklar normal olmayabilir. Bu çalışmada simülasyon ile artıkların t dağıldığı ve parametrelerin tahmin edildiği durumlarda basit doğrusal profillerin izlenmesi için önerilen T², EWMA-R ve EWMA-3 yöntemlerinin performansları değerlendirilmiştir. Performans ölçüsü olarak hem ortalama koşu uzunluğu hem de koşu uzunluğu standart sapması dikkate alınmıştır. En sonunda uygulayıcılar için bazı öneriler tablo halinde özetlenmiştir.

1. Introduction

In recent years, there has been a tendency to use control charts to monitor the quality of a process or product in terms of the relation between a response variable and explanatory variable(s), i.e., a "profile". It is of interest to monitor the changes in a profile over time where a profile can be modeled via many models like simple/multiple regression, linear/nonlinear regression, nonparametric regression, mixed models, or wavelet models. For a review of profile monitoring one can refer to Woodall et al. [1] and more detailed discussions are provided by Noorossana, Saghaei, and Amiri [2]. Most of these methods assume that the in-control parameter values are known in Phase II analysis and properties of the

introduced methods are also discussed under this assumption. However, in practice, they are unknown and induce an estimation error in Phase II analysis which should be investigated, as mentioned by Woodall and Montgomery [3, 4].

In simple linear profile monitoring, the estimation effect is investigated by Mahmoud [5] and Aly, Mahmoud, and Woodall [6]. Mahmoud [5] investigates it in Phase II analysis for the methods introduced by Kang and Albin [7], Kim, Mahmoud, and Woodall [8] and Mahmoud, Morgan, and Woodall [9] in terms of the average run length (ARL) and standard deviation of run length (SDRL) measures. It is shown by simulation that their performance is severely affected when the in-control profile parameters are estimated from a small number of Phase I samples, *m*. In his study, although the method of Kang and Albin is seen to be the least affected method by estimation when the in-control ARL is considered, it is the worst one when the out-ofcontrol performance in detecting slope and standard deviation shifts are considered.

Aly, Mahmoud, and Woodall [6] extend the study of Mahmoud [5] by comparing the same methods for estimation effect in terms of standard deviation of the average run length (SDARL) metric. This study supports the result of Mahmoud [5] by concluding that as the number of samples used in Phase I, m, increases, the estimation error decreases and the average in-control ARL values approaches to the desired value. Besides, it is concluded that the method of Kim, Mahmoud, and Woodall [8] has the best performance in terms of both in-control and outof-control ARL values as well as SDARL values. Therefore, both studies recommend the use of this method for monitoring simple linear profiles when the parameters are estimated from the Phase I samples.

In both studies, it is assumed that the error terms are normally distributed. However, this assumption can be violated in certain situations, yielding misleading results. Mahmoud and Woodall [10] discussed the effect of non-normality for Phase I analysis and recommended to check normality prior to profile analysis since it has a critical effect. Noorossana, Vaghefi, and Dorri [11] discussed the effect of nonnormality for Phase II analysis of simple linear profile monitoring when the parameters are known. They compared the charts recommended by Kang and Albin [7] and Kim, Mahmoud, and Woodall [8] when the error terms have Student's t or gamma distribution and found that non-normality could degrade the performance of these charts when the process is in control. However ARL is less affected for the out-of-control case. Moreover, they found that the method introduced by Kim, Mahmoud, and Woodall [8] is more robust to deviations from normality.

Noorossana, Saghaei, and Dorri. [12] consider the case where the error terms are non-normal and autocorrelated and found that both in-control and out-of-control ARL are affected, but the method of Kim, Mahmoud, and Woodall [8] is less sensitive. Williams et al. [13] and Vaghefi, Tajbakhsh, and Noorossana [14] discussed the effect of nonnormality for Phase II analysis of nonlinear profiles and mentioned that it could be a problem for small sample sizes. However, there is no study that discusses the estimation effect in Phase II under nonnormal innovations so far. Therefore, the aim of this study is to investigate the performance of the mentioned methods for Phase II analysis when the error term is non-normal; specifically has a Student's t distribution, and the parameters are unknown.

One can find the discussion of the methods in Section 2. The in control and out-of-control performance of the charts is discussed in Sections 3 and 4; respectively and finally conclusions are given in Section 5.

2. Phase II methods for Monitoring the Simple Linear Profiles

A sample taken at jth time has n pairs of observations (X: predictor, Y: response) in simple linear profiles while the relation is best represented by

$$Y_{ii} = A + BX_i + \varepsilon_{ii}$$
, $i = 1, 2, ..., n$ and $j = 1, 2, ...$ (1)

where A and B are the regression parameters and ε_{ij} are independent and normally distributed random variables with mean 0 and constant variance, σ^2 . It is assumed for simplicity that the X-values are fixed. Moreover, the regression parameters are assumed to be known in Phase II analysis. This is, in fact, unrealistic in applications where parameters are estimated in Phase I analysis from *m* in-control profile samples as

$$\bar{a} = \sum_{j=1}^{m} a_j / m$$
, $\bar{b} = \sum_{j=1}^{m} b_j / m$, (2)

where a_j and b_j are the least squares estimates of the profile parameters for sample j; i.e. $a_j = \overline{Y}_j - b_j \overline{X}$ and $b_j = s_{XY}^{\{j\}}/s_{XX}$; $\overline{Y}_j = \sum_{i=1}^n Y_{ij}/n$, $\overline{X} = \sum_{i=1}^n X_i/n$, $S_{XY}^{\{j\}} = \sum_{i=1}^n (X_i - \overline{X})Y_{ij}$, $S_{XX} = \sum_{i=1}^n (X_i - \overline{X})^2$. Similarly, the variance σ^2 is usually estimated by the average of the mean square errors of the m profiles as

$$MSE = \frac{\sum_{j=1}^{m} MSE_j}{m}$$
(3)

where $MSE_j = SSE_j/(n-2)$, $SSE_j = \sum_{i=1}^n e_{ij}^2$, and $e_{ij} = Y_{ij} - a_j - b_j X_i$, i = 1, 2, ..., n.

Kang and Albin [7] proposed two control schemes. The first one is a bivariate T² control chart that monitors the regression parameters, A and B jointly. The least-squares estimators a_j and b_j follow a bivariate normal distribution with the mean vector $\mu = (A, B)$ and the variance-covariance matrix $\Sigma = \begin{pmatrix} \sigma_a^2 & \sigma_{ab}^2 \\ \sigma_{ab}^2 & \sigma_b^2 \end{pmatrix}$ where $\sigma_a^2 = \sigma^2(1/n + \bar{X}^2/s_{XX})$, $\sigma_b^2 = \sigma^2/s_{XX}$ and $\sigma_{ab}^2 = -\sigma^2 \bar{X}/s_{XX}$. For the jth sample, the bivariate T² control chart has the control statistic

$$T_{j}^{2} = (z_{j} - \mu)^{T} \Sigma^{-1} (z_{j} - \mu), \qquad (4)$$

where z_j is the vector of sample least squares estimators. It is well known that when the process is in control, this statistic follows a central chi-square distribution with 2 degrees of freedom. Thus, the control chart has an upper limit of UCL = $\chi^2_{2,\alpha}$ where $\chi^2_{2,\alpha}$ is the 100(1- α) percentile of the chi-square distribution with 2 degrees of freedom.

The second proposed method which is known as EWMA-R is a combination of an exponentially weighted average (EWMA) control chart used to monitor the average deviation from the in-control profile and range (R) chart to monitor the variation about this profile. The EWMA control chart statistic is

$$EWMA_{j} = \theta \bar{e}_{j} + (1 - \theta) EWMA_{j-1},$$
(5)

where $0 < \theta \le 1$ is the smoothing parameter determined according to a specified ARL given by Lucas and Saccucci [15], $EWMA_0 = 0$ and $\bar{e}_j = \sum_{i=1}^n e_{ij}/n = \sum_{i=1}^n (Y_{ij} - A - BX_i)/n$. The control limits are

$$LCL = -L\sigma \sqrt{\frac{\theta}{(2-\theta)n}}$$
 and $UCL = L\sigma \sqrt{\frac{\theta}{(2-\theta)n}}$, (6)

where L is the multiple of the sample statistic standard deviation that determines the false alarm rate. Typically L = 3. The R control chart statistic is

$$R_j = max_i(e_{ij}) - min_i(e_{ij}).$$
⁽⁷⁾

The control limits are

$$LCL = \sigma(d_2 - Ld_3) \text{ and } UCL = \sigma(d_2 + Ld_3)$$
 (8)

where L > 0, is a constant determined according to a specified in-control ARL and d_2 and d_3 are constants depending on the sample size, n, which are tabulated for a normal population in textbooks. See; for example, Montgomery [16].

Kim, Mahmoud, and Woodall [8] suggested coding the predictor variable to make the average 0 so that the estimators of regression parameters become independent and then constructing separate EWMA charts for each parameter. With the coded X-values; i.e. $X'_i = (X_i - \overline{X})$, the alternative form of model (1) becomes.

$$Y_{ij} = C + DX'_i + \varepsilon_{ij}$$
, i = 1, 2, ..., n and j = 1, 2, ... (9)

where $C = A + B\overline{X}$ and D = B. The least squares estimators for the new parameters are $c_j = \overline{y}_j$ and $d_j = b_j$. The EWMA control chart statistic for the new intercept, *C*, is

$$EWMA_{j,C} = \theta c_j + (1 - \theta) EWMA_{j-1,C}$$
, $j = 1, 2, ... (10)$

where $0 < \theta \le 1$ is the smoothing parameter, $EWMA_{0,C} = C$ with the following limits

$$LCL = C - L_C \sigma \sqrt{\frac{\theta}{(2-\theta)n}} \text{ and}$$
$$UCL = C + L_C \sigma \sqrt{\frac{\theta}{(2-\theta)n}}$$
(11)

Similarly, the EWMA control chart statistic for the new slope, D, is

$$EWMA_{j,D} = \theta d_j + (1 - \theta) EWMA_{j-1,D}, j=1, 2, \dots$$
(12)

where $0 < \theta \le 1$ is the smoothing parameter and $EWMA_{0,D} = D$ with the following limits

$$LCL = D - L_D \sigma \sqrt{\frac{\theta}{(2-\theta)S_{XX}}} \text{ and}$$
$$UCL = D + L_D \sigma \sqrt{\frac{\theta}{(2-\theta)S_{XX}}} .$$
(13)

 $L_C > 0$ and $L_D > 0$ are chosen to give a specified incontrol ARL. Finally, a one-sided EWMA scheme is used to detect increases in the process variability. The chart statistic is as follows:

$$EWMA_{j,E} = \max\{\theta ln(MSE_j) + (1-\theta)EWMA_{j-1,E}, ln(\sigma^2)\}, \ j = 1, 2, ... \ (14)$$

where $0 < \theta \le 1$ is the smoothing parameter, $EWMA_{0,E} = ln(\sigma^2)$. The upper control limit of the scheme is

$$UCL = L_E \sqrt{\frac{\theta}{(2-\theta)} Var[ln(MSE_j)]} , \qquad (15)$$

where $Var[ln(MSE_j)] \approx 2(n-2)^{-1} + 2(n-2)^{-2} + (4/3)(n-2)^{-3} - (16/15)(n-2)^{-5}$ and again $L_E > 0$ is chosen to give a specified in-control ARL. This method will be abbreviated as EWMA-3 for further analysis.

3. In-control Performance Comparisons

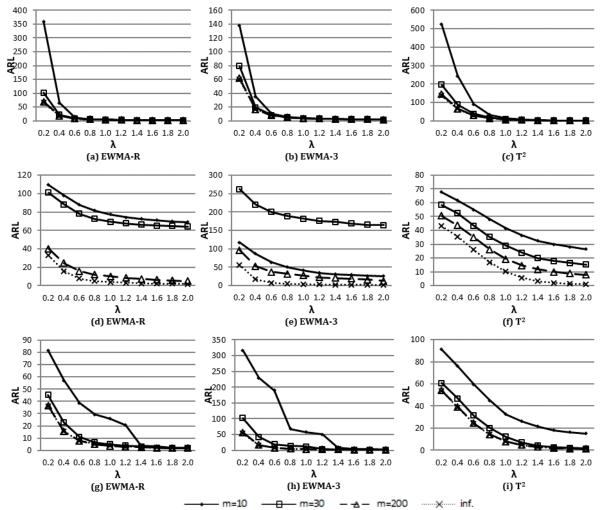
In this study, in-control linear profile model, $y_{ij} = 3 + 2x_i + \epsilon_{ij}$, where the ϵ_{ij} 's are i.i.d. normal random variables with mean 0 and variance 1, is considered. Furthermore, results are provided where the ϵ_{ij} 's are distributed as Student's t with v degrees of freedom. The fixed x_i values of 2, 4, 6, and 8 ($\bar{x} = 5$) are used as in the study of Kang and Albin [7]. For EWMA-3, these values are transformed as $x_i^* = x_i - \bar{x}$ so that the average becomes zero. After transformation, alternative form of the underlying model becomes $y_{ij} = 13 + 2x_i^* + \epsilon_{ij}$ where the x_i^* values are -3, -1, 1, and 3 with $\bar{x}^* = 0$.

In the simulation study, the effect of the profile number, m, and non-normality on the ARL performances of the three methods (T², EWMA-R, EWMA-3) are investigated where the profile size, n, is taken to be 4. Fortran programming language is used in simulations.

Table 1 . In-Control ARL and SDRL values for t-distributions with different degrees of freedom, υ (Normal for ∞),	
when <i>m</i> Phase I samples of size <i>n</i> = 4 are used to estimate the unknown parameters.	
m	

		-	<u> </u>								
	υ		10	30	70	120	200	300	500	∞	
	3	ARL SDRL	114.4 12839.9	106.6 12783.7	51.4 904.9	51.9 1065.7	46.3 452.8	43.6 276.1	41.3 111.5	39.3 38.6	
	5	ARL SDRL	93.7 3628.2	58.7 302.4	52.9 81.8	51.2 62.1	50.9 55.5	50.4 53.4	49.9 51.8	50.8 49.6	
	10	ARL SDRL	150.6 1707.0	97.0 172.8	89.8 115.2	88.6 102.9	87.8 95.4	86.4 91.6	85.9 88.7	86.9 85.1	
EWMA-R	30	ARL SDRL	418.5 12427.2	179.5 424.9	155.9 227.5	152.3 188.3	148.4 167.3	147.3 160.1	145.4 152.6	146.6 144.8	
EV	50	ARL SDRL	487.9 8743.4	206.5 573.9	175.9 259.2	170.0 210.8	168.7 194.5	164.9 181.2	163.4 171.8	164.8 163.3	
	100	ARL SDRL	633.9 21302.9	230.5 723.8	192.8 290.2	187.8 241.8	184.9 214.4	182.2 200.9	180.3 191.1	179.9 177.9	
	∞	ARL SDRL	757.1 27616.6	254.6 669.7	215.0 328.6	207.2 269.3	202.6 237.3	200.3 224.5	203.5 217.9	197.9 195.2	
	3	ARL SDRL	135.3 2729.8	290.2 32295.7	133.4 1447.2	142.2 2674.4	136.7 2412.1	124.8 1034.7	112.9 468.3	103.4 100.9	
	5	ARL SDRL	362.6 26430.2	166.5 2756.7	131.3 566.5	125.2 211.5	125.0 191.2	122.5 138.8	121.9 129.6	122.5 118.3	
m	10	ARL SDRL	322.1 13514.5	164.0 940.1	154.9 230.4	155.7 196.2	157.4 179.4	156.7 168.3	157.2 163.5	159.0 154.2	
EWMA-3	30	ARL SDRL	260.9 4399.5	176.1 510.4	175.1 270.5	178.1 221.9	181.5 205.1	181.9 197.4	184.0 192.9	185.5 181.8	
ы	50	ARL SDRL	239.7 2231.7	178.1 408.8	177.5 261.3	183.2 232.4	187.4 213.9	185.7 202.3	187.8 196.1	190.6 185.7	
	100	ARL SDRL	239.8 2534.3	179.7 423.9	180.1 272.9	185.8 237.4	189.2 214.5	190.6 207.7	192.0 199.7	195.0 191.4	
	∞	ARL SDRL	249.5 3833.6	181.2 425.2	183.5 267.6	188.0 237.9	190.4 218.1	190.4 208.7	197.4 206.5	199.2 194.8	
	3	ARL SDRL	69.7 2078.2	60.9 1630.6	58.7 1102.9	57.5 1060.9	53.8 717.2	49.8 293.2	47.9 257.2	45.7 44.8	
	5	ARL SDRL	96.4 2693.1	67.2 248.9	63.2 94.3	61.6 70.8	60.5 76.0	59.3 62.6	60.2 61.9	60.4 59.8	
	10	ARL SDRL	161.0 1007.9	114.4 224.3	104.7 129.9	102.7 118.3	101.5 108.9	99.8 104.2	99.0 101.0	99.8 99.1	
T^2	30	ARL SDRL	502.7 21077.6	202.1 492.0	170.3 233.8	165.9 200.1	161.7 181.8	160.6 174.5	158.2 165.6	155.9 154.4	
	50	ARL SDRL	526.2 5641.1	225.8 484.6	189.5 266.6	184.3 228.5	179.0 202.6	176.2 191.4	173.7 181.2	171.7 171.0	
	100	ARL SDRL	716.1 11675.2	250.4 621.1	208.9 301.9	201.3 250.2	194.8 220.3	191.9 207.5	188.5 198.5	185.9 184.7	
	∞	ARL SDRL	690.6 6802.3	280.4 699.8	226.8 331.4	213.9 269.7	206.5 234.2	202.6 221.1	203.9 213.5	199.3 197.9	

The procedure for the simulation of ARL and SDRL of the competing methods is given as follows:


1. A total of 50,000 simulation runs are conducted and in each run 'm' profiles with size 'n = 4' are generated. The control limits are estimated for each method. In EWMA-R and EWMA-3, the smoothing parameter θ is taken to be 0.2. For EWMA-R, the L constants in the control limits of EWMA and R charts are chosen as 3.1151 and for EWMA-3, the constants L_C, L_D and L_E are chosen as 3.0156, 3.0109 and 1.3723; respectively in order to achieve an overall in control ARL of roughly 200 under normality. (Kim, Mahmoud, and Woodall [8])

- After completing the estimation of control limits (phase I), an additional random profile of size n = 4 is generated to represent the new phase II process information.
- 3. For each method, the chart statistics are calculated based on the estimated parameters \bar{a} , \bar{b} and MSE and they are compared with the corresponding control limits in phase I.

- 4. Steps 2 and 3 are repeated until the chart gives a signal. When the signal is given, the run length is recorded.
- 5. Steps 1-4 are repeated 50,000 times to estimate the ARL and the SDRL values.

The in control simulation results for m = 10, 30, 70,120, 200, 300, 500, ∞ (representing known parameters case) are given in Table 1 where $m = \infty$ values are simulated by the use of true parameter values rather than their estimates. It can be seen from the known parameter case $(m = \infty)$ that as the underlying distribution deviates from the normality, ARL values are decreasing for all methods. For example, for EWMA-3, the in control ARL under normality is estimated as 199.2 while it is 103.4 for the t distribution with 3 degrees of freedom. As the distribution becomes platycurtic, ARL values are smaller for all methods, as expected. It can also be mentioned that EWMA-3 is more robust to nonnormality than the other methods though its SDRL values are higher than the others. When the estimation effect is considered under normality, it can be observed that the methods T² and EWMA-R

overshoot the ARL with known parameters indicating fewer false alarm rates. However this is not the case for EWMA-3 unless m=10. The EWMA-3 method, has lower ARL values with known parameters than when m > 10, but it should be noted that its SDRL is much less than the other methods. Therefore, when both ARL and SDRL values are considered, it can be said that EWMA-3 performs better than the rest. For other cases; i.e. estimation effect under non-normality, it can be seen that ARL is higher for small numbers of profiles and decreases as the number of profiles increases. SDRL values are decreasing as the number of profiles is increasing as expected. For small numbers, very large SDRL values are observed for all methods under each distribution. In fact, one reason for these very large deviations is a small number of extremely large run length values, meaning that for a specific sample it is possible not to observe a signal for a long time. It is more probable to observe these extreme run length values when the estimation is done with small number of profiles (m = 10 and m =30) and the distribution is t distribution with small degrees of freedom (especially when v=3 and/or υ =5). For example, when the EWMA-3 method is

Figure 1. Out of Control ARL performance with intercept shift from A_0 to $A_0 + A\sigma$ under Normal distribution for (a) EWMA-R Control Chart (b) EWMA 3 Control Chart (c) T² Control Chart, under t(3) distribution for (d) EWMA-R Control Chart (e) EWMA 3 Control Chart (f) T² Control Chart, under t(5) distribution for (g) EWMA-R Control Chart (h) EWMA 3 Control Chart (i) T² Control Chart (i) T² Control Chart (c) T² Control Chart

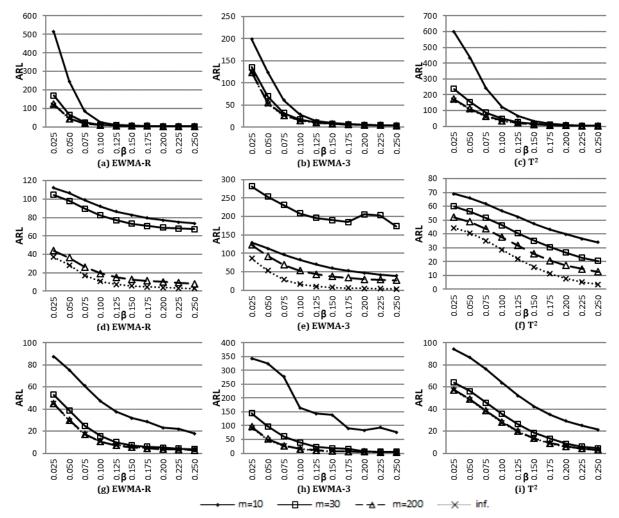
considered, the SDRL under t distribution with 3 degrees of freedom when 30 profiles are used in estimation is 32295.7 which is an unacceptably large value. It must be noted that t distribution with 3 degrees of freedom has an undefined skewness and infinite kurtosis. Therefore, very high SDRL values are not so unexpected for this distribution. Overall, it can be said that ARL values for EWMA-3 are more close to the theoretical value, 200 and have similar fluctuations in SDRL with other methods.

4. Out-of-control Performance Comparisons

The effect of estimation under non-normality on the out-of-control performance was also investigated. For this purpose, shifts are given to the intercept, slope and variance separately. The simulated out-of-control ARL values are given in Figure 1 for various numbers of profiles with size n = 4 under normal and the t distribution with 3 and 5 degrees of freedom when a shift to the intercept is given. Their corresponding SDRL values can be found in Table 2 where the values that exceed 10000 are reported as >10k.

It can be seen from Figure 1(a)-(c) that when the shift size in the intercept is large; i.e. $\lambda \ge 0.8$, all methods yield similar ARL values with the known parameter $(m = \infty)$ case regardless of the number of profiles in phase I used in estimation except T² where it is true for $\lambda \ge 1.0$. This means that under normality, estimation effect is negligible for large shifts and

Table 2. SDRL values under Normal, t distribution having 3 and 5 degrees of freedom with intercept shift from A_0 to $A_0 + \lambda \sigma$ when *m* Phase I samples of size *n*=4 are used to estimate the unknown parameters.


m 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Normal 1 5556.2 1594.9 608 6.3 2.2 1.4 1.0 0.8 0.7 0.6 2 75.9 14.5 4.9 2.5 1.6 1.2 0.9 0.8 0.7 0.6 \$\appril 6.13 1.7 4.5 2.3 1.4 0.9 0.8 0.6 0.4 0.4 1 >10k<>10k<>10k >10k<>10k<>10k<>10k<>10k<>10k<>10k<>10k								λ					
Normal 1 13252 4053 387 5.8 2.0 1.3 0.9 0.8 0.7 0.6 1 1.27 4.5 2.3 1.4 0.9 0.8 0.6 0.4 0.4 1 1 >10k 10k 0.0 0.0			m	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
Normal 1 13252 4053 387 58 20 1.3 0.9 0.8 0.7 0.6 1 1.27 4.5 2.3 1.4 0.9 0.8 0.6 0.4 0.4 1 1.127 4.5 2.3 1.4 0.9 0.8 0.6 0.4 0.4 1 510k 50.4 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 <t< td=""><th></th><td>Normal</td><td>1</td><td>5568.2</td><td>1594.9</td><td>60.8</td><td>6.3</td><td>2.2</td><td>1.4</td><td>1.0</td><td>0.8</td><td>0.7</td><td>0.6</td></t<>		Normal	1	5568.2	1594.9	60.8	6.3	2.2	1.4	1.0	0.8	0.7	0.6
w 61.3 12.7 4.5 2.3 1.4 0.9 0.8 0.6 0.4 0.4 t(3) 1 >10k 300 0.7 0.6 0.7 0.6 0.7 0.6 0.6 0.7 0.6 0.6 0.7 0.6 0.6 0.7 0.6 0.6 0.7 0.6 0.6 0.7 0.6 0.6 0.6			3							0.9	0.8		0.6
$ { { F} } } { { F} } } { { F} } { { F} } { { F} } { { F} } } { { F} } { { F} } } { { F} } { { F} } { { F} } { { F} } } { { F} } { { F} } } { { F} } { { F} } } { { F} } { { F} } } { { F} } { { F} } } { { F} } { { F} } } { { F} } { { F} } } { { F} } } { { F} } { { F} } } { { F} } } { { F} } } { { F} } } { { F} } { { $							2.5			0.9	0.8	0.7	0.6
YMM 3 >10k 0.7 0.5 0.4 0.3 t(5) 1 3627.2 365.1 357.7 22.8 22.1 1.6 1.2 0.9 0.7 0.6 0.4 0.4 0 33.4 11.3 4.3 2.2 1.4 0.9 0.7 0.6 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.4			∞	61.3	12.7	4.5	2.3	1.4	0.9	0.8	0.6	0.4	0.4
YMM 3 >10k 0.7 0.5 0.4 0.3 t(5) 1 3627.2 365.1 357.7 22.8 22.1 1.6 1.2 0.9 0.7 0.6 0.4 0.4 0 33.4 11.3 4.3 2.2 1.4 0.9 0.7 0.6 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.4		t(3)	1	>10k	>10k	>10k	>10k	>10k	>10k	>10k	>10k	>10k	>10k
$ \begin{array}{c} \mbox{FMM} \\ \mbox{t} (5) & 1 & 3627.2 \\ 3 & 296.3 & 288.8 & 235.7 & 222.8 & 221.9 & 221.0 \\ 2 & 39.5 & 13.5 & 4.9 & 2.5 & 1.6 & 1.2 & 0.9 & 0.8 & 0.7 & 0.6 \\ \infty & 33.4 & 11.3 & 4.3 & 2.2 & 1.4 & 0.9 & 0.7 & 0.6 & 0.4 & 0.4 \\ \hline \mbox{mormal} & 1 & 1325.2 & 405.3 & 38.7 & 5.8 & 2.0 & 1.3 & 0.9 & 0.7 & 0.6 & 0.6 \\ 3 & 214.4 & 27.7 & 6.5 & 2.7 & 1.6 & 1.1 & 0.8 & 0.6 & 0.5 & 0.5 \\ 2 & 64.8 & 12.8 & 4.4 & 2.2 & 1.4 & 0.9 & 0.7 & 0.6 & 0.5 & 0.5 \\ 2 & 64.8 & 12.8 & 4.4 & 2.2 & 1.4 & 0.9 & 0.7 & 0.6 & 0.5 & 0.5 \\ 2 & 64.8 & 12.8 & 4.4 & 2.2 & 1.4 & 0.9 & 0.7 & 0.6 & 0.5 & 0.5 \\ 2 & 64.8 & 12.8 & 4.4 & 2.2 & 1.4 & 0.9 & 0.7 & 0.6 & 0.5 & 0.5 \\ 2 & 64.8 & 12.8 & 4.4 & 2.2 & 1.4 & 0.9 & 0.7 & 0.6 & 0.5 & 0.5 \\ 2 & 64.8 & 12.8 & 4.4 & 2.2 & 1.4 & 0.9 & 0.7 & 0.6 & 0.5 & 0.4 & 0.4 \\ \end{array} $ $ \begin{array}{c} t(3) & 1 & 2693.8 & 2680.8 & 2653. & 2615. & 2593. & 2574. & 2569. & 2565. & 2564 \\ 3 & >10k & >10k & >10k & >10k & >10k & >10k & >10k & >10k & >10k & >10k & >10k & >10k & 10k & >10k & 10k & 208 & 0.3 \\ 2 & 79.5 & 11.2 & 40.1 & 9 & 1.2 & 0.9 & 0.7 & 0.5 & 0.4 & 0.3 \\ t(5) & 1 & >10k & >10k & >10k & 7737. & 7611. & 7552. & 1302. & 493.5 & 297.2 & 109. \\ 3 & 2394.0 & 2155.9 & 1802. & 1793. & 1795. & 158.2 & 2.9 & 0.6 & 0.6 \\ 2 & 79.5 & 14.2 & 4.6 & 2.2 & 1.4 & 0.9 & 0.7 & 0.5 & 0.4 & 0.3 \\ \infty & 48.3 & 11.6 & 4.1 & 2.1 & 1.3 & 0.9 & 0.7 & 0.5 & 0.4 & 0.4 \\ \end{array}$ $\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	A-R												
$ \begin{array}{c} \mbox{FMM} \\ \mbox{t} (5) & 1 & 3627.2 \\ 3 & 296.3 & 288.8 & 235.7 & 222.8 & 221.9 & 221.0 \\ 2 & 39.5 & 13.5 & 4.9 & 2.5 & 1.6 & 1.2 & 0.9 & 0.8 & 0.7 & 0.6 \\ \infty & 33.4 & 11.3 & 4.3 & 2.2 & 1.4 & 0.9 & 0.7 & 0.6 & 0.4 & 0.4 \\ \hline \mbox{mormal} & 1 & 1325.2 & 405.3 & 38.7 & 5.8 & 2.0 & 1.3 & 0.9 & 0.7 & 0.6 & 0.6 \\ 3 & 214.4 & 27.7 & 6.5 & 2.7 & 1.6 & 1.1 & 0.8 & 0.6 & 0.5 & 0.5 \\ 2 & 64.8 & 12.8 & 4.4 & 2.2 & 1.4 & 0.9 & 0.7 & 0.6 & 0.5 & 0.5 \\ 2 & 64.8 & 12.8 & 4.4 & 2.2 & 1.4 & 0.9 & 0.7 & 0.6 & 0.5 & 0.5 \\ 2 & 64.8 & 12.8 & 4.4 & 2.2 & 1.4 & 0.9 & 0.7 & 0.6 & 0.5 & 0.5 \\ 2 & 64.8 & 12.8 & 4.4 & 2.2 & 1.4 & 0.9 & 0.7 & 0.6 & 0.5 & 0.5 \\ 2 & 64.8 & 12.8 & 4.4 & 2.2 & 1.4 & 0.9 & 0.7 & 0.6 & 0.5 & 0.5 \\ 2 & 64.8 & 12.8 & 4.4 & 2.2 & 1.4 & 0.9 & 0.7 & 0.6 & 0.5 & 0.4 & 0.4 \\ \end{array} $ $ \begin{array}{c} t(3) & 1 & 2693.8 & 2680.8 & 2653. & 2615. & 2593. & 2574. & 2569. & 2565. & 2564 \\ 3 & >10k & >10k & >10k & >10k & >10k & >10k & >10k & >10k & >10k & >10k & >10k & >10k & 10k & >10k & 10k & 208 & 0.3 \\ 2 & 79.5 & 11.2 & 40.1 & 9 & 1.2 & 0.9 & 0.7 & 0.5 & 0.4 & 0.3 \\ t(5) & 1 & >10k & >10k & >10k & 7737. & 7611. & 7552. & 1302. & 493.5 & 297.2 & 109. \\ 3 & 2394.0 & 2155.9 & 1802. & 1793. & 1795. & 158.2 & 2.9 & 0.6 & 0.6 \\ 2 & 79.5 & 14.2 & 4.6 & 2.2 & 1.4 & 0.9 & 0.7 & 0.5 & 0.4 & 0.3 \\ \infty & 48.3 & 11.6 & 4.1 & 2.1 & 1.3 & 0.9 & 0.7 & 0.5 & 0.4 & 0.4 \\ \end{array}$ $\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ΛM												
State 3 296.3 288.8 235.7 222.8 221.9 210.6 158.2 2.9 0.9 0.7 2 39.5 13.5 4.9 2.5 1.6 1.2 0.9 0.8 0.7 0.6 \$\overline{a}\$ 33.4 11.3 4.3 2.2 1.4 0.9 0.7 0.6 0.4 0.4 Normal 1 1325.2 405.3 38.7 5.8 2.0 1.3 0.9 0.7 0.6 0.6 2 64.8 12.8 4.4 2.2 1.4 0.9 0.7 0.6 0.4 0.4 \$\overline{33.8} 11.4 4.2 2.2 1.4 0.9 0.7 0.6 0.4 0.4 \$\overline{33.8} 10k >10k >10	EV												
State 3 296.3 288.8 235.7 222.8 221.9 210.6 158.2 2.9 0.9 0.7 2 39.5 13.5 4.9 2.5 1.6 1.2 0.9 0.8 0.7 0.6 \$\overline{a}\$ 33.4 11.3 4.3 2.2 1.4 0.9 0.7 0.6 0.4 0.4 Normal 1 1325.2 405.3 38.7 5.8 2.0 1.3 0.9 0.7 0.6 0.6 2 64.8 12.8 4.4 2.2 1.4 0.9 0.7 0.6 0.4 0.4 \$\overline{33.8} 11.4 4.2 2.2 1.4 0.9 0.7 0.6 0.4 0.4 \$\overline{33.8} 10k >10k >10		t (5)	1	3627.2	3561.7	3527.	3511.	3509.	3436.	139.3	138.5	50.5	49.6
$ \underbrace{ \begin{array}{c} 2 & 39.5 \\ \infty & 33.4 \\ 11.3 & 4.3 \\ 2.2 \\ 1.4 \\ 0.9 \\ 0.7 \\ 0.6 \\ 0.7 \\ 0.6 \\ 0.4 \\ 0.$													
± ± 33.4 11.3 4.3 2.2 1.4 0.9 0.7 0.6 0.4 0.4 Normal 1 1325.2 405.3 38.7 5.8 2.0 1.3 0.9 0.7 0.6 0.6 3 214.4 27.7 6.5 2.7 1.6 1.1 0.8 0.6 0.5 0.4 ∞ 53.8 11.4 4.2 2.2 1.4 0.9 0.7 0.6 0.4 0.4 ∞ 53.8 11.4 4.2 2.2 1.4 0.9 0.7 0.6 0.4 0.4 ∞ 53.8 10k >10k 228.2 2279.2 2271.2228.2 2101 ∞ 52.6 12.3 4.0 1.9 1.2 0.9 0.7													
$ { { F} } } { { F} } { { F} } { { F} } { { F} } { { F} } } { { F} } { { F} } { { F} } } { { F} } { { F} } { { F} } { {$			∞										
$ { { F} } } { { F} } { { F} } { { F} } { { F} } { { F} } } { { F} } { { F} } { { F} } } { { F} } { { F} } { { F} } { {$		Normal	1	1225 2	40E 2	20 7	EO	2.0	12	0.0	0.7	0.6	0.6
$ { { F} } } { { F} } { { F} } { { F} } { { F} } { { F} } } { { F} } { { F} } { { F} } } { { F} } { { F} } { { F} } { { F} } } { { F} } { { F} } }$		Normai											
$ { { F} } } { { F} } { { F} } { { F} } { { F} } { { F} } } { { F} } { { F} } { { F} } } { { F} } { { F} } { { F} } { { F} } { {$													
$ \begin{array}{c} \mbox{FM} \\ \mbox{FM} \\ \mbox{F} \\ \$													
$ \frac{8}{2} = \frac{3}{2} + 3$		+ (2)											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>.</u>	ι (5)											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MA												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M												
$ \begin{array}{c} \begin{array}{c} 3 & 2394.0 \\ 2 & 79.5 \\ \infty & 48.3 \end{array} \begin{array}{c} 2155.9 & 1802. \\ 14.2 & 4.6 \\ \infty & 48.3 \end{array} \begin{array}{c} 1793. \\ 11.6 \end{array} \begin{array}{c} 1793. \\ 2.2 \\ 1.4 \\ 2.1 \\ 1.3 \end{array} \begin{array}{c} 1.3 \\ 0.9 \\ 0.7 \\ 0.5 \end{array} \begin{array}{c} 0.6 \\ 0.5 \\ 0.4 \\ 0.4 \end{array} \end{array} \begin{array}{c} 0.6 \\ 0.5 \\ 0.4 \\ 0.4 \end{array} \end{array} \begin{array}{c} 0.6 \\ 0.5 \\ 0.4 \\ 0.4 \end{array} \end{array} \begin{array}{c} 0.6 \\ 0.5 \\ 0.4 \\ 0.4 \end{array} \end{array} \begin{array}{c} 0.6 \\ 0.5 \\ 0.4 \\ 0.4 \end{array} \end{array} \begin{array}{c} 0.6 \\ 0.5 \\ 0.4 \\ 0.4 \end{array} \end{array} \begin{array}{c} 0.6 \\ 0.5 \\ 0.4 \\ 0.4 \end{array} \end{array}$	щ												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		t (5)											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$													
$ {\bf F} = \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$			∞	48.3	11.6	4.1	2.1	1.3	0.9	0.7	0.5	0.4	0.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Normal	1	5769.5	1996.9	963.8	237.6	64.3	24.9	7.3	3.4	1.7	0.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3	437.9	182.4	69.1	27.1	11.6	5.5	2.9	1.6	0.9	0.6
$ \begin{array}{c} {}^{}_{} {}^{$			2	164.2	74.1	31.1	14.3	6.9	3.7	2.1	1.3	0.8	0.6
$ \overset{\text{P}}{\vdash} \qquad \begin{array}{c} 3 \\ 2 \\ \infty \end{array} \begin{array}{c} 1629.8 \\ 2 \\ 720.7 \\ \infty \end{array} \begin{array}{c} 1641.6 \\ 718.4 \\ 719.1 \\ 34.7 \end{array} \begin{array}{c} 1613. \\ 715.9 \\ 25.0 \end{array} \begin{array}{c} 1613. \\ 713.2 \\ 713.2 \\ 713.2 \\ 712.6 \end{array} \begin{array}{c} 1607. \\ 710.3 \\ 708.7 \\ 708.7 \\ 705.7 \\ 699. \end{array} \begin{array}{c} 1606. \\ 699. \\ 0.4 \end{array} \begin{array}{c} 1606. \\ 699. \\ 0.4 \end{array} \begin{array}{c} 1606. \\ 699. \\ 0.4 \end{array} \begin{array}{c} 1606. \\ 1606. \\ 1606. \\ 699. \\ 0.4 \end{array} \end{array}$			∞	136.5	62.9	27.3	12.7	6.4	3.5	2.1	1.3	0.9	0.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		t (3)		2081.6	2070.8	2070.	2070.	2067.	2066.	2065.	2065.	2065.	2064
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2			1629.8	1641.6	1614.	1613.	1613.	1612.	1607.	1606.	1606.	
t (5)12699.92660.72654.2651.2620.2620.2618.2615.2611.26103243.9244.5233.6244.6227.9106.735.133.124.519.1270.558.227.215.79.05.22.71.60.90.6	F		2	720.7	718.4	719.1	715.9	713.2	712.6	710.3	708.7	705.7	699.
3 243.9 244.5 233.6 244.6 227.9 106.7 35.1 33.1 24.5 19.1 2 70.5 58.2 27.2 15.7 9.0 5.2 2.7 1.6 0.9 0.6			∞	42.5	34.7	25.0	15.9	9.2	4.9	2.6	1.4	0.8	0.4
2 70.5 58.2 27.2 15.7 9.0 5.2 2.7 1.6 0.9 0.6		t (5)			2660.7	2654.	2651.	2620.	2620.	2618.	2615.	2611.	2610
								227.9	106.7		33.1	24.5	19.1
∞ 53.2 37.6 23.4 12.9 7.1 3.9 2.2 1.3 0.8 0.5			2			27.2		9.0	5.2		1.6	0.9	0.6
256			∞	53.2	37.6			7.1	3.9	2.2	1.3	0.8	0.5

small number of profiles such as 10 can be used in estimation. For small shift sizes, ARL values are naturally higher. Moreover the number of phase I profiles used in estimation becomes crucial and should be at least 200 to eliminate the estimation effect. According to Figure 1(d)-(f), all methods' ARL values are highly affected by estimation under the t distribution having 3 degrees of freedom even for large shifts in the intercept. For example, the ARL value for a shift of size 2.0 is 1.9 for EWMA-R when the parameters are known. It becomes 69.1, 64.0 and 5.0 when m is 10, 30 and 200; respectively. Similar results can be observed for t distribution having 5 degrees of freedom in Figure 1(g)-(i). However, when compared with t distribution having 3 degrees of freedom, this effect is less. For example, the performance of the known parameter case can now be achieved by using 200 profiles (and even with fewer profiles for large shifts) in estimation.

It can be seen from Table 2 that under normality, SDRL values of EWMA-R and EWMA-3 are close to each other as well as to the theoretical value ($m = \infty$) for large shifts ($\lambda \ge 0.8$) except the case m = 10 with λ

= 0.8. However, it must be noted that since T^2 has large SDRL values even for large shifts, other methods can be preferred to it. For small shift sizes, SDRL values increase like the ARL values. When the methods are compared under normality, it can be observed that EWMA-3 is less affected by estimation. The worst performer among these methods is the T^2 chart which requires more profiles in estimation even to detect large shifts.

Although the ARL values are close to the parameters known case as the number of profiles used in estimation increases, SDRL values are far away from being at acceptable levels when the t distribution having 3 degrees of freedom is considered. Therefore it can be concluded that estimation of the parameters highly degrades the performance of the chart under the t distribution with 3 degrees of freedom even when the number of phase I profiles used in estimation is as high as 200. This result dampens when the degrees of freedom increases to 5. The SDRL values become reasonable for quite large shifts say $\lambda \ge 1.6$ when $m \ge 30$ except for the T² chart which requires m to be much larger.

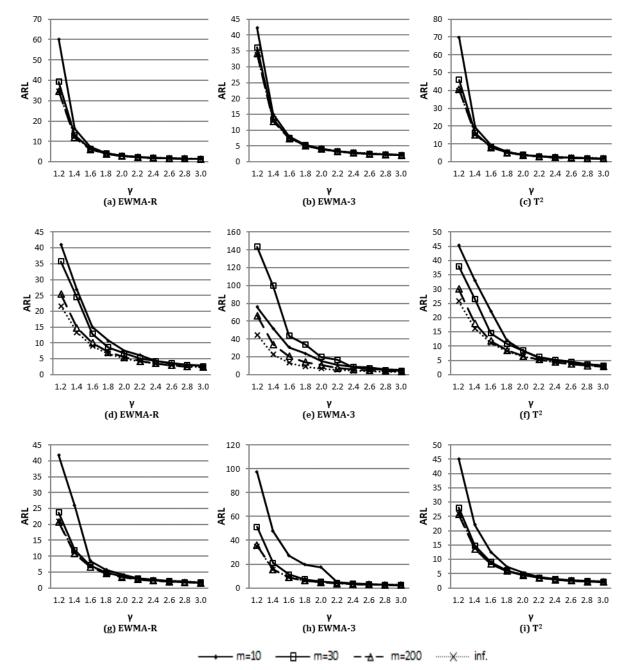
Figure 2. Out of Control ARL performance with slope shift from A_1 to $A_1 + \beta \sigma$ under Normal distribution for (a) EWMA-R Control Chart (b) EWMA 3 Control Chart (c) T² Control Chart, under t(3) distribution for (d) EWMA-R Control Chart (e) EWMA 3 Control Chart (f) T² Control Chart, under t(5) distribution for (g) EWMA-R Control Chart (h) EWMA 3 Control Chart (i) T² Control Chart (i) T² Control Chart

The simulated out-of-control ARL values are given in Figure 2 for different number of profiles with size n = 4 under normality and the t distribution with 3 and 5 degrees of freedom when a shift to the slope is given. Their corresponding SDRL values can be found in Table 3 where the values that exceed 10000 are reported as >10k.

Under normality, similar behaviour to Figure 1 can be observed from Figure 2 when $\beta \ge 0.175$; that is, ARL values are very close to the values for known parameter case regardless of the number of phase I profiles used in the estimation. However, as seen from Table 3, since SDRL values of T² method for $\beta \ge 0.175$ are larger than those of the other methods, it is better to use at least 30 profiles with this method for

estimation. Again, under normality the EWMA-3 chart is seen to be less affected by estimation when there is a slope shift. Under non-normality, estimation affects ARL and SDRL values more as the distribution deviates more from normality. As in the case of a shift in intercept, performance of the chart highly degrades under the t distribution with 3 degrees of freedom even when the number of profiles used in estimation is 200. However, using 200 profiles in estimation becomes sufficient when the distribution has 5 degrees of freedom.

The simulated out-of-control ARL values are given in Figure 3 for different number of profiles with size n = 4 under normality and the t distribution with 3 and 5 degrees of freedom when a shift to the variance is


Table 3. SDRL values under Normal, t distribution having 3 and 5 degrees of freedom with slope shift from A_1 to $A_1 + \beta \sigma$ when *m* Phase I samples of size *n*=4 are used to estimate the unknown parameters

	-					-	β					
		m	0.025	0.050	0.075	0.100	0.125	0.150	0.17	0.20	0.22	0.25
	Normal	10	6768.8	5161.4	1849.8	413.3	51.6	16.1	3.8	2.2	1.7	1.3
		30	475.7	173.4	43.4	14.0	6.4	3.5	2.3	1.7	1.4	1.1
		200	140.7	47.2	16.9	7.8	4.4	2.9	2.1	1.6	1.3	1.1
		∞	113.9	38.8	14.8	7.1	4.0	2.6	1.9	1.4	1.1	0.9
~	t (3)	10	>10k	>10k	>10k	>10k	>10k	>10k	>10k	>10k	>10k	>10k
EWMA-R		30	>10k	>10k	>10k	>10k	>10k	>10k	>10k	>10k	>10k	>10k
MV		200	452.1	451.9	452.1	452.2	451.4	450.9	450.	449.	441.	437.
EV		∞	36.1	25.6	13.3	6.6	3.8	2.4	1.7	1.3	0.9	0.8
	t (5)	10	3627.4	3626.5	3604.4	3569.	3548.	3542.	3538	2750	2748	2656
		30	299.5	293.4	289.3	283.4	228.7	223.3	221.	221.	210.	158.
		200	48.9	32.6	15.6	7.8	4.4	2.9	2.1	1.6	1.3	1.1
		∞	43.05	26.15	12.87	6.66	3.88	2.54	1.80	1.37	1.08	0.90
	Normal	10	1805.8	1173.2	550.4	511.1	49.1	28.3	14.2	4.4	2.6	1.9
		30	300.4	163.9	61.1	21.0	9.9	5.3	3.4	2.4	1.8	1.5
		200	139.6	56.7	23.4	11.2	6.3	4.0	2.8	2.1	1.6	1.3
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	118.0	47.0	20.4	10.2	5.9	3.9	2.7	2.0	1.6	1.3
	t (3)	10	2718.6	2693.4	2684.0	2682.	2671.	2666.	2652	2613	2597	2592
EWMA-3		30	>10k	>10k	>10k	>10k	>10k	>10k	>10k	>10k	>10k	>10k
/W		200	2411.6	2409.2	2452.7	2447.	2433.	2430.	2425	2377	2374	2365
EW		$\infty$	83.5	48.9	23.7	11.8	6.4	3.9	2.6	1.9	1.5	1.2
	t (5)	10	>10k	>10k	>10k	>10k	>10k	>10k	>10k	>10k	>10k	8650
		30	2764.3	2431.4	2336.1	2153.	1804.	1800.	1794	234.	228.	212.
		200	150.6	60.2	26.5	12.9	6.8	4.3	2.9	2.1	1.6	1.3
		$\infty$	87.7	43.6	20.5	10.6	6.0	3.9	2.7	1.9	1.6	1.3
	Normal	10	4921.6	4171.6	2398.3	1175.	632.6	318.5	82.8	41.8	24.8	12.3
	Normai	30	544.5	363.9	181.2	89.5	46.5	24.9	13.9	7.9	5.0	3.1
		200	195.4	125.5	70.4	38.9	22.2	12.9	8.0	5.1	3.4	2.3
		200	164.5	105.1	60.7	34.2	19.7	11.9	7.4	4.8	3.2	2.2
	t (3)	10	2081.8	2081.5	2081.4	2070.	2071.	2070.	2070	2070	2069	2071
	(3)	30	1631.1	1629.6	1629.3	1629.	1628.	1628.	1627	1626	1609	1609
$T^2$		200	719.8	721.2	720.7	720.6	720.5	718.8	717.	719.	719.	716.
		200 ∞	43.6	40.2	34.4	27.7	720.5 21.1	15.2	10.5	6.9	4.5	2.8
	t (5)	10	2699.8	2698.7	2688.3	2657.	2631.	2622.	2622	2619	2618	2612
	(3)	30	245.2	241.8	237.6	242.3	2031.	220.7	217.	49.9	40.8	38.5
		200	73.2	66.1	57.9	39.2	22.3	15.1	10.4	6.9	4.7	3.5
		200 ∞	56.6	47.7	37.2	27.1	18.5	12.3	8.1	5.3	3.5	2.4

given. Their corresponding SDRL values can be found in Table 4 where the values that exceed 10000 are reported as >10k.

It is seen that although the behavior in Figure 3 is similar to that in Figures 1 and 2, i.e., 30 profiles are enough even for small shifts to achieve parameters known case performance under normality. For larger shifts ( $\gamma > 1.6$ ) one can even use 10 profiles in order to have the similar performance of the charts with known parameters. Again there is an increasing estimation effect as the distribution deviates more from normality. However, it can be observed that this effect is less when compared to the shifts in slope and intercept. Thus, it can be concluded that when there is a shift in the standard deviation, the charts are less sensitive to estimation than the case where there is a shift in slope or intercept. For example, under the t distribution with 3 degrees of freedom, the ARL values for m = 200 are close to the known parameter case for large shifts and SDRL values are less when compared to the other types of shifts, although they are still high. For the t distribution having 5 degrees of freedom, 30 profiles are enough for decreasing the estimation effect for large shifts while it requires 200 profiles for small shifts.

To sum up the simulation results, it is observed that when the number of phase I profiles used in estimation is small under the t distribution with 3



**Figure 3.** Out of Control ARL performance with standard deviations shift from  $\sigma$  to  $\gamma\sigma$  under Normal distribution for (a) EWMA-R Control Chart (b) EWMA 3 Control Chart (c) T² Control Chart, under t(3) distribution for (d) EWMA-R Control Chart (e) EWMA 3 Control Chart (f) T² Control Chart, under t(5) distribution for (g) EWMA-R Control Chart (h) EWMA 3 Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart (i) T² Control Chart

Table 4.         SDRL values under Normal, t distribution having 3 and 5 degrees of freedom with standard deviations shift from
σ to γσ when <i>m</i> Phase I samples of size $n=4$ are used to estimate the unknown parameters
Nr.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-					γ					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			m	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
$ { { Ffm} } { { Ffm} } { { Ffm} } { { { 10 } } $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $		Normal	10	457.5	50.9	12.2	5.9	3.3	2.2	1.6	1.3	1.0	0.9
$ {\rm FYM} = \begin{array}{c} {\rm YM} \\ {\rm FYM} \\$													
$ \begin{array}{c} \mbox{FMM} \\ \mbox{FMM} \\ \mbox{F} (3) & 10 & 1986.9 & 1643.5 & 465.0 & 400.7 & 277.9 & 276.8 & 69.7 & 67.4 & 66.2 & 66.1 \\ 30 & 1611.7 & 1594.1 & 2466 & 108.7 & 103.7 & 61.7 & 47.5 & 43.2 & 39.7 & 35.6 \\ 200 & 313.6 & 108.9 & 102.5 & 46.4 & 40.9 & 28.9 & 27.3 & 18.0 & 16.2 & 15.4 \\ & & & 208 & 12.5 & 81 & 5.7 & 4.2 & 33 & 2.6 & 2.2 & 1.8 & 1.6 \\ t (5) & 10 & 2644.9 & 2608.8 & 61.4 & 54.8 & 51.0 & 17.9 & 16.7 & 10.3 & 10.2 & 7.8 \\ 30 & 119.2 & 31.2 & 16.9 & 9.9 & 8.7 & 4.9 & 4.4 & 3.4 & 1.9 & 1.3 \\ 200 & 21.8 & 11.0 & 6.4 & 4.1 & 2.9 & 2.2 & 1.7 & 1.4 & 1.2 & 1.0 \\ & & 19.9 & 10.0 & 5.9 & 4.0 & 2.9 & 2.2 & 1.7 & 1.4 & 1.2 & 1.1 \\ \hline & & 19.9 & 10.0 & 5.9 & 4.0 & 2.9 & 2.2 & 1.7 & 1.4 & 1.2 & 1.1 \\ \hline & & & 19.9 & 10.0 & 5.9 & 4.0 & 2.9 & 2.2 & 1.7 & 1.4 & 1.2 & 1.1 \\ \hline & & & & 19.9 & 10.0 & 5.9 & 4.0 & 2.9 & 2.2 & 1.7 & 1.4 & 1.2 & 1.1 \\ \hline & & & & & 19.9 & 10.0 & 5.9 & 4.0 & 2.9 & 2.2 & 1.7 & 1.4 & 1.2 & 1.1 \\ \hline & & & & & & 19.9 & 10.0 & 5.9 & 4.0 & 2.9 & 2.2 & 1.8 & 1.5 & 1.2 & 1.1 \\ \hline & & & & & & & 19.9 & 10.0 & 5.9 & 4.0 & 2.9 & 2.2 & 1.7 & 1.4 & 1.2 & 1.1 & 0.9 \\ & & & & & & & & & & & & & & & & & & $													
$ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			$\infty$	33.0	11.2	5.4	3.3	2.3	1.7	1.3	1.1	0.9	0.8
$ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		t (3)	10	1986 9	1643 5	465.0	400 7	2779	276.8	697	674	66.2	66 1
$ \begin{array}{c} \mbox{Figure} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	A-R	(0)											
$ \begin{array}{c} \mbox{Figure} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	/W/												
$  t(5)  10  2644.9  2608.8  61.4  54.8  51.0  17.9  16.7  10.3  10.2  7.8 \\ 30  119.2  31.2  16.9  9.9  8.7  4.9  4.4  3.4  1.9  1.3 \\ 200  21.8  11.0  6.4  4.1  2.9  2.2  1.7  1.4  1.2  1.0 \\ \infty  19.9  10.0  5.9  4.0  2.9  2.2  1.7  1.4  1.2  1.1 \\ \hline $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	EM												
$ { { F} } { { F} } { { F} } { { F} } { { F} } { { F} } { { A} } { A} } { { A} } { { A} } { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { A} } { { $		t (5)	10	2644 9	2608.8	614	54.8	51.0	179	167	103	10.2	78
$ \underbrace{ \begin{array}{c} 200 \\ \infty \end{array} } \underbrace{ \begin{array}{c} 21.8 \\ 19.9 \end{array} } \underbrace{ \begin{array}{c} 11.0 \\ \infty \end{array} } \underbrace{ \begin{array}{c} 6.4 \\ 9.9 \end{array} } \underbrace{ \begin{array}{c} 4.1 \\ 2.9 \end{array} } \underbrace{ \begin{array}{c} 2.2 \\ 2.2 \end{array} } \underbrace{ \begin{array}{c} 1.7 \\ 1.4 \end{array} } \underbrace{ \begin{array}{c} 1.2 \\ 1.2 \end{array} } \underbrace{ \begin{array}{c} 1.0 \\ 1.4 \end{array} } \underbrace{ \begin{array}{c} 1.2 \\ 1.2 \end{array} } \underbrace{ \begin{array}{c} 1.0 \\ 1.0 \end{array} } \underbrace{ \begin{array}{c} 1.0 \\ 2.35.4 \end{array} } \underbrace{ \begin{array}{c} 29.2 \\ 2.2 \end{array} } \underbrace{ \begin{array}{c} 1.7 \\ 1.4 \end{array} } \underbrace{ \begin{array}{c} 1.4 \\ 1.2 \end{array} } \underbrace{ \begin{array}{c} 1.2 \\ 1.1 \end{array} } \underbrace{ \begin{array}{c} 1.1 \\ 1.0 \end{array} } \underbrace{ \begin{array}{c} 1.0 \\ 2.0 \end{array} } \underbrace{ \begin{array}{c} 235.4 \\ 30 \end{array} } \underbrace{ \begin{array}{c} 29.2 \\ 5.0 \end{array} } \underbrace{ \begin{array}{c} 1.09 \\ 5.0 \end{array} } \underbrace{ \begin{array}{c} 3.2 \\ 2.2 \end{array} } \underbrace{ \begin{array}{c} 2.2 \\ 1.7 \end{array} } \underbrace{ \begin{array}{c} 1.8 \\ 1.5 \end{array} } \underbrace{ \begin{array}{c} 1.2 \\ 1.1 \end{array} } \underbrace{ \begin{array}{c} 1.1 \\ 1.0 \end{array} } \underbrace{ \begin{array}{c} 1.0 \\ 200 \end{array} } \underbrace{ \begin{array}{c} 33.6 \\ 30 \end{array} } \underbrace{ \begin{array}{c} 10.7 \\ 5.2 \end{array} } \underbrace{ \begin{array}{c} 3.2 \\ 2.3 \end{array} } \underbrace{ \begin{array}{c} 2.1 \\ 1.7 \end{array} } \underbrace{ \begin{array}{c} 1.4 \\ 1.2 \end{array} } \underbrace{ \begin{array}{c} 1.2 \\ 1.1 \end{array} } \underbrace{ \begin{array}{c} 0.9 \end{array} } \underbrace{ \begin{array}{c} 0.9 \end{array} } \underbrace{ \begin{array}{c} 0.3 \end{array} } \underbrace{ \begin{array}{c} 1.1 \\ 1.1 \end{array} } \underbrace{ \begin{array}{c} 0.9 \end{array} } \underbrace{ \begin{array}{c} 0.9 \end{array} } \underbrace{ \begin{array}{c} 0.3 \end{array} } \underbrace{ \begin{array}{c} 1.1 \\ 1.1 \end{array} } \underbrace{ \begin{array}{c} 0.9 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 1.1 \end{array} } \underbrace{ \begin{array}{c} 0.9 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 1.1 \end{array} } \underbrace{ \begin{array}{c} 0.9 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } \underbrace{ \begin{array}{c} 0.1 \end{array} } $		(3)											
$ \underbrace{ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ { { F} } { { F} } { { F} } { { F} } { { F} } { { F} } { { (3)} } { { (3)} } { { (5)} } { { (5)} } { { (3)} } { (3)} { { (5)} } { { (5)} } { { (3)} } { (3)} { { (5)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } } { { (3)} } { { (3)} } { { (3)} } } { { (3)} } { { (3)} } { { (3)} } } { { (3)} $													
$ { { F} } { { F} } { { F} } { { F} } { { F} } { { F} } { { (3)} } { { (3)} } { { (5)} } { { (5)} } { { (3)} } { (3)} { { (5)} } { { (5)} } { { (3)} } { (3)} { { (5)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } { { (3)} } } { { (3)} } { { (3)} } { { (3)} } } { { (3)} } { { (3)} } { { (3)} } } { { (3)} $		N7 1	10			10.0				1.0			
$ \begin{array}{c} \mbox{FW} \\ \mbox{FW} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \$		Normai											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c} \mbox{FVM} \\ \mbox{FVM} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\ \mbox{F} \\$													
$ \frac{30}{200} > 10k > 10k 4087. 3582. 1607. 1594. 243.6 239.2 105.5 102. 200 1184.2 599.5 421.2 318.7 312.1 107.4 103.9 65.3 56.9 41.9  \infty 42.2 20.7 11.4 7.3 5.0 3.7 2.9 2.4 2.0 1.7 t (5) 10 4219.6 3590.3 2657. 2608. 2608. 85.4 80.7 17.9 17.6 15.3  30 910.4 320.2 154.9 67.3 54.1 18.9 5.7 4.7 3.7 2.6  200 40.1 15.3 7.8 4.6 3.1 2.4 1.9 1.6 1.4 1.2  \infty 31.9 12.8 6.8 4.3 3.0 2.3 1.9 1.6 1.3 1.2 Normal 10 384.9 43.4 14.8 7.3 4.4 3.0 2.3 1.9 1.5 1.330 71.5 20.9 9.2 5.3 3.6 2.6 2.1 1.7 1.4 1.2\infty 39.0 14.4 7.4 4.6 3.2 2.4 1.9 1.6 1.4 1.2 \infty 39.0 14.4 7.4 4.6 3.2 2.4 1.9 1.6 1.4 1.2 \infty 39.0 14.4 7.4 4.6 3.2 2.4 1.9 1.6 1.4 1.2 \infty 39.0 14.4 7.4 4.6 3.2 2.4 1.9 1.6 1.4 1.2 \infty 39.0 14.4 7.4 4.6 3.2 2.4 1.9 1.7 1.4 1.3 t (3) 10 1993.2 1981.6 1623. 389.2 223.9 71.5 68.6 67.9 66.2 65.930 1604.8 1593.5 290.4 236.5 232.5 97.1 95.9 95.4 35.2 33.2200 407.0 200.8 51.9 41.2 27.9 26.1 25.3 22.6 14.4 12.6\infty 24.9 15.3 10.3 7.3 5.5 4.3 3.5 2.9 2.4 2.1 t (5) 10 2610.7 1073.8 486.2 95.5 81.2 17.8 17.3 15.7 15.5 13.930 56.8 32.0 18.4 11.9 6.6 5.2 4.4 3.8 2.5 2.1 $			00	30.6	10.1	5.0	3.1	2.3	1./	1.4	1.2	1.1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŝ	t (3)											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-FI												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NN N		200										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EV		00	42.2	20.7	11.4	7.3	5.0	3.7	2.9	2.4	2.0	1.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		t (5)		4219.6	3590.3	2657.	2608.	2608.	85.4	80.7	17.9	17.6	15.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				910.4			67.3	54.1		5.7		3.7	2.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			200				4.6				1.6		
$ \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 $			00	31.9	12.8	6.8	4.3	3.0	2.3	1.9	1.6	1.3	1.2
$ \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 $		Normal	10	384.9	43.4	14.8	7.3	4.4	3.0	2.3	1.9	1.5	1.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\stackrel{\text{P}}{\vdash} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$													
$\stackrel{\text{P}}{\vdash} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$		t (3)	10	1993.2	1981.6	1623.	389.2	223.9	71.5	68.6	67.9	66.2	65.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8										95.4		
\$\infty\$         24.9         15.3         10.3         7.3         5.5         4.3         3.5         2.9         2.4         2.1           t (5)         10         2610.7         1073.8         486.2         95.5         81.2         17.8         17.3         15.7         15.5         13.9           30         56.8         32.0         18.4         11.9         6.6         5.2         4.4         3.8         2.5         2.1	È												
30 56.8 32.0 18.4 11.9 6.6 5.2 4.4 3.8 2.5 2.1													
30 56.8 32.0 18.4 11.9 6.6 5.2 4.4 3.8 2.5 2.1		t (5)	10	2610.7	1073.8	486.2	95.5	81.2	17.8	17.3	15.7	15.5	13.9
<u>∞ 25.1 12.9 7.9 5.3 3.9 3.0 2.4 2.0 1.7 1.5</u>									3.0			1.7	

and 5 degrees of freedom, SDRL values become so high which makes ARL values questionable. Especially in Tables 2, 3 and 4, it is observed that SDRL values for EWMA-3 method when m = 30 are very large so that it seems like they are increasing as the number of profiles *m* increasing which is rather counter-intuitive. As we discuss before for Table 1, these large SDRL values are because of a small number of extremely large run length values meaning that for a specific sample it is possible not to observe a signal for a long time. It is more probable to observe these extreme run length values when the estimation is done with small number of profiles (m = 10 and m= 30) and the distribution is a t distribution with a small degrees of freedom. When SDRL values are high, using ARL as a performance measure to

compare the methods would be unreliable. Therefore, the mentioned methods are also compared according to the deviation of ARL values from the ones obtained under normality with known parameters (named as bias) and the corresponding SDRL values, and the best performer among them are reported in Table 5. However, it must be noted that the best performer does not mean that the chart performance is good and can be used safely. For an indication of that, the best bias (BB) and worst bias (WB) done by the best performer are also reported in Table 5. For example, the best performer under the t distribution with 5 degrees of freedom is EWMA-R when the number of profiles used in estimation, 'm', is less than 200. In this case, the BB is 0.11 which is obtained when  $\lambda$  = 2.0, *m* =10 and the WB is 39.02 which is obtained

m		t(3)	methods under all sh t(5)		Normal
			( <del>-</del> )	For all λ	
< 200	Method	T ²	EWMA-R		EWMA-3
		-2.04	0.11		-0.05
	BB	(λ=0.4, <i>m</i> =10)	$(\lambda = 2.0, m = 10)$		$(\lambda = 1.0, m = 10)$
	WD	34.28	39.02		78.06
	WB	(λ=0.8, <i>m</i> =10)	(λ=0.4, <i>m</i> =10)		(λ=0.2, <i>m</i> =10)
≥200	Method	EWMA-R	EWMA-3		EWMA-3
	BB	3.0	-0.08		-0.08
	DD	(λ=2.0, <i>m</i> =200)	(λ=1.8, <i>m</i> =200)	(λ	=1.6, 1.8, <i>m</i> =200)
	WB	-26.22	-2.93		1.74
	WD	(λ=0.2, <i>m</i> =200)	(λ=0.2, <i>m</i> =200)		(λ=0.2, <i>m</i> =200)
				For all β	
< 200	Method	T ²	EWMA-R		EWMA-3
		0.01	0 = 0	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	-0.05
	BB	0.81	0.52	(β=0.225	$m = 10; \beta = 0.175, m = 30$
		(β=0.075, <i>m</i> =10)	(β=0.25, <i>m</i> =30)		0.05
		-105.67	-65.02		(β=0.2, <i>m</i> =10) 75.66
	WB	$(\beta=0.025, m=30)$	$(\beta=0.025, m=30)$	ſ	$\beta = 0.025, m = 10)$
				l	
≥200	Method	EWMA-R	EWMA-3 -0.06		EWMA-3
	BB	4.88	(β=0.150,		0.03
		(β=0.25, <i>m</i> =200)	m=200)		(β=0.1, <i>m</i> =200)
		73.98	-27.77		1.72
	WB	(β=0.025,	(β=0.025,	((	3=0.050, m=200)
		<i>m</i> =200)	<i>m</i> =200)	U	5-0.050, m-200)
		For	allγ	γ < 1.8	γ≥1.8
< 200	Method	EWMA-R	EWMA-R / T ²	Similar performance	Similar performance
		0.78	0.04	-0.05	-0.13
	BB	$(\gamma=3.0, m=200)$	(T ² ,γ=3.0,	$(T^2, \gamma=1.4, m=200)$	(EWMA-R, $\gamma$ =3.0, <i>m</i> =200;
		(7 510,111 200)	<i>m</i> =200)	(1), 11, 11 200)	EWMA-3, γ=1.8, <i>m</i> =200)
		-9.13	-14.32	0.45	-0.33
	WB	(γ=1.2, <i>m</i> =200)	$(T^2,\gamma=1.2, m=200)$	(T ² , γ=1.2, <i>m</i> =200)	(EWMA-R, γ=1.8, <i>m</i> =200)
			<i>m=200</i> j		
≥200	Method	EWMA-R	EWMA-R / T ²	Similar	Similar performance
			-	performance	-
	BB	0.78	0.04	-0.05	-0.13 (EWMA-R, γ=3.0, <i>m</i> =200; EWMA
	DD	(γ=3.0, <i>m</i> =200)	$(T^2,\gamma=3.0,$	(T ² , γ=1.4, <i>m</i> =200)	
			<i>m</i> =200) -14.32		3, γ=1.8, <i>m</i> =200)
	WB	-9.13	-14.52 (T2,γ=1.2,	0.45	-0.33
		$(\gamma = 1.2, m = 200)$	(12,7-1.2,	$(T^2, \gamma=1.2, m=200)$	(EWMA-R, $\gamma$ =1.8, m=200)

<b>Table 5.</b> Summary of the comparison of the methods und	der a	er all s	shifts
--------------------------------------------------------------	-------	----------	--------

when  $\lambda = 0.4$ , m = 10. The practitioners should be aware of the big biases that degrade the chart performance while using them.

### 5. Conclusion

There is an increasing number of charts suggested to monitor profiles. Most of them are based on the assumption that the model parameters are known in Phase II analysis and the error terms are normally distributed which are both unrealistic in many applications. However, there are only a few studies that examine the estimation effect and violation of normality assumption for simple linear profiles in the literature and no one has investigated both effects at the same time. Therefore, in this study, the effect of both estimation and violation of normality assumption on the most popular T², EWMA-R and EWMA-3 charts in terms of ARL and SDRL measures is investigated for simple linear profile monitoring. In this study, the errors are assumed to have Student's tdistribution and it is found that violation of both highly degrades the assumptions charts' performance. The estimation effect increases as the distribution deviates from normality more and it requires more profiles to be used in estimation stage. However, in some situations even 200 profiles are not enough to dampen this effect. Furthermore, it is observed that using only ARL as a performance measure might be misleading. Instead, the run length standard deviations should also be taken into consideration since in most cases they are unacceptably large even though the ARL values are close to their theoretical counterparts. As a result, practitioners should check the normality assumption and should be particularly aware of the estimation effect if this assumption is violated.

### References

- Woodall W.H., Spitzner D.J., Montgomery D.C., Gupta S. 2004. Using control charts to monitor process and product quality profiles. Journal of Quality Technology, 36(2004), 309-320. DOI: 10.1080/00224065.2004.11980276
- [2] Noorossana R., Saghaei A., Amiri A. 2011. Statistical Analysis of Profile Monitoring (eds). John Wiley & Sons: Hoboken, NJ.
- [3] Woodall W.H., Montgomery D.C. 1999. Research issues and ideas in statistical process control. Journal of Quality Technology, 31(1999), 376-386. DOI: 10.1080/00224065.1999.11979944
- [4] Woodall W.H., Montgomery D.C. 2014. Some current directions in the theory and application of statistical process monitoring. Journal of Quality Technology, 46(2014), 78-94. DOI: 10.1080/00224065.2014.11917955
- [5] Mahmoud M.A. 2012. The performance of Phase II simple linear profile approaches when the parameters are estimated. Communications in Statistics – Simulation and Computation, 41(2012), 1816-1833. DOI: 10.1080/03610918.2011.621570
- [6] Aly A.A., Mahmoud M.A., Woodall W.H. 2015. A comparison of the performance of Phase II simple linear profile control charts when parameters are estimated. Communications in Statistics – Simulation and Computation, 44(2015), 1432-1140. DOI: 10.1080/03610918.2013.821484
- [7] Kang L., Albin S.L. 2000. On-line monitoring when the process yields a linear profile. Journal of Quality Technology, 32(2000), 418-426.

- [8] Kim K., Mahmoud M.A., Woodall W.H. 2003. On the monitoring of linear profiles. Journal of Quality Technology, 35(2003), 317-328.
- [9] Mahmoud M.A., Morgan J.P., Woodall W.H. 2010. The monitoring of simple linear regression profiles with two observations per sample. Journal of Applied Statistics, 37(2010), 1249-1263. DOI: 10.1080/02664760903008995
- [10] Mahmoud M.A., Woodall W.H. 2004. Phase I analysis of linear profiles with calibration applications. Technometrics, 46(2004), 380-391. DOI: 10.1198/004017004000000455
- [11] Noorossana R., Vaghefi A., Dorri M. 2011. Effect of non-normality on the monitoring of simple linear profiles. Quality and Reliability Engineering International, 27(2011), 425-436. DOI: 10.1002/qre.1125
- [12] Noorossana R., Saghaei A., Dorri M. 2010. Linear profile monitoring in the presence of nonnormality and autocorrelation. International Journal of Industrial Engineering and Production Research, 21(2010), 221-230.
- [13] Williams J.D., Birch J.B., Woodall W.H., Ferry N.M. 2007. Statistical monitoring of heteroscedastic dose-response profiles from high-throughput screening. Journal of Agricultural, Biological and Environmental Statistics, 12(2007), 216-235. DOI: 10.1198/108571107X197779
- [14] Vaghefi A., Tajbakhsh S.D., Noorossana R. 2009. Phase II monitoring of nonlinear profiles. Communications in Statistics: Theory and Methods, 18(2009), 1834-1851. DOI: 10.1080/03610920802468707
- [15] Lucas J.M., Saccucci M.S. 1990. Exponentially weighted moving average control schemes: properties and enhancements. Technometrics, 32(1990), 1–29. DOI: 10.2307/1269835
- [16] Montgomery D.C. 2009. Introduction to Statistical Quality Control (6th edn). John Wiley & Sons: Hoboken, NJ, p702.