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u(0,x) = 0(x), u:(0,x) = p(x),
and the mixed boundary conditions.
u(t,0) = uy(t,0) =0,

where DY is the arbitrary derivative in Caputo sense of order p corresponding to the variable time t.
Further, D! is the arbitrary derivative in Caputo sense with order p corresponding to the variable space
x. Using shifted Jacobin polynomial basis and via some operational matrices of fractional order
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integration and differentiation, the considered problem is reduced to solve a system of linear equations.

The used method doesn’t need discretization. A test problem is presented in order to validate the method.

Moreover, it is shown by some numerical tests that the suggested method is stable with respect to a small

perturbation of the source data g(t,x). Further the exact and numerical solutions are compared via 3D

graphs which shows that both the solutions coincides very well.

© 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

In present time significant attention has been given to study
non-integer order partial differential equations. In fact, it was
shown that in many situations, derivatives of non-integer order
are very effective for the description of many physical phenomena
(see, for example [3,17,20,23]). The current article is devoted to
find numerical solutions to the following class of time-space frac-
tional partial differential equations:

DPu(t,x) + kDPu(t,x) + Tu(t,x) = g(t,x),1 <p < 2,

(t,x) €10,1] x [0, 1], (1)
under the initial conditions
u(0,x) = 0(x), ur(0,x) = ¢(x), (2)
and the mixed boundary conditions
u(t,0) = uy(t,0) =0, (3)

where (7,x) € R* x R, D? denotes the Caputo fractional derivative of
order p with respect to the variable time t,D? denotes the Caputo
fractional derivative of order p with respect to the variable space
X, U, is the derivative of u with respect to the variable time t,u, is
the derivative of u with respect to the variable space x, and
0, ¢:[0,1 —R,g:[0,1] x [0,1] — R are given functions.

The modeling of some real world problems by using differential
equations is a warm area of research in last many years. Here we,
remark that partial differential equations have important applica-
tions in many branches of science and engineering. For instance
heat transfer is a very important branch of mechanical and aero-
space engineering analyses because many machines and devices
in both these engineering disciplines are vulnerable to heat. An
engineer can predict about with possible shape changes of the
plate in vibrations from the simulation results of the aforesaid
equations. Many engineering problems fall into such category by
nature, and the use of numerical methods will to find their solu-
tions are important for engineers. In particularly time-space one
dimensional equation has many applications. For concerned appli-
cations detail, we recommend few article as [9-11].

Conventionally, numerous techniques were developed to find
approximate solutions to different classes of fractional partial dif-
ferential equations such as homotopy analysis method [8], He's
variation iteration method [5], Adomian decomposition method
[7], homotopy perturbation method [1], Fourier transform method
[29], Laplace and natural transform methods [26,27]. But all these
method have their own advantages and disadvantages in applica-
tion point of view. For example, homotopy methods depend on a
small parameter which restricted these methods. Similarly the
methods that are involving integral transform also are limited in
applications. In last few decades, some interesting numerical
schemes based on radial basis functions (RBFs) and meshless tech-
niques were introduced. These methods require collocation and
(RBFs) to solve fractional partial differential equations [22,28].
Recently, numerical schemes based on operational matrices have
attracted the attention of many researches. The mentioned tech-
niques provide highly accurate numerical solutions to both linear
and nonlinear ordinary as well as partial differential equations of

classical and fractional order. In the mentioned schemes, some
operational matrices of fractional order integration and differenti-
ation are constructed, which play central roles to find approximate
solutions for the considered problems. In the most existing works,
the mentioned matrices are obtained using a certain polynomial
basis and a Tau-collocation method (see, for example
[4,12,13,21,24,25,30]). However, in these methods, discretization
is required, which needs extra memory. Further for discretization
and collocation extra amount of memory should be utilized. To
overcome this difficulty, in [14,15], the authors constructed the
operational matrices without discretizing the data and omitting
collocation method to compute numerical solutions for both ordi-
nary as well as partial fractional differential equations.

Motivated by the above cited works, in this paper, a numerical
solution to (1)-(3) is computed using shifted Jacobin polynomial
basis and some operational matrices of fractional order integration
and differentiation without actually discretizing the problem. The
Jacobi polynomials are more general polynomials and including
“Legendre polynomials, Gegenbauer polynomials, Zernike and Che-
byshev polynomials” as special cases. The concerned polynomials
have numerous applications in Quantum physics, fluid mechanics
and solitary theory of waves, see detail [16].

The used method reduces (1)-(3) to a system of linear algebraic
equations of the form given by

HLA =B,

where the matrix H is the unknown which may be determined
while the other matrices A, B are known coefficient matrices of
dimension k* x k* and 1 x k? respectively. Here it is remarkable that
the obtained system of algebraic equations is then solved by Gauss
elimination method through Matlab for the unknown matrix H. Fur-
ther we demonstrate that by computational software, the solution
is easily obtained up to better accuracy. The computations in our
work are performed using Matlab-16.“The paper is organized as fol-
lows. In Section 2, we recall briefly some necessary definitions and
mathematical preliminaries about fractional calculus. In Section 3,
we recall some basic properties on Jacobi polynomials, which are
required for establishing main results. In Section 4, The shifted
Jacobi operational matrices of fractional derivatives and fractional
integrals are obtained. Section 5 is devoted to the numerical
scheme, which is based on operational matrices. In Section 6,
numerical experiments are presented. Also in the same section,
we study the stability of the method with respect to a perturbation
of the source data. Conclusion is made in Section 7.”

Basic materials

Some fundamentals notions, definitions and results are recalled
here from [6,17,18].

Definition 1. A real function f(x),x > 0 is said to be in space
Cyu, it € R, if and only if, there exists a real number m > u such that

fx) =x"g(x),x >0,

where g € C(0,1).
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Definition 2. A real function f(x),x > 0 is said to be in space
Cp, HeRneNy=NUO, if and only if, f* € Cy.

Definition 3. Corresponding to arbitrary order p > 0, for a function

f e Cy,u = —1, arbitrary order integral is recalled as
Il»’f X p) fO P ]f( )dl'l7
1°f(x) = f®).
For f € C,, it = —1,p,q > Oand y > —1, we have
PEf(x) = P"f (x),
and
, I'y+1)
Px? = Pty 4
X Tp+y+)” @

Definition 4. Let function f € C",, then corresponding to order
pe€ (n—1,n,n=[p]+1, the arbitrary derivative in Caputo sense
is provided by

(Df)(x) = I"Pf " (x).

For a power function for order p € (n — 1,n],n = [p] + 1, the arbi-
trary derivative in Caputo sense, one has

0 if 0<k<Ip],
Dka == { (k+]) XxP+Y lf k [p} + 1 (5)
F(1+k-p) )
where k € Ny.
We have the following properties.
Lemmal. letn—-1<p<n neN, u>-1 andfeC" Then
D°Pf(x) = f(x),
and
n-1
PO = f0) - 3 0% x>0 (6)

i=0

Derivation of Shifted Jacobi polynomials from fundamental
Jacobi Polynomials

Here we provide fundamental characteristic of the Jacobi poly-
nomials. The famous Jacobi polynomials 22"’ (y) are defined over
the interval [-1,1] as

(@,0) _ (@+0+2i-1)[@? -0 +y(@+o+2i-2)(@+n+2i-2)] p(@,0)
yi (y) - 2i(m+w+i)(T+w+2i-2) Pi (y)

(@+i-1)(w+i-1)(@T+w+2i) p(@,o) .
~ Farommioais iz W), 1=2,3,..., (7)
where !(?gv‘w) (y) _ 17 @gm,w)(y) _ m+m+2y + mgm .

By means of the substitution %+ ” {, we get a revised version of
the concerned polynomials called the shifted Jacobi polynomials
over the interval [0, L]. A general term 2.7 (t) of degree i of the sug-
gested polynomials on [0, L], with @ > —1, w > —1is as:

i

27 ' 'Ti+o+DI(i+n+m+w+1) ,
Z . . i (8)
Fn+o+DI(i+@T+w+1)(1-n)nll
where
iFi+w+1)
(@) _ i
’ZL,i (0) - (_1) mv

and

Ti+@+1)

2 @) o
20 =Fmrnn

Li

Result regarding orthogonality of the said polynomials is

L
| 27 wag e

“(dt = KT 9)

and w{™“)(t) = (L —

(m.w) _

such that

t)?t® is the weight function, and

0, if i=j,
0 if i#j,

L Ti+m+ DI+ w+1)
Ri+om+o+)ili+o+w+1)

(10)

Here for the readers we provide few special cases from shifted
Jacobi basis as:

(i) L.i(t) = 2°%°(t) is the shifted Legendre polynomials by sit-
ting @ = w =01in (8).
Li(t) = r(i;.”r(%) ,221 )( t), is called shifted Chebyshev poly-

(i+3)

nomials by sitting @ = w =3 in (8).

L(i+2)r'3)

T(i+3)

Chebyshev polynomials of second kind when @ = @ =1 in
(8).

(iv) Also if we sit @ = w in (8) we get shifted Gegenbauer (Ultra-
spherical) polynomials as

(ii) 7

11 .
(iii) In same line one has % ;(t) = Q(in‘z)(r), is known as

Fi+ DI (@a+3) o
Gri(t) = MT‘*‘%)Z 2,77 (0).

(v) Further if one sit w =1, w =3 in (8), we get third kind

shifted Chebyshev polynomials as

(T(2i+1))!

4
Ty O

1 Lit) =
(vi) sitting w =3, w =1 in (8), we have fourth kinds shifted
Chebyshev polynomials as

(F(2i+1))!

973
Tai— 2 ©

Wi(t) =
Here we claim that performing numerical computation with
shifted Jacobi polynomials means that the above special cases
are also considered. Some time the shifted jacobi polynomials
are also called hypergeometric polynomials which constitute a
big class of orthogonal polynomials. These polynomials are
orthogonal with respect to some weight function, for more detail
(see [19]).

Assume that U(t) is a square integrable function with respect to

the weight function ™ on [0,L]. Then it can be expressed in
terms of shifted Jacobi polynomials as

ZDQW(U

from which the coefficients D; can be computed easily using the
orthogonality condition (9). Onward we are switching over to
shifted Jacobi polynomials of two variable instead of one (see [2]).
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Definition 5. Let {,z‘”” (t )}DC be the sequence of one variable

shifted Jacobi polynomials on [0, L]. The notions {JL'?]"’ (t, x)}fjc_:O for

two variable shifted Jacobi polynomials which are defined on
[0,L] x [0,L] by

279(t.x) = 217 (02,7 (x), (t,x) €[0,1] x [0,L].

The family {JLU )}::O is orthogonal with respect to the
weighted function
W t,x) = W ()7 (x), (t,x)€[0,L]x[0,L].
Indeed, from (9), we have

Ir ]‘0 270027 (€)W T, x)dtdx
= J5 Jy 277027 (x )g“”‘“ O27 @) £y w ™ (x)dedx
(jo mzu) (t)"l//;_m @) ) (jo mzu) £; w)( )ﬂ/;‘mu ( )dX)
— RLZ ) ER(LT” ,

where
m(m,w)m(w,w) _ { Hiej if (l,]) = (k, 1)7
Lk =L 0 otherwise.

assume that a square integrable function U(t, x) with respect to the

weight function W‘E’”"“) on [0,L] x [0,L] is expressed in terms of the
considered polynomials as

ZZD,J \7O(t,x), (t,x) €[0,L] x [0,L], (11)
i=0 j=0

where the notions D;; are Jacobi coefficients provided by

mu)
U 99 Llj

Truncated the series (11) up to their K-terms which can be
expressed as:

U(t,x)yw ™) (t, x)dtdx. (12)

—1 k-

U(t,x) ~ U(x,y) = ZZDUJW =Hp®p (t,x),
i=0 j=0

where

H}> = (Doo,Dos1,...,Doj-1.--,Dk-10, D11, -, Dic11)

and

Dptx) = (215500, 250 (), . 250, (%), . -

Q(m L)

T
27620, 277 (6.2, 277, (6X))

Construction of required matrices corresponding to arbitrary
order derivatives and integrals

Here in this part, let 2 = {0,1,...,k
p>0andij,abecE let

5 7{ 1 if b=j,
PP 0 if bj
and

— 1}, some results are: For

Wa,b (i,j) = umz:oAa.nApGi.j,bv
where

(D" "Ta+w+Dla+n+ad+0+1)

Aa,n.pzr(n+w+1)r(a+w+w+1)(a7n)!l"(p+n+1)

and

ub = blbz

(21+w+w+l)i!L”
Ti+m+1)

"F itl+m+o+1)
Tl+or )i

I'n+p+l+w+1)
I'm+p+l+ow+w+2)

Keeping in mind the above definitions, notions, one has the results
presented here as:

Lemma 2. From vector function given in (13) as @, (t,x), we have

B(®,2(t, X)) ~ M£2sz<1>kz(t,x), (t,x) € [0,L] x [0,L], (14)
where I is the Riemann-Liouville fractional integral of order p > 0
with respect to the variable time t, and M,z 2 is the square matrix
of size k?, given by

iw = (Mi,r)lgy.rgkz’
with
My, =W as(i.),

v=ka+b+1,r=ki+j+1, ijj,abecZ.

Proof.
Let (a,b) be a fixed pair of positive integers such that a,b € E.
Then

B2TY (0 = (P27 (0) 257 ().
On the other hand, we have

a

Z(—1)“’"F(a+w+1)F(a+n+w+w+ 1)
~Tm+w+1)l(a+@+w+1)(a—n)nll"

257 (t) =

From Property (4), we obtain

I»’tn: n! tn+p
I'p+n+1)
which yields
12 ¢ Z D" " Ta+w+1)la+n+m+o+1) no.
t=La Fn+w+1 IFa+a+w+1)(@a-n"T(p+n+1)

Therefore, we have

a
A
20 (00 =3 TP 2T (x). (15)
n=0

Approximating t”“’ﬂﬁ’w (x) in terms of said polynomials, one has

—1 k—

ZZSJ 277 (6) 2,7 (x), (16)

i=0 j=0

tn+p Qilz.w

where
Sijb = 0, / / 270, )P 2T (x)w |7 (¢, x)dtdx.
On the other hand, we have
si.j.b :%(/ trH»PJ(wO ( )ﬂ/(WQ dt) </ J(mw )ngw< )W/(WQ( )dx>
i0j
Therefore, using the orthogonality condition (9), we obtain

J; L
Sijp = (J)b </ t”*pﬂi?’“))(t)’wéw'w)(t)dt).
i 0
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Further, we have

i

Z(—l)"’l‘(i+w+1)F(i+l+w+w+ 1)
S Tl+o+DT({i+@+wo+1)[- )L

L
></ tn+p+l+r)( )Udt
0

L
/ tn+p£;_7.ru) (t)/ﬂp;.m.w) (f)dt _
0

Using the change of variable s =}, we obtain
f tn+p+l+o( )Udt Ln+p+l+w+1 fé- S(n+p+1+w+w+1),1 (1 _ S)(m+1)—1ds

LHPHWHWHB(H-Q-D-&-I—&-(U-&-1,w+1),

where B is the beta function. Next, using the property
_Try)
I'x+y)’

we obtain

B(x,y) x>0, y>0,

L
/ tn+p+l+w ( )mdl’ Ln+p+l+w+w+l
0

I'n+p+l+o+1)I'(w+1)
I'n+p+l+w+w+2) °

Hence,

i .
L nip g)(@.0) (43 gy A@.0) _ (=)' i+o+ )M (i++T+o+1)
fot QL,:‘ (t)WL (t)dt* Z T'(l+o+1)T (i+@+wo+1) ()1
1=0

T (n+p+l+o+1)I(w+1) Ln+p+l+w+w+l
T(n+p+l+w+w+2) )

which yields

0
S..p — b
ij.b 0;

i .
(=) '+ o+ )i+ +m+o+1)
§ : T(+o+ 1) ([i+m+o+1) i)
1=0
I'(n+p+l+o+1)I(w+1) Ln+p+l+w+w+1
T(n+p+l+w+w+2)

Using (10), we obtain

Sijp = L"Gijp.
On the other hand, from (15) and (16), we obtain
k=1 k-1
P27 (t,x) ZAWZZG,J 277027 (x),
i=0 j=0
that is,
—1k-1
I”QL’ZZ) t,X) = Qqup(i,J) L’I’j‘” (t,X),
i=0 j=0

which yields (16).
Forp>0andij,abecE, let

1 if a=i,
51’.(1:{ .

0 if a=i
and
b %
]) = ZAb,n-,PG;J,a»
n=0
where
A ~1D)"Th+w+1DI(b+n+m+w+1)
P T Tm+o+ )Ib+m+o+)(b-—nT(p+n+l)
and

J :
s (~1Y T+t m+o+1)
Gija= b‘-ﬁz T(l+o+1)G-n1
=0
C(n+p+l+o+)C(@+1) (2j+@m+o+1)jIP
T (n+p+l+w+w+2) I'(j+m+1)

Following the same arguments used in the proof of Lemma 2, we
obtain the following result.

Lemma 3. Let @ (t,x) be the vectorial function defined by (13).
Then

P(®,a(t,X)) ~ NE

ky xky

(Dkz(tzx)v (t,X) € [OvL] X [O/L] (17)

where I? is the Riemann-Liouville fractional integral of order p > 0

with respect to the variable time x, and Nizxkz is the square matrix

of size k?, given by

Nszkz = (Nzr)lgv.rgkz’

with

N . =Q,(Gj), v=ka+b+1,r=ki+j+1, 0<ij,ab
<k-1.

Forp >0andij,abecE, let

0 if a=0.1,....[p],

Wab(i)) = if a=[pl+1,[p]+2,....k—1,
n=[p|+1
where
A (-D)""Ta+w+Da+n+m+w+1)
P T Tm+o+DI(a+@+w+1)(@—n)!T(14+n-p)
and
~ )i+ 1 —p+lto+1)[(@+1
Sijh = Jbz 1+</;I1+?+lcvl;'+ : <l,1(rf—+p1;iz)+)w(f;) :
(21+w+w+1)l!
T(i+w+1)P -

The following result holds.

Lemma 4. Let @, (t,x) be the vectorial function defined by (13).
Then

DY (@2 (t, X)) ~ Rﬁ ok, P2 (6:X), (£,X) € [0,L] x [0,L], (18)

where R"2 2 is the square matrix of size k?, given by

= (R

Vf)1<vr<l<

sz 'S

with

RO =W ap(ij), v=ka+b+1,r=ki+j+1,
0<ij,ab<k-

Proof.
Let (a,b) be a fixed pair of positive integers such that
a,be{0,1,...,k—1}. Then

P27 (6.x) = (DP2(7 (1)) 25 (x).
On the other hand, we have

W,
DRalz (1 o

Z D" Ta+wo+NDla+n+ad+0+1)
I'n+o+1IMa+@+ o+ 1)(a-n)nlL"

We consider two cases.
Case.1 a=0,1,...,[p]. In this case, from (1), we have

D’t"=0, n=0,1,2,3,...,a.
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Therefore,
D27 (t,x) = 0. (19)

Case.2 a=[p]+1,[p] +2
have

D't" =0, n=0,1,2,3,...,p|

.,k —1. In this case, from (1), we

and

I'n+1)
I'l+n-p)

Therefore,

DPtn = P n=1[p|+1,[p|+2,....a

DPQLlZ(b"(t X)
_ N D)""Ta+o+DT(a+n+@m+0+1) (10 27 (x)
WgaTn+o+DMa+@+o+1)@a-n)r1+n-p)l Lb '

Then, we obtain

A

DP2T(tx) = Y ST (x). (20)

n=[p|]+1

Approximating t"?2 ”"”)( x) in terms of the considered polynomials,
one has

=

—1 k-1
Su bQLrlu ) U ) (X), (21)

n-p (m‘w
tra, 2
j=0

Iy
o

i

where
Sijp = 0, / / 270 ()P 2T (x)w |7 (t, x)dtdx.
On the other hand, we have
Sijp = %0] < / ' P27 (6w (t)dt) ( /0 ' 27 (0277 (x )W‘;’”"">(x)dx>
Due to orthogonality condition (9), one has

d; L « 0
Sij.b = Z)ilb (/0 tnfp(Ql(-z.?.u)(t)W @,0) ( )dl’)

Further, we have
/L 170 9179 (£ 79 (1) — Z () Ti+o+ DIi+I+ @+ 0 +1)
o M t S Tl+o+D)I(i+@+w+1)i- )N

L
x / P (L — £)7dt.
J0O

Upon substitution s = £, one has

/L - p+l+w( )mdt Ln—p+l+w+w+l
0

I'm-p+l+o+1)I'(w+1)
I'm-p+l+w+w+2) °

Hence,

(t)ﬂ”/’(-w,w)(t)dt _ i (—1)"”1"(140&1)I‘(i+l+w44rw+1)

I'(l+o+1)I (i+@+o+1) (-1
1=0
T'(n-p+l+o+1)I'(w+1) Ln p+l+w+m+l
T(n—p+l+w+@+2)

L tn—p p(@w0)
fo ¢ p’ZL,i

which yields

i .
S..p = ‘Si_.bz(*1)"'F(i+m+1)l"(i+l+w+w+1)
ijb = 7y I(l+o+1)T (i+w+o+1) (i)
=0
I'(n-p+l+o+1)[(w+1) i —p+l+o+w+1
T(n—p+l+w+w+2) .

Using (10), we obtain

n
Si,i.b =1L 3ij,b~

On the other hand, from (20) and (21), we obtain

DY 27 (t,X) ~ Aan—p3ijs 27 (t,%),

i=0 j=0n=[p]+1

that is,
k-1 k-1

DPQL’;;;’ %) = >N Wap(i]) L’jj“‘ (t,X). (22)
i=0 j=0

Finally, (19) and (22) yield (18).
For p>0andij,abecZ let

0 if b=0,1,...,[p],

S b
,ua.’b(lml) - ZAb‘n,*stjva lf b - [p] + 17 [p] + 2a . -7k - 17
n=[p]
where
N (-1)""Th+w+1)(b+n+@m+w+1)
bn-p = Tn+o+Ib+a+w+1)(b—n)T(14+n-p)
and

J .
~. _ s (VY 'T++mt+o+1)
Sija = ol-aZ‘ TG DGO
1=0

T'(n—p+l+o+)[(@+1) 2j+m+w+1)j!
I'(n—p+l+w+w+2) T(j+o+1)IP -

Following the same arguments used in the proof of Lemma, we
obtain the following result.

Lemma 5. Let @ (t,x) be the vectorial function defined by (13).
Then

D2 (@ (t,%) ~ S, Dpa(t,X), (£,%) € [0,L] x [0,L], (23)

ko xky
D
where SkZX

SP

2xid (S”I)Kurékz’

@ is the square matrix of size k?, given by

with

o =MUp(j), v=ka+b+1,r=ki+j+1, 0<ij,ab<k-

General algorithm for numerical results

In this section, using the previous obtained results, the problem
of finding an approximate solution to (1)-(3) is reduced to solving
a certain algebraic equation. Let 1 < p < 2. We write D?u(t, x) in the
form:
DYu(t,x) = Hp®p (t, ), (24)
where function vector @ (t,x) is given in (13) and unknown matrix
le with size 1 x k*. Thus one has
P(DPu(t,x)) = szlf(d)kz(t,x)).
Using (6) and Lemma 4, we obtain

u(t,x) = u(0,x) + tue(0,x) + HoM?, .

q)kz (t’ x)7
which yields from the considered initial conditions (2)

u(t,x) = 0(x) +tp(x) + H Mk2 IZCDkz(t,x).

On the other hand, using (11), we may write 0(x) + té(x) in the
form:
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0(x) + tp(x) = Z2Mp,

where ZZz is a matrix of size 1 x k?. The coefficients of the matrix Ziz
can be computed using (29). Therefore, we obtain

u(t,x) = HpM?, , +Z32)®a(t,X). (25)
Similarly, we may write g(t,x) in the form:
g(t7 X) = Q;Z(Dkz (t7 X)7 (26)

where sz is a matrix of size 1 x k* that can be computed using (29).
Now, using (1), (24), (25), and (26), we obtain

Du(t,x) = % [Q,{; Dy (%) — K(H,ZZMP

K% xk

s+ 2 )P (6,) — Hp Do (£,0)],
that is,
1
Dfu(t,x) =~ [Q{; - K(HZzMzzxkz + z;) - HH D (t,x),
Next, we obtain
P(DPu(t,x)) fl{QT - K(HT M, ,+2" ) ~HL|P(®,(t,x))
x\(Px BEANS V2 K k2 | xR L
Using (6) and Lemma 3, we obtain
u(t,x) = u(t,0) + uy(t,0)x

+% QG — k(HRM?, |, +20:) — H|N?

K K% xk?

D2 (t,X),
which yields from the boundary conditions (3)

1
u(t7x):E[Q£z—K(H{zMﬁzxk2+Z£z)—sz]Np Dpu(t,x).  (27)

K xk?
Using (25) and (27), by identification, we obtain

T ppp T _ T
szMkzxk2+Z’< - [ka 2 xk??

% K(HpM?, |, +Z0:) — Hp | N

which yields the algebraic equation

H_.A =B, (28)
where A is the square matrix of order k* given by

A= ME L OME T 0N

and B is the matrix of size 1 x k* given by

1 T T T
B = %(ka - szz)szxkz 7Zk2'

Here, 1,2 ,» denotes the identity matrix of size k2. The algebraic Eq.

(28) is equivalent to a system of k* linear equations with k* vari-
ables, which can be solved using Matlab. Finally, after solving
(28), the numerical solution to (1)-(3) can be computed using (25).

Numerical experiments

This portion is devoted to present a test problem. Therefore,
consider the given problem as

D} u(t,x) + D} u(t,x) = g(t,x), (t,x) € [0,1] x [0, 1], (29)
under the initial conditions

u(0,x) =u,(0,x) =0 (30)
and the mixed boundary conditions

u(t,0) = uy(t,0) =0, (31)

where the source term g(t,x) is given by

g(t,x) :ﬁ(xzx/ﬂ—tz\/)?),(t,x) €10,1] x [0,1]. (32)

The exact solution (29)-(31) is given by
u(t,x) = t2x%, (t,x) € [0,1] x [0,1].

For (t,x) € [0,1] x [0,1], we denote by E(t,x) the absolute error at
the point (t,x), that is,

E(t,x) = [u*(¢,x) — u(t,x)], (t,x) € [0,1] x [0, 1].

The absolute errors at different points (t,x) in the case k =4 and
(w,w) = (0,0) are shown in Table 1.

The absolute errors at different points (¢, x) in the case k = 4 and
(@, w) = (0.5, 1)are shown in Table 2. Observe that in both cases, at
every pair of point (t,x), the computed approximate solution is
equal to the exact solution with a negligible amount of absolute
error.

Next, we fix (@, w, k) = (0,0, 4), we compare our result with the
exact solution at some fixed wvalues of t, ie.
t=0.1,t =0.25,t =0.5,t = 0.75, and display the result in Fig. 1.
We repeat the same experience with (@, w,k) = (0,0.1,4). As it
is shown by Fig. 2, the obtained result is satisfactory.

Now, in order to check the stability of the approximated solu-
tion, a perturbation term is introduced in the source function
g(t,x). More precisely, we consider problem (29)-(31) with the
perturbed source g (t, x) given by

8.(t.x) = g(t,x) + €tx, (t,x) € [0,1] x [0, 1], (33)

Table 1

Absolute errors in the case (@, w, k) = (0,0,4).

(t,x) u*(t,x) u(t,x) E(t,x)

(0.25, 0.25) 0.00390625 0.00385100 0.00005525
(0.25, 0.50) 0.01562500 0.01548100 0.00014400
(0.25, 0.75) 0.03515625 0.03481800 0.00033825
(0.25, 1.00) 0.06250000 0.06174500 0.00075500
(0.50, 0.25) 0.01562500 0.01548000 0.00014500
(0.50, 0.50) 0.06250000 0.06256000 0.00006000
(0.50, 0.75) 0.14062500 0.14080000 0.00017500
(0.50, 1.00) 0.25000000 0.24943000 0.00057000
(0.75, 0.25) 0.03515625 0.03482000 0.00033625
(0.75, 0.50) 0.14062500 0.14080000 0.00017500
(0.75, 0.75) 0.31640625 0.31733000 0.00092375
(0.75, 1.00) 0.56250000 0.56302000 0.00052000
(1.00, 0.25) 0.06250000 0.06170000 0.00080000
(1.00, 0.50) 0.25000000 0.24940000 0.00060000
(1.00, 0.75) 0.56250000 0.56300000 0.00050000
(1.00, 1.00) 1.00000000 1.00110000 0.00110000

Table 2
Absolute errors in the case (@, w, k) = (0.5,1,4).
(t,x) u*(t,x) u(t,x) E(t,x)
(0.25, 0.25) 0.00390625 0.00422600 0.00031975
(0.25, 0.50) 0.01562500 0.01579700 0.00017200
(0.25, 0.75) 0.03515625 0.03562900 0.00047275
(0.25, 1.00) 0.06250000 0.06510300 0.00260300
(0.50, 0.25) 0.01562500 0.01580000 0.00017500
(0.50, 0.50) 0.06250000 0.06279000 0.00029000
(0.50, 0.75) 0.14062500 0.14089000 0.00026500
(0.50, 1.00) 0.25000000 0.24954000 0.00046000
(0.75, 0.25) 0.03515625 0.03563000 0.00047375
(0.75, 0.5) 0.14062500 0.14089000 0.00026500
(0.75, 0.75) 0.31640625 0.31685000 0.00044375
(0.75, 1.00) 0.56250000 0.56231000 0.00019000
(1.00, 0.25) 0.06250000 0.06510000 0.00260000
(1.00, 0.50) 0.25000000 0.24950000 0.00050000
(1.00, 0.75) 0.56250000 0.56230000 0.00020000
(1.00, 1.00) 1.00000000 1.00930000 0.00930000
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0.8 I I I
== FExact solution at t = 0.1

0.7 - |— Approximate solution at ¢ = 0.1
—— Exact solution at ¢t = 0.25

= Aproximate solution at ¢t = 0.25
0.5 Exact solution at ¢t = 0.5

= Approximate solution at ¢t = 0.5
= Exact solution at ¢t = 0.75

—— Approximate solution at t = 0.75

0.6~

0.4~

u(z,t)

0.3

0.2

0.1

Fig. 1. Exact and approximate solutions at different values of t that is (t = 0.1,t = 0.25,t = 0.5,t = 0.75) in the case (@, w,k) =

(0;0;4).

08~ [ Exact solution at £ = 0.1 |
07 |== Approximate solution at t = 0.1
—— Exact solution at t = 0.25

06 |mm Approximate solution at ¢t = 0.25
051 Exact solution at t = 0.5

N == Approximate solution at ¢t = 0.5

T 04 |— Exact solution at ¢ = 0.75

Kl 03 == Approximate solution at t = 0.75

0.2

0.1

Fig. 2. Exact and approximate solutions at different values of t that is (t =0.1,t = 0.25,t = 0.5,t = 0.75) in the case (@, w,k) =

where € > 0. We denote by u. the numerical solution of the per-
turbed problem. For (t,x) € [0,1] x [0, 1], we denote by E.(t,x) the
absolute error at the point (t,x), that is

Ec(t,x) = uc(t,x), (t,x) € [0,1] x

where u is the approximate solution without noise (the approxi-
mate solution for € = 0).

The absolute errors E.(t, x) for € = 0,0.1 at different points (t,x)
in the case k=4 and (w,w) = (0,0) are shown in Table 3. The

|u*(t7x) - [07117

(0:0.1;4).

absolute errors Ec(t,x) for e =0,0.05 at different points (t,x) in
the case k =4 and (@, ®) = (0,0) are shown in Table 4.

We observe from Tables 3 and 4 that at almost every pair of
points (t,x), we have E(t,x) < €, which confirms the stability of
the method with respect to a perturbation of the source data.

Graphical presentations are given in Fig. 1 for exact and approx-
imate solutions at different values of ¢t that is
(t=0.1,t =0.25,t = 0.5,t = 0.75) in the case (@, w,k) = (0;0;4).
Similarly in Fig. 2, the exact and approximate solutions at different
values of ¢t that is (t=0.1,t =0.25,t =0.5,t =0.75) in the case

Table 3 Table 4
Absolute errors in the case (@, w, k, €) = (0,0,4,0.01). Absolute errors in the case (@, w,k,€) = (0,0,4,0.05).
(t,x) u*(t,x) Ue(t,x) Ec(t,x) (£,%) u*(t,x) Ue(t,X) Ec(t,x)

(0.25, 0.25) 0.00385100 0.00390000 0.00000490 (0.25, 0.25) 0.00385100 0.00400000 0.00014900
(0.25, 0.50) 0.01548100 0.01550000 0.00001900 (0.25, 0.50) 0.01548100 0.01570000 0.00021900
(0.25, 0.75) 0.03481800 0.03490000 0.00008200 (0.25, 0.75) 0.03481800 0.03500000 0.00018200
(0.25, 1.00) 0.06174500 0.06170000 0.00004500 (0.25, 1.00) 0.06174500 0.06180000 0.00005500
(0.50, 0.25) 0.01548000 0.01550000 0.00002000 (0.5, 0.25) 0.01548000 0.01570000 0.00022000
(0.50, 0.50) 0.06256000 0.06280000 0.00024000 (0.50, 0.50) 0.06256000 0.06390000 0.00134000
(0.50, 0.75) 0.14080000 0.14130000 0.00050000 (0.50, 0.75) 0.14080000 0.14320000 0.00240000
(0.50, 1.00) 0.24943000 0.24990000 0.00047000 (0.50, 1.00) 0.24943000 0.25170000 0.00227000
(0.75, 0.25) 0.03482000 0.03490000 0.00008000 (0.75, 0.25) 0.03482000 0.03500000 0.00018000
(0.75, 0.50) 0.14080000 0.14130000 0.00050000 (0.75, 0.50) 0.14080000 0.14320000 0.00240000
(0.75, 0.75) 0.31733000 0.31850000 0.00117000 (0.75, 0.75) 0.31733000 0.32310000 0.00577000
(0.75, 1.00) 0.56302000 0.56480000 0.00178000 (0.75, 1.00) 0.56302000 0.57200000 0.00898000
(1.00, 0.25) 0.06170000 0.06170000 0.00000000 (1.00, 0.25) 0.06170000 0.06180000 0.00010000
(1.00, 0.50) 0.24940000 0.24990000 0.00050000 (1.00, 0.50) 0.24940000 0.25170000 0.00230000
(1.00, 0.75) 0.56300000 0.56480000 0.00180000 (1.00, 0.75) 0.56300000 0.57200000 0.00900000
(1.00, 1.00) 1.00110000 1.00540000 0.00430000 (1.00, 1.00) 1.00110000 1.02260000 0.02150000
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E[Exact solution
-Approximate solution

X

Fig. 3. Comparison between exact and approximate solutions over the square (t,x) €

(w, w, k) = (0;0.1;4). are presented. In both cases the effect of time
and the parameters values have testified. At taking (@, ) = (0,0)
for parameters, we get the solution more precise as compare to
(@, w) = (0;0.1) at same scale k = 4. Further for more explanation,
we give comparison between exact and approximate solution in
Fig. 3 by using (@, ®) = (0;0.1) at same scale k = 4, to the given
problem. We see that both surfaces coincide very well which illus-
trate the accuracy of the considered method.

Conclusion

The suggested method provides an easy way to solve numeri-
cally the class of fractional partial differential Eqs. (1)-(3). Using
shifted Jacobi polynomial basis, the considered problem is reduced
to a system of linear algebraic equations which has been solved by
Matlab using Gauss elimination method for the unknown coeffi-
cient matrix which then used to obtained the required numerical
solution of the considered problem. Moreover, from numerical
experiments, we observed that the method is stable with respect
to a perturbation of the source data. In future, the method can be
easily extended to solve other types of fractional partial differential
equations from physics and other fields of science.
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