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Abstract: In the current study, the characteristics of heat transfer of a steady, two-dimensional,
stagnation point, and magnetohydrodynamic (MHD) flow of shear thickening Casson fluid on
an exponentially vertical shrinking/stretching surface are examined in attendance of convective
boundary conditions. The impact of the suction parameter is also considered. The system of
governing partial differential equations (PDEs) and boundary conditions is converted into ordinary
differential equations (ODEs) with the suitable exponential similarity variables of transformations
and then solved using the shooting method with the fourth order Runge-Kutta method. Similarity
transformation is an important class of phenomena in which scale symmetry allows one to reduce
the number of independent variables of the problem. It should be noted that solutions of the ODEs
show the symmetrical behavior of the PDES for the profiles of velocity and temperature. Similarity
solutions are obtained for the case of stretching/shrinking and suction parameters. It is revealed that
there exist two ranges of the solutions in the specific ranges of the physical parameters, three solutions
depend on the opposing flow case where stagnation point (A) should be equal to 0.1, two solutions exist
when A; = 0 where A7 is a mixed convection parameter and A > 0.1, and a single solution exists when
A1 > 0. Moreover, the effects of numerous applied parameters on velocity, temperature distributions,
skin friction, and local Nusselt number are examined and given through tables and graphs for both
shrinking and stretching surfaces.

Keywords: convective condition; triple solutions; stagnation flow; casson fluid; stability analysis

1. Introduction

The topic of boundary layer fluid flow on the stretching surfaces is widely investigated for single
solution cases. Stretching surface has many applications in many processes of manufacturing, such as
the extrusion of molten polymers due to the slit die in the production of plastic sheets, paper production,
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wires as well as in the fiber coating process of foodstuffs. The qualities of final products in such processes
largely depend upon the cooling rate in the process of heat exchange. A magnetohydrodynamic
parameter is an important parameter to use, such that the rate of the cooling might be controlled so
that the desired products with quality can be obtained. Crane [1] gave the method of solution for
the incompressible steady-state 2D boundary layer flow in the case of viscous fluid on the stretching
surface. Furthermore, the problem examined by Crane has been studied more by extending it into many
diverse aspects—some of its recent important directions over the stretching flows were considered by
Mabood etal., [2], Ranaetal., [3], Hamad [4], Hassan et al. [5] and Haq et al., [6]. Hamad and Ferdows [7]
examined metallic nanofluid over a stretching surface. Vajravelu [8] and Cortell [9] considered viscous
fluid on the non-linear stretching sheet. In this paper, we also considered the stretching surface because
of its extensive usages in different areas.

During the past few decades, the stagnation-point flow has engrossed the intention of many
scholars because of its growing industrial and scientific utilization—for example, electronic devices
cooled by fans, cooling of nuclear reactors during an emergency shutdown, solar central receivers
exposed to wind currents, hydrodynamic processes, etc. In fluid mechanics problems, the point
in the flow field where the fluid local velocity becomes zero is known as a stagnation point.
This point occurs at an object facade where the fluid is at rest because of a force exerted by the object.
Hayat et al. [10] considered the stagnation point of Casson fluid flow on the vertical linear surface by
including the viscous dissipation effect. The governing equations were resolved by homotopic analysis
and the velocity field and fluid temperature were calculated to decrease Prandtl count functions.
Casson fluid can be defined as a shear thinning fluid which is presumed to include an unlimited
viscosity at zero shear rate, a yield stress at which no flow exists, and zero viscosity at an infinite
shear rate. Abbas et al. [11] inspected Casson fluid on the stretching/shrinking surface where a fluid
is the stagnation point flow. It was concluded during the examination that the velocity field rises
by increasing the Casson parameter, but the thickness of the momentum boundary layer declines.
In an analysis of stagnation point flow, Bhattacharyya et al. [12] obtained a dual solution. Recently,
Nadeem et al. [13] investigated the three-dimensional stagnation point flow of nanofluids and obtained
dual solutions. They concluded that a stable solution is a primary solution. The significant research
is listed on such a phenomenon can be seen in the papers of Bhattacharyya [14]; Hayat et al. [15];
Ramesh et al. [16]; Haldar et al. [17]; Shafiq et al. [18]; and Jafarimoghaddam [19].

In the last couple of years, the non-uniqueness of solutions of fluid flow problems has been
considered on the moving, shrinking and stretching sheets in the presence and absence of a bouncy effect
by many researchers [20,21]. These multiple solutions exist due to several physical parameters’ impacts,
such as the suction parameter, mixed convection parameter, and so forth. Most past investigations
demonstrated that the probabilities of occurrence of numerous solutions of fluid flow on a shrinking
surface are higher, as a contrast with stretching surfaces [12]. The possibilities of non-uniqueness
solutions of the flow field on a stretching surface are probable when a flow is opposing or when there
is stagnation point flow. Similarly, multiple solutions for Newtonian fluids can be obtained easily as
compared to non-Newtonian fluids. Several researchers have proposed that because of non-linearity
in the fluid model, numerous solutions exist [20,22]. However, the models of non-Newtonian fluids
contain many non-linear terms and because of these terms, multiple solutions are not going to exist.
The value of several solutions for fluid boundary layers has significantly increased due to the occurrence
of these fluids in many industrial applications [23]. Numerous solutions in actual situations of fluid
flow problems cannot be visualized, because in reality many researchers have failed to notice multiple
solutions [24]. The multiple solutions of magnetohydrodynamic (MHD) fluid flow problems have
been examined experimentally as well as numerically by several scholars. Ishak et al. [25] considered
the mixed convective MHD flow next to incompressible viscous fluid flow and obtained dual solutions.
Subhashini et al. [26] considered the MHD convection mixed flow over a vertical surface and found
the dual solution using the shooting technique. Ridha and Curie [27] were possibly the first to
indicate that there are dual solutions in the opposing flow system and that the flow regime persists.
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The goal of this research is to examine the stagnation point flow of Casson fluid on a permeable
exponentially vertical stretching and shrinking surfaces unanimously with the effect of convective
boundary condition numerically.

The governing PDEs are first transformed into ODEs. The obtained system of equations is
converted from boundary value problems (BVPs) to initial value problems (IVPs) with the help of
the shooting method. Finally, the system of equations of IVPs is solved by the Runge Kutta (RK)
method with the aid of maple software in the shootlib function. Furthermore, the three-stage Labatto
three-A method is applied to performed stability analysis with the help of a bup4c solver in MATLAB.

2. Mathematical Description of the Problem

We considered an incompressible, steady, 2-D stagnation point flow of Casson electrically
conducting fluid on an exponentially vertical shrinking/stretching sheet with the convective boundary
condition effect, as revealed in Figure 1. It is also supposed that the state of the isotropic rheological
equation and the incompressible flow of the Casson fluid is defined as (see Lund et al. [28]):

(y +( & ))Ze >

B+ 5z | J%€ijr c

Tij = \1/32? (1)
(;UB + (‘/TE))Z%'I T < T,

where g is the plastic dynamic viscosity, P, denotes the yield stress of the fluid, and the product of

deformation rate component is denoted by = where 7 = ¢;je;; is the (i, j)-th deformation rate component

and the critical value of 7t is .. The uniform magnetic field of the strength is B, which was applied

perpendicularly to the stretching/shrinking surface (refer to Figure 1). It is supposed that a constant

convective sheet temperature is T¢, while T is the ambient fluid temperature where T¢ > Tw. Due to

the very low value of the magnetic Reynolds number, the induced magnetic field vanished.
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Figure 1. The geometry of the problem.
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The equations of steady Casson fluid flow over the vertical surface with all assumptions can be

expressed as follows:
du dv

g + @ =0 2)
Jdu  du 8 1\d%u oB?
Ma -I-U@ ™ +\9(1+ﬁ)8y2+g,8T (T-Tw >_7(”e_”) ©)
oT  dT 9’T

ua +U@ _QW (4)

Along with boundary conditions

_ _ T __ _
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In these equations, u and v are the velocity components along the direction of x- and y-axis,
respectively. Moreover, p is the fluid density, § is the Casson fluid parameter, 9 is the kinematic
viscosity, o is the electrical conductivity of fluid, B = Bge? is the magnetic field where By is the magnetic
constant, T is the fluid temperature, and « is the thermal diffusivity. Furthermore, Ty, = Teo + Toe% is
the temperature of wall, and T is the ambient temperature. In addition, the thermal conductivity

of Casson fluid is k7 and the convective heat transfer coefficient is hr, vy = — N Sgwezl S where S is

the suction/injunction parameter, and 1y, = a el is the velocity of surface.
We look for the similarity solutions of Equations (2)—(4) by introducing the following transformations

(T-Tw) a x

p = V28laex f(n) , 0(n) = m/ n=Yy 59 % (6)

and the stream function i can be expressed in velocity components as,

I )
5 = @)

By applying Equations (6) and (7) in Equations (2)—(5), we have

(1+%)f"' + 7 =2f 242040+ 247 - M(f - A) =0 (8)

1 m ’ 4 _
50" +f6 ~4f 6 =0 )

Along with these conditions

£(0) =S, £(0) = 1,0/(0) = ~Bi[1 - 0(0)] 0
) = A 6(n) —0asn— e
2
where M = ﬂ(fi(TBO) is the magnetic parameter, A is the stretching/shrinking parameter, Pr = § denotes

hy x
the Prandtl number, Bi = kf A/ 2‘916 21 is Biot number or convective parameter where h § = Uoe (Up is
gBrTol _ Gr
T
where Gr is the heat Grashof number. It should be noted that the flow in opposite (assisting) flow is
indicated by A >0 (A1 <0).

a constant), which implies that Bi = kf 2 3= is the mixed convection parameter
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The physical quantities of interest are the skin friction coefficient and the local Nusselt number,
which are written in the following terms:

(] R
Cr=——">—"" Nu="—""—; (11)
pUz (T -Te)
1 (2] 1\ ,, -1 ,
Cr(Rex)? /= = (1+ B)f (0); Nu(Rex) 2 = =0'(0); (12)

where Rey is the local Reynolds number.

3. Stability Analysis

In the current study, we found triple solutions of Equations (8) and (9) along with boundary
conditions (10) for both surfaces. Thus, it is needed to perform stability analysis to notice a stable
solution which can be physically reliable after the time passes. In order to accomplish the solutions’
temporal stability, the unsteady form of Equations (3) and (4) must be considered by proposing the new
dimensionless time variable T where 7 is related to the initial solutions of Equations (8) and (9) (without
perturbation functions). Equations (3) and (4) can be expressed for the unsteady state flow as follows

du du  du due 1\o%u oB?
E‘Fua +U@— & +‘9(1+‘8)(9]/2+gﬁT (T—Too)—i-T(ug—u) (13)
or  JT T T
&f +u 8.’)( +U@ = (Xa—yz (14)
The new dimensionless time-dependent variable is 7 = %eft where t is time. Therefore,

Equation (6) can be written as follows:

T-Te x x
( ) ? ei, T = ﬁeT.t (15)

¥ = V28lae? f(n,7), O(n,7) = m =Y %251 21

By putting Equation (15) in Equations (13) and (14), it is obtained

Pf Pf I\ of Pf(n, 1)
(1+5)977 +f8_172_2(9_n) +2A2—M(a—n—A)+2)\19—W—O (16)

120, 90 _,9f , 96
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With corresponding boundary conditions

0.9 _ ). 90 7) — —Bi
{f(o 1) =5 LoD =2 0/(0,7) = -Bi[1-0(0,7)] 18)
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According to Lund et al. [29,30], Hamid et al. [31], and Mustafa et al. [32], the stability analysis of
the dual solutions is verified by perturbing the steady solution by using following functions

{ f(n,7) = foln) +e " Fo(n) 19)
0(n,7) = 0o(n) +e* Go(n)

where corresponding small relatives of fy(n) and 6y(n) are Fo(n) and Go(n) and the unknown
eigenvalue is y. It is worth mentioning that perturbated function is considered in the form of an
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exponential as compared to power function, as these functions increase and decrease more rapidly
as compared to the power functions. By putting Equation (19) into Equations (16) and (17), we get
the linearized eigenvalue problem as follows:

1 ua 4 4z 4 4 / /
(1 - E)FO +f0(’7)F0 +F0f0 —4foFy +211Go - MFy + Fy =0 (20)

1 73 ’ ’ / ’
EGO +f0GO+F090—4f0G0—4F090+G0 =0 (21)
with boundary conditions

0, Fy(0) =0, G,(0) = BiGo(0,7)
)

Fo(0)
{ (1) =0, Gol) — 0as 7 — oo 22

Fy(n

System of linearized eigenvalue problem Equations (20) and (21) along with boundary conditions
(22) is solved and obtained the infinite set of eigenvalues ()1 < 2 < 3 < ...). The solution is said to
be a stable flow if and only if the sign of the y; is positive, which shows the initial decay, as time passes.
On the other hand, if the sign of the y; is negative, at that point the flow solution shows the initial
growth of development, and the solution is said to be an unstable solution, as time passes.

4. Three-Stage Lobatto IIIA Formula

The three-stage Lobatto Illa formula is a well-known numerical method. This method can easily
solve all kinds of non-linear and linear ODEs. It is developed with the support of finite difference
code in bup4c. After that, the study of stability is conducted by employing of the bup4c solver function.
According to Rehman et al. [33], “this collocation formula and the collocation polynomial provides a C;
continuous solution that is fourth-order accurate uniformly in [a, b]. Mesh selection and error control
are based on the residual of the continuous solution”. Furthermore, the tolerance of relative error is
fixed at 107°. The suitable mesh determination is created and returned in the field sol.x. The bup4c
returns solution, named sol.y., as a construction. In any case, values of the solution are gotten from
the array named sol.y, relating to the field sol.x. The general procedure of this technique, along with
the stability analysis, is shown in Figure 2.

[ Declaration of Variables ]

Initialization

[ Discretization of Domain ]

v
Call byp4c

[ Boundary Condii ] Guess Function/Piece-Wise
oun aryl oncitions Continuous Polynomial

' v

(Exact Boundary Conditions Guesses for Boundary Conditions )
for upper branch for lower branch
I |
¥
[ Evaluation of solutions by ]

[ System of 15t Order ODEs ]

-

Deval Function

{

[ Numerical Results ]

Figure 2. Procedure of three-stage Lobatto Illa formula along with stability analysis.
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5. Discussion

In the following section, we discuss the numerical results of Equations (8) and (9) with their
boundary conditions (10). These equations are highly non-linear third order ODEs, therefore, there is
the possibility of the presence of multiple solutions. In this regard, we solved these equations
numerically by using of shooting method with the fourth order RK technique in Maple software with
the help of the shootlib function. It is noticed that there exist triple solutions in the ranges of the different
physical parameters. It is worth indicating that triple solutions depend on the opposing flow case
where A should be equal to 0.1, dual solutions exist when A; = 0 and A > 0.1, and a single solution
exists when A1 > 0. In this investigation, we tried to obtain all possible solutions of the considered
problem over the stretching and shrinking surfaces; therefore, we kept A = 0.1 and A; = —0.2. It should
be noted that A < 1(A > 1) demonstrates that surface velocity is more(less) than the free stream velocity,
while A = 1 implies that the surface and free stream velocities are equivalent.

We compared —(1 + %) f7(0) findings with those of Hussain et al. [34] in order to verify
the numerical coding of the analysis for various values of § and M in Table 1. It can be concluded from
the comparison that our numerical method and coding are working properly and can be used effectively.

Table 1. Values of —(1 + %)f” (0) for different  and M values where A = O,M = M?, A = 1,A; =0

and S = 0.
p M Hussain et al. [34] Present Results
~(1+3)f 0
0.7 0.5 2.146677 2.146676800
1.2 0.5 1.865142 1.865142292
1.2 0.0 1.735577 1.735580976
1.2 04 1.819679 1.819679224
1.2 0.7 1.980908 1.980908405

Table 2 is given for the smallest eigenvalue values of the solutions. The three-stage Labatto III-A
method is adopted to get the smallest eigenvalues by solving Equations (20) and (21) with a relaxed
boundary (F(')(r]) — 0 as 1 — oo is converted to F; (0) = 1) condition (22). It is observed that only
the first solution is stable, since the values of y; are in the sign of plus, which shows the initial decay of
the disturbance, while two remaining solutions are the unstable solutions as the values of y; are in
the sign of minus, which indicate the initial growth of the disturbance.

Table 2. The values of the smallest eigenvalue y; for numerous A; and A values where = 1.5,
M=025,A=01 Pr=1,Bi=5,5=3.

A A 71
1st Solution 2nd Solution 3rd Solution
-0.2 -1 0.28165 —0.40384 —1.52864
-0.5 0.75239 —1.042571 -1.87263
0.5 1.17384 —1.92538 —-2.162901
1 1.57243 —2.35820 —2.82736
0 -1 0.42962 —0.5386 —
1 2.00518 —0.79284 —
0.2 -1 1.26739 — —

1 3.17427 — —
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The effect of A on the field of velocity f’(n) is presented in Figure 3. Figure 3 shows that velocity
f’(n) is a decreasing (growing) function of A for the shrinking (stretching) case in the first solution.
It is detected for the second solution that initially velocity field f’(n) rises and then declines as A rises
in the case of the shrinking surface, while opposing behavior is noticed in the case of the stretching
surface. The third solution exits only when A = 0, 0.1—the dual nature of the velocity field on both
surfaces can easily be noticed.

l ‘ A=1
0.5 A=0.5
A=0.1
~ 04
E =0
Ty
-0.5
=15
M=0.25
1,=-0.2
i 15t Solution || Pr=1
| d . .
2nd Solution|| Bi=5
31 Solution || §=3
0 i 2 3 4 5 6 7 8

n

Figure 3. Effect of A on f’(n).

Figures 4 and 5 are presented to notice an effect of the Casson parameter (§) on the velocity
field and temperature field, respectively. From Figure 5, it is noted that the increments in § decrease
the velocity field and the corresponding thickness of the boundary layer on both surfaces in the first
solution. Moreover, the velocity filed increases at first and then begins to decrease in the second
and the third solutions when A = —1, while decreasing behavior is noticed when A = 1. For the third
solution. It seems that there is no big variation in the temperature field for higher values of 8 for
first solution for both surfaces (see Figure 5). The temperature of the fluid increases (decreases) over
the shrinking (stretching) surface in the second solution when f increases. This might happen since
the rise in § upsurges (decreases) the forces of viscous, and forces produce (impede) some heat energy
in the flow. Hence, the temperature distribution with the corresponding thickness of the thermal
boundary layer enhances (reduces) with advance values of . For the third solution, the temperature
reduces (initially decreases and then increases) over the shrinking (stretching) surface.

The impact of a magnetic parameter (M) on the fields of velocity and temperature is revealed
in Figures 6 and 7. It is perceived that when the effect of M increases, as a result a decrement in
velocity profile over both surfaces in the first solution occur. An increase in M yields a resistive
kind of force known as Lorentz force, which is created in the flow—as an effect, velocity field curves
decrease. The same behaviors of declination of the momentum boundary layer thickness are noticed
in the second and third solutions for the case of stretching surface. When A = -1, the velocity field
increases in unstable solutions. From Figure 7, it can be seen that expansion in M raises the temperature
distribution over both surfaces in all solutions. Physically, it can be justified as “some extra heat is
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produced in the flow due to the Lorentz force”. Henceforth, an increment in the field of the magnetic
parameter amplifies the thickness of the thermal boundary layer.

2ud Solution || M=0.25
3t Solution || 2,=-0.2

0.5 “\ Pr=1

1
r —— |5 Solution || 4= 0.1
|

fr(m

Figure 4. Effect of B on f/(7).

15t Solution || 4= 0.1
20d Solution || M=0.25
34 Solution || A,=-0.2
Pr=1
Bi=5

6(n)

Figure 5. Effect of f on 6(1).
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|
| — 15t Solution
| ———— 2ud Splution
31d Solution

N A=0,0.25,05

0.54
|
i
o 0
=
ot i
S
_0.5_
A= 0.1
B=15
A=-0.2
-1 Pr=1
Bi=5
5=3
0 1 2 3 4 5 6 7 8
n
Figure 6. Effect of M on f/(1).
o |/ \ 15t Solution
\ 21d Solution
| 31 Solution
s/ N A=0.1
\\ B=15
! Ay
4 ,I % \\ Pr=1
Bi=5
i\ piam
< 3 M=0,0.25,0.5
= ’I \\\;
5 /Y\\ A=-1
\ -- -2
l_
O.
0 1 2 3 4 5 6 7 8

Figure 7. Effect of M on 0(1).

Figures 8 and 9 are demonstrated to check the impact of Prandtl (Pr) on profiles of velocity
and temperature field, respectively. In general, the Prandtl number does not affect the velocity field,
except when the flow is flowing over the vertical surface. For the shrinking (stretching) surface,
it is found that the velocity field decreases in the first (second) solution for the higher magnitudes of Pr.
Moreover, it is determined that the field of velocity is the rising function of Pr in the second and third
solutions for the case of a shrinking surface and the third solution for the case of a stretching surface.
From Figure 9, the temperature of the fluid drops concerning the higher effect of Pr in all solutions
and both surfaces, as is expected. Physically, this happens since the Prandtl number (Pr) is the ratio of
the momentum diffusion to thermal, which implies a lower thermal effect for a higher effect of Pr.
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|
1 = [st Solution
) ———— 21d Solution
31 Solution

Figure 8. Effect of Pron f’(7).

Ist Solution

21d Solution
31d Solution

A=0.1
p=15
ds=02
M=0.25
Bi=5
§=3

6(n)

Figure 9. Effect of Pron 0(7).

Figures 10 and 11 display the variation of the coefficient of skin-friction (f”/(0)) and coefficient
of heat transfer (-6’ (0)) for several values of suction parameter (S) with fixed values of the Casson
parameter (), respectively. From Figure 10, it can be stated that there are two series of solutions,
specifically one solution and multiple solutions. These solutions depend on the effect of the suction
parameter. There exist triple solutions and a single solution when S > S;; and S < S;, respectively,
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where i = 1,2,3 and S; is the critical value where solutions also exist. It has been perceived that
the f”7(0) increases (declines) with increasing suction and Casson parameters in the first (second
and third) solution. It is worth mentioning that the shear stress is negative (positive) in the third (first
and second) solution. A negative sign suggests that the sheet applies a dragging strength on fluid,
and a positive sign suggests the opposite. Moreover, the rise in f leads to an increase in —6’(0) for
the third and first solutions, while it decreases in the second solution (see Figure 11).

w

15t Solution

20d Solution
5 || = 31 Solution

S
N
S~
éi
2 1
N 2 22 24 2.6 2.8 3
S
Figure 10. Effect of g on f"(0).
2
————
1
0 Se3 =2.17193 (5, =2.3208 Sc1=2.6152
4
a2
S
Elb 3
-
A=0.1
S A=02
P A=1
Pr=] — 15t Solution
g || M=0.25 || ———— 21nd Solution
Bi=5 e 314 Sp]ution
8 L n
2 22 24 2.6 28 3

S

Figure 11. Effect of f on —6’(0).

Figure 12 demonstrates the variation of the coefficient of skin-friction (f”/(0)) for the various
values of the stretching/shrinking (1) parameter with fixed values of mixed convection (A1) parameter.
From this figure, we can state that multiple solutions depend on the values of the mixed convection
parameter. Triple solutions exist in both surface when A; < 0 or A; = —0.2 (opposing flow case), two
solutions exist when A; = 0, and a single solution exists when A; > 0 (assisting flow case).
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15t Solution
=0.2,0,-0.2 | =——— 2nd Splution

A..=-1.2879
871 31 Solution

=0, -0.2

f(0)

A=0.1
3 HA=15
Pr=1
M=0.25
[| Bi=5

Figure 12. Effect of A; on f”(0).

Figures 13 and 14 display the variation of the coefficient of skin-friction (f””(0)) and coefficient
of heat transfer (—6’(0)) for the several magnitudes of suction parameter (S) with certain values of
the Biot number or surface convection parameter (Bi), respectively. From Figure 13, it can be stated
that there are two ranges of solutions—multiple solutions exist when S > S,; and one solution exists
when S < S.;, where i = 1,2,3 and S, is the critical value where solutions also exist. Furthermore,
f7(0) increases (diminishes) for strong mass suction effect (Biot number) in the first solution, while
the third and second solutions are decreasing functions of the suction parameter and Biot number.
Moreover, the rise in the Biot number leads to the increase in —6’(0) in the first and third solutions.

15t Solution

2ud Splution
31d Solution

Se3=2.610
o5t
e
~
() L
A=0.1 ;
:EE Bi=5,10,
- \
05 F| 44=-0.2 Y
A=-1
Pr=1
M=0.25
| s L L L L 1 L L
2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3

S
Figure 13. Effect of Bi on f”/(0).
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Bi=5,10, 00
Se3 =2.6107

S
B
I
N
=15
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Figure 14. Effect of Bi on —6'(0).

Meanwhile, it decreases in the second solution (see Figure 14). Physically, this is due to the fact

that Equation (10) contains a negative sign in front of Bi; therefore, a higher value of Biot number causes

opposite convective heat to be advanced in the thermal equilibrium. Biot number can be explained as

“it is a measure of the ratio of surface internal and external thermal resistances”. It should be noted that
when Bi = 0, the sheet’s lower side contains hot fluid which is entirely isolated, and therefore the inner
thermal resistance of the sheet is tremendously high and no convective heat transfer to the cold fluid
over the surface happens.

6. Conclusions

The flow of steady, stagnation point, MHD of a Casson fluid on a vertical exponentially

stretching/shrinking sheet is examined. The effect of the Biot number is also taken into account.
The triple solutions are noticed. The significant outcomes of the current study are briefed as follows:

1.

Triple solutions for the coefficient of skin friction, the gradient of temperature, velocity,
and temperature profiles occur for specific values of the applied quantity examined in
the current examination.

The critical value and the range of the first and second solutions for the coefficient of skin friction
rise with a higher magnitude of the Casson parameter.

For the stable solution, the velocity of the Casson fluid reduces (as expected) over both surfaces
for the strong field of the Lorentz force.

For the shrinking surface, additional mass suction is required for the occurrence of single
and multiple solutions for non-Newtonian Casson fluid (5.1, Sc corresponding to f = 1.5, 5)
compared to Newtonian fluid (S.;3 when = o).

The magnitude of —6’(0) increases (corresponding critical points of S for Biot number
Bi = 5, 10, o are S.1 = 2.6152, S, = 2.6141, and S;3 = 2.6107) for the advanced values
of convective parameter.

Fluid temperature reduces in all solutions and both surfaces when the effect of Pr increases.
The only first solution is stable from triple solutions.
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