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Abstract
In this article, the investigation is centered around the quantum estimates by utilizing
quantum Hahn integral operator via the quantum shift operator
ηψq(ζ ) = qζ + (1 – q)η, ζ ∈ [μ,ν], η =μ + ω

(1–q) , 0 < q < 1,ω ≥ 0. Our strategy includes
fractional calculus, Jackson’s q-integral, the main ideas of quantum calculus, and a
generalization used in the frame of convex functions. We presented, in general, three
types of fractional quantum integral inequalities that can be utilized to explain
orthogonal polynomials, and exploring some estimation problems with shifting
estimations of fractional order �1 and the q-numbers have yielded fascinating
outcomes. As an application viewpoint, an illustrative example shows the
effectiveness of q, ω-derivative for boundary value problem.
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1 Introduction
Quantum difference operators have played a crucial role in the development of quantum
calculus due to their fertile application, see [1–5]. Roughly speaking, a quantum calculus
substitutes the classical derivative by a difference operator, which allows dealing with sets
of nondifferentiable functions. In [6], Hahn a famous mathematician presented the Hahn
difference operator Dq,ω .

Suppose that h1 defined on an interval I ⊆R containing ω0 := ω
1–q is defined as

Dq,ωh1(ζ ) =

⎧
⎨

⎩

h1(qζ+ω)–h1(ζ )
ζ (q–1)+ω

, ζ �= ω0,

h′
1(ω0), ζ = ω0,

(1.1)

provided that h1 is differentiable at ω0, where q ∈ (0, 1) for some fixed ω ≥ 0.
The Hahn difference operator unifies (in the limit) the two most distinguished and ex-

tensively used quantum difference operators: the Jackson q-difference derivative Dq [7],
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where q ∈ (0, 1), defined by

Dqh1(ζ ) =

⎧
⎨

⎩

h1(ζ )–h1(qζ )
ζ (1–q) , ζ �= 0,

h′
1(0), ζ = 0,

(1.2)

provided that h′
1(0) exists for ω = 0, and the forward difference Dω for q→ 1 defined by

Dωh1(ζ ) =
h1(ζ + ω) – h1(ζ )

ω
(1.3)

for some fixed ω > 0. Hahn’s difference operator has been applied successfully in the con-
struction of families of orthogonal polynomials as well as in approximation problems [8–
13].

In [14], some concepts of fractional quantum calculus were introduced in terms of a
q-shifting operator ηψq(ζ ) = qζ + (1 – q)η.

Consider an interval I = [μ,ν] ⊆ R. The two quantum numbers 0 < q < 1, ω ≥ 0 can
generate a point η of Hahn calculus on an interval [μ,ν] by

η = μ +
ω

1 – q
,

which states that η ∈ [μ,ν] for all consequences of our investigation. The quantum Hahn
shifting operator is stated as

ηψq(ζ ) = qζ + (1 – q)η, ζ ∈ [μ,ν]. (1.4)

It follows that the iterated κ-times quantum shifting is introduced by

ηψ
κ
q (ζ ) = ηψ

κ–1
q

(
ηψq(ζ )

)
= q

κζ +
(
1 – q

κ
)
η,

with ηψ
0
q(ζ ) = ζ for ζ ∈ [μ,ν].

Let us demonstrate the preliminaries of quantum Hahn calculus on an interval [μ,ν]
which are the results in [15] modified according to (1.4).

Definition 1.1 Let h1 be a function defined on [μ,ν]. The quantum Hahn difference op-
erator is defined as

μDq,ωh1(ζ ) =

⎧
⎨

⎩

h1(ζ )–h1(ηψq(ζ ))
ζ (q–1)+ω

, ζ �= η,

h′
1(η), ζ �= η,

(1.5)

provided that h1 is differentiable at η.

Definition 1.2 Assume that h1 : [μ,ν] →R is a given function and two points x, y ∈ [μ,ν].
The q, ω-quantum Hahn integral of h1 from x to y is defined by

∫ y

x
h1(s)μ dq,ωs :=

∫ y

η

h1(s)μ dq,ωs –
∫ x

η

h1(s)μ dq,ωs, (1.6)
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where

∫ ζ

η

h1(s)μ dq,ωs =
[
ζ –η ψq(ζ )

]
∞∑

i=0

q
ih1

(

η
ψ i

q(ζ )
)

(1.7)

for ζ ∈ [μ,ν], provided that the series converge at ζ = x and ζ = y. The function h1 is said
to be q, ω-integrable on [μ,ν] if (1.7) exists for all ζ ∈ [μ,ν].

Before approaching the main definitions of fractional quantum Hahn calculus on [μ,ν],
we present the η-power function which is stated as follows:

(n – m)(0)
η = 1, (n – m)(κ)

η =
κ–1∏

i=0

(
n – ηψ

i
q(m)

)
, κ ∈N∪ {∞}.

Precisely, if α ∈R, then

(n – m)(α)
η =

∞∏

i=0

(n – ηψ
i
q(m))

(n – ηψα+i
q (m))

, (1.8)

with ηψ
ς
q (m) = qς m + (1 – qς )η, ς ∈R.

The q-gamma function can be defined as

Γq(α) =
(1 – q)(α–1)

0
(1 – q)α–1 , α ∈R \ {0, –1, –2, . . .}. (1.9)

Obviously, Γq(α + 1) = [α]qΓq(α), where [c]q = (1–qc)
1–q , c ∈ R, where q is the quantum

number.
Now we consider the concept of Riemann–Liouville type of fractional derivative and

integral of quantum Hahn calculus on an interval [μ,ν] which is proposed by [16].

Definition 1.3 ([16]) Suppose that a function h1 : [μ,ν] →R is said to be fractional quan-
tum Hahn derivative of Riemann–Liouville type of order �1 ≥ 0 if

(
μD�1

q,ωh1
)
(ζ ) =

1
Γq(n – �1) μDn

q,ω

∫ ζ

μ

(
ζ – ηψq(s)

)(n–�1–1)
η

h1(s)μ dq,ω, (1.10)

where n is the smallest integer greater than or equal to �1.

Definition 1.4 ([16]) Suppose that a function h1 : [μ,ν] →R is said to be fractional quan-
tum Hahn integral of Riemann–Liouville type of order �1 ≥ 0 if

(
μI�1

q,ωh1
)
(ζ ) =

1
Γq(�1)

∫ ζ

μ

(
ζ – ηψq(s)

)(�1–1)
η

h1(s)μ dq,ω, �1 > 0, ζ ∈ [μ,ν]. (1.11)

Also, (μI0
q,ωh1)(ζ ) = h1(ζ ) and provided the right-hand side exists.

Theorem 1.5 ([16]) Let �1,�2 ∈ R
+, ϑ ∈ (–1,∞), and η ∈ [μ,ν.] The following formula

hold:

(
μI�1

q,ω(z – μ)(ϑ)
η

)
(ζ ) =

Γq(ϑ + 1)
Γq(�1 + ϑ + 1)

(ζ – μ)(�1+ϑ)
η ,
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(
μD�1

q,ω(z – μ)(ϑ)
η

)
(ζ ) =

Γq(ϑ + 1)
Γq(�1 – ϑ + 1)

(ζ – μ)(�1–ϑ)
η .

Fractional calculus has increased a great deal of consideration from analysts because of
their expertise to increase certifiable issues utilized in different fields of science and engi-
neering. Various physical phenomena in signal processing, control theory, electrochem-
istry of erosion, potential theory, acoustics, and electromagnetic are absolutely displayed
by the utilization of its applications [17–19]. The utilities of variants have gained consid-
erable importance among researchers for fixed point theorems and existence and unique-
ness of solutions for differential equations. Numerous numerical and analytical methods
have been recommended for the advancement of integral inequalities [20–39].

Tariboon et al. [40] expounded the concept of q-derivatives over the definite interval
[μ,ν] ⊂ R and contemplated several versions on quantum analogues, for example, q-
Cauchy–Schwarz inequality, the q-Grüss–Chebyshev integral inequality, the q-Grüss in-
equality, and other integral inequalities by classical convexity.

In this study we derive several new variants via quantum Hahn fractional integral op-
erator concerning convex functions, reverse Minkowski and reverse Hölder inequalities
via quantum Hahn integral operator. The concept is relatively new and appears to have
opened new doors of research towards different areas of research including meteorol-
ogy, quantum mechanics, biosciences, chaos, image processing, power-law, biochemistry,
physics, and several others. The integral inequalities by quantum Hahn integral opera-
tor can focus on a predetermined number of complex problems on one hand, and on the
other hand their applications can likewise catch various sorts of complexities. In this man-
ner assembling these three speculations can help us to comprehend the complexities of
existing nature in a vastly improved manner. Quantum fractional integrals have fascinated
the attention of practically all scientists from various fields of science. It is noted that the
quantum fractional estimate is able to appreciate some kind of self-similarities.

2 Some new generalizations by fractional quantum Hahn integral operator
Assume that for quantum numbers 0 < qi < 1, ωi ≥ 0, i = 1, 2, and the points ηi ∈ [μ,ν],
i = 1, 2, can be defined as

ηi =
ωi + (1 – qi)μ

1 – qi
.

Theorem 2.1 Let f1 and h1 be two q1, ω1-integrable functions defined on [μ,ν], and f1 ≤ h1

on [μ,ν]. If f1
h1

is decreasing, f1 is increasing on [μ,ν], then, for any convex function Θ having
Θ(0) = 0, the inequality

μI�1
q1,ω1 [f1(ξ )]

μI�1
q1,ω1 [h1(ξ )]

≥ μI�1
q1,ω1 [Θ(f1(ξ ))]

μI�1
q1,ω1 [Θ(h1(ξ ))]

(2.1)

holds for ξ ∈ [μ,ν], �1, > 0, 0 < q1 < 1, and ω1 ≥ 0.

Proof Since Θ is convex having Θ(0) = 0, then Θ(ξ )
ξ

is increasing. This and the fact that
f1(ξ ) ≤ h1(ξ ) gives

Θ(f1(ξ ))
f1(ξ )

≤ Θ(h1(ξ ))
h1(ξ )

.
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Also, f1 and Θ(ξ )
ξ

are increasing, then the function Θ(f1(ξ ))
f1(ξ ) is also increasing. Clearly f1(ξ )

h1(ξ ) is
decreasing. Thus, for all λ,ρ ∈ [μ, ξ ), we have

(
Θ(f1(λ))

f1(λ)
–

Θ(f1(ρ))
f1(ρ)

)(
f1(ρ)
h1(ρ)

–
f1(λ)
h1(λ)

)

≥ 0. (2.2)

It follows that

Θ(f1(λ))
f1(λ)

f1(ρ)
h1(ρ)

+
Θ(f1(ρ))

f1(ρ)
f1(λ)
h1(λ)

–
Θ(f1(ρ))

f1(ρ)
f1(ρ)
h1(ρ)

–
Θ(f1(λ))

f1(λ)
f1(λ)
h1(λ)

≥ 0. (2.3)

Multiplying (2.3) by h1(λ)h1(ρ), we have

Θ(f1(λ))
f1(λ)

f1(ρ)h1(λ) +
Θ(f1(ρ))

f1(ρ)
f1(λ)h1(ρ)

–
Θ(f1(ρ))

f1(ρ)
f1(ρ)h1(λ) –

Θ(f1(λ))
f1(λ)

f1(λ)h1(ρ) ≥ 0. (2.4)

Multiplying (2.4) by (ξ–λ1 ψq1 (λ))(�1–1)
η1

Γq1 (�1) , λ ∈ [μ, ξ ) and taking the q1, ω1-integration with re-
spect to λ on [μ, ξ ), one obtains

∫ ξ

μ

(ξ – η1ψq1 (λ))(�1–1)
η1

Γq1 (�1)
Θ(f1(λ))

f1(λ)
f1(ρ)h1(λ) dq1,ω1λ

+
∫ ξ

μ

(ξ – η1ψq1 (λ))(�1–1)
η1

Γq1 (�1)
Θ(f1(ρ))

f1(ρ)
f1(λ)h1(ρ) dq1,ω1λ

–
∫ ξ

μ

(ξ – η1ψq1 (λ))(�1–1)
η1

Γq1 (�1)
Θ(f1(ρ))

f1(ρ)
f1(ρ)h1(λ) dq1,ω1λ

–
∫ ξ

μ

(ξ – η1ψq1 (λ))(�1–1)
η1

Γq1 (�1)
Θ(f1(λ))

f1(λ)
f1(λ)h1(ρ) dq1,ω1λ ≥ 0. (2.5)

From this it follows that

f1(ρ)μI�1
q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )

)

+
(

Θ(f1(ρ))
f1(ρ)

h1(ρ)
)

μI�1
q1,ω1

(
f1(ξ )

)

–
(

Θ(f1(ρ))
f1(ρ)

f1(ρ)
)

μI�1
q1,ω1

(
h1(ξ )

)
– h1(ρ)μI�1

q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
f1(ξ )

)

≥ 0. (2.6)

Again, multiplying both sides of (2.6) by (ξ–η1 ψq1 (ρ))(�1–1)
η1

Γq1 (�1) , ρ ∈ [μ, ξ ) and taking the q1, ω1-
integration with respect to ρ on [μ, ξ ), one obtains

μI�1
q1,ω1

(
f1(ξ )

)
μI�1

q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )

)

+ μI�1
q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )

)

μI�1
q1,ω1

(
f1(ξ )

)

≥ μI�1
q1,ω1

(
h1(ξ )

)
μI�1

q1,ω1

(
Θ

(
f1(ξ )

))
+ μI�1

q1,ω1

(
Θ

(
f1(ξ )

))
ΦT δ,ς

0,ξ
(
h1(ξ )

)
. (2.7)

It follows that

μI�1
q1,ω1 (f1(ξ ))

μI�1
q1,ω1 (h1(ξ ))

≥ μI�1
q1,ω1 (Θ(f1(ξ )))

μI�1
q1,ω1 ( Θ(f1(ξ ))

f1(ξ ) (h1(ξ )))
. (2.8)
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Now, since f1 ≤ h1 on [μ,ν] and Θ(ξ )
ξ

is an increasing function, for λ,ρ ∈ [μ, ξ ), we have

Θ(f1(λ))
f1(λ)

≤ Θ(h1(λ))
h1(λ)

. (2.9)

Multiplying both sides of (2.9) by (ξ–η1 ψq1 (λ))(�1–1)
η1

Γq1 (�1) , λ ∈ [μ, ξ ) and taking the q1, ω1-
integration with respect to λ on [μ, ξ ), one obtains

∫ ξ

μ

(ξ – η1ψq1 (λ))(�1–1)
η1

Γq1 (�1)
Θ(f1(λ))

f1(λ)
h1(λ) dq1,ω1λ

≤
∫ ξ

μ

(ξ – η1ψq1 (λ))(�1–1)
η1

Γq1 (�1)
Θ(h1(λ))

h1(λ)
h1(λ) dq1,ω1λ, (2.10)

which, in view of (2.7), can be written as

μI�1
q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )

)

≤ μI�1
q1,ω1

(
Θ

(
h1(λ)

))
. (2.11)

Hence, from (2.8) and (2.11), we get (2.1). �

Theorem 2.2 Let f1 and h1 be two qi, ωi-integrable functions defined on [μ,ν], i = 1, 2 and
f1 ≤ h1 on [μ,ν]. If f1

h1
is decreasing, f1 is increasing on [μ,ν], then for any convex function

Θ having Θ(0) = 0, the inequality

μI�1
q1,ω1 [f1(ξ )]μI�2

q2,ω2 [Θ(h1(ξ ))] + μI�2
q2,ω2 [f1(ξ )]μI�1

q1,ω1 [Θ(h1(ξ ))]
μI�1

q1,ω1 [h1(ξ )]μI�2
q2,ω2 [Θ(f1(ξ ))] + μI�2

q2,ω2 [h1(ξ )]μI�1
q1,ω1 [Θ(f1(ξ ))]

≥ 1 (2.12)

holds for ξ ∈ [μ,ν], �1,�2 > 0, 0 < qi < 1, and ωi ≥ 0, i = 1, 2.

Proof Since f1 is increasing along with the function Θ(f1(ξ ))
f1(ξ ) , using the convexity of Θ having

Θ(0) = 0, the function Θ(ξ )
ξ

is increasing.
Thus, for all λ,ρ ∈ [μ, ξ ).

Multiplying (2.6) by (ξ–η2 ψq2 (ρ))(�2–1)
η2

Γq2 (�2) , ρ ∈ [μ, ξ ) and taking the q2, ω2-integration with
respect to ρ on [μ, ξ ), one obtains

μI�2
q2,ω2

(
f1(ξ )

)
μI�1

q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )

)

+ μI�2
q2,ω2

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )

)

μI�1
q1,ω1

(
f1(ξ )

)

≥ μI�1
q1,ω1

(
h1(ξ )

)
μI�2

q2,ω2

(
Θ(f1(ξ ))

f1(ξ )
f1(ξ )

)

+ μI�1
q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
f1(ξ )

)

μI�2
q2,ω2

(
h1(ξ )

)
. (2.13)

Now, since f1 ≤ h1 on [μ,ν] and Θ(ξ )
ξ

is an increasing function, for λ,ρ ∈ [μ, ξ ), we have

Θ(f1(λ))
f1(λ)

≤ Θ(h1(λ))
h1(λ)

. (2.14)
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Multiplying both sides of (2.14) by (ξ–η1 ψq1 (λ))(�1–1)
η1

Γq1 (�1) , λ ∈ [μ, ξ ) and taking the q1, ω1-
integration with respect to λ on [μ, ξ ), one obtains

∫ ξ

μ

(ξ – η1ψq1 (λ))(�1–1)
η1

Γq1 (�1)
Θ(f1(λ))

f1(λ)
h1(λ) dq1,ω1λ

≤
∫ ξ

μ

(ξ – η1ψq1 (λ))(�1–1)
η1

Γq1 (�1)
Θ(h1(λ))

h1(λ)
h1(λ) dq1,ω1λ, (2.15)

which, in view of (2.7), can be written as

μI�1
q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )

)

≤ μI�1
q1,ω1

(
Θ(h1(ξ ))

h1(ξ )
h1(ξ )

)

. (2.16)

Hence from (2.11), (2.13), and (2.16), we get our desired result. �

We further have the subsequent main result.

Theorem 2.3 Let f1, h1, and W be three q1, ω1-integrable functions defined on [μ,ν], i =
1, 2, and f1 ≤ h1 on [μ,ν]. If f1

h1
is decreasing, f1 is increasing on [μ,ν], then, for any convex

function Θ having Θ(0) = 0, the inequality

μI�1
q1,ω1 [f1(ξ )]

μI�1
q1,ω1 [h1(ξ )]

≥ μI�1
q1,ω1 [Θ(f1(ξ ))W(ξ )]

μI�1
q1,ω1 [Θ(h1(ξ ))W(ξ )]

(2.17)

holds for ξ ∈ [μ,ν], �1 > 0, 0 < q1 < 1, and ω1 ≥ 0.

Proof Since f1 ≤ h1 on [μ,ν] and Θ(ξ )
ξ

is an increasing function, for λ,ρ ∈ [μ, ξ ), we have

Θ(f1(λ))
f1(λ)

≤ Θ(h1(λ))
h1(λ)

. (2.18)

Multiplying both sides of (2.18) by (ξ–η1 ψq1 (λ))(�1–1)
η1

Γq1 (�1) h1(λ)W(λ), λ ∈ [μ, ξ ) and taking the q1,
ω1-integration with respect to λ on [μ, ξ ), we get

∫ ξ

μ

(ξ – η1ψq1 (λ))(�1–1)
η1

Γq1 (�1)
Θ(f1(λ))

f1(λ)
h1(λ)W(λ) dq1,ω1λ

≤
∫ ξ

μ

(ξ – η1ψq1 (λ))(�1–1)
η1

Γq1 (�1)
Θ(h1(λ))

h1(λ)
h1(λ)W(λ) dq1,ω1λ, (2.19)

which, in view of (2.7), can be written as

μI�1
q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )W(ξ )

)

≤ μI�1
q1,ω1

(
Θ

(
h1(ξ )

)
W(ξ )

)
. (2.20)

Also, since Θ is convex with Θ(0) = 0, the function Θ(ξ )
ξ

is increasing. As f1 is increasing,
so is the function Θ(f1(ξ ))

f1(ξ ) . Obviously, the function f1(ξ )
h1(ξ ) is decreasing for all λ,ρ ∈ [μ, ξ ), we

have
(

Θ(f1(λ))
f1(λ)

W(λ) –
Θ(f1(ρ))

f1(ρ)
W(ρ)

)
(
f1(ρ)h1(λ) – f1(λ)h1(ρ)

) ≥ 0. (2.21)
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It follows that

Θ(f1(λ))W(λ)
f1(λ)

f1(ρ)h1(λ) +
Θ(f1(ρ))W(ρ)

f1(ρ)
f1(λ)h1(ρ)

–
Θ(f1(ρ))W(ρ)

f1(ρ)
f1(ρ)h1(λ) –

Θ(f1(λ))W(λ)
f1(λ)

f1(λ)h1(ρ) ≥ 0. (2.22)

Multiplying (2.22) by (ξ–η1 Ψq1 (λ))(�1–1)
η1

Γq1 (�1) , λ ∈ [μ, ξ ) and taking the q1, ω1-integration of the
resulting inequality with respect to λ on [μ, ξ ), one obtains

∫ ξ

μ

(ξ – η1Ψq1 (λ))(�1–1)
η1

Γq1 (�1)
Θ(f1(λ))

f1(λ)
f1(ρ)h1(λ)W(λ) dq1,ω1λ

+
∫ ξ

μ

(ξ – η1Ψq1 (λ))(�1–1)
η1

Γq1 (�1)
Θ(f1(ρ))

f1(ρ)
f1(λ)h1(ρ)W(ρ) dq1,ω1λ

–
∫ ξ

μ

(ξ – η1Ψq1 (λ))(�1–1)
η1

Γq1 (�1)
Θ(f1(ρ))

f1(ρ)
f1(ρ)h1(λ)W(ρ) dq1,ω1λ

–
∫ ξ

μ

(ξ – η1Ψq1 (λ))(�1–1)
η1

Γq1 (�1)
Θ(f1(λ))

f1(λ)
f1(λ)h1(ρ)W(λ) dq1,ω1λ ≥ 0. (2.23)

From this it follows that

f1(ρ)μI�1
q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )W(ξ )

)

+
(

Θ(f1(ρ))
f1(ρ)

h1(ρ)W(ρ)
)

μI�1
q1,ω1

(
f1(ξ )

)

–
(

Θ(f1(ρ))
f1(ρ)

f1(ρ)W(ρ)
)

μI�1
q1,ω1

(
h1(ξ )

)

– h1(ρ)μI�1
q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
f1(ξ )W(ξ )

)

≥ 0. (2.24)

Again, multiplying both sides of (2.24) by (ξ–η1 Ψq1 (ρ))(�1–1)
η1

Γq1 (�1) , ρ ∈ [μ, ξ ) and taking the q1,
ω1-integration of the resulting inequality with respect to ρ on [μ, ξ ), one obtains

μI�1
q1,ω1

(
f1(ξ )

)
μI�1

q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )W(ξ )

)

+ μI�1
q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )W(ξ )

)

μI�1
q1,ω1

(
f1(ξ )

)

≥ μI�1
q1,ω1

(
h1(ξ )

)
μI�1

q1,ω1

(
Θf1(ξ )W(ξ )

)

+ μI�1
q1,ω1

(
Θf1(ξ )W(ξ )

)
μI�1

q1,ω1

(
h1(ξ )

)
. (2.25)

It follows that

μI�1
q1,ω1 (f1(ξ ))

μI�1
q1,ω1 (f1(ξ ))

≥ μI�1
q1,ω1 (Θ(f1(ξ ))W(ξ ))

μI�1
q1,ω1 ( Θ(f1(ξ ))

f1(ξ ) (h1(ξ ))W(ξ ))
. (2.26)

Hence from (2.20) and (2.26), we get our required result. �
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Theorem 2.4 Let f1, h1, and W be three qi, ωi-integrable functions defined on [μ,ν], i =
1, 2, and f1 ≤ h1 on [μ,ν]. If f1

h1
is decreasing, f1 is increasing on [μ,ν], then, for any convex

function Θ having Θ(0) = 0, the inequality

(
μI�1

q1,ω1

[
f1(ξ )

]
μI�2

q2,ω2

[
Θ

(
f1(ξ )

)
W(ξ )

]
+ μI�2

q2,ω2

[
f1(ξ )

]
μI�1

q1,ω1

[
Θ

(
f1(ξ )

)
W(ξ )

])

/ (
μI�1

q1,ω1

[
h1(ξ )

]
μI�2

q2,ω2

[
Θ

(
f1(ξ )

)
W(ξ )

]

+ μI�2
q2,ω2

[
h1(ξ )

]
μI�1

q1,ω1

[
Θ

(
f1(ξ )

)
W(ξ )

]) ≥ 1 (2.27)

holds for ξ ∈ [μ,ν], �1,�2 > 0, 0 < qi < 1, and ωi ≥ 0, i = 1, 2.

Proof Multiplying both sides of (2.24) by (ξ–η2 Ψq2 (ρ))(�2–1)
η2

Γq2 (�2) , ρ ∈ [μ, ξ ) and taking the q2, ω2-
integration of the resulting inequality with respect to ρ on [μ, ξ ), one obtains

μI�2
q2,ω2

(
f1(ξ )

)
μI�1

q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )W(ξ )

)

+ μI�2
q2,ω2

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )W(ξ )

)

μI�1
q1,ω1

(
f1(ξ )

)

≥ μI�1
q1,ω1

(
h1(ξ )

)
μI�2

q2,ω2

(
Θ

(
f1(ξ )

)
W(ξ )

)

+ μI�1
q1,ω1

(
Θ

(
f1(ξ )

)
W(ξ )

)
μI�2

q2,ω2

(
h1(ξ )

)
. (2.28)

Now, since f1 ≤ h1 on [μ,ν] and Θ(ξ )
ξ

is an increasing function, for λ,ρ ∈ [μ, ξ ), we have

Θ(f1(λ))
f1(λ)

≤ Θ(h1(λ))
h1(λ)

. (2.29)

Multiplying both sides of (2.29) by (ξ–η1 Ψq1 (λ))(�1–1)
η1

Γq1 (�1) h1(λ)W(λ), λ ∈ [μ, ξ ) and taking the q1,
ω1-integration of the resulting inequality with respect to λ on [μ, ξ ), one obtains

μI�1
q1,ω1

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )W(ξ )

)

≤ μI�1
q1,ω1

(
Θ

(
h1(ξ )

)
W(ξ )

)
. (2.30)

Similarly, multiplying both sides of (2.29) by (ξ–η2 Ψq2 (ρ))(�2–1)
η2

Γq2 (�2) f1(ρ)W(λ), ρ ∈ [μ, ξ ) and tak-
ing the q2, ω2-integration of the resulting inequality with respect to ρ on [μ, ξ ), one obtains

μI�2
q2,ω2

(
Θ(f1(ξ ))

f1(ξ )
h1(ξ )W(ξ )

)

≤ μI�2
q2,ω2

(
Θ

(
h1(ξ )

)
W(ξ )

)
. (2.31)

Hence from (2.28), (2.30), and (2.31), we get our desired result. �

3 New estimates for reverse Minkowski inequality by fractional quantum Hahn
integral operator

This segment comprises our principal involvement of establishing the proof of the reverse
Minkowski inequalities via fractional quantum Hahn integral operator defined in (1.11).
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Theorem 3.1 For p ≥ 1 and ω1 ≥ 0, let f1 and h1 be two q1, ω1-integrable functions defined
on [0,∞) such that, for all ξ > μ, μI�1

q1,ω1 hp
1(ξ ) < ∞ and μI�1

q1,ω1 f p
1 (ξ ) < ∞. If 0 < θ1 ≤ h1(λ)

f1(λ) ≤
θ2 for θ1, θ2 ∈R

+ and for all λ ∈ [μ, ξ ], then

(
μI�1

q1,ω1 hp
1(ξ )

) 1
p +

(
μI�1

q1,ω1 f p
1 (ξ )

) 1
p

≤ 1 + θ2(θ1 + 2)
(θ1 + 1)(θ2 + 1)

(
μI�1

q1,ω1 (h1 + f1)p(ξ )
) 1

p (3.1)

holds for ξ ∈ [μ,ν], �1 > 0, and 0 < q1 < 1.

Proof By the suppositions mentioned in Theorem 3.1, h1(λ)
f1(λ) ≤ θ2, μ ≤ λ ≤ ξ , it tends to be

composed

(M + 1)php
1(λ) ≤ Mp(h1(λ) + f1(λ)

)p. (3.2)

If we multiply both sides of (3.2) with (ξ–η1 Ψq1 (λ))(�1–1)
η1

Γq1 (�1) , λ ∈ [μ, ξ ) and take the q1, ω1-
integration of the resulting inequality with respect to λ on [μ, ξ ), we obtain

(M + 1)p

Γq1 (�1)

∫ ξ

μ

(
ξ – η1Ψq1 (λ)

)(�1–1)
η1

hp
1(λ) dλq1,ω1

≤ Mp

Γq1 (�1)

∫ ξ

μ

(
ξ – η1Ψq1 (λ)

)(�1–1)
η1

(
h1(λ) + f1(λ)

)p dλq1,ω1 . (3.3)

Similarly, it can be written as

(
μI�1

q1,ω1 hp
1(ξ )

) 1
p ≤ θ2

θ2 + 1
(
μI�1

q1,ω1 (h1 + f1)p(ξ )
) 1

p . (3.4)

In contrast, as mf1(λ) ≤ h1(λ), it follows

(

1 +
1
θ1

)p

f p
1 (λ) ≤

(
1
θ1

)p(
h1(λ) + f1(λ)

)p. (3.5)

Again, if we multiply both sides of (3.5) with (ξ–η1 Ψq1 (λ))(�1–1)
η1

Γq1 (�1) , λ ∈ [μ, ξ ) and take the q1,
ω1-integration of the resulting inequality with respect to λ on [μ, ξ ), we obtain

(
μI�1

q1,ω1 f p
1 (ξ )

) 1
p ≤ 1

θ1 + 1
(
μI�1

q1,ω1 (h1 + f1)p(ξ )
) 1

p . (3.6)

Thus adding (3.4) and (3.6) yields the desired inequality. �

Inequality (3.1) is referred to as the reverse Minkowski inequality by fractional quantum
Hahn integral operator.

Theorem 3.2 For p ≥ 1 and ω1 ≥ 0, let f1 and h1 be two q1, ω1-integrable functions defined
on [0,∞) such that, for all ξ > μ, μI�1

q1,ω1 hp
1(ξ ) < ∞ and μI�1

q1,ω1 f p
1 (ξ ) < ∞. If 0 < θ1 ≤ h1(λ)

f1(λ) ≤
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θ2 for θ1, θ2 ∈R
+ and for all λ ∈ [μ, ξ ], then the inequality

(
μI�1

q1,ω1 hp
1(ξ )

) 2
p +

(
μI�1

q1,ω1 f p
1 (ξ )

) 2
p

≤
(

(θ1 + 1)(θ2 + 1)
θ2

– 2
)

(
μI�1

q1,ω1 hp
1(ξ )

) 1
p
(
μI�1

q1,ω1 hp
1(ξ )

) 1
p (3.7)

holds for ξ ∈ [μ,ν], �1 > 0, and 0 < q1 < 1.

Proof The product of inequalities (3.4) and (3.6) yields

(
(θ1 + 1)(θ2 + 1)

θ2
– 2

)
(
μI�1

q1,ω1 hp
1(ξ )

) 1
p
(
μI�1

q1,ω1 f p
1 (ξ )

) 1
p

≤ [(
μI�1

q1,ω1 (h1 + f1)p(ξ )
) 1

p
]2. (3.8)

Now, utilizing the Minkowski inequality to the right-hand side of (3.7), one obtains

[(
μI�1

q1,ω1 (h1 + f1)p(ξ )
) 1

p
]2

≤ [
μI�1

q1,ω1 hp
1(ξ ))

1
p + μI�1

q1,ω1 f p
1 (ξ ))

1
p
]2

≤ μI�1
q1,ω1 hp

1(ξ ))
2
p + μI�1

q1,ω1 hp
1(ξ ))

2
p + 2

[
μI�1

q1,ω1 hp
1(ξ ))

1
p
][

μI�1
q1,ω1 hp

1(ξ ))
1
p
]
. (3.9)

Thus, from inequalities (3.8) and (3.9), we attain inequality (3.7). �

4 New bounds for reverse Hölder inequality by fractional quantum Hahn
integral operator

This section is dedicated to deriving bounds for reverse Hölder inequalities regarding frac-
tional quantum Hahn integral operator.

Theorem 4.1 For p, q ≥ 1 with 1
p + 1

q = 1 and ω1 ≥ 0, let f1 and h1 be two q1, ω1-integrable
functions defined on [0,∞) such that, for all ξ > μ, μI�1

q1,ω1 hp
1(ξ ) < ∞ and μI�1

q1,ω1 f p
1 (ξ ) < ∞.

If 0 < θ1 ≤ h1(λ)
f1(λ) ≤ θ2 for θ1, θ2 ∈ R

+ and for all λ ∈ [μ, ξ ], then the inequality

(

μ
I�1
q1,ω1 hp

1(ξ )
) 1

p
(

μ
I�1
q1,ω1 f q

1 (ξ )
) 1

q ≤
(

θ2

θ1

) 1
pq (

μ
I�1
q1,ω1 h

1
p
1 (ξ )f

1
q

1 (ξ )
)

(4.1)

holds for ξ ∈ [μ,ν], �1 > 0, and 0 < q1 < 1.

Proof Under the given suppositions h1(λ)
f1(λ) ≤ θ2, r1 ≤ η ≤ y, we have

f
1
q

1 (λ) ≥ θ
–1
q

2 h
1
q
1 (λ). (4.2)

Taking product on both sides of (4.2) by h
1
p
1 (λ), it follows that

h
1
p
1 (λ)f

1
q

1 (λ) ≥ θ
–1
q

2 h1(λ). (4.3)
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If we multiply both sides of (4.3) with (ξ–η1 Ψq1 (λ))(�1–1)
η1

Γq1 (�1) , λ ∈ [μ, ξ ) and take the q1, ω1-
integration of the resulting inequality with respect to λ on [μ, ξ ), we obtain

θ
–1
q

2
Γq1 (�1)

∫ ξ

μ

(
ξ – η1Ψq1 (λ)

)(�1–1)
η1

h1(λ) dλq1,ωi

≤ 1
Γq1 (�1)

∫ ξ

μ

(
ξ – η1Ψq1 (λ)

)(�1–1)
η1

h
1
p
1 (λ)f

1
q

1 (λ) dλq1,ωi . (4.4)

Consequently, we have

θ
– 1

pq
2

(

μ
I�1
q1,ω1 hp

1(ξ )
) 1

p ≤ (

μ
I�1
q1,ω1 h

1
p
1 (ξ )f

1
q

1 (ξ )
) 1

p . (4.5)

In contrast, as θ1f1(λ) ≤ h1(λ), therefore we have

θ
1
p

1 f
1
p

1 (λ) ≤ h
1
p
1 (λ). (4.6)

Again, if we multiply both sides of (4.6) by f
1
q

1 (λ) and invoke the relation 1
p + 1

q = 1, it yields

θ
1
p

1 f1(λ) ≤ h
1
p
1 (λ)f

1
q

1 (λ). (4.7)

If we multiply both sides of (4.7) with (ξ–η1 Ψq1 (λ))(�1–1)
η1

Γq1 (�1) , λ ∈ [μ, ξ ) and take the q1, ω1-
integration of the resulting inequality with respect to λ on [μ, ξ ), we obtain

θ
1

pq
1

(

μ
I�1
q1,ω1 f1(ξ )

) 1
q ≤ (

μ
I�1
q1,ω1 h

1
p
1 (ξ )f

1
q

1 (ξ )
) 1

q . (4.8)

Multiplying (4.5) and (4.8), the required inequality (4.1) can be concluded. �

Theorem 4.2 For p, q ≥ 1 with 1
p + 1

q = 1 and ω1 ≥ 0, let f1 and h1 be two qi, ωi-integrable
functions defined on [0,∞) such that, for all ξ > μ, μI�1

q1,ω1 hp
1(ξ ) < ∞ and μI�1

q1,ω1 f p
1 (ξ ) < ∞.

If 0 < θ1 ≤ h1(λ)
f1(λ) ≤ θ2 for θ1, θ2 ∈ R

+ and for all λ ∈ [μ, ξ ], then the inequality

(

μ
I�1
q1,ω1 h1(ξ )f1(ξ )

) ≤ 2p–1θ
p
2

p(θ2 + 1)p

(

μ
I�1
q1,ω1

(
hp

1 + f p
1
)
(ξ )

)

+
2q–1

p(θ1 + 1)p

(

μ
I�1
q1,ω1

(
hq

1 + f q
1
)
(ξ )

)
(4.9)

holds for ξ ∈ [μ,ν], �1 > 0, and 0 < q1 < 1.

Proof By the given assumption h1(λ)
f1(λ) < θ2, we have

(θ2 + 1)php
1(λ) ≤ θ

p
2 (h1 + f1)p(λ). (4.10)



Rashid et al. Advances in Difference Equations        (2020) 2020:383 Page 13 of 17

If we multiply both sides of (4.10) with (ξ–η1 Ψq1 (λ))(�1–1)
η1

Γq1 (�1) , λ ∈ [μ, ξ ) and take the q1, ω1-
integration of the resulting inequality with respect to λ on [μ, ξ ), we obtain

(θ2 + 1)p

Γq1 (�1)

∫ ξ

μ

(
ξ – η1Ψq1 (λ)

)(�1–1)
η1

hp
1(λ) dλq1,ωi

≤ θ
p
2

Γq1 (�1)

∫ ξ

μ

(
ξ – η1Ψq1 (λ)

)(�1–1)
η1

(h1 + f1)p(λ) dλq1,ωi . (4.11)

It follows that

(

μ
I�1
q1,ω1 hp

1(ξ )
) ≤ θ

p
2

(θ2 + 1)p

(

μ
I�1
q1,ω1 (h1 + f1)p(ξ )

)
. (4.12)

In contrast, using 0 < θ1 ≤ h1(λ)
f1(λ) , μ < λ < ξ , we have

(θ1 + 1)qf q
1 (λ) ≤ (h1 + f1)q(λ). (4.13)

Again, if we multiply both sides of (4.13) with (ξ–η1 Ψq1 (λ))(�1–1)
η1

Γq1 (�1) , λ ∈ [μ, ξ ) and take the q1,
ω1-integration of the resulting inequality with respect to λ on [μ, ξ ), we obtain

(

μ
I�1
q1,ω1 f q

1 (ξ )
) ≤ 1

(θ1 + 1)q

(

μ
I�1
q1,ω1 (h1 + f1)q(ξ )

)
. (4.14)

Now, taking into account Young’s inequality, we get

h1(λ)f1(λ) ≤ hp
1(λ)
p

+
f q
1 (λ)

q
. (4.15)

Now, if we multiply both sides of (4.15) with (ξ–η1 Ψq1 (λ))(�1–1)
η1

Γq1 (�1) , λ ∈ [μ, ξ ) and take the q1,
ω1-integration of the resulting inequality with respect to λ on [μ, ξ ), we obtain

(

μ
I�1
q1,ω1 (h1f1)(ξ )

) ≤ 1
p
(

μ
I�1
q1,ω1 hp

1(ξ )
)

+
1
q
(

μ
I�1
q1,ω1 f q

1 (ξ )
)
. (4.16)

With the aid of (4.12) and (4.14) into (4.16), one obtains

(

μ
I�1
q1,ω1 (h1f1)(ξ )

)

≤ 1
p
(

μ
I�1
q1,ω1 hp

1(ξ )
)

+
1
q
(

μ
I�1
q1,ω1 f q

1 (ξ )
)

≤ θ
p
2

p(θ2 + 1)p

(

μ
I�1
q1,ω1 (h1 + f1)p(ξ )

)

+
1

q(θ1 + 1)q

(

μ
I�1
q1,ω1 (h1 + f1)q(ξ )

)
. (4.17)

Using the inequality (a1 + a2)s ≤ 2s–1(as
1 + as

2), s > 1, a1, a2 > 0, one can obtain

(

μ
I�1
q1,ω1 (h1 + f1)p(ξ )

) ≤ 2p–1(

μ
I�1
q1,ω1

(
hp

1 + f p
1
)
(ξ )

)
(4.18)



Rashid et al. Advances in Difference Equations        (2020) 2020:383 Page 14 of 17

and

(

μ
I�1
q1,ω1 (h1 + f1)q(ξ )

) ≤ 2q–1(

μ
I�1
q1,ω1

(
hq

1 + f q
1
)
(ξ )

)
. (4.19)

Hence the proof of (4.9) can be concluded from (4.17), (4.18), and (4.19) collectively. �

5 Application
This section is devoted to the application of q, ω-derivative equations concerning the non-
local q, ω-integral boundary value problem of nonlinear fractional equations

(
μD�1

q,ωp
)
(ξ ) + f1

(
qξ + ω, p(qξ + ω)

)
= 0, (5.1)

p(μ) = 0, p(ν) = ϑ
(
μI�2

q,ωp
)
(σ ), (5.2)

where ϑ > 0 is a parameter with the assumption that f1 is a real-valued continuous func-
tion, where 0 < σ < 1, q ∈ (0, 1), 1 ≤ �1 ≤ 3, 0 < �2 ≤ 3. Also, μD�1

q,ω denotes the quantum
Hahn q, ω-derivative operator of order �1.

Example 5.1 Suppose that a real-valued continuous function u is the unique solution for
the boundary value problem

(
μD�1

1/2,ωp
)
(ζ ) + u(ζ /2 + η) = 0, 1 ≤ �1 ≤ 3,

with the assumption that z = Γ1/2(�1 + �2)(ν – μ)(�1–1)
η – ηΓ1/2(�1)(σ – μ)�1+�2–1

η > 0 subject
to the boundary condition

p(μ) = 0, p(ν) = ϑ
(
μI�2

q,ωp
)
(σ ), 0 < �2 ≤ 3, 0 < σ < 1,

is given by p(ζ ) =
∫ ν

μ
Y(ζ , ηψ1/2(λ))u(λ/2 + η) d1/2,ωλ, ζ ∈ [μ,ν], where

Y
(
ζ , ηψ1/2(λ)

)
= y

(
ζ , ηψ1/2(λ)

)
+

ϑ(ζ – μ)�1–1
η

z
A

(
σ , ηψ1/2(λ)

)
,

y
(
ζ , ηψ1/2(λ)

)
=

1
Γ1/2(�1)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ζ–μ)(�1–1)
η

(ν–μ)(�1–1)
η

(ν – ηψ1/2(λ))(�1–1)
η – (ζ – ηψ1/2(λ))(�1–1)

η ,

μ ≤ ηψ1/2(λ) ≤ ζ ≤ ν,
(ζ–μ)(�1–1)

η

(ν–μ)(�1–1)
η

(ν – ηψ1/2(λ))(�1–1)
η , μ ≤ ηψ1/2(λ) ≤ ζ ≤ ν,

A
(
σ , ηψ1/2(λ)

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
Γ1/2(�1)

(σ–μ)(�1–1)
η

(ν–μ)(�1–1)
η

(ν – ηψ1/2(λ))(�1–1)
η – (σ – ηψ1/2(λ))(�1–1)

η ,

μ ≤ ηψ1/2(λ) ≤ σ ≤ ν,
(σ–μ)(�1–1)

η

(ν–μ)(�1–1)
η

(ν – ηψ1/2(λ))(�1–1)
η , μ ≤ ηψ1/2(λ) ≤ σ ≤ ν.

Proof Suppose that the given system has the following solution:

p(ζ ) = a1(ζ – μ)(�1–1)
η + a2(ζ – μ)(�1–2)

η

–
1

Γ1/2(�1)

∫ ζ

μ

(
ζ – ηψ1/2(λ)

)(�1–1)
η

u(λ/2 + η) d1/2,ωλ, (5.3)
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where a1, a2 are free of ζ , ζ ∈ [μ,ν]. Given that p(μ) = 0, we have a2 = 0. Under the bound-
ary condition p(ν) = ϑ(μI�2

q,ωp)(σ ), we obtain

a1 =
Γ1/2(�1 + �2)

z

{
1

Γ1/2(�1)

∫ ν

μ

(
ν – ηψ1/2(λ)

)(�1–1)
η

u(λ/2 + η) d1/2,ωλ

–
ϑ

Γ1/2(�1 + �2)

∫ σ

μ

(
σ – ηψ1/2(λ)

)(�1+�2–1)
η

u(λ/2 + η) d1/2,ωλ

}

,

which concludes

p(ζ ) =
Γ1/2(�1 + �2)(ζ – μ)(�1–1)

η

z

{
1

Γ1/2(�1)

∫ ν

μ

(
ν – ηψ1/2(λ)

)(�1–1)
η

u(λ/2 + η) d1/2,ωλ

–
ϑ

Γ1/2(�1 + �2)

∫ σ

μ

(
σ – ηψ1/2(λ)

)(�1+�2–1)
η

u(λ/2 + η) d1/2,ωλ

}

–
1

Γ1/2(�1)

∫ ζ

μ

(
ζ – ηψ1/2(λ)

)(�1–1)
η

u(λ/2 + η) d1/2,ωλ

=
∫ ν

μ

y
(
ζ , ηψ1/2(λ)

)
u(λ/2 + η) d1/2,ωλ

+
ϑ(ζ – μ)(�1–1)

η

z

∫ ν

μ

A
(
σ , ηψ1/2(λ)

)
u(λ/2 + η) d1/2,ωλ

=
∫ ν

μ

Y
(
ζ , ηψ1/2(λ)

)
u(λ/2 + η) d1/2,ωλ. �

6 Conclusion
We suggested in this paper quantum calculus and fractional calculus conditions under
which a Hahn integral operator with these new generalizations is reached using the quan-
tum Hahn integral operator strategy. We supposed three various cases in the present re-
search study. First is concerned with convex functions, the second one has identified re-
verse Minkowski inequalities, and the last one is the reverse Hölder inequalities. In each
case, we presented several new generalizations that meet prerequisites and simultane-
ously are simpler to actualize. It is important that at the limit case, that is, when �1 = 1,
q → 1, and ω = 0, we get classical integral inequalities from these quantum Hahn integral
operators. It is hence evident that this new approach which we call fractional quantum
calculus is better than both quantum and fractional calculus. We presented an example in
Riemann–Liouville type q, ω-derivative in the boundary value problem to show the appli-
cability of the proposed operator. Also, to catch more complexities of the attractors under
scrutiny in the present research work, new examinations and applications can be investi-
gated with some positive and new results in different fields of science, optics, and fractal
theory. These new investigations will be displayed in future research work being prepared
by the scientist of the present paper.
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