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Abstract
The purpose of this work is to analytically simulate the mutual impact for the
existence of both temporal and spatial Caputo fractional derivative parameters in
higher-dimensional physical models. For this purpose, we employ the γγγ -Maclaurin
series along with an amendment of the power series technique. To supplement our
idea, we present the necessary convergence analysis regarding the γγγ -Maclaurin
series. As for the application side, we solved versions of the higher-dimensional heat
and wave models with spatial and temporal Caputo fractional derivatives in terms of
a rapidly convergent γγγ -Maclaurin series. The method performed extremely well, and
the projections of the obtained solutions into the integer space are compatible with
solutions available in the literature. Finally, the graphical analysis showed a possibility
that the Caputo fractional derivatives reflect some memory characteristics.

MSC: 26A33; 41A58; 35R11; 35C10

Keywords: Memory index; Fractional PDEs; Analytic solution

1 Introduction
Fractional mathematical models have shown the ability to describe the dynamics of some
natural phenomena and nonlocal systems that inherit memory properties [1–3]. They are
ubiquitous in many areas such as physics, chemistry, biology, control theory, signal and
image processing, and economics. For this reason, many of the existing nonlinear PDEs
that describe different phenomena have been remodeled in the sense of fractional deriva-
tives, and their chaotic behavior and solutions have been reported in many cases by us-
ing developed methods based on wavelets and B-spline collocation ideas [4–9], fractional
power (M-)series [10–16], finite difference schemes [17–19], variational iteration methods
[20, 21], and (q-)homotopy analysis approaches [22–25].

To mention a few recent works in fractional calculus, a series of interesting results ap-
peared in the literature. For example, the existence and controllability have been investi-
gated for fractional neutral functional (integro)differential equations with nonlocal con-
ditions and with infinite delay in Banach spaces [26–30]. The dynamical structures and
the epidemic prophecy have been studied for the novel coronavirus (2019-nCoV) with a
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nonlocal operator defined in the Caputo sense [31, 32]. The nondifferentiable behavior of
heat conduction of the fractal temperature field in homogeneous media was shown in [33].
A fractional epidemiological model describing computer viruses with an arbitrary order
derivative having a nonsingular kernel was analyzed in [34]. The dynamics of hepatitis B
viral infection with DNA-containing capsids, the liver hepatocytes, and the humoral im-
mune response via fractional differential mathematical models are presented and investi-
gated in [35]. A new immunogenetic tumor model with nonsingular fractional derivative
was studied in [36].

Various fractional derivative operators are proposed in the literature. The Riemann–
Liouville and Caputo fractional operators are the most common approach of defining
fractional derivatives. One common characteristic of these operators is the singularity of
their kernels. Although these fractional derivative operators played a vital role in mod-
eling several real-life phenomena, certain phenomena related to material heterogeneities
cannot be well modeled in the sense of these fractional derivatives [37]. As a result, general
fractional derivatives with nonsingular kernels in terms of the Mittag-Leffler, exponential,
trigonometric, Bessel, and Rabotnov fractional-exponential functions were submitted and
utilized in modeling many different real-life problems [37–45].

The central focus of almost all the proposed methods was mainly exploring the influ-
ence of the time-fractional derivative. However, several studies have revealed that the
power-law memory instilled in process and materials could also be in the space coordi-
nate [46, 47]. Motivated by this lack, some analytical methods were recently developed to
handle and study mathematical models embedded entirely in a fractional space [48–51].
Continuing in this direction, this research examines the joint influence for the existence
of both time and space fractional derivatives in higher-dimensional PDEs. To this end, we
merged a new analytical solution representation endowed with multifractional derivative
parameters together with the classical power series technique to find the solution of the
mathematical models living entirely in a fractional space. Also, we graphically studied the
behavior of the obtained solutions and noticed that these solutions converge homotopi-
cally, when the Caputo fractional derivatives move from zero to one, to the solution of the
integer version of the problem. In some sense, this supports the idea that these fractional
derivative parameters act as memory indices.

2 Analytic solution ansatz of higher-dimensional FPDEs
Here we propose an analytic solution ansatz of higher-dimensional partial differential
equations entirely living in the fractional space. Then we provide a theoretical frame of
the solution ansatz convergence.

Definition 2.1 A trivariate Maclaurin γγγ -series (abbreviated by γγγ -Maclaurin) is a rear-
rangement for a fractional Cauchy product series in the form

∞∑

�1+�2+�3=0
�1,�2,�3∈N∗

ξ�1,�2,�3 t�1γ1 x�2γ2 y�3γ3 = ξ000︸︷︷︸
�1+�2+�3=0

+ ξ100tγ1 + ξ010xγ2 + ξ001yγ3
︸ ︷︷ ︸

�1+�2+�3=1

+ · · ·

+
n∑

i=0

i∑

j=0

ξn–i,i–j,jt(n–i)γ1 x(i–j)γ2 yjγ3

︸ ︷︷ ︸
�1+�2+�3=n

+ · · · , (2.1)
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where γγγ = (γ1,γ2,γ3) ∈ (0, 1)3, {t, x, y} is a set of nonnegative variables, and ξ�1,�2,�3 are real
constants.

We point out here that the γγγ -Maclaurin can be naturally adapted to accommodate the
problem under consideration by making the series coefficients as functions in extra vari-
ables as follows:

∞∑

�1+�2+�3=0

ξ�1,�2,�3 (z)t�1γ1 x�2γ2 y�3γ3 . (2.2)

In what follows, we present some convergence theorems related to the γγγ -Maclaurin (2.1).
A similar analysis can be adopted to expression (2.2). It should be mentioned here that
comparable arguments were presented in a lower-dimensional fractional space in [52].

Lemma 2.2 If there exist t0, x0, y0 ∈ R≥0 such that the set {ξ�1,�2,�3 t�1γ1
0 x�2γ2

0 y�3γ3
0 :

�1,�2,�3 ∈ N
∗} is bounded, then the γγγ -Maclaurin (2.1) converges absolutely on D :=

[0, t0) × [0, x0) × [0, y0).

Proof Let t0, x0, y0 ∈R>0. By assumption we have |ξ�1,�2,�3 t�1γ1
0 x�2γ2

0 y�3γ3
0 | ≤ M for some M ∈

R>0 and all �1,�2,�3 ∈ N
∗. Now, for (t, x, y) ∈ D – {(0, 0, 0)}, set 0 < τ1 = tt–1

0 < 1, 0 < τ2 =
xx–1

0 < 1, and 0 < τ3 = yy–1
0 < 1. Then

∞∑

�1+�2+�3=0

∣∣ξ�1,�2,�3 t�1γ1 x�2γ2 y�3γ3
∣∣ =

∞∑

�1+�2+�3=0

∣∣ξ�1,�2,�3 t�1γ1
0 x�2γ2

0 y�3γ3
0

∣∣τ �1γ1
1 τ

�2γ2
2 τ

�3γ3
3

≤ M
∞∑

�1+�2+�3=0

τ
�1γ1
1 τ

�2γ2
2 τ

�3γ3
3

= M

( ∞∑

�1=0

τ
�1γ1
1

)( ∞∑

�2=0

τ
�2γ2
2

)( ∞∑

�3=0

τ
�3γ3
3

)

=
M

(1 – τ
γ1
1 )(1 – τ

γ2
2 )(1 – τ

γ3
3 )

< ∞.

Thus, the γγγ -Maclaurin (2.1) converges absolutely on D as desired. Note that if one of t0,
x0, or y0 is zero, then a similar argument can be applied with fewer variables. �

Theorem 2.3 The γγγ -Maclaurin (2.1) converges absolutely on either R
3≥0 or on D :=

[0, rt) × [0, rx) × [0, ry) for some (rt , rx, ry) ∈ R
3≥0. In the latter case the set A(t, x, y) :=

{ξ�1,�2,�3 t�1γ1 x�2γ2 y�3γ3 : �1,�2,�3 ∈ N
∗} is unbounded outside D.

Proof Let B := {(t, x, y) ∈ R
3≥0 : A(t, x, y) is bounded}.

Case 1. If B = R
3≥0, then the γγγ -Maclaurin converges absolutely on R

3≥0 by the last
lemma.

Case 2. If B �= R
3≥0, then ∂B is a nonempty set since (0, 0, 0) ∈ B. Let (rt , rx, ry) ∈ ∂B. By

the definition of (rt , rx, ry), if (t, x, y) ∈D, then there exist (t0, x0, y0) ∈ B with
(t, x, y) ∈ [0, t0) × [0, x0) × [0, y0). Thus by the last lemma the γγγ -Maclaurin
converges absolutely. On the other hand, if (t, x, y) ∈R

3≥0 with
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(t, x, y) > (rt , rx, ry), then again by the definition there exist (t1, x1, y1) ∈R
3≥0 – B

with rt < t1 < t, rx < x1 < x, and ry < y1 < y. Since A(t1, x1, y1) is unbounded,
A(t, x, y) is unbounded as well. �

Definition 2.4 The triple (rt , rx, ry) ∈R
3≥0 in the last theorem is called the triradius of con-

vergence for γγγ -Maclaurin. Otherwise, we say that the triradius of convergence is infinity.

Remark 1 By a suitable change of variable, it is easy to see that the series

∞∑

�1+�2+�3=0

ξ�1,�2,�3 t�1 x�2 y�3

with (t, x, y) ∈ R
3 has a triradius of convergence (rt , rx, ry) if and only if the γγγ -Maclaurin

with (t, x, y) ∈R
3≥0 has a triradius of convergence (rγ –1

1
t , rγ –1

2
x , rγ –1

3
y ).

Remark 2 It is worth mentioning that the γγγ -Maclaurin is the Cauchy product of fractional
power series, after rearrangement, in the domain of absolute convergence. Nevertheless,
the γγγ -Maclaurin enables us to add finite elements on each term instead of adding an entire
row or column with infinite elements.

∞∑

�1+�2+�3=0

ξ�1,�2,�3 t�1γ1 x�2γ2 y�3γ3 =

( ∞∑

�1=0

a�1 t�1γ1

)( ∞∑

�2=0

b�2 x�2γ2

)( ∞∑

�3=0

c�3 y�3γ3

)
,

where ξ�1,�2,�3 = a�1 b�2 c�3 . These three fractional power series in a single variable will be
called the components of γγγ -Maclaurin. Moreover, the γγγ -Maclaurin can be rewritten as
the triple sum

∞∑

�1=0

�1∑

�2=0

�2∑

�3=0

ξ�1–�2,�2–�3,�3 t(�1–�2)γ1 x(�2–�3)γ2 y�3γ3 .

Theorem 2.5 If the components of γγγ -Maclaurin converge absolutely at t0, x0, y0 > 0, re-
spectively, then the γγγ -Maclaurin

∑∞
�1=0

∑�1
�2=0

∑�2
�3=0 a�1–�2 b�2–�3 c�3 t(�1–�2)γ1 x(�2–�3)γ2 y�3γ3

converges absolutely on D = [0, t0) × [0, x0) × [0, y0).

Proof By assumption,
∑∞

�1=0 |a�1 t�1γ1 | < L1,
∑∞

�2=0 |b�2 x�2γ2 | < L2, and
∑∞

�3=0 |c�3 y�3γ3 | < L3

for some L1, L2, L3 ∈R>0. For each �1 ∈N, let E�1 (t0, x0, y0) =
∑�1

�2=0
∑�2

�3=0 a�1–�2 b�2–�3 c�3 ×
t(�1–�2)γ1
0 x(�2–�3)γ2

0 y�3γ3
0 . Then

∣∣E�1 (t0, x0, y0)
∣∣ =

∣∣∣∣∣

�1∑

�2=0

�2∑

�3=0

a�1–�2 b�2–�3 c�3 t(�1–�2)γ1
0 x(�2–�3)γ2

0 y�3γ3
0

∣∣∣∣∣

≤
�1∑

�2=0

�2∑

�3=0

∣∣a�1–�2 t(�1–�2)γ1
0

∣∣∣∣b�2–�3 x(�2–�3)γ2
0

∣∣∣∣c�3 y�3γ3
0

∣∣

≤
�1∑

�2=0

∣∣a�1–�2 t(�1–�2)γ1
0

∣∣
�2∑

�3=0

∣∣b�2–�3 x(�2–�3)γ2
0

∣∣∣∣c�3 y�3γ3
0

∣∣
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≤
�1∑

�2=0

∣∣a�1–�2 t(�1–�2)γ1
0

∣∣
(

�2∑

�3=0

∣∣b�2–�3 x(�2–�3)γ2
0

∣∣
)(

�2∑

�3=0

∣∣c�3 y�3γ3
0

∣∣
)

≤
∞∑

�2=0

∣∣a�1–�2 t(�1–�2)γ1
0

∣∣
( ∞∑

�3=0

∣∣b�2–�3 x(�2–�3)γ2
0

∣∣
)( ∞∑

�3=0

∣∣c�3 y�3γ3
0

∣∣
)

< L1L2L3 < ∞.

This shows that the sequence {E�1 (t0, x0, y0)} is bounded. Therefore the γγγ -Maclaurin con-
verges absolutely on D by Lemma 2.2, as desired. �

Remark 3 It is evident that if the above fractional power series components of the γγγ -
Maclaurin have a radius of convergence rt , rx, ry, respectively, then the γγγ -Maclaurin has a
triradius of convergence (rt , rx, ry).

Notation 1 For simplicity, we will alternatively write Γ (�γ + 1) as Γγ (�).

Now, as our goal is to furnish an analytical solution of higher-dimensional FPDEs, we
take into account the Caputo fractional derivative, which is defined for an appropriate
function as follows:

Dγ
t
[
ω(t, x, y)

]
=

1
Γ (1 – α)

∫ t

0

∂ω(τ , x, y)
∂τ

dτ

(t – τ )γ
, (2.3)

where γ ∈ (0, 1) is the Caputo fractional derivative order. Accordingly, immediate compu-
tations lead to

Dγ
t
[
tc] =

{
Γ (c+1)

Γ (c–γ +1) tc–γ , c > 0,
0, c = 0.

(2.4)

The following theorem shows the mixed Caputo fractional derivatives of analytic func-
tions in fractional sense of γγγ -Maclaurin [53, 54].

Theorem 2.6 Let ω(t, x, y) have a γγγ -Maclaurin on D = [0, rt) × [0, ry) × [0, rt). If
Diγ1

t Djγ2
x Dkγ3

y [ω(t, x, y)] ∈ C((0, rt) × (0, rx) × (0, ry)) for i, j, k ∈N. Then

Diγ1
t Djγ2

x Dkγ3
y

[
ω(t, x, y)

]

=
∞∑

�1+�2+�3=0

ξi+�1,j+�2,k+�3
Γγ1 (i + �1)Γγ2 (j + �2)Γγ3 (k + �3)

Γγ1 (�1)Γγ2 (�2)Γγ3 (�3)
t�1γ1 x�2γ2 y�3γ3 . (2.5)

In (2.5), upon substituting (t, x, y) = (0, 0, 0), we obtain the coefficients in terms of the
mixed Caputo fractional derivatives as

ξ�1,�2,�3 =
D�1γ1

t D�2γ2
x D�3γ3

y [ω(0, 0, 0)]
Γγ1 (�1)Γγ2 (�2)Γγ3 (�3)

, (2.6)

which is the fractional version of the classical multivariate Maclaurin coefficients.
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3 An application of γγγ -Maclaurin series
In this section, the γγγ -Maclaurin series is merged in the power series technique to furnish
analytically the solution of the PDEs endowed with multimemory indices. It is worth re-
calling here some necessary fractional functions that will be frequently used in the sequel:

Mittag-Leffler function: Eγ (t) =
∑∞

�=0
t�

Γγ (�) ,

Trigonometric functions: sinγ (t) =
∑∞

�=0
(–1)�t2�+1

Γγ (2�+1) , cosγ (t) =
∑∞

�=0
(–1)�t2�

Γγ (2�) ,

Hyperbolic functions: sinhγ (t) =
∑∞

�=0
t2�+1

Γγ (2�+1) , coshγ (t) =
∑∞

�=0
t2�

Γγ (2�) .

Example 1 In our first illustrative example, we consider the following hyperbolic γγγ -wave-
like equation:

D2γ1
t

[
ω(t, x, y)

]
=

1
2
(
D2γ2

x
[
ω(t, x, y)

]
+ D2γ3

y
[
ω(t, x, y)

])
, (3.1)

constrained by the fractional initial conditions

ω(0, x, y) = sinγ2

(
xγ2

)
cosγ3

(
yγ3

)
+ cosγ2

(
xγ2

)
sinγ3

(
yγ3

)
,

Dγ1
t

[
ω(0, x, y)

]
= sinγ2

(
xγ2

)
sinγ3

(
yγ3

)
– cosγ2

(
xγ2

)
cosγ3

(
yγ3

)
.

(3.2)

We presume that the solution exists analytically in the form (2.1). Now we substitute the
proper formulas from Theorem 2.6 into equations (3.1)–(3.2) and compare the coefficients
of identical monomials in both parties to get the following recurrence relation

Γγ1 (�1 + 2)
Γγ1 (�1)

ξ�1+2,�2,�3 =
1
2

(
Γγ2 (�2 + 2)

Γγ2 (�2)
ξ�1,�2+2,�3 +

Γγ3 (�3 + 2)
Γγ3 (�3)

ξ�1,�2,�3+2

)
(3.3)

with initial coefficients

ξ0,2�2+1,2�3 =
(–1)�2+�3

Γγ2 (2�2 + 1)Γγ3 (2�3)
,

ξ0,2�2,2�3+1 =
(–1)�2+�3

Γγ2 (2�2)Γγ3 (2�3 + 1)
,

ξ1,2�2,2�3 =
(–1)�2+�3+1

Γγ1 (1)Γγ2 (2�2)Γγ3 (2�3)
,

ξ1,2�2+1,2�3+1 =
(–1)�2+�3

Γγ1 (1)Γγ2 (2�2 + 1)Γγ3 (2�3 + 1)
.

(3.4)

Next, in light of the initial coefficients (3.4), we recursively solve (3.3) to obtain the follow-
ing general form of the series coefficients:

ξ2�1,2�2+1,2�3 =
(–1)�1+�2+�3

Γγ1 (2�1)Γγ2 (2�2 + 1)Γγ3 (2�3)
,

ξ2�1,2�2,2�3+1 =
(–1)�1+�2+�3

Γγ1 (2�1)Γγ2 (2�2)Γγ3 (2�3 + 1)
,

ξ2�1+1,2�2,2�3 = –
(–1)�1+�2+�3

Γγ1 (2�1 + 1)Γγ2 (2�2)Γγ3 (2�3)
, (3.5)
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ξ2�1+1,2�2+1,2�3+1 =
(–1)�1+�2+�3

Γγ1 (2�1 + 1)Γγ2 (2�2 + 1)Γγ3 (2�3 + 1)
,

ξ�1,�2,�3 = 0 otherwise.

Finally, we substitute the resulted coefficient (3.5) into the γγγ -Maclaurin series to get

ω(t, x, y) =
∞∑

�1+�2+�3=0

[
(–1)�1+�2+�3 t2�1γ1 x(2�2+1)γ2 y2�3γ3

Γγ1 (2�1)Γγ2 (2�2 + 1)Γγ3 (2�3)

+
(–1)�1+�2+�3 t2�1γ1 x2�2γ2 y(2�3+1)γ3

Γγ1 (2�1)Γγ2 (2�2)Γγ3 (2�3 + 1)

–
(–1)�1+�2+�3 t(2�1+1)γ1 x2�2γ2 y2�3γ3

Γγ1 (2�1 + 1)Γγ2 (2�2)Γγ3 (2�3)

+
(–1)�1+�2+�3 t(2�1+1)γ1 x(2�2+1)γ2 y(2�3+1)γ3

Γγ1 (2�1 + 1)Γγ2 (2�2 + 1)Γγ3 (2�3 + 1)

]
. (3.6)

As each of these sums converges absolutely in [0,∞)3 by the ratio test, Remark 2 implies
that each sum can be written as a Cauchy product of three series. For example, for the first
sum, we have

∞∑

�1+�2+�3=0

(–1)�1+�2+�3 t2�1γ1 x(2�2+1)γ2 y2�3γ3

Γγ1 (2�1)Γγ2 (2�2 + 1)Γγ3 (2�3)

=
∞∑

�1=0

(–1)�1 t2�1γ1

Γγ1 (2�1)

∞∑

�2=0

(–1)�2 x(2�2+1)γ2

Γγ2 (2�2 + 1)

∞∑

�3=0

(–1)�3 y2�3γ3

Γγ3 (2�3)

= cosγ1

(
tγ1

)
sinγ2

(
xγ2

)
cosγ3

(
yγ3

)
.

Therefore the solution (3.6) reduced to the following closed form:

ω(t, x, y) = cosγ1

(
tγ1

)
sinγ2

(
xγ2

)
cosγ3

(
yγ3

)
+ cosγ1

(
tγ1

)
cosγ2

(
xγ2

)
sinγ3

(
yγ3

)

– sinγ1

(
tγ1

)
cosγ2

(
xγ2

)
cosγ3

(
yγ3

)
+ sinγ1

(
tγ1

)
sinγ2

(
xγ2

)
sinγ3

(
yγ3

)
. (3.7)

As a particular case, if γγγ → 1, then we obtain the solution of the wave-like equation in the
integer case:

ω(t, x, y) = sin(x + y – t). (3.8)

Figure 1 clarifies the cross-sections of the 10th approximate γγγ -Maclaurin solution (3.6)
for several values of γγγ ∈ (0, 1)3. Their performance shows that the γγγ -Maclaurin solution
depends continuously on the fractional derivative parameters to attain the integer case
solution, which in turn reflects some information about memory.

Example 2 Next, we consider the following γγγ -heat equation:

Dγ1
t

[
ω(t, x, y)

]
=

1
2
(
y2γ3D2γ2

x
[
ω(t, x, y)

]
+ x2γ2D2γ3

y
[
ω(t, x, y)

])
, (3.9)
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Figure 1 Cross-sections of the 10th approximate solution (3.6)

constrained by the fractional initial condition

ω(0, x, y) = y2γ3 . (3.10)

Again, we presume that the solution exists analytically in the form (2.1). Now we substitute
the proper formulas from Theorem 2.6 into equations (3.9)–(3.10) and compare the co-
efficients of identical monomials in both parties to get the following recurrence relations
for each �i ≥ 0

Γγ1 (�1 + 1)
Γγ1 (�1)

ξ�1+1,�2,�3

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, �2,�3 < 2,
Γγ2 (�2+2)
2Γγ2 (�2) ξ�1,�2+2,�3–2, 0 ≤ �2 < 2,�3 ≥ 2,
Γγ3 (�3+2)
2Γγ3 (�3) ξ�1,�2–2,�3+2, �2 ≥ 2, 0 ≤ �3 < 2,
Γγ2 (�2+2)
2Γγ2 (�2) ξ�1,�2+2,�3–2 + Γγ3 (�3+2)

2Γγ3 (�3) ξ�1,�2–2,�3+2, �2,�3 ≥ 2,

(3.11)

with initial coefficient ξ0,0,2 = 1. Next, we recursively solve (3.11) to obtain the following
general form of the series coefficients:

ξ2�1,0,2 =
Γ �1

γ2 (2)Γ �1
γ3 (2)

22�1Γγ1 (2�1)
,

ξ2�1+1,2,0 =
Γ �1

γ2 (2)Γ �1+1
γ3 (2)

22�1+1Γγ1 (2�1 + 1)
,

ξ�1,�2,�3 = 0 otherwise.

(3.12)
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We now substitute the resulting coefficient (3.12) into the γγγ -Maclaurin series to get

ω(t, x, y) =
∞∑

�1=0

ξ2�1,0,2t2�1γ1 y2γ3 +
∞∑

�1=0

ξ2�1+1,2,0t(2�1+1)γ1 x2γ2

= y2γ3
∞∑

�1=0

Γ �1
γ2 (2)Γ �1

γ3 (2)
22�1Γγ1 (2�1)

t2�1γ1 + x2γ2
∞∑

�1=0

Γ �1
γ2 (2)Γ �1+1

γ3 (2)
22�1+1Γγ1 (2�1 + 1)

t(2�1+1)γ1

= y2γ3 coshγ1

(
Γ 0.5

γ2 (2)Γ 0.5
γ (2)

2
tγ1

)

+
(

Γγ3 (2)
Γγ2 (2)

)0.5

x2γ2 sinhγ1

(
Γ 0.5

γ2 (2)Γ 0.5
γ3 (2)

2
tγ1

)
. (3.13)

As a particular case, if γγγ → 1, then we obtain the solution of the heat equation in the
integer case:

ω(t, x, y) = y2 cosh(t) + x2 sinh(t). (3.14)

Figure 2 clarifies the cross-sections of the 10th approximate γγγ -Maclaurin solution
(3.13) for several values of γγγ ∈ (0, 1)3. Again, their performance shows that the γγγ -
Maclaurin solution depends continuously on the fractional derivative parameters to at-
tain the integer case solution, which in turn reflects some information about mem-
ory.

Figure 2 Cross-sections of the 10th approximate solution (3.13)
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Example 3 Finally, we consider the following γγγ -wave-like equation in 4D:

D2γ1
t

[
ω(t, x, y, z)

]

= x2γ2 + y2γ3 + z2

+
1
2
(
x2γ2D2γ2

x 1
[
ω(t, x, y, z)

]
+ y2γ3D2γ3

y
[
ω(t, x, y, z)

]
+ z2ωzz(t, x, y, z)

)
, (3.15)

constrained by the fractional initial conditions

ω(0, x, y, z) = 0,

Dγ1
t

[
ω(0, x, y, z)

]
= x2γ2 + y2γ3 – z2.

(3.16)

We presume that the solution exists analytically in the form (2.2). We substitute the proper
formulas from Theorem 2.6 into equations (3.15)–(3.16) and compare the coefficients of
identical monomials in both parties to get the following recurrence-differential equations
for each �1 ≥ 0:

Γγ1 (�1 + 2)
Γγ1 (�1)

ξ�1+2,�2,�3 (z)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 z2ξ ′′

�1,�2,�3
(z) + z2, �2,�3 < 2,

1
2 ( Γγ2 (�2)

Γγ2 (�2–2)ξ�1,�2,�3 (z)

+ Γγ3 (�3)
Γγ3 (�3–2)ξ�1,�2,�3 (z) + z2ξ ′′

�1,�2,�3
(z)) + 2, �2,�3 = 2,

1
2 ( Γγ2 (�2)

Γγ2 (�2–2)ξ�1,�2,�3 (z)

+ Γγ3 (�3)
Γγ3 (�3–2)ξ�1,�2,�3 (z) + z2ξ ′′

�1,�2,�3
(z)) + 1, �2=2 & �3>2,

�2>2 & �3=2,

1
2 ( Γγ2 (�2)

Γγ2 (�2–2)ξ�1,�2,�3 (z)

+ Γγ3 (�3)
Γγ3 (�3–2)ξ�1,�2,�3 (z) + z2ξ ′′

�1,�2,�3
(z)), otherwise,

(3.17)

with initial coefficients

ξ0,�2,�3 (z) = 0, ξ1,0,0(z) = –
1

Γγ1 (1)
z2,

ξ1,2,0(z) = ξ1,0,2 =
1

Γγ1 (1)
, ξ1,�2,�3 (z) = 0 otherwise.

(3.18)

In light of the initial coefficients (3.18), we recursively solve (3.17) to obtain the following
general form of the series coefficients

ξ�1,0,0(z) =
(–1)�1

Γγ1 (�1)
z2,

ξ2�1,2,0(z) =
Γ �1–1

γ2 (2)
2�1–1Γγ1 (2�1)

, ξ2�1+1,2,0(z) =
Γ �1

γ2 (2)
2�1Γγ1 (2�1 + 1)

,

ξ2�1,0,2(z) =
Γ �1–1

γ3 (2)
2�1–1Γγ1 (2�1)

, ξ2�1+1,0,2(z) =
Γ �1

γ3 (2)
2�1Γγ1 (2�1 + 1)

,

ξ�1,�2,�3 (z) = 0 otherwise.

(3.19)
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We now substitute the resulting coefficients (3.19) into the γγγ -Maclaurin series to get

ω(t, x, y, z) =
∞∑

�1=1

ξ�1,0,0(z)t�1γ1 +
∞∑

�1=0

ξ�1,2,0(z)t�1γ1 x2γ2 +
∞∑

�1=0

ξ�1,0,2(z)t�1γ1 y2γ3

=
∞∑

�1=1

(–1)�1

Γγ1 (�1)
z2t�1γ1

+ x2γ2

( ∞∑

�1=1

Γ �1–1
γ2 (2)

2�1–1Γγ1 (2�1)
t2�1γ1 +

∞∑

�1=0

Γ �1
γ2 (2)

2�1Γγ1 (2�1 + 1)
t(2�1+1)γ1

)

+ y2γ3

( ∞∑

�1=1

Γ �1–1
γ3 (2)

2�1–1Γγ1 (2�1)
t2�1γ1 +

∞∑

�1=1

Γ �1
γ3 (2)

2�1Γγ1 (2�1 + 1)
t(2�1+1)γ1

)

= z2(Eγ1

(
–tγ1

)
– 1

)

+ x2γ2

(
2

Γγ2 (2)

(
coshγ1

(
Γ 0.5

γ2 (2)
20.5 tγ1

)
– 1

)

+
(

2
Γγ2 (2)

)0.5

sinhγ1

(
Γ 0.5

γ2 (2)
20.5 tγ1

))

+ y2γ3

(
2

Γγ3 (2)

(
coshγ1

(
Γ 0.5

γ3 (2)
20.5 tγ1

)
– 1

)

+
(

2
Γγ3 (2)

)0.5

sinhγ1

(
Γ 0.5

γ3 (2)
20.5 tγ1

))
. (3.20)

As a particular case, if γγγ → 1, we obtain the solution of the wave-like equation in the
integer 4D case:

ω(t, x, y, z) = z2(e–t – 1
)

+
(
x2 + y2)(cosh(t) + sinh(t) – 1

)

= z2e–t +
(
x2 + y2)et –

(
x2 + y2 + z2). (3.21)

Figure 3 clarifies the cross-sections of the 10th approximate γγγ -Maclaurin solution (3.20)
for several values of γγγ ∈ (0, 1)3. Again, their performance shows that the γγγ -Maclaurin
solution depends continuously on the fractional derivative parameters to attain the integer
case solution, which in turn reflects some information about memory.

4 Conclusion
In the current work, we provided an analytical simulation of the mutual impact for the
existence of spatial and temporal memory indices in higher-dimensional PDEs in terms
of γγγ -Maclaurin series, which is recently developed for the same purpose. Also, we pre-
sented a theoretical framework for the convergence of the γγγ -Maclaurin to support our
idea. Practically, we employ an amendment of the power series technique to furnish an-
alytically the solution of several well-known physical models with spatial and temporal
memory indices together, namely the γγγ -heat and γγγ -wave-like models. The method exhib-
ited a great potentiality in solving such hybrid models, and its performance is validated
by comparing the projection of the obtained solutions with the available results in lower
fractional spaces. Finally, the graphical analysis shows that the γγγ -Maclaurin solutions are
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Figure 3 Cross-sections of the 10th approximate solution (3.20)

homotopic mappings to attain the integer case solutions, which in turn may reflect some
memory characteristics. For this reason, the Caputo fractional derivatives can be consid-
ered as memory indices.
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