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Abstract: The telegraph model describes that the current and voltage waves can be reflected on a wire,
that symmetrical wave patterns can form along a line. A numerical study of these voltage and current
waves on a transferral line has been proposed via a modified extended cubic B-spline (MECBS)
method. The B-spline functions have the flexibility and high order accuracy to approximate the
solutions. These functions also preserve the symmetrical property. The MECBS and Crank Nicolson
technique are employed to find out the solution of the non-linear time fractional telegraph equation.
The time direction is discretized in the Caputo sense while the space dimension is discretized by
the modified extended cubic B-spline. The non-linearity in the equation is linearized by Taylor’s
series. The proposed algorithm is unconditionally stable and convergent. The numerical examples
are displayed to verify the authenticity and implementation of the method.

Keywords: Nonlinear time fractional telegraph equation; extended cubic B-spline basis;
collocation method; Caputo’s fractional derivative

1. Introduction

Transmission line equation is the other name known for the classical telegraph equation (TE)
due to the reason of its origination because of the connection amongst voltage and the current waves
on the transferral line. The common diffusion circumstance is explained well such an equation.
However, in case of finite long transmits procedure, when the situation of abnormal diffusion happens
(in presence of voltage wave or current wave), the classical TE does not completely explain well.
FTE works well in such type of scenarios. Cascaval et al. [1] analysed FTE happens to facilitate in
improved understanding of diffusion process present in blood flow investigations. The FTE has been
used into the modeling of reaction dissemination, signal analysis for transference, random walk of
suspension flow, propagation of electrical signals etc.
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Consider the nonlinear time fractional telegraph equation (FTE) [2]

O u(s,t) | 0u(s,t) 0%u(s,t)

= >
at21x r o« asz + #)(H(S, t)) g(srt)/ CAS Q/ t - 0/ (1)
with initial conditions
u(s,0) = ¢1(s), se0
ut(s,0) = ¢a(s), se0

s, t) = qu(H),  £>0 @

u(s,t) = ga(t),
where ¢ > 0, g are a constant and suitable prescribed function of s and t respectively. i (u(s, t)) =
02! u3(s, f+ ’yzuz(s, £) + y3u(s, t), v1, v2, 73, are real constants. «, () denote fractional derivative and
bounded domain in real functions. Furthermore, 82‘;1;2(51), aﬂgt(pf’t)
(CFD) and « € (0,1). The CED [3] is interpreted as follows:

are Caputo fractional derivatives

ﬁ fOx(x - g)nilﬂxF(n) (C)dé‘, n—1l<a<mn necN,

Fm)(x), o =n. )

S
where I is the Euler’s Gamma function. The CFD allows traditional initial and boundary conditions to
be involved in the formula of the modeled problem. Here, the CFD of a constant equals to zero [4,5].

Several numerical and analytical techniques have been developed to solve FTE. The Adomian
decomposition method has been proposed for the analytical solution of FTE by Momani [6]. In this
article fractional derivatives have been used in Caputo sence. Yildirim [7] investigated He’s homotopy
technique for the solution of space-time FTE. The analytical solution has been calculated in the form of
series solutions. Das et al. [8] presented an analytical solution of time FTE using homotopy analysis
method. A linear time FTE has been solved by Li and Cao [9] via finite difference (FD) algorithm.
Galerkin mixed finite element technique for the solution of time FTE has been proposed by Wang [10].
A combination of Sumudu variational and iteration technique for solving FTE has been proposed
by Alkahtani et al. [11]. Asgari et al. [12] solved time FTE using Bernstein ploynomials operational
matrices. A combined method of a group preserving technique and the technique of line with CFD has
been proposed by Hashemi and Baleanu [13]. A collocation technique based on radial basis function for
the numerical solution of nonlinear time FTE has been proposed by Sepehrian and Shamohammadi [2].
Wang et al. [14] discussed the reproducing kernel space algorithm with CFD for solving time FTE
numerically. Wang and Mei [15] presented a Legendre spectral Galerkin technique and generalized FD
technique for solving time FTE. Liu [16] presented difference approximations for solving time FTE via
Griinwald formula and CFD.

B-splines functions have adaptability to estimate the solution with high order precision at any
point in the domain. These basis functions have been used to obtain the solution of fractional
differential equations (FDEs). Several researchers have been utilized B-splines to obtain the solution
of FDEs but only short number of studies for the FTE. Furthermore, so far as we realise there is no
such research on the use of B-spline for solving non-linear telegraph equation. Esen and Tasbozan [17]
solved the fractional Burgers equation using quadratic B-spline Galerkin approach. Sayevand et al. [18]
discussed a numerical technique for fractional diffusion problems via cubic B-spline (CBS). Pitolli [19]
presented the solutions of the Predator-Prey models using fractional B-spline technique. The FD
algorithm via extended cubic B-spline (ECBS) has been proposed for the time fractional advection
diffusion model by Mohyud-Din et al. [20]. Ghalomian and Nadjafi [21] presented the solution of
integro-differential model using CBS approach. Akram et al. [22-24] developed numerical techniques
for the linear time fractional telegraph model and fractional diffusion models via ECBS functions and
CFD. Khalid et al. [25] discussed time fractional Allen-Cahn model using redefine CBS functions.

The collocation method with B-splines functions is shown to provide good results for FDEs.
The main advantage of this method is that the obtained solution will be in approximate analytical
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form. Then the numerical solution can be established from the approximate analytical solution at any
discrete point.

This paper is organised as follows: In Section 2, a modified basis function is introduced.
In Section 3, a MECBS, Crank-Nicolson method and Caputo’s derivative are applied to solve nonlinear
FTE. Section 4 and Section 5 are devoted to stability analysis and convergence analysis. In Section 6,
numerical examples are illustrated. Finally conclusion is demonstrated in Section 7.

2. Modified Basis Function

Consider {s;} be a equally spaced partitioning of a finite domain with i € Z. Therefore, supposed
interval is arranged into M equal subintervals at the nodes as s; = so + ih, where & is a step size.
The ECBS functions [26] at the s; over the assumed interval is presented as follows;

4h(1—1)(s —si_2)° + 31 (s — si_2)*, s € [si-2,8i-1),
(4—m)h* + 1213 (s — s;_1) + 6h2(2+17) (s — 5;_1)?
, —12h(s —s;_1)%> = 3n(s —s;_1)4, s € [si—1,81),
Ei(sn) = 5ga | (4= MW +128%(si00 = 5) + 6122+ 1) (511 — 5)? (4)
—12]’1(Si+1 — 5)3 — 3T](Si+1 — 5)4, B [Sirsi+l)r
4h(1— 1) (siy2 —5)° +3n(siy2 —5)*, S € [sit1,5i42),
0, otherwise.
wherei = —1(1)M + 1, 7 € R is a free parameter in the closed interval [—8,1] and s € R is a variable.

For 1 € [-8,1], the CBS and ECBS basis hold same properties such as convex hull, symmetry,
geometrical invariability. The CBS and ECBS basis functions are numerically stable due to the convex
hull and symmetry properties. The ECBS transforms into CBS for 7 = 0. For a smooth function u(s, t)
there is a unique U(s, t), that assures the determined conditions, such that

j+1

Y di(t)Ei(s,7), ()

i=j—1

where time dependent unknown coefficients d;(t)’s are carried out by some specific restrictions.
The ECBS functions (4) and Equation (5) produce the following relations

A 4-— 8+ 4—
Ui(s, ) = Y di(t)Ei(s,17) = (")d +< ")d~+ (")d ©)

i=j—

. j+1 1
Ui(s,t) = ) di(t) _(_M)d11+(2h> i1 @)

i=j—1
u( f“d E (s 247, 4427\, (2470, o
/1) 21 2 )4t T )it )i ®)
i=j

In this article, the modified basis function are defined as follows

E()(S) = EO(S) +2E_4 (S), for ] =0

E1(s) = E1(s) — E_1(s), for j=1

]qu s) = Ej(s), for j=2,..,M—2 )
1::M71 S :EMfl(S)—EMle(S), for j:M—l

Em S) = EM(S) —|-2EM+1(S), for j: M

The ECBS functions are modified in this way that the diagonally dominance property is hold [27].
Now approximated solution of modified basis is described as follows
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U(So, l’) = gl(t)r for ] =0
U(sj, t) = LMo diEj(s), for j=1,.,M~—1 (10)
U(SM, t) = gz(t), for j=M

3. Derivation of the Method

In this part, we develop the numerical technique to solve the nonlinear time FTE using CFD.
Take uniform partition of time interval as t,, = tg +mt with T = t;41 —ty, m =0,1,..,N — 1.

The discretization of & Ltlz(,f’t) and aagt(:,t) in CFD form [28] are described as follows

0%u(s, tyi1)

of2w

B 1 /‘f 0%u(s, o) do
- T(2-2a) 902 (tyyq — o)l
_ 1 U /fn+1 0%u(s, o) do

r2-2a) a0/t 902 (tyyq — o)l
_ 1 i M(S, tp+1) - ZM(S, t]ﬂ) + M(S, tpfl) /tP‘H do 4 e’T”H

- & 2 o TP

%%u(s, t’““) (s, t"=PTLY —2u(s, " P) 4+ u(s, t"—P~1) 1
ot 3 20) Z b* T2 te (1)

where by = (p +1)* % — p?>~2*. The truncation error ' ! i

is given in [29] as
eyt < T, (12)

Remark 1. For a € (0,0.5), the given telegraph model becomes first order in time direction. Therefore always
€ (0.5,1).

And
ou(s, typ1) 1 /t ou(s, o) do
ot  T(l—-a)Jo 90 (tyy —o0)Y
B 1 i /fp+1 ou(s, o) do
Ti-o) &)y, 90 Gy o)
_ 1 i M(S, thrl) - M(S/ tp) /tP‘H do _ +6T+1,
r<1 05 T v (= 0)
(s, by pir) — (S, Enp) Y
_ Z m—p = m—p ((p+1)1 o(_pl a) +e;n+1’
p:
2u(s, ") s, ) a5, )
ot 2 —a) Z ™ e (13

where b, = (p + 1) 7% — p!~*. The truncation error of first order ¢/" ! is defined in [30] as
el < 27, (14)

where C and C; are constants.
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The by, b, satisty the following conditions

bp=1

bo > by > by > ... >bp,by =0 as p—

b, >0 for p=0,1,..,m

Lyio(bp = bps1) +byyr = (1= by) + Tp = (bp = bpi1) +bw = 1
s 1(2b*—b* D+l Yp=12.,m

Using 6 weighted technique and Equations (11) and (13) in Equation (1), we obtain

T—Za - b* m—p+1 2yM=P m—p—1 T —“ b m p+1 _  m—p
(3 2a) 20 plu 2T Tt ]+71"(2 Z plu "]
p:

O )+ -0l )~ £, 19

It is perceived that the u~! will arise for j =0,m, where m = 0,1, ..., N. The central difference
formula is used to obtain this term:
ut =ul — 27 (s).

Nonlinear term is linearized [31] as follow
(uZ)m+1 _ 2umum+1 — My O(T)Z (16)
<u3)m+1 —_ 3(u2)mum+l _ Z(uB)m + O(T)z (17)

here, if we choose 6§ = 0, 5 and 1, the above equation gives explicit, Crank-Nicolson and implicit
method. Substituting 6 = 2 in (15), we obtain Crank—Nicolson scheme as follows:

m m
LY by [P =20 P ey Y by [P —

p=0 p=0
1 71 T2
_ E(usnz+1 + ul ) + 7 <( )m+1 + <u3)m> + 7 ((u2>m+1 + (uZ)m)
+ % (um+1 + um) — gm+1, (18)
where r; = F(I;Z;a), rp = FYZT:Z) Using (16), (17) in (18), we have

m-+1 3
(7,1 +r+ %)um—kl ussz + 72 uu m+1 4 %(uZ)mum+l
m m
= @n+r - Ly 14 By %(u?’)m - Y byl
p:
—_oym-p _|_um—p — 1 Z b um= p+1 _ m—p] +gm+1

Using (10) in the above equation, for j = 0,1, ..., M, we have
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Y3 M m+1¢ 1 M m-+1 g1 mg M
(r1+7r2+ 2>.Edf Ej(s)_ixdj Ei'( +722d 2
j=0 j=0 j=0 j=0
371 M deZ M dm+1E = (2 dm dm—lE
+72f j(s)zj' j(s)—(7’1+7’2—* Z —Vlzj i(s)
j=0 j=0 j=0
+§]§d’”E” Ed’”E - Zb {Zd 2]Zd Ei(s)

PG } 1 pr{zdm P, de PEi(s)| + g,

j=0

The above system have (M + 1) x (M + 1), we can solve it uniquely. In order to begin the iteration
on the above system, it is mandatory to obtain the initial vector, for this we will utilize initial conditions

Eg = ¢1(s), j=0,
Yo dE = ¢)(s), j=1.,M~1, (19)
E’”“—%( ), j=M.
The above system (19) can be written as
Ad’ =B
where _ -
24 0 0 0 0
4—n 28+n) 4-7g 0 0
1 0 4—n 2(8+4+1n) 4-7 0
: 4—n 28+1n) 4—7
| 0 0 0 24 |

B = [g1(50), -, §1(sm)]”. It is clearly observed that for > —2 the matrix A is strictly diagonally
dominant. Therefore invertible by Gershgorin’s theorem [32]. Therefore, the above system cab be
solved easily by Wolfram Mathematica 12.

4. Stability Analysis

The idea of stability is related to the errors of computational method do not grow as the execution
continues. We will employ Von Neumann technique to examine the stability analysis. Let Y” represents
the growth factor in the form of Fourier mode and suppose Y*"* be the computed value. Therefore the
error " at mth time level is defined as

(;zm —ym _ysm

Consider the linearization [31] of (18) as ¢(u) = (y1u? + You + 73)u = Au, we have the following
error equation:

A m—+1 A m+1
(ri+ 2+ )" = 25 = 2y 1y = 5)8" =g+ 2
m m
—r Y bp[gMTP =28 4 P iy Y by[gM TP — gL (20)
p=0 p=0

Suppose the modified basis difference equation in one Fourier mode as
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(:]m+1 — M eiP

where i = v/—1, B, 6, h are the mode number, the Fourier coefficient and the element size respectively,
then the expression (20) takes the form

A m+1 A m-+1
(r+r2+ )§m+l % = (2r1+r— i)fm — @y %
1 m
—r1 Y L[ =28 4 g P iy Y [P — 2], (21)
p=0 —

Using the basis function, Equation (21) reduces to

e rae H((g22) -0 + (B0 Yo (A= )i
B 1((2241;277) iBh(j-1) 4 (_ 2:;1) iBhj ( I;"’?) iﬁh(j+1))](5m+l _
21 s %) {(42—477) iBh(j—1) (8+77> ol 4 (42_4’7>eiﬁh(j+1)}5m

- K‘Z”)gﬁh(ﬂ) n (8;;’7>ei/3hj n (T)eiﬁhwn} -1

L2410\ ign(i—1 240\ gni (21 ih(i+1 R
43| (Gt )i+ (= 2o+ (5L )emien | - 3 gylomoy

p=0

Y {(%)eiﬁh(il) + (8;;’7>eiﬁh]' + (42_4’7>ei5h(j+1)}

— 1 Z bp[yn-&-l—p _5m—p] |:<42_477)ei/8h(j—1) + (8:'277) iBhj + ( 77) iﬁh(j-i—l)], (22)

p=0

Divide (22) by /" and incorporating the terms, we attain

[(T1+rz+/2\)<8if-2’7 +2 o cos(ﬁh)) ;(21‘;’7+2 2—22 Os(ﬁh)>:|5m+1:

(8;_217 +2 cos(ﬁh)) + ;( 22_17 T cos(ﬁh))]

[(27’1 +r2 - &)

2
| B m-1_, (841 b (g
rl{ 15 +2 7 cos(‘Bh)}S n( 5 —|—2 7 T cos (Bh) ;;: plo
_ e 8+17 i _
__ngm—p m—p—17 _ m+l—p _ sm—p
20M7P 46 ] r2< 1 +2 7 T cos [Sh) E: [6 s"P]

Throughout divide by = 8+’7 122l it cos(Bh), we achieve

A A
[(r1 4+ 12+ 2) + 06" = [(2r1 415 — 5) —o]o™ —rom L
m m
-y by [6MF1P —25m—P 4 §mP gy Y. by [6mHI=P —§m=P], (23)
p=0 p=0

(2+n) sin” B /2

where v = W2(6+(7—4) sin® ph/2)

> 0forally > —2.

Proposition 1. If6™,m = 0,1, ..., N be the solution of (23), then |6k < 169].
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Proof. We determine this results by mathematical induction. Using m = 0 in expression (23), we get

A A
(m+rn+ ) +0)80 = (Q2ri4rn— 5 )60 — 67t
A A
(m+rn+ > +0)8t = (Q2ri4rn— 5 0) 6"
sl 2r1+r2—%—v 50
2r1+1+ % +v
6t < 18,

Suppose that for m = 0,1,..., N — 1, |6™| < |89] is true then we have

A A m
(ntn+z+0)0" = Qrntn-7 -0 -—ni"-n 2017; [omH1-p
p:

m
— 25" 5P iy Y by [0 — 5]
p=0

m
(n+r+ % + 7})(5"”rl < (2r 41" — r6™ 1 — g Z b;[ém"’l_” —25M°F
p=0

m
+ yn—p—l] —1 Z bp[yn—l—l—p _ yn—p]
p=0

A _ L _
(n+rn+s5+ 0)[" < [(2r +12)0" — 18" 41 Zobpﬂém“ P
p:

m
— 28" 4 P oy Y by [[ P — 5]
p=0

m
= |21 + 1) — 18" 4y Z‘ab;[wm“*r’ i
p:

m
SR L | ): bp[|(5m“*” — " P]
p=0

m
= [@r1+r2)[d"] = a6 |+ ) B[l 107 T

p=0
m
i A | B e RS C D[ i
p=0
= [0"]
A L
(n+rn+3 +0)[8" < (21 +72)[8°) = 11|80 + 1 Y By[116°] — [8°]] 4 116°)
p=0
0 e 0 0
— (0%l + 72 ) bp[l]0°] — [6°1]]
p=0

A
(rn+r+ > +0)[6" < (r; 4+ 12)|0°

|5m+1| < |5O|_

Hence (5]’.”“ = 6;.”“ < |80 = |§§)|, in order that ||§;”+1||2 < 16%)|2. Consequently, The MECBS
technique for model problem is unconditionally stable. [
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5. Convergence Analysis

In this segment, we will consider the convergence of MECBS technique for the time FTE.

Theorem 1 ([33-35]). Assume that u(s,t) € C*Q), f € C2Q and Q) is an equally spaced partition of Q with
length h. If u*(s, t) is the particular spline approximation to the solution of FTE at grid points sy, ...,sy € Q,
then there exists p; free of h, such that

| D (u(s, t) — U(s, )] < pih*~",i =0,1,2 (24)

Lemma 1 ([20,36]). The Basis set {E_1, Ey, ..., Enj11} interpreted in definition (4) attains the inequality
M+1 7

Y IE(sm <, 0<s<L (25)

i=—1

Theorem 2. The U(s, t) be the numerical approximation to the exact solution u(s,t) of Equations (1) and (2).
Furthermore, if g € Cc? [0, 1], we achieve

(s, t) — U(s, ) ]lo < WH,t >0, (26)

where p > 0 is a constant free of h and h is adequately small.

Proof. Let u*(s,t) = Zino di(t)E; is the computed solution to the U(s,t). Let the proposed
technique (20) attains collocation conditions

Lu(sj,t) = Lu(s]»,t) = g(sj,t), j=0,..M

then
Lu*(sj,t) = g"(sj,t), j=0,..,.M.

The difference equation of MECBS technique at mth time stage, can be explained as
A 4_77 m+1 8+77 m+1 4_77 m+1 1 2+77 m+1
mene | (et () (o) | -2 | (Gt
2+7 1 2+7 1| Al(4—1 8+
(e ()] = e | ()i (55)a
4-7 4=\ m1, (8£7 1y (A=
() g] —n | (o) () + ()

11/2+7y 2+7 2+7 +1 * *77 m+1—p
+2[<2hz) §”1—< )]m (W)€]+1]+gm -n Zb TR

. m— p 1 8+1 m+l—p  ,m—p m—p—1 4—1 mi1- P
1 i 44—, m+1- 8+1  m+1- -
+€§"+1p ) “r L bl G TGN S GG
4

+ ST =g @)

For j = 0, we have
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1 1
(r1+72+ )ém“ (2r1 415 — )631—?166“ —rlz RN O N

—rzZ NOPTL_ g 4o gl (28)

Likewise, for j = M. we have

A
(7’1 + 7+ ml

2) (27"1 +7’2 - 7)§M - I’1€M —nn 2 gm p+1 -+ g}n\zfp + gﬁ*ﬂ*l]

p=0
_ m—p+1 m p m+l (o
) Z J+8m - (29

The boundary condition are defined as

4— 8+ 4 — .

where { can be interpreted as

it is obvious from the (24)
u' = h2lg]" — g™ < ph*.
Define p™ = max{|p"[;0 < j < M}, ¢f' = [{]"| and e = max{|¢]"|;0 < j < M}. Let m = 0,

in (27), we obtain
e (5]

-(5t e (5ot - o (5
> (“”>a+1]+g%

24
1[/2+7
0
] 3| (5)- (5
implies that

enen+ () +3(520)|¢

A f4— 172+
_—[(271+72+2)<M’7> —2< thﬂﬂ( ]171+ }+1)+g}.

Taking absolute values of ;4]1, 5]1 and from the initial conditions ¢* = 0, then

60h*
(2+n)[(2r1 + 12+ 4)H2 + 6]

<

From (28) and (29), we obtain
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As 6171, e}w 41 can be bounded. From the boundary conditions, we attains
1 2 1 2
ey < ph%, ey < ph%

This implies
el < p1h2. (30)

Here p; is free from /. Using mathematical induction on 1, Assume that e” < pnhz, forn=1,..,m
Let p = max{py, : 0 < n < m}, then from (27), we obtain

e | ()t + (B0 e+ (B )] - 5| (Bt s
249\ o 241\ o A 841\
—<hzﬁﬁl(mfﬁﬁﬂzwﬁﬁ-ﬂKzﬁ>w+< )i

4 4—y\.pq (8 o (A=

()] o[ ()t + (e 1(2[)mﬂ

L2+ 247 2+7 1 o[ 4= omt1-p
G Jars - (5t Jars (ot Jama] e -n B[ 50

o T sl 1)+8;r—2'7(€}”“”’—2§7”’+g}71”’*1)+42—4’7(gﬁ+11 P agy
L] Sl - e )
+42;4’7(§]’szlfp_€ﬁflpﬂ —71[4 ﬂ(€m+1 200+ 0 )+8;'T’7(€]m+1 gy
£ -2 )] [P 20
+8;r—2'7(61 2004571+ 424’7( b1 =280+ )} —r2{42_4’7(g]’."_+11_ ")
+8+—2'7(C}"+1 =i )+L(gﬁ+11 C}iﬂ} — roby {42_4’7@]1_1 —70 )

8+17(Cl 50) i 17(/+1—C§')+1)-

From the above equation, we obtain

il < (2r1 + 2y + %)ph2 2r1b,0h? — rabyoh® — 1y Zm 1 b*ph2 — 7 Z bpph2
e .

;T 2+n)[2r +2rn+ 7)h2+6]

Similarly from (28), (29) and boundary conditions, we achieve

m+1 2 m+1 2 m+1 2 m+1 2
ey < pht, ey <pht, el <ph®, eyl < ph”.

Therefore, for every m, we obtain
et < oh?. (31)
By using Theorem 1 and the inequality (31), we obtain
. M+1 7 )
W (s,0) = Uls 1) = Y (d(6) — ci(t)Ej(s,n) < 31 (32)

=1

Using the triangular inequality, we have
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[u(s, £) = U(s,t)lloo < [Ju(s, t) = u™(s, ) [0 + [[7 (s, ) — U(s, 1) | co-

From inequality (24) and (32), we acquire
7
(s, ) = U(s,1) oo < poh* + Zoh* = Wi,

where W = p0h2 + % p. It is concluded from the above theorem, inequality (12) and (14), the MECBS
for the FTE is convergent.

llu(s, t) — U(s, ) ||eo < WH? 4+ CT372% 4 Oy 7274,
O

6. Numerical Implementation

We will go through some numerical experiments for the MECBS method in this part.
The theoretical claims are checked by error norms. All numerical tests are done in Mathematica.
The norms E«(h, T) and E;(h, T) between numerical results and analytical results are determined as

Eoo(h,7) = max "],

1MmZ
(e

m=0

RMSE =

The following formulation can be utilized to determine the order of convergence numerically [20]:

Eeo(M;
log {%(Mﬁ)}

0= :
log Mi]

where Eo(M;) and Eo(M; 1) are the maximum errors at partitioning M; and M; 1 respectively.

Example 1. The following FTE takes into consideration

%*u(s,t) *u(s,t)  Pu(s,t) 4
1 — =
s Tz 52 T U (s,t) +u(s, t) =g(s,t),

with

u(s,0) =0, 0<s<1

u(s,0) =0,

u(0,t) = 12, t>0

u(1,t) = t2e.
where (s, t) = %i;f;iq) + 219{32365 + t%¢3 and analytical solution is u(s,t) = t2¢° [2].

In Table 1 comparison of E.,, RMSE are presented for various values of M, « = 0.9, T = 0.003
at t = 0.18. Table 2 shows the comparison of RMSE given by Sepehrian and Shamohammadi [2] for
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« = 0.8, M = 21 and various values of T. The CPU time is also presented. In Table 3, E.., E;, RMSE and
rate of convergence are presented for « = 0.7, M = 50 at t = 0.3. Table 4 demonstrates the errors and
rate of convergence for various values of M. Figure 1 illustrates the graph of numerical and exact
values for time levels t = 0.4, 0.3, t = 0.2 and ¢t = 0.1. Error graph for « = 0.8, N =40,att =0.11is
plotted in Figure 2. Numerical solutions given by MECBS is plotted in Figure 3 corresponding & = 0.7
and T = 1.

Table 1. Error norms of example 1 for & = 0.9, T = 0.003 at t = 0.18.

M Method in [2] MECBS
Ew RMSE Ew RMSE CPU Time

06 0.0004175 0.0001734 0.0003592 0.0000388  0.023125
11 0.0003690 0.0001118  0.0003329  0.0000200  0.093750
21 0.0001256  0.0000298 0.0000973  0.0000032  0.156250
41 0.0000174 0.0000064 0.0000646 0.0000011  0.390625

Table 2. Comparison of RMSE for « = 0.8, M =21 att = 0.18.

T Method in [2]

Gaussian Inverse Quadratic Inverse Multi Quadratic MECBS CPU Time
% 0.000018177 0.000018192 0.000018126 0.000013528 0.45313
ﬁ 0.000008112 0.000008128 0.000008066 0.000007219 1.43750
ﬁ 0.000003621 0.000003637 0.000003578 0.000003547 1.48438
5 0.000001645 0.000001660 0.000001611 0.000001652 9.93750

N
o
(=]

Table 3. The errors for « = 0.7, M = 50, t = 0.3 at different 7.

Ew E; RMSE (0]
0.01124290 0.001260777  0.0001765441
0.00420084 0.000466420  0.0000653119  1.42027
0.00157882  0.000167477  0.0000234515 1.41183
0.00059535  0.000051284 0.0000071812  1.40705

Table 4. The Ew, E; and RMSE of Example 1 for « = 0.75, T =50 att = 0.1.

Ew E; RMSE (0]
0.000112879  0.0000343788  0.0000140351
0.000026850  0.0000048482  0.0000014618  2.071799
0.000006615  0.0000008568  0.0000001870  2.021091
0.000001504 0.0000001627  0.0000000254 2.136861

B B g o | B
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Figure 3. Space-time graph corresponding « = 0.7,y =10,y = land y3 = 1.
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Example 2. The following form of FTE

20 o 2
o a”tgj’t) 4202 ”E‘)S;t) 9 Lgii't) F1B(s,8) + uls,b) = g(s,b),
with
u(s,0) =0, 0<s<1
u(s,0) =0,
u(0,t) = 22+« t>0
u(1,t) = 2t2*% cosh(1)

where g(s,t) = 215%3:”;)) t2=% cosh(x) + 20T(3 + «)t? cosh(x) — 2t>T% cosh(x) + 71 (2t>7* cosh(x))3 +
2932t>+% cosh(x) and analytical solution is u(s,t) = 2t>7% cosh(x) [2].

Table 5 presents the comparison of E; and RMSE with CPU time for & = 0.7, M = 17 and various
values of T at t = 0.4. In Table 6, Ew, Ep, RMSE and rate of convergence are given for several values
of T,a =08, M =20att = 0.4. Tables 7 and 8 demonstrate that the numerical outcomes and exact
values for « = 0.6, 0.7, 0.8 and 0.9 at several knots. Figure 4 shows the computational outcomes and
exact solutions for various time steps. Figures 5 and 6 depict the error plot and space-time graph of

Example 2 at t = 0.6 and 0.5 respectively.

Table 5. The E; and RMSE of Example 2 fora = 0.7, M = 17 at t = 0.4.

T Method in [2] MECBS
E» RMSE E» RMSE E, RMSE CPU Time

0.008 0.0019484 0.0004726  0.0019501  0.0004730 0.00038535 0.000090827 0.28125
0.004 0.0009842 0.0002387 0.0009860 0.0002391 0.00017451  0.000041133 1.29688
0.002 0.0004949 0.0001200 0.0004968 0.0001205 0.00014626 0.000034473 5.50000
0.001 0.0002481 0.0000602  0.0002502  0.0000607 0.00013846 0.000032635 23.9375

Table 6. The errors of Example 2 for « = 0.8, M = 20, t = 0.4 at different 7.

Ew E; RMSE (0]
0.0432554  0.00796291  0.00173765
0.0192807 0.00363394  0.00079299  1.16572
0.0085208 0.00164049 0.00035799  1.17809

0.0037512  0.00072265 0.00015770 1.18365
0.0016524 0.00030803  0.00006722  1.18277

g-g= G- G- vim | A

Table 7. Numerical and exact values for & = 0.6, 0.7 at knots.

s a = 0.6 o =07

Numerical Values Exact Values Numerical Values Exact Values

0.0 0.0871566 0.0874068 0.0777292 0.0774921
0.1 0.0879147 0.0878442 0.0783412 0.0778799
0.2 0.0893033 0.0891608 0.0795512 0.0790471
0.3 0.0915300 0.0913697 0.0815268 0.0810055
0.4 0.0946615 0.0944931 0.0843142 0.0837746
0.5 0.0987382 0.0985622 0.0879450 0.0873821
0.6 0.1038020 0.1036180 0.0924559 0.0918642
0.7 0.1099020 0.1097100 0.0978915 0.0972657
0.8 0.1170840 0.1169010 0.1043004 0.1036410
0.9 0.1253520 0.1252620 0.1117061 0.1110530

1.0 0.1344900 0.1348760 0.1199427 0.1195770




Symmetry 2020, 12, 1154

Table 8. Numerical values and exact values for & = 0.8, 0.9 at knots.

o= 0.8

« =09

Numerical Values

Exact Values

Numerical Values

Exact Values

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0694043
0.0697533
0.0707987
0.0725527
0.0750328
0.0782639
0.0822783
0.0871162
0.0928260
0.0994647
0.1070960

0.0687020
0.0690458
0.0700806
0.0718169
0.0742719
0.0774702
0.0814439
0.0862326
0.0918845
0.0984559
0.1060130

0.0621345
0.0624465
0.0633824
0.0649526
0.0671730
0.0700656
0.0736595
0.0779906
0.0831022
0.0890456
0.0958785

0.0609090
0.0612138
0.0621313
0.0636705
0.0658471
0.0686826
0.0722055
0.0764511
0.0814619
0.0872879
0.0939875

0.16

0.20

0.18

0.14 -

0.0015

Error

0.0010
0.0005
0.0000

15

40 0

20

100

Figure 5. Error plot of Example 2 for « = 0.85, N = 40 at t = 0.6.

16 of 19
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Figure 6. Space-time plot fora = 0.8,y =20,y =1,y3 =1att =05.
7. Conclusions

In this article, a MECBS collocation technique was presented for the numerical solution of
nonlinear FTE. The Crank-Nicolson and MECBS were employed for the discretization of space
dimension. Time variable is discretized by finite difference scheme in Caputo’s sense. This method has
2 — w order accurate in time direction and order 2 accurate in space dimension consequently MECBS
lead to accurate numerical outcomes. The MECBS collocation technique has been validated through
several illustrative numerical experiments.
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Abbreviations

The following abbreviations are used in this manuscript:

MECBS Modified extended cubic B-spline
ECBS Extended cubic B-spline

CBS Cubic B-spline

FTE Fractional telegraph equation
CFD Caputo fractional derivative

TE Telegraph equation

FD Finite difference

FDEs Fractional differential equations

RMSE Roomt mean square error
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