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Abstract: In this study, we examine adapting and using the Sumudu decomposition method (SDM) 

as a way to find approximate solutions to two-dimensional fractional partial differential equations 

and propose a numerical algorithm for solving fractional Riccati equation. This method is a 

combination of the Sumudu transform method and decomposition method. The fractional 

derivative is described in the Caputo sense. The results obtained show that the approach is easy to 

implement and accurate when applied to various fractional differential equations. 
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1. Introduction 

Fractional calculus has been utilized as an excellent instrument to discover the hidden aspects 

of various material and physical processes that deal with derivatives and integrals of arbitrary orders 

[1–4]. The theory of fractional differential equations translates the reality of nature excellently in a 

useful and systematic manner [5]. Fractional differential equations are viewed as option models to 

nonlinear differential equations. Varieties of them play important roles and tools, not only in 

mathematics, but also in physics, dynamical systems, control systems and engineering, to create the 

mathematical modeling of many physical phenomena. Furthermore, they are employed in social 

science such as food supplement, climate and economics [6]. The mathematical physics governing by 

nonlinear partial deferential dynamical equations have applications in physical science. The 

analytical solutions for these dynamical equations play an important role in many phenomena in 

optics; fluid mechanics; plasma physics and hydrodynamics [7–10]. In recent years, many authors 

have investigated partial differential equations of fractional order by various techniques such as 

homotopy analysis technique [11,12], variational iteration method [13–15], homotopy perturbation 

method [16], homotopy perturbation transform method [17], Laplace variational iteration method 

[18–20], reduce differential transform method [21], Laplace decomposition method [22] and other 

methods [23–27]. 

There are numerous integral transforms such as the Laplace, Sumudu, Fourier, Mellin and Elzaki 

to solve PDEs. Of these, the Laplace transformation and Sumudu transformation are the most widely 

used. The Sumudu transformation method is one of the most important transform methods 

introduced in the early 1990 [28]. It is a powerful tool for solving many kinds of PDEs in various fields 

of science and engineering. In addition, various methods are combined with the Sumudu 

transformation method such as the homotopy perturbation transform method [29] which is a 
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combination of the homotopy perturbation method and the Sumudu transformation method. 

Another example is the homotopy analysis Sumudu transform method [30], which is a combination 

of the Sumudu transform method and the homotopy analysis method. 

Fractional operators are non-local operators; thus, they are used successfully for describing the 

phenomena with memory effect. We stress on the fact than by replacing the classical derivative with 

respect with time by a given fractional operator we change the nature of the partial differential 

equation from local to a nonlocal one. In this way we can describe better processes with faster of 

lower velocities, depending on the value of alpha, which in the classical class we cannot do. The 

domain of the utilized fractional operator and the type, namely local or nonlocal, are other key factors 

in modeling with high accuracy some real-world phenomena which cannot be described properly by 

using the classical calculus models. Successful examples of changing the differential operator into the 

fractional ones can be fined in modeling accurately the fluid mechanics models as well as the 

mathematical biology models, including the top-level epidemiological models. This article considers 

the efficiency of fractional Sumudu decomposition method (FSDM) to solve two-dimensional 

differential equations. The FSDM is a graceful coupling of two powerful techniques, namely ADM 

and Sumudu transform algorithms and gives more refined convergent series solution. 

2. Preliminaries 

Some fractional calculus definitions and notation needed [2,16,29] in the course of this work are 

discussed in this section. 

Definition 1. A real function 𝜑(𝜇), 𝜇 > 0, is said to be in the space 𝐶𝜗, 𝜗 ∈ 𝑅 if there exists a real 

number 𝑞, (𝑞 > 𝜗), such that 𝜑(𝜇) = 𝜇𝑞𝜑1(𝜇), where  )1( ) 0, ,C     and it is said to be in the 

space 𝐶𝜗
𝑚 if 𝜑(𝑚) ∈ 𝐶𝜗 , 𝑚 ∈ 𝑁. 

Definition 2. The Riemann Liouville fractional integral operator of order 𝜀 ≥ 0, of a function 𝜑(𝜇) ∈

𝐶𝜗, 𝜗 ≥ −1 is defined as 

 𝐼𝜀𝜑(𝜇) = {

1

Γ(𝜀)
∫ (𝜇 − 𝜏)𝜀−1𝜑(𝜏)𝑑𝜏

𝜇

0

,  𝜀 > 0, 𝜇 > 0,

𝐼0𝜑(𝜇) = 𝜑(𝜇), 𝜀 = 0,

 (2.1) 

where Γ(∙) is the well-known Gamma function. 

Properties of the operator Iα, which we will use here, are as follows: 

For 𝜑 ∈ 𝐶𝜗, 𝜗 ≥ −1, 𝜀, 𝜖 ≥ 0, 

1. 𝐼𝜀𝐼𝜖𝜑(𝜇) = 𝐼𝜀+𝜖𝜑(𝜇). 

2. 𝐼𝜀𝐼𝜖𝜑(𝜇) = 𝐼𝜖𝐼𝜀𝜑(𝜇) 

3. 𝐼𝜀𝜇𝑚 =
Γ(𝑚+1)

Γ(𝜀+𝑚+1)
𝜇𝜀+𝑚. 

Definition 3. The fractional derivative of 𝜑(𝜇) in the Caputo sense is defined as 

 𝐷𝜀𝜑(𝜇) = 𝐼𝑚−𝜀𝐷𝑚𝜑(𝜇)  =
1

Γ(𝑚 − 𝜀)
∫ (𝜇 − 𝜏)𝑚−𝜀−1𝜑(𝑚)(𝜏)𝑑𝜏

𝜇

0

, (2.2) 

for 𝑚 − 1 < 𝜀 ≤ 𝑚, 𝑚 ∈ 𝑁, 𝜇 > 0, 𝜑 ∈ 𝐶−1
𝑚 . 

The following are the basic properties of the operator 𝐷𝜀 : 

1. 𝐷𝜀𝐷𝜖𝜑(𝜇) = 𝐷𝜀+𝜖𝜑(𝜇). 

2. 𝐷𝜀𝜇𝑚 =
Γ(1+𝑚)

Γ(1+𝑚−𝜀)
𝜇𝑚−𝜀 . 

3. 𝐷𝜀𝐼𝜀𝜑(𝜇) = 𝜑(𝜇). 

4. 𝐼𝜀𝐷𝜀𝜑(𝜇) = 𝜑(𝜇) − ∑ 𝜑(𝑘)(0)
𝜇𝑘

𝑘!
.𝑚−1

𝑘=0  
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Definition 4. The Mittag–Leffler function 𝐸𝛿 with 𝜀 > 0 is defined as 

 𝐸𝜀 (𝑧) = ∑
𝑧𝜀

Γ(𝑚𝜀 + 1)

∞

𝑚=0

 (2.3) 

Definition 5. The Sumudu transform is defined over the set of function 

𝐴 = {𝜑(𝜏)/ ∃𝑀, 𝜔1, 𝜔2 > 0, |𝜑(𝜏)| < 𝑀𝑒|𝜏| 𝜔𝑗⁄ , 𝑖𝑓 𝜏 ∈ (−1)𝑗 × [0, ∞)} 

by the following formula [30,31]: 

𝑺[𝜑(𝜏)] = ∫ 𝑒−𝜏𝜑(𝜔𝜏)𝑑𝜏, 𝜔 ∈ (−𝜔1, 𝜔2).
∞

0

 (2.4) 

Definition 6. The Sumudu transform of the Caputo fractional derivative is defined as [30,31]: 

𝑺[𝐷𝜏
𝑚𝜀𝜑(𝜇, 𝛾, 𝜏)] = 𝜔−𝑚𝜀𝑺[𝜑(𝜇, 𝛾, 𝜏] − ∑ 𝜔(−𝑚𝜀+𝑘)

𝑚−1

𝑘=0

𝜑(𝑘)(𝜇, 𝛾, 0), 𝑚 − 1 < 𝑚𝜀 < 𝑚. (2.5) 

3. Fractional Sumudu Decomposition Method (FSDM) 

Let us consider a general fractional nonlinear partial differential equation of the form: 

 𝐷𝜏
𝜀𝜑(𝜇, 𝛾, 𝜏) + 𝐿[𝜑(𝜇, 𝛾, 𝜏)] + 𝑁[𝜑(𝜇, 𝛾, 𝜏)] = 𝑔(𝜇, 𝛾, 𝜏), (3.1) 

with 𝑛 − 1 < 𝜀 ≤ 𝑛 and subject to the initial condition 

𝜕𝑠

𝜕𝜏𝑠
𝜑(𝜇, 𝛾, 0) = 𝜑(𝑠)(𝜇, 𝛾, 0) = 𝜑𝑠(𝜇, 𝛾), 𝑠 = 0,1, … , 𝑛 − 1, (3.2) 

where 𝜑(𝜇, 𝛾, 𝜏)  is an unknown function, 𝐷𝜏
𝜀𝜑(𝜇, 𝛾, 𝜏) is the Caputo fractional derivative of the 

function 𝜑(𝜇, 𝛾, 𝜏),  𝐿  is the linear differential operator, N represents the general nonlinear 

differential operator and 𝑔(𝜇, 𝛾, 𝜏) is the source term. 

Taking the ST on both sides of (3.1), we have 

𝑺[𝐷𝜏
𝜀𝜑(𝜇, 𝛾, 𝜏)] + 𝑺[𝐿[𝜑(𝜇, 𝛾, 𝜏)]] + 𝑺[𝑁[𝜑(𝜇, 𝛾, 𝜏)]] = 𝑺[𝑔(𝜇, 𝛾, 𝜏)]. (3.3) 

Using the property of the ST, we obtain 

𝑺[𝜑(𝜇, 𝛾, 𝜏)] = ∑ 𝜔𝜀𝜑𝑘(𝜇, 𝛾)

𝑛−1

𝑘=0

+ 𝜔𝜀𝑺[𝑔(𝜇, 𝛾, 𝜏)] − 𝜔𝜀𝑺[𝐿[𝜑(𝜇, 𝛾, 𝜏)] +  𝑁[𝜑(𝜇, 𝛾, 𝜏)]]. (3.4) 

Operating with the ST on both sides of (3.4) gives 

𝜑(𝜇, 𝛾, 𝜏) = 𝑺−𝟏 (∑ 𝜔𝜀𝜑𝑘(𝜇, 𝛾)

𝑛−1

𝑘=0

) + 𝑺−𝟏(𝜔𝜀𝑆[𝑔(𝜇, 𝛾, 𝜏)])  

− 𝑺−𝟏( 𝜔𝜀𝑺[𝐿[𝜑(𝜇, 𝛾, 𝜏)] + 𝑁[𝜑(𝜇, 𝛾, 𝜏)]]). 

(3.5) 

Now, we represent solution as an infinite series given below 

𝜑(𝜇, 𝛾, 𝜏) = ∑ 𝜑𝑚(𝜇, 𝛾, 𝜏),

∞

𝑚=0

 
(3.6) 

and the nonlinear term can be decomposed as 

𝑁[𝜑(𝜇, 𝛾, 𝜏)] = ∑ 𝐴𝑚(𝜑0, 𝜑1, … , 𝜑𝑚),

∞

𝑚=0

 
(3.7) 

where 
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𝐴𝑚(𝜑0, 𝜑1, … , 𝜑𝑚) =
1

𝑚!

𝜕𝑚

𝜕𝜆𝑚
[𝑁 (∑ 𝜆𝑖𝜑𝑖  

∞

𝑖=0

)]

𝜆=0

. 

Substituting (3.6) and (3.7) in (3.5), we get 

∑ 𝜑𝑚(𝜇, 𝛾, 𝜏) 

∞

𝑚=0

= 𝑺−𝟏 (∑ 𝜔𝜀𝜑𝑘(𝜇, 𝛾)

𝑛−1

𝑘=0

) + 𝑺−𝟏(𝜔𝜀𝑆[𝑔(𝜇, 𝛾, 𝜏)])  

−  𝑺−𝟏 ( 𝜔𝜀𝑺 [𝐿 [ ∑ 𝜑𝑚(𝜇, 𝛾, 𝜏) 

∞

𝑚=0

] + ∑ 𝐴𝑚

∞

𝑚=0

]) 

(3.8) 

On comparing both sides of the Equation (3.8), we get 

 𝜑0(𝜇, 𝛾, 𝜏) = 𝑺−𝟏 (∑ 𝜔𝜀𝜑𝑘(𝜇, 𝛾)

𝑛−1

𝑘=0

) + 𝑺−𝟏(𝜔𝜀𝑺[𝑔(𝜇, 𝛾, 𝜏)]), 

𝜑1(𝜇, 𝛾, 𝜏) = − 𝑺−𝟏( 𝜔𝜀𝑺[𝐿[𝜑0(𝜇, 𝛾, 𝜏)] + 𝐴0]), 

𝜑2(𝜇, 𝛾, 𝜏) = − 𝑺−𝟏( 𝜔𝜀𝑺[𝐿[𝜑1(𝜇, 𝛾, 𝜏)] + 𝐴1]), 

⋮ 

𝜑𝑚(𝜇, 𝛾, 𝜏) = − 𝑺−𝟏( 𝜔𝜀𝑺[𝐿[𝜑𝑚−1(𝜇, 𝛾, 𝜏)] + 𝐴𝑚−1]), 𝑚 ≥ 1. 

(3.9) 

Finally, we approximate the analytical solution 𝜑(𝜇, 𝛾, 𝜏) by truncated series: 

𝜑(𝜇, 𝛾, 𝜏) = ∑ 𝜑𝑛(𝜇, 𝛾, 𝜏).

∞

𝑚=0

 (3.10) 

4. Applications 

In this section, we will implement the fractional Sumudu decomposition method for solving two 

dimensional fractional partial differential equations. 

Example 1. First, we consider the two-dimensional fractional partial differential equations of the 

form: 

 𝐷𝜏
𝜀𝜑(𝜇, 𝛾, 𝜏) = 2 (

𝜕2𝜑(𝜇, 𝛾, 𝜏)

𝜕𝜇2
+

𝜕2𝜑(𝜇, 𝛾, 𝜏)

𝜕𝛾2
), (4.1) 

with 1 < 𝜀 ≤ 2, subject to initial condition 

𝜑(𝜇, 𝛾, 0) = sin(𝜇) sin (𝛾). (4.2) 

From (3.9) and (4.1), the successive approximations are 
𝜑0(𝜇, 𝛾, 𝜏) = 𝜑(𝜇, 𝛾, 0), 

 𝜑𝑚(𝜇, 𝛾, 𝜏) =  𝑺−1 ( 𝜔𝛿𝑺 [2 (
𝜕2𝜑𝑚−1(𝜇, 𝛾, 𝜏)

𝜕𝜇2
+

𝜕2𝜑𝑚−1(𝜇, 𝛾, 𝜏)

𝜕𝛾2
)]). 

(4.3) 

Then, we have 
 𝜑0(𝜇, 𝛾, 𝜏) = sin(𝜇) sin (𝛾), 

𝜑1(𝜇, 𝛾, 𝜏) =  𝑺−1 ( 𝜔𝛿𝑺 [2 (
𝜕2𝜑0(𝜇, 𝛾, 𝜏)

𝜕𝜇2
+

𝜕2𝜑0(𝜇, 𝛾, 𝜏)

𝜕𝛾2
)]) 

=  𝑺−1( 𝜔𝛿𝑺[−4 sin(𝜇) sin (𝛾)]) 

=  −4 sin(𝜇) sin (𝛾)𝑺−1( 𝜔𝜀) 



Fractal Fract. 2020, 4, 21 5 of 9 

=  
−4𝜏𝜀

Γ(𝜀 + 1)
sin(𝜇) sin(𝛾). 

 𝜑2(𝜇, 𝛾, 𝜏) =  𝑺−1 ( 𝜔𝛿𝑺 [2 (
𝜕2𝜑1(𝜇, 𝛾, 𝜏)

𝜕𝜇2
+

𝜕2𝜑1(𝜇, 𝛾, 𝜏)

𝜕𝛾2
)]) 

=  𝑺−1 ( 𝜔𝛿𝑺 [
16𝜏𝜀

Γ(𝜀 + 1)
sin(𝜇) sin (𝛾)]) 

=  16 sin(𝜇) sin (𝛾)𝑺−1( 𝜔2𝜀) 

=  
16𝜏2𝜀

Γ(2𝜀 + 1)
sin(𝜇) sin(𝛾). 

 𝜑3(𝜇, 𝛾, 𝜏) =  𝑺−1 ( 𝜔𝛿𝑺 [2 (
𝜕2𝜑2(𝜇, 𝛾, 𝜏)

𝜕𝜇2
+

𝜕2𝜑2(𝜇, 𝛾, 𝜏)

𝜕𝛾2
)]) 

=  𝑺−1 ( 𝜔𝛿𝑺 [−
64𝜏2𝜀

Γ(2𝜀 + 1)
sin(𝜇) sin (𝛾)]) 

=  −64 sin(𝜇) sin (𝛾)𝑺−1( 𝜔3𝜀) 

=  
−64𝜏3𝜀

Γ(3𝜀 + 1)
sin(𝜇) sin(𝛾). 

⋮ 

 𝜑𝑚(𝜇, 𝛾, 𝜏) =  
(−4)𝑚𝜏𝑚𝜀

Γ(𝑚𝜀 + 1)
sin(𝜇) sin(𝛾). 

Hence, the solution of (4.1) is given by: 

𝜑(𝜇, 𝛾, 𝜏) = ∑ 𝜑𝑛(𝜇, 𝛾, 𝜏).

∞

𝑚=0

 

= ∑
(−4)𝑚𝜏𝑚𝜀

Γ(𝑚𝜀 + 1)
sin(𝜇) sin(𝛾) 

∞

𝑚=0

 = sin(𝜇) sin(𝛾) (1 −
4𝜏𝜀

Γ(𝜀 + 1)
+

42𝜏2𝜀

Γ(2𝜀 + 1)
−

43𝜏3𝜀

Γ(3𝜀 + 1)
+ ⋯ ) 

= sin(𝜇) sin(𝛾) 𝐸𝜀(−4𝜏𝜀). 

(4.4) 

If we put 𝜀 → 2 in Equation (4.4), we get the exact solution: 

𝜑(𝜇, 𝛾, 𝜏) = ∑
(−1)𝑚(2𝜏)2𝑚

Γ(2𝑚 + 1)
sin(𝜇) sin(𝛾)

∞

𝑚=0

 

= sin(𝜇) sin(𝛾) cos (2𝜏). 

Example 2. we consider the fractional generalized biologic population model of the form: 

 𝐷𝜏
𝜀𝜑(𝜇, 𝛾, 𝜏) = (

𝜕2𝜑2(𝜇, 𝛾, 𝜏)

𝜕𝜇2
+

𝜕2𝜑2(𝜇, 𝛾, 𝜏)

𝜕𝛾2
) + 𝜑(𝜇, 𝛾, 𝜏) − 𝑟𝜑2(𝜇, 𝛾, 𝜏), (4.5) 

with 0 < 𝜀 ≤ 1, subject to initial condition 

𝜑(𝜇, 𝛾, 0) = 𝑒
1

2
√

𝑟

2
(𝜇+𝛾)

. (4.6) 

From (3.9) and (4.6), the successive approximations are 
𝜑0(𝜇, 𝛾, 𝜏) = 𝜑(𝜇, 𝛾, 0), 

𝜑𝑚(𝜇, 𝛾, 𝜏) =  𝑺−1 ( 𝜔𝛿𝑺 [(
𝜕2𝐴𝑚−1

𝜕𝜇2
+

𝜕2𝐴𝑚−1

𝜕𝛾2
) + 𝜑𝑚−1(𝜇, 𝛾, 𝜏) − 𝑟𝐴𝑚−1]), 

(4.7) 

where 
𝐴0 = 𝜑0

2 
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𝐴1 = 2𝜑0𝜑1 

𝐴2 = 2𝜑0𝜑2 + 𝜑1
2  

𝐴3 = 2𝜑0𝜑3 + 2𝜑1𝜑2  

⋮ 

Then, we have 

𝜑0(𝜇, 𝛾, 𝜏) = 𝑒
1
2

√
𝑟
2

(𝜇+𝛾)
, 

𝜑1(𝜇, 𝛾, 𝜏) =  𝑺−1 ( 𝜔𝛿𝑺 [(
𝜕2𝐴0

𝜕𝜇2
+

𝜕2𝐴0

𝜕𝛾2
) + 𝜑0(𝜇, 𝛾, 𝜏) − 𝑟𝐴0]) 

=  𝑺−1 ( 𝜔𝛿𝑺 [𝑒
1
2

√
𝑟
2

(𝜇+𝛾)
]) 

=  𝑒
1
2

√
𝑟
2

(𝜇+𝛾)
𝑺−1( 𝜔𝜀) 

=  
𝜏𝜀

Γ(𝜀 + 1)
𝑒

1
2

√
𝑟
2

(𝜇+𝛾)
. 

𝜑2(𝜇, 𝛾, 𝜏) =  𝑺−1 ( 𝜔𝛿𝑺 [(
𝜕2𝐴1

𝜕𝜇2
+

𝜕2𝐴1

𝜕𝛾2
) + 𝜑1(𝜇, 𝛾, 𝜏) − 𝑟𝐴1]) 

=  𝑺−1 ( 𝜔𝛿𝑺 [
𝜏𝜀

Γ(𝜀 + 1)
𝑒

1
2

√
𝑟
2

(𝜇+𝛾)
]) 

=  𝑒
1
2

√
𝑟
2

(𝜇+𝛾)
𝑺−1( 𝜔2𝜀) 

=  
𝜏2𝜀

Γ(2𝜀 + 1)
𝑒

1
2

√
𝑟
2

(𝜇+𝛾)
. 

𝜑3(𝜇, 𝛾, 𝜏) =  𝑺−1 ( 𝜔𝛿𝑺 [(
𝜕2𝐴2

𝜕𝜇2
+

𝜕2𝐴2

𝜕𝛾2
) + 𝜑2(𝜇, 𝛾, 𝜏) − 𝑟𝐴2]) 

=  𝑺−1 ( 𝜔𝛿𝑺 [
𝜏2𝜀

Γ(2𝜀 + 1)
𝑒

1
2

√
𝑟
2

(𝜇+𝛾)
]) 

=  𝑒
1
2

√
𝑟
2

(𝜇+𝛾)
𝑺−1( 𝜔3𝜀) 

=  
𝜏3𝜀

Γ(3𝜀 + 1)
𝑒

1
2

√
𝑟
2

(𝜇+𝛾)
. 

⋮ 

𝜑𝑚(𝜇, 𝛾, 𝜏) =
𝜏𝑚𝜀

Γ(𝑚𝜀 + 1)
𝑒

1
2

√
𝑟
2

(𝜇+𝛾)
. 

Hence, the fractional series form of (4.5) is given by 

𝜑(𝜇, 𝛾, 𝜏) = ∑
𝜏𝑚𝜀

Γ(𝑚𝜀 + 1)
𝑒

1
2

√
𝑟
2

(𝜇+𝛾)
 

∞

𝑚=0

 

=  𝑒
1
2

√
𝑟
2

(𝜇+𝛾)
(1 +

𝜏𝜀

Γ(𝜀 + 1)
+

𝜏2𝜀

Γ(2𝜀 + 1)
+

𝜏3𝜀

Γ(3𝜀 + 1)
+ ⋯ ) 

=  𝑒
1
2

√
𝑟
2

(𝜇+𝛾)
𝐸𝜀(𝜏𝜀). 

(4.8) 

If we put 𝜀 → 1 in Equation (4.8), we get the exact solution 

𝜑(𝜇, 𝛾, 𝜏) = ∑
𝜏𝑚

Γ(𝑚 + 1)
𝑒

1
2

√
𝑟
2

(𝜇+𝛾)
 

∞

𝑚=0
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= 𝑒
1
2

√
𝑟
2

(𝜇+𝛾)+𝑡
. 

Example 3. Consider the nonlinear time-fractional differential equation of the form: 

 𝐷𝜏
𝜀𝜑(𝜇, 𝛾, 𝜏) = (

𝜕2𝜑2(𝜇, 𝛾, 𝜏)

𝜕𝜇2
+

𝜕2𝜑2(𝜇, 𝛾, 𝜏)

𝜕𝛾2
) + 𝜑(𝜇, 𝛾, 𝜏), (4.9) 

with 0 < 𝜀 ≤ 1, subject to initial condition 

𝜑(𝜇, 𝛾, 0) = √sin(𝜇) sinh (𝛾). (4.10) 

From (3.9) and (4.10), the successive approximations are: 
𝜑0(𝜇, 𝛾, 𝜏) = 𝜑(𝜇, 𝛾, 0), 

 𝜑𝑚(𝜇, 𝛾, 𝜏) =  𝑺−1 ( 𝜔𝛿𝑺 [(
𝜕2𝐴𝑚−1

𝜕𝜇2
+

𝜕2𝐴𝑚−1

𝜕𝛾2
) + 𝜑𝑚−1(𝜇, 𝛾, 𝜏)]), 

(4.11) 

Then, we have 

𝜑0(𝜇, 𝛾, 𝜏) = √sin(𝜇) sinh (𝛾), 

𝜑1(𝜇, 𝛾, 𝜏) =  𝑺−1 ( 𝜔𝛿𝑺 [(
𝜕2𝐴0

𝜕𝜇2
+

𝜕2𝐴0

𝜕𝛾2
) + 𝜑0(𝜇, 𝛾, 𝜏)]) 

=  𝑺−1 ( 𝜔𝛿𝑺 [√sin(𝜇) sinh (𝛾)]) 

=  √sin(𝜇) sinh (𝛾)𝑺−1( 𝜔𝜀) 

=  
𝜏𝜀

Γ(𝜀 + 1)
√sin(𝜇) sinh (𝛾). 

𝜑2(𝜇, 𝛾, 𝜏) =  𝑺−1 ( 𝜔𝛿𝑺 [(
𝜕2𝐴1

𝜕𝜇2
+

𝜕2𝐴1

𝜕𝛾2
) + 𝜑1(𝜇, 𝛾, 𝜏)]) 

=  𝑺−1 ( 𝜔𝛿𝑺 [
𝜏𝜀

Γ(𝜀 + 1)
√sin(𝜇) sinh (𝛾)]) 

=  √sin(𝜇) sinh (𝛾)𝑺−1( 𝜔2𝜀) 

=  
𝜏2𝜀

Γ(2𝜀 + 1)
√sin(𝜇) sinh (𝛾). 

𝜑3(𝜇, 𝛾, 𝜏) =  𝑺−1 ( 𝜔𝛿𝑺 [(
𝜕2𝐴2

𝜕𝜇2
+

𝜕2𝐴2

𝜕𝛾2
) + 𝜑2(𝜇, 𝛾, 𝜏)]) 

=  𝑺−1 ( 𝜔𝛿𝑺 [
𝜏2𝜀

Γ(2𝜀 + 1)
√sin(𝜇) sinh (𝛾)]) 

=  √sin(𝜇) sinh (𝛾)𝑺−1( 𝜔3𝜀) 

=  
𝜏3𝜀

Γ(3𝜀 + 1)
√sin(𝜇) sinh (𝛾). 

⋮ 

𝜑𝑚(𝜇, 𝛾, 𝜏) =
𝜏𝑚𝜀

Γ(𝑚𝜀 + 1)
√sin(𝜇) sinh (𝛾). 

Hence, the fractional series form of (4.5) is given by 

𝜑(𝜇, 𝛾, 𝜏) = ∑
𝜏𝑚𝜀

Γ(𝑚𝜀 + 1)
√sin(𝜇) sinh (𝛾) 

∞

𝑚=0

 

=  √sin(𝜇) sinh (𝛾) (1 +
𝜏𝜀

Γ(𝜀 + 1)
+

𝜏2𝜀

Γ(2𝜀 + 1)
+

𝜏3𝜀

Γ(3𝜀 + 1)
+ ⋯ ) 

(4.12) 
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=  √sin(𝜇) sinh (𝛾)𝐸𝜀(𝜏𝜀). 

If we put 𝜀 → 1 in Equation (4.12), we get the exact solution 

𝜑(𝜇, 𝛾, 𝜏) = ∑
𝜏𝑚

Γ(𝑚 + 1)
√sin(𝜇) sinh (𝛾) 

∞

𝑚=0

 

= √sin(𝜇) sinh (𝛾) 𝑒𝑡 . 

5. Conclusion 

The coupling of the Adomian decomposition method (ADM) and the Sumudu transform 

method in the sense of Caputo fractional derivatives proved very effective for solving two-

dimensional fractional partial differential equations. The proposed algorithm provides a solution in 

a series form that converges rapidly to an exact solution if it exists. From the obtained results, it is 

clear that the FSDM yields very accurate solutions using only a few iterates. As a result, the 

conclusion that comes through this work is that FSDM can be applied to other fractional partial 

differential equations of higher order, due to the efficiency and flexibility in the application as can be 

seen in the proposed examples. 
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