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Abstract: In this paper, a Bayesian analysis of finite mixture autoregressive (MAR) models based on the
assumption of scale mixtures of skew-normal (SMSN) innovations (called SMSN–MAR) is considered.
This model is not simultaneously sensitive to outliers, as the celebrated SMSN distributions, because
the proposed MAR model covers the lightly/heavily-tailed symmetric and asymmetric innovations.
This model allows us to have robust inferences on some non-linear time series with skewness and
heavy tails. Classical inferences about the mixture models have some problematic issues that can be
solved using Bayesian approaches. The stochastic representation of the SMSN family allows us to
develop a Bayesian analysis considering the informative prior distributions in the proposed model.
Some simulations and real data are also presented to illustrate the usefulness of the proposed models.

Keywords: Gibbs sampling; MCMC method; non-linear time series; finite mixture autoregressive
models; SMSN distributions

1. Introduction

Data analysts apply computational models to describe and infer statements about complex datasets.
Mixture models are a valuable class of these models. Finite mixture models are of great importance in
statistical inferences. The multimodality, skewness, kurtosis, and unobserved heterogeneity are usually
observed in many datasets, for example time series datasets. Importance of mixture distributions,
which are the main tools for statistical mixture models, has been noted by many references [1–8].
Various statistical fields containing time series modeling and regression analysis frequently use the
mixture modeling. In fact, in analyzing time series data, some events may affect and change the
behavior of data over time, for example, finance crises in many financial or panel time series datasets.
The finite mixture autoregressive (MAR) models were suggested by Wong and Li [7], to catch the
multimodal phenomena, are flexible and applicable in many fields, such as electroencephalogram
modeling in medicine [8], interest rates and bond pricing [9], Forex rate [10], and other various fields
such as telecommunications, hydrology, biology, sociology, and medical sciences.
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Most researchers considered the MAR models based on Gaussian distribution, which are called
Gaussian mixture of autoregressive (GMAR) models [7–11]. The GMAR models are sensitive to the
existence of outliers, heavy tailed distribution and asymmetry in datasets, and thus some authors
considered MAR models based on non-Gaussian, heavy tailed and/or asymmetric distributions. Wong
and Li [12] introduced logistic mixture autoregressive model. Wong and Chan [13] also introduced a
student t–mixture autoregressive model and discussed its inferences and then applied this model to
the heavy tailed financial data.

The SMSN family, introduced by Branco [1], is a rich family containing famous symmetric
scale mixtures of normal (SMN; [14]) distributions and asymmetric distributions such as the skew-t,
skew-slash and skew-contaminated-normal distribution. The MAR model based on the SMSN
innovations, hereafter called SMSN–MAR models, has reasonable performance to model real time
series data with outliers and skewness. The various MAR model members can determine weights to
each observation, and therefore each single observation affects the estimation of the model’s parameters,
and it leads to robust inferences. Bayesian inferences of the MAR models have some advantages
compared to classical methods, that some of them are discussed below.

For maximum likelihood computations and classical inference of a MAR model, although the
numerical optimization algorithms such as the EM–algorithm can be applied, converging to the major
mode may fail, while this is not an issue in Bayesian inferences. Furthermore, in the MAR models there
exist many situations with indirect information about the parameters or large changes in the results by
small changes in the data. When we consider a sample from a MAR model, the sample includes no
information about the parameters of one or more components with a positive probability. Therefore,
the likelihood function can be unbounded and consequently the resultant likelihood estimates are only
local maximum. Using suitable priors and some Bayesian techniques can solve such problems. Another
problematic issue on the classical likelihood–based inference is that, in MAR model, the component
parameters are not identifiable marginally, so distinguishing any component from other components
in the likelihood is hard. The identifiability is not an important problem in Bayesian inferences. Some
of the other advantages of the Bayesian inferences of the mixture models are given in [15,16].

In this paper, we consider a Bayesian technique to find estimates of the SMSN–MAR models
by the Gibb sampling scheme and application of the Markov Chain Monte Carlo (MCMC) methods.
The main characteristics of the SMSN distributions are reviewed in Section 2. In Section 3, we consider
the MAR models and apply the Bayesian methodology for estimating the proposed MAR model’s
parameters. To evaluate the Bayesian estimates of parameters and performance of the proposed model,
numerical studies and a real practical example are reported in Section 4. The conclusion is provided in
the last section.

2. The SMSN Distributions

A random variable Y is belonged to the scale mixtures of skew normal (SMSN) family, if it has the
following representation:

Y = µ+ k1/2(U)Z, (1)

where the random variable Z follows a skew-normal distribution in [17], where σ2 and λ are respectively
scale and skewness parameters, the function k(u) is positive respect to u, U is the scale random variable
with density function or pmf h(·;ν) and distribution function H(·;ν), and the vector or scalar ν indexes
the distribution of U. The random variable Y is denoted by Y ∼ SMSN

(
µ, σ2,λ,ν

)
, and in this work,

because of its suitable mathematical properties, we let k(u) = 1/u, so Y|U = u ∼ SN
(
µ, u−1σ2,λ

)
.

Therefore, the density of Y is given by

f (y;θ) = 2
∫
∞

0
φ
(
y;µ, u−1σ2

)
Φ
(

u1/2λ(y− µ)
σ

)
dH(u|ν), (2)
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where θ =
(
µ, σ2,λ,ν>

)>
, and φ(·) and Φ(·) are density and distribution functions of the standard

normal distribution, respectively.

Proposition 1. Let Y ∼ SMSN
(
µ, σ2,λ; H

)
,

(a) If E
[
U−1/2

]
< ∞, then µY = E[Y] = µ− b∆,

(b) If E
[
U−1

]
< ∞, then σ2

Y = Var[Y] = σ2k2 − b2∆2,

(c) Y has a stochastic representation given by Y = µ+ ∆W + γU−1/2W1,

where b = −
√

2/πE
[
U−1/2

]
, δ = λ/

√
1 + λ2, ∆ = σδ, γ2 = σ2

− ∆2, W = U−1/2
∣∣∣w0

∣∣∣, and W0 and
W1 are independent standard normal random variables.

The famous members of the SMSN family are the scale mixtures of normal (SMN) family [8,13],
as the symmetric members of the SMSN family, and skew-normal (SN), skew-t (ST), skew-slash (SSL)
and skew-contaminated-normal (SCN) distributions. More details are given in [18,19].

3. The SMSN–MAR Model and Bayesian Estimates

3.1. The SMSN–MAR Model

In this paper, we study the MAR model, which has been studied by Wong and Li [7], and Wong and
Chan [20], due to its flexibility in use for non-linear time series analysis. This model is represented by

Xt = ϕi,0 +
∑pi

j=1 ϕi, jXt− j + εi,t, with probability πi; i = 1, 2, . . . , g; t = 0,±1,±2, . . . , (3)

or equivalently,

Xt =



ϕ1,0 +
∑p1

j=1 ϕ1, jXt− j + ε1,t; with probability π1

ϕ2,0 +
∑p2

j=1 ϕ2, jXt− j + ε2,t; with probability π2, t = 0,±1,±2, . . . ,
...
ϕg,0 +

∑pg

j=1 ϕg, jXt− j + εg,t; with probability πg

where

• g is a known positive integer which indicates the number of components in the model;
• each component occurs with probabilities πi > 0, i = 1, . . . , g,

∑g
i=1 πi = 1, which obeys a discrete

distribution π;
• for each i = 1, . . . , g,

â the ith autoregressive component is of order pi ≥ 1;
â ϕi, j, j = 0, . . . , pi, are the autoregressive coefficients of the ith components;
â each ith innovation’s component εi,t distributed as following:

εi,t
i.i.d.
∼

SMSN
(
bi∆i, σ2

i , λi, νi
)
; i = 1, . . . , g; t = 0,±1,±2, . . . (4)

where bi = −
√

2/πE
[
U−r/2

i

]
, δi = λi/

√
1 + λ2

i , ∆i = σiδi and γ2
i = σ2

i + ∆2
i . Also in each

ith component,
{
εi,t

}
are jointly independent and are independent of past Xts and also

independent of other component’s innovations.
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Hereafter, this model will be called SMSN–MAR(p,g). Note that in each component, when bi
exists, E(εi,t) = 0, and Var(εi,t) = σ2

i ki2 − b2
i ∆2

i ; i = 1, . . . , g. Note that we can assume that the vector of
coefficients in MAR models, distributed as π, therefore, this model can be also interpreted as random
coefficients autoregressive (RCA) model.

Without loss of generality, it is convenient to set p = maxi=1,...,g pi andϕi, j = . . . = ϕi,p = 0 for j > pi.
Also, let {Zt} be an i.i.d. sequence of random variables which are distributed as π (Multinomial), such
that P(Zt = i) = πi, i = 1, . . . , g, that determines the components, and be independent of innovations
and random history of model X = (X1, . . . , Xn)

>. Therefore, Xt obeys from ith component of MAR
model, if Zt = i. Thus, Equation (3) can be written as

Xt = ϕZt,0 +
∑p

j=1
ϕZt, jXt− j + εZt,t, t = 0,±1,±2, . . . (5)

where Zt ∼ Multinomial
(
1,πi, . . . ,πg

)
.

It is convenient to set vector and matrix notations of sample X = (X1, . . . , Xn)
> in the form of

Xt−1 =
(
1, Xt−1, . . . , Xt−p

)>
; t = 1, . . . , n, φZt =

(
ϕ0,Zt , . . . ,ϕp,Zt

)>
, εZt = (εZt,1, . . . , εZt,n)

> and A be the
n× p matrix whose tth row is Xt−1, in the rest of the paper. Thus, the following matrix representation

X = AφZt + εZt , (6)

Note that in Equation (7), Xt = φ>Zt
Xt−1 + εZt,t where Zt, t = 1, . . . , g and distributed as π, so by

Equation (5) we have

Xt|Xt−1, Zt ∼ SMSN
(
φ>Zt

Xt−1 + bZt ∆Zt , σ
2
Zt

, λZt , νZt

)
; Zt = 1, . . . , g, t = 1, . . . , n. (7)

Therefore, the density of Nt is given by

fXt |Xt−1,..., Xt−p(xt;θ) =
g∑

i=1

πi fi(xt|Xt−1,θi), (8)

where fi(.|Xt−1,θi) is the pdf of SMSN
(
φ>i Xt−1 + bi∆i, σ2

i , λi, νi
)

defined in Equation (2), hereafter

note that θ =
(
θ>1 , . . . ,θ>g

)>
, where θi =

(
πi, φ>i , σ2

i , λi, ν>i
)>

, i = 1, . . . , g be the vector of parameters.
By using Markovian property of this model, we have that L(θ|X) = fX(X1, . . . , Xn;θ) =∏n

t=1 fXt |Xt−p,..., Xt−1(Xt;θ), where fX(.) be the density of X. An auxiliary determiner of components in

MAR models (6), can be expressed in the random vector Zt =
(
Zt1, . . . , Ztg

)ᵀ
, where

Zti =

{
1, if tth observation of MAR process obeys the ith compoment
0 , otherwise

Therefore, under the above approach, the latent random vector Zt, t = 1, . . . , n has the following
multinomial Zt ∼ Multinomial

(
1,π1, . . . ,πg

)
with the following probability mass function:

P(Zi = zi) = πzt1
1 πzt2

2 . . . π
ztg
g ; t = 1, . . . , n,

such that Σg
i=1πi = 1, πi > 0, i = 1, . . . , g. Therefore,

Xt|Xt−1, Zti = 1 ∼ SMSN
(
φ>i Xt−1 + bi∆i, σ2

i , λi, νi
)
, i = 1, . . . , g; t = 1, . . . , n.

Also, to provide a MCMC method, we have:

Xt|Xt−1, Wti = wti, Uti = uti, Zti = 1 ∼ N
(
φ>i Xt−1 + ∆iwti, u−1

ti γ
2
i

)
,
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Wti|Uti = uti, Zti = 1 ∼ TN1
(
bi, u−1

ti

)
I(bi,∞),

Uti|Zti = 1 ∼ H(uti; νi),

Zt ∼ Multinomial
(
1,π1, . . . ,πg

)
,

for t = 1, . . . , n. Let D = (X>, M>)> as the complete data, where X is the observed part of data,
M> =

(
(Wti, Uti, Zti)

n
t=1

)g

i=1
is the missing parts of data, and θ is the vector of unknown parameters.

The conditional likelihood function based on the complete data is provided by

L(θ |D ) =
n∏

t=1

g∏
i=1

(
πi fXt |Xt−1,Wti, Uti, Zti(Xt;θi) fWti |Uti, Zti(Wti;θi) fUti |Zti(Uti;θi)

)Zti .

3.2. Bayesian Approach

In this part, we use the Bayesian approach by applying MCMC algorithms for the model in
Equation (3). We consider informative priors under squared error loss function (SEL). To consider the
prior distributions for the parameters of the considered model, we assign prior distributions to the
parameters as follow:

φi ∼ Np+1(ϕi, Σi), ∆i ∼ N
(
µ∆i, σ2

∆i

)
, γ2

i ∼ IG(ρi/2, %i/2),
π =

(
π1, . . . ,πg

)
∼ Dir

(
δ1, . . . , δg

)
,

(9)

for i = 1, . . . , g, where Dir and IG denote the Dirichlet distribution and the Inverse-Gamma
distribution, respectively.

The prior distribution assigned to νi, i = 1, . . . g, varies with the particular SMSN distributions.
For skew–t model, we can consider νi ∼ exp(ςi/2)I(2,∞), exponential distribution with mean 2/ςi
before truncation, for skew–slash model, we can consider νi ∼ Gamma(ai, bi) with small positive
values ai and bi such that bi � ai, and for skew–contaminated–normal model, the independent and
non-informative U(0, 1) prior distributions are considered for each component of νi = (νi,γi)

>. We
also assume that priors are independent and all hyper-parameters (parameters of priors) are known,
which guarantees that all posteriors are proper. The joint posterior of θ and missing variables is in the
form of π(θ|D) ∝ L(θ |D )π(θ), which is not analytically tractable, but the MCMC methods such as the
Gibbs sampling, will be applied to draw samples from the marginal of conditional posteriors which
are shown as follows, when θ(−m), means the mth element of θ has been removed (Algorithm 1).

Algorithm 1: MCMC

For i = 1, . . . , g, and t = 1, . . . , n,

1. Zt|θ, U, W; X ∼Multinomial
(
1, p1, . . . , pg

)
,

2. π|θ(−π), D ∼ Dir
(
δ1 +

∑n
t=1 Zt1, . . . , δg +

∑n
t=1 Ztg

)
,

3. Wti|θ, U, Zti = 1; X ∼ TN1
(
µWti + bi, u−1

ti M2
i

)
I(bi,∞),

4. φi
∣∣∣θ(−φi), Zti = 1, D ∼ Np+1

(
µφi , Σφi

)
,

5. γ2
i

∣∣∣θ(−γi), Zti = 1, D ∼ IG(ρi, τi),

6. ∆i|θ(−∆i), Zti = 1, D ∼ N
(
βiσ2

∆i+γ
2
i µ∆i

αiσ2
∆i+γ

2
i

,
αiσ2

∆i+γ
2
i

γ2
i σ

2
∆i

)
,

7. Uti|θ, Zti = 1, D ∼ Hpost(u;θ,ν),
8. ν|θ(−ν), U, Zti = 1, D ∼ fpost(ν ;θ),

where Zt =
(
Zt1, . . . , Ztg

)>
, pi =

πi f (Xt |Xt−1;θi)∑g
i=1 πi f (Xt |Xt−1;θi)

, M2
i =

γ2
i

γ2
i +∆2

i
, µWti = M2

i
∆i
r2

i

(
Xt −φ

ᵀ
i Xt−1 − bi∆i

)
,

µφi =
(
γ−2

i (Z>ΛiZ) + M−1
i0

)−1(
γ−2

i (Z>ΛiZ)Mi + M−1
i0 φi0

)
, Σφi =

(
γ−2

i (Z>ΛiZ) + M−1
i0

)−1
, ρi =

n−p+pi+i
2 ,

τi =
1
2

(
%i + (φi −Mi)

>(Z>ΛiZ)(φi −Mi)
)
, αi = W>i Λi W and βi = W>i Λi

(
Xt −φ

ᵀ
i Xt−1 − bi∆i

)
.
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Finally, in order to complete the specifications of the sampling via MCMC methods, the posterior
distribution of the latent variable Uti, t = 1, . . . , n, i = 1, . . . , g, Hpost(u;θ,ν), and its indexed

parameter νi, fpost(ν;θ), should be determined. Set cti =
(
Xt −φ>i Xt−1 − ∆iWti

)2
/σ2

i + (Wti − bi)
2,

we then have, for t = –1, . . . , n and the several models given as:

� ST–MAR:

Uti|θ, Zti = 1, D ∼ Gamma
(
νi + 2

2
,
νi + cti

2

)
, i = 1, . . . , g, t = 1, . . . , n, (10)

and

π
(
νi|θ(−νi)

, Zti = 1, D
)
∝

(
2νi/2Γ(νi/2)

)−n

×Gamma
(

nνi
2 − 1, 1

2

[
n∑

t=1
(Uti − log Uti) + ςi

])
I(2,∞)(νi).

(11)

� SSL–MAR:

Uti|θ, Zti = 1, D ∼ Gamma
(
νi + 1,

cti
2

)
I(0,1)(Uti), i = 1, . . . , g, (12)

νi|θ(−νi)
, U, Zti = 1, D ∼ Gamma

(
n + ai, bi −

∑n

t=1
log Uti

)
, i = 1, . . . , g. (13)

� SCN–MAR:

π(uti|θ, Zti = 1, D) =
Ati

Ati + Bti
I(Uti = γi) +

Bti
Ati + Bti

I(Uti = 1), i = 1, . . . , g, (14)

where Ati = νiγi exp(−γicti/2), Bt = (1− νi) exp(−cti/2), and

νi|θ(−νi)
, Zti = 1, D ∼ Beta

(
n−

∑n
t=1 Uti

1− γi
+ 1,

∑n
t=1 Uti − nγi

1− γi
+ 1

)
, i = 1, . . . , g, (15)

π
(
γi

∣∣∣θ(−γi)
, Zti = 1, D

)
∝ ν

n−
∑n

t=1 Uti
1−γi

i (1− νi)

∑n
t=1 Uti−nγi

1−γi , i = 1, . . . , g. (16)

Note that Equations for vi and γi do not have closed forms, but a Metropolis–Hasting algorithm
which has used in [21] can be employed to obtain draws of them.

In the Bayesian technique, some model selection criteria such as the expected Bayesian information
criterion (EBIC) and the expected Akaike information criterion (EAIC) [22,23] can be considered. Let
θ1, . . . ,θm as a sample from π(θ|D). The posterior mean of the deviance is estimated by D =∑m

i=1 D(θi)/m, such that D(θ) = −2
∑n

t=1 log f (Xt|Xt−1,θ), and f (·|Xt−1,θ) is the density given in
Equation (8). These criteria can be respectively estimated by ˆEAIC = D + 2k and ˆEBIC = D + k log n,
where k is the number of parameters, n is the sample size and D̂ = D

(
θ
)
, where θ =

∑m
i=1 θi/m.

4. Numerical Studies

In this section, numerical studies and a real data example are given to study the ability of the
considered SMSN–MAR(p,g) model. The statistical R software version 3.6.1 is used. A sample size of
n = 200, and the following prior distributions are selected: φi ∼ Np+1

(
0, 103Ip

)
, ∆i ∼ N1

(
0, 103

)
and

γ2
i ∼ IG(0.001, 0.001), with νi ∼ exp(0.1)I(2,∞) for the skew-t model, νi ∼ gamma(1, 0.01) for the

skew-slash model, and νi ∼ U(0, 1) and independent of γi ∼ U(0, 1) for the skew-contaminated
normal model. Also, a Gibbs sampling with iterations equal to 60,000 and a burn-in of 10,000 cycles
is applied.
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In the simulation parts, we considered two schemes. In the first scheme, simulations are based on
the SMSN–MAR models to show the performances of the considered model and Bayesian estimates, and
in the second scheme, simulations are mixture autoregressive model based on Generalized–Hyperbolic
distribution (GH–MAR model). The GH distribution is well known because of it’s asymmetry
and heavy-tailed nature [24,25]. The second scheme will show the performance of the proposed
Bayesian estimates of the heavy-tailed SMSN–MAR models to the time series with heavy-tailed and
asymmetric innovations. Finally, the SMSN–MAR model is applied on the closing price of the Iran
Telecommunication Company stock via the proposed Bayesian methodology.

4.1. First Scheme

The first simulation study is devoted to the following SMSN–MAR(2,2) model with 1000 samples
simulations from the SN, ST and SSL distributions for the innovations with parameters φ1 =

(ϕ1,0,ϕ1,1,ϕ1,2)
> = (0.1, 0.5, 0.3)>,φ2 = (ϕ2,0,ϕ2,1,ϕ2,2)

> = (0.1, 0.6, 0.2)>, π1 = 0.4, σ2
1 = 1, σ2

2 = 2,
λ1 = 2 and λ2 = 4, and ν1 = ν2 = 3 for ST and SSL, and (ν1,γ1) = (ν2,γ2) = (0.5, 0.5) for the SCN.
Means and standard deviations of the proposed Bayesian estimates are shown in Table 1.

Table 1. Means and standard deviations of the Bayesian estimates of the simulated
SMSN–MAR(2,2) models.

Model SN–MAR ST–MAR SSL–MAR SCN–MAR

Parameters (Values) Mean SD Mean SD Mean SD Mean SD

ϕ1,0(0.1) 0.1003 0.02131 0.1001 0.02743 0.1004 0.02309 0.1010 0.02301
ϕ2,0(0.1) 0.1002 0.02242 0.1007 0.02436 0.1005 0.02419 0.1012 0.02502
ϕ1,1(0.5) 0.5017 0.01483 0.5011 0.01738 0.5010 0.01333 0.5033 0.01501
ϕ1,2(0.3) 0.3011 0.01746 0.3009 0.01846 0.3024 0.01963 0.3032 0.01758
ϕ2,1(0.6) 0.6032 0.01592 0.6048 0.01977 0.6024 0.01846 0.6101 0.01610
ϕ2,2(0.2) 0.2101 0.02032 0.2097 0.02006 0.2008 0.01926 0.2112 0.02094

σ2
1(1) 1.1023 0.02064 1.0969 0.31741 1.1021 0.27493 1.1026 0.02080
σ2

2(2) 2.1978 0.03027 2.2019 0.28950 2.1992 0.31171 2.2011 0.03311

λ1(2) 2.0184 0.81651 2.0025 0.94561 1.9367 0.82846 2.0221 0.82331
λ2(4) 4.0038 1.09817 3.9014 0.95928 3.9930 0.90563 4.0112 1.09831

ν1(3) – – 3.8957 0.56842 3.9473 1.14587 0.5211 0.01918
ν2(3) – – 3.8957 0.46877 3.9473 1.24587 0.5192 0.02111

γ1(0.5) – – – – – – 0.5103 0.02013
γ2(0.5) – – – – – – 0.5201 0.02321

π1(0.4) 0.4011 0.04113 0.4008 0.02795 0.3957 0.01758 0.4011 0.04113

4.2. Second Scheme

The second simulation study is devoted to the following GH–MAR(2,2) model with 200 samples
as follows:

Xt =

{
φ>1 Xt−1 + εt1; w.p. π1 = 0.4,
φ>2 Xt−1 + εt2; w.p. π2 = 0.6,

with the autoregressive coefficients in the first scheme, for which {εt1} be an i.i.d. sequence of
GH(µ = 0, σ = 1,γ = −0.1, α = 2,λ = 1) with weak skewness, and {εt2} be an i.i.d. sequence of
GH(µ = 0, σ = 1,γ = +3, α = 2,λ = 1) with strong skewness for innovations. The EAIC criteria of
all Bayesian fitted SMSN–MAR models given in Figure 1, satisfies that the asymmetry and heavy-tailed
members (i.e., ST–MAR, SSL–MAR and SCN–MAR models), especially ST–MAR, are the best fitted
models in comparison with the light-tailed SN–MAR member.
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Figure 1. EAIC criterion for 200 MAR samples based on the GH distributions.

4.3. Real Data

In this section, we consider the 446 daily observations of the closing price of Iran Telecommunication
Company (I.T.C.) stock based on the Iranian Rial from 2011-07-02 up to 2013-07-02 (see data at Tehran
securities exchange technology management company site: www.tsetmc.com). Original time series
plot of the I.T.C. stock data {xt}, where xt is the closing price at time t, are given in Figure 2. It can be
observed that the time series {xt} is not stationary. A histogram of the data is plotted in Figure 3.
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Figure 3. Histogram of the I.T.C. stock from 2011-07-02 up to 2013-07-02.

Using the Box-Cox transformation with λ = 0, and the difference with order of one, we have

yt = x∗t − x∗t−1 = log(xt/xt−1), (17)

where
x∗t = log xt. (18)

The time series
{
yt
}

has been plotted in in Figure 4. The Dickey–Fuller test verifies that the
transformed time series data are stationary (p-value = 0.01).
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The EAIC and EBIC criteria demonstrate that the best SMSN–MAR model has two components
with order p1 = 3 for the first AR component and p2 = 1 for the second AR component. Using the
proposed Bayesian approach, we fitted the N–MAR (GMAR), SN–MAR, ST–MAR, SSL–MAR and
SCN–MAR models with g = 1, 2, 3 components. The Bayesian model selection criteria for them are
given in Table 2. The Bayesian estimates (posterior mean) of the ST–MAR (3,2) (the best fitted) model
parameters for the return series of the I.T.C. stock data are given in Table 3.

Table 2. Bayesian model selection criteria for the proposed SMSN–MAR(3,2) with various number of
components g = 1, 2, 3.

Model Number of Component (g) EAIC EBIC

N-MAR
1 3290.6352 3297.8210
2 3067.3456 3291.9571
3 3175.4758 3210.9882

SN-MAR
1 3262.7364 3271.7441
2 3038.7464 3165.0641
3 3175.7387 3183.7251

ST-MAR
1 2979.3748 2986.2951
2 2816.8374 2887.3601
3 2910.6364 2977.6781

SSL-MAR
1 3176.3647 3240.2990
2 2997.0694 3099.8811
3 3146.7564 3157.6441

SCN-MAR
1 3164.7564 3191.3452
2 3009.3745 3097.3383
3 3165.7564 3182.6013

Note: The best values (between all possible models) are indicated in bold.

Table 3. Bayesian estimates with standard deviations of the parameters of fitted ST–MAR (3,2) model
for the return series of the I.T.C. stock data.

Component Parameters Bayesian Estimates S.E.

First AR Component

π1 0.5802 0.0156
ϕ1,0 0.0046 0.0100
ϕ1,1 0.1478 0.0304
ϕ1,2 −0.0487 0.0102
ϕ1,3 −0.0238 0.0011
σ2

1 0.0036 0.0032
λ1 1.0312 0.0193
ν 2.0034 0.0722

Second AR Component

π2 0.4198 0.0121
ϕ2,0 0.0030 0.0013
ϕ2,1 0.2256 0.0345
σ2

2 1.0679 0.0094
λ2 0.9017 0.0435
ν 2.0042 0.0847

5. Conclusions

In this paper, we have considered the robust MAR models based on the scale mixtures of
skew normal distributions, called SMSN–MAR, and a Bayesian approach to estimate the models’
parameters. These models are used for modeling non-linear time series data, which involve GMAR
models, and offer greater flexibility than normal distribution. Numerical studies verified the good
performance of the considered models and suitability of Bayesian estimates. A real data example
demonstrated that SMSN–MAR models can be useful tools for non-linear and non-stationary time series
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modeling. In future studies, the researchers can consider cyclostationary or almost cyclostationary
processes [26–33] with SMSN errors or mixture models based on these processes.
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