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This paper studies complex solutions and solitons solutions to the Klein-Gordon-Zakharov equations (KGZEs).
Solitons solutions including bright, dark, W-shape bright, breather also trigonometric function solutions and

KGZEs singular solutions of KGZEs are obtained by three integration algorithm. From the spatio-temporal and 3-D and

W-shape soliton

2-D contour plot, it is observed that obtained solutions move without any deformation that implies the steady

state of solutions. Furthermore, these solutions will be helpful to explain the interactions in hight frequency
plasma and solitary wave theory.

1. Introduction

Majority of physical phenomena appearing such as in fluid dy-
namics, plasma, chemistry, nonlinear fibers optics are described by
nonlinear differential equations (NLDEs). Specific solutions of non-
linear ordinary differential equations (NODEs) are widely used in sci-
ence, engineering and in other fields of technology. Nevertheless, exact
solutions of nonlinear evolution equations, namely; the Kolmogorov-
Petrovskii-Piskunov equation[1], the (3 + 1) dimensional Jimbo-Miwa
equation [2], the two-dimensional Korteweg-de Vries-Burgers equa-
tions [3], the fractional Lane-Emden-type equations [4], the
(2 + 1)-dimensional Yu-Toda-Sasa-Fukuyama equation [5], the
(2 + 1)-dimensions Hirota-Satsuma-Ito equation [6,7], the three-Com-
ponent Coupled modified KdV System [8] have been constructed. These
solutions hold a significant place in nonlinear science. In the literature,
a lot of effort have been proposed to build exact traveling-wave solu-
tions of the NODEs. Some of relevant methods may be listed as auxiliary
equation method, Sine-Gordon expansion method, F-expansion method,
Jacobi elliptic function method, modified direct algebraic equation

method, the tanh method. Interested reader may look at the references
in [9-20] for the details of these studies. In the references [9-20], au-
thors investigated the solitons, exact solutions and several interesting
properties of KGZEs and some other evolution equations. In [2], Ma
obtained most of the methods described in the references between
[9-20] by means of method of transformed rational function. In [8], Ma
also acquired some important results in computing limiting behaviours
of solutions incorporating features of solitons and analytical solutions.

Solitary wave solutions of KGZEs [21] were obtained by generalized
Kudryashov method. As a result of this, a lot of attention in various
branches such as biology, plasma physics, optic fibers have been fo-
cused to the KGZ model. KGZEs describe interactions between Lang-
miur wave and ion acoustic wave in hight frequency plasma [22]. Many
research work have been done to build solitary wave solutions, topo-
logical solitons, bifurcation analysis, trigonometric functions solutions,
Jacobi elliptic function solutions to the KGZEs [23-27].

We investigate complex traveling-wave solutions and solitons so-
lutions to the KGZEs [13].
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lxbn - l;bxx = B(|¢|2)xxs (2)

¢ (x, t) is a complex function and ¥ (x, t) a real function, t represents
the time, x is the distance along the direction of propagation. The
parameters a and 8 are non zero valued.

In order to perform these, our paper consists of following sections.
In Section 2, by applying the traveling-wave hypothesis, we obtain the
nonlinear differential equations. In Section 3, three integration tech-
nique are used to investigated complex and solitons solutions to (1)-(2).
Thereafter, in Section 4 graphical illustration of the obtained results is
presented. The last section will deal with summary of the work.

2. Traveling-wave solutions to Klein-Gordon-Zhakharov equation
To investigate exact solutions to the KGZEs (1)-(2), we assume the

complex function ¢(x, t) as:

0, 1) = ulx, 1) + v(x, 1), (3)

where u(x, t) and v(x, t) are two real functions, that will be determined.

Let us notice that
1P = u? + V%, G = U + Wy, Py = Uy + iy (O))

Inserting (3) and (4) into (1-2), we get

Uy + Wy — (U + V) + (U + V) + ap(u + iv) =0, 5)
and
ll’n - lnbxx - B(uz + vz)xx =0. 6)

Splitting the real and imaginary, we obtain
Uy — Uy + U + apu = 0,
Vy — Ve + V + atpy = 0,
Inbu - lpxx - ﬁ(uz + 1)z)xx =0. (7)
To seek the exact solutions of (7), we assume u(x, t) = v(x, t).
Consequently (7) turns to be
Uy — Uy + U + apu = 0,

lnbt[ - lpxx - zﬁ(uz)xx =0. (8)

To obtain the ordinary differential equation (ODE) to Eq. (8), we
apply the traveling-wave transformation as in the form:

ux, ) =), §=xkx-ct), 9
It is revealed that

x2(1—ce” 1
e [):u -z,
ap

]

(10)
Suppose that
P, ) =w) =wh(x — cb)). an

Next, inserting (11) into (8), and integrating it twice with respect to
&, we get

5
w +a
© = )¢ 0- 12)
where a, is an integration constant. Equating (12) and (10) gives
” 1 + aay) 2af3 3
+ =0.
LA T B I T A 13)

To unearth new exact solution and solitary waves solution to (13),
the next section will present three interesting analytical methods.

2.1. On solving the KGZE by the auxiliary equation method

The analytical solution of the KGZE in this section can be expressed
as follows [24,28,29]
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N
PE) =40+ D AE©®),
j=t 14

where A4;(j =1, 2,3, ..,N) are reals parameters to determine, while
g(£) satisfies the following ordinary differential equation

= J2(Co + Cig + Cg* + Ca3g® + Cagh), (15)
8 = C) + 208 + 3C3g° + 4C, g3, (16)
and g =%, Ci(i=(0,1,234) A A, i =12 n), are reals

constants to be determined later. Using the homogeneous balance
principle between higher order nonlinear term (¢*) and higher deri-
vative term ¢”, we get N = 1. Therefore, (14) reads as follows:

®(€) = Ao + Ag(©), 17)

Inserting (16) and (15) into (13) yields the system of equation in
terms of (g(£))/. Solving the obtained system of equations with the help
of MAPLE, we obtain:

A2
1 aap+1 1 ap
0 C 1

® Set1: 4 =0, A Trac-y T Trae e

=4, G=

ap =ap.
Case 1: For Co=C;=C3=0, and C, <0, C4, > 0. From Set 1,

complex trigonometric function solutions and singular function solu-
tions to (1)-(2) are obtained:

BrnCo D) = A1+ D) /_C—Czsec(J—ZCZK(x — ),
4

(18)
2/3 —c, 2
Y1 (s 1) = @ {A \ C—Asec(\/—zczx(x - ct))} + ao, 19)
(s ) = A+ 1) %csc(,/—zczk(x — ct)), 20)
2
Y, 1) = - ﬁ { \/C—CSC(\/ —2Cyx(x — Ct))} + ao, @1

2
C ase 2: For Cy = 4%, and C, > 0, C4 > 0. From Set 2, complex
trigonometric function solutions to (1)-(2) are obtained:

e ) =AQ + 1) S“Etan(\/ﬁzx(x — b)),

\ 2¢, (22)
P .0, 1) = 2 A tan(fx(x— ct)) : +a
S ) : - (23)
ZaﬁA(% 2400 B AL

® Set 2: Ag=Ap, 4 =4, C=

C =

xz(c—l)z(c-ﬂ)z’ kz(c—1)2(0+1)2’

oz,B’Al2 _ 20([:’A&+c2—1
K2(c—D2c+1)2’ = T e D+

Case 3: ForCy = C;=00C, > 0C4 > 0, it is revealed from set 3 that:

2 x(x—ct)
Cosech? ({J2C, - )
x(x—ct)

2\ C2C4tanh(\/2C2 T) - C

B ) =A 1 + D+ A0+ D)

24)
28 Cysech?({2C, it CI)) ?
L[JA’M()C, t) = > Ao + A x(x o + ao,
-1 2,/C,Cytanh({2C, K=y —
(25)

Case 4: For Cy= C, =0,and C, > 0, C} —
is revealed that

4C,C4 > 0, using set 4 it
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Pa1s(x, 1)
2C2sech(m(x —1t))
JCE—4C,C, — Cg,sech(\/z—Czk(x — ct))’

=AQ+i)+A0+10)

(26)
Pa15(x, 1)
_ 28 Ao+ A 2C,sech (\2Cyx (x — ct)) a
(c*-1) JC} — 4C,Cy — Cysech(2Cox (x — ct)) ,
27)

Case 5: For Cy = C; = 0, and C, > 0, it is obtained that

2 x(x—ct)
Cng,SeCh (, 2C, T)
C,C(1 — tanh({26, X292 — ¢7

Baisl ) = A1 + D)+ A0 + 1)

(28)
¢A,16(x, t)
2
28 C,Cssech?({2C, @)
= Ag + A
(-1 C,C4(1 — tanh(/2C, @))2 -c
29

Figs. 1-6 depicted analytical solutions 3-D and 2-D of Egs. (28) and
(29). This illustrated the stability of the bright and dark solitons which
are candidates for data transmission in thousand kilometers. The other
obtained solutions are periodic and hyperbolic function solutions. It is
also observed that the results depicted depend on the free parameters of
the GKZ equation (see Figs. 1 and 2). We also remark that solitons so-
lution Egs. (28 and 29) can either have one-bright or multi-bright (one
dark or multi dark) intensity profiles which depend on the free para-
meter («, see Figs. (2 and 3) or ) see Figs. (1 and 2) of the GKZ
equation. In the other observing Figs. 5 and 6, when the value of the
free parameter [3) increase, the one-bright soliton period increase (see
Fig. 5). However, the value of free parameter (« is considered as small.
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In addition to these, when the value of free parameter (¢ of GKZ
equation is increasing, the opposite phenomenon occurs (the one bright
soliton periodicity is reduced (see Fig. 6.)

2.2. On solving the Klein-Gordon-Zhakharov equation by the Sine-Gordon
expansion approach

To investigate complex traveling wave and soliton solutions to (1)-
(2), the sine-Gordon expansion approach will be considered in the
following expression [23,24]:

n

o) = Z cos(s)/"1(Bjsin(s) + Ajcos(s)) + Ag.

=1 (30)
and
sin(s(§)) = sech (&), or cos(s(§)) = tanh (), 31)
sin(s(§)) = icsch(¢), or cos(s(§)) = coth(§). (32)

Employing the balance principle between the higher nonlinear term
and the higher derivative term, it is recovered to (13) that the integer
N=1.

Thereafter, substituting the valued of integer N, into (36), turns to

@(€) = Ag + Bysin(s) + A;cos(s) (33)

Substituting (39) into (13), it is obtained the set system of equation.
Solving the set of system of algebraic equations with help of MAPLE, we
obtain the following results.

2k2(c2-1) -1
—

e Setl: Ay =0, 4 i\/—%ﬁ(cz— Dx, By=0, ag =

— 20,2 _
e Set2: Ay =0, A =0, Blzi\/;—ﬁ(cz—l)x, qy = =X D+1

a

To use (38) and considering the obtained results above, it is re-
vealed the complex solitons solutions to (1)-(2) as

A ¢
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Fig. 1. Spatio-temporal plot of IczSA,m\2 (28) for (a) [c =1.0005, C, = 0,919, C; = 0.00356, C, = 0.0035, x = —1.8007, ap = 96.24, Ay = 0.00814,4; = 0.9120,
B = —1.007, « = 0.0104, x = 1], (b) [c = 1.0005, C, = 0, 919, Cs = 0.00356, C4 = 0.0035, x = —1.8007, ag = 96.24, Ag = 0.00814, A; = 0.9120, 8 = —1.017, & = 0.104, x = 1], ,
() [c = 1.0005, C, = 0, 919, C; = 0.00356, C; = 0.0035, k = —1.8007, ag = 96.24, Ay = 0.00814, A, = 0.9120, B = —1.027, a = 0.204, x = 1], (d) [c = 1.0005, C, = 0, 919,
C; = 0.00356, C4 = 0.0035, x = —1.8007, ag = 96.24, A, = 0.00814, A = 0.9120, § = —1.047, a = 0.304, x = 1], respectively.



A. Houwe, et al. Results in Physics 17 (2020) 103127

(d1) (d2) x1073
35
\
l||l|'“ ]
%103 l“ 25
il ”
4 ‘ | | l 2
o A y
:(_ ) 100 15
50
o0 LTS 0.5
0 20 an | =
60 80 0 t
X 100
(d3) (d4) x10°

0 T oo
20 40 L

sox 20 100 ° t

Fig. 2. Spatio-temporal plot of IR¢, P (29) for (d1) [c=0.24, C, = 274.5035, C3 = 4.9970, C4y = 2.2741, x = 0.0401, Ay = 0.0501, A; = 0.9120, § = —5.2024,
a = 10.0106], (d2) [c = 0.24, C, = 474.5035, C;3 = 5.9970, C4 = 2.2741, k¥ = 0.0401, A, = 0.0501, A; = 0.9120, 8 = —5.2024, a = 10.0106], (d3) [c¢ = 0.24, C, = 365.5035,
C; = 6.06, Cy = 3.031, x = 0.0401, Ay = 0.0501, A; = 0.9120, f = —5.2024, « = 20.0106], (d4) [c = —0.2, C, = 4400.7, C; = 8.02, Cy = 3.65, x = 0.0401, Ay = 0.0501,
A = 0.9120, B = —5.2024, ¢ = 25.0106], respectively.

P, 1) =1 + i) _ociﬁ (¢? — Dxtanh(x (x — ct)), 39 Ppa(x, 1) = x(1 + i)\/g(c2 — Dx sech(x(x — ct)), 38)
PYp 1 (X, 1) Pp 13X, )
28 1, WL e - - 2 [T, W ee@-n+1
= —( — 1){ o (c 1)xtanh (x (x ct))} + EE— = —(cz — 1){ oy (c? — 1)x sech(x(x — ct)) E—
(35) (39)
P10 1) = (1 + i)\/_o%[:’ (¢? = Dxcoth(x (x — ct)), 36) Pp () = (0 + i) al—ﬁ (c? — Dx i esch(x(x — ct)), (40)
Pp 12 (X, 1) Pp1a(x, 1)
2 2002 _ 1) _
= %{ _o%ﬁ (¢ — 1)xcoth(x (x — ct))} + w. = - 1){ — (¢ = Dx i csch(x(x — ct))} e-D+1 1) +1
37) 41)
(f1) 10 (f2)
100 1 ;ﬁ 2
0.5 &
T\“ \7/

00
X

Fig. 3. Spatio-temporal plot of 1RP4 16 2 (28) for (f1) [c = —0.2, C, = 88.30, C; = 1.60, C4 = 7.31, x = 0.0401, A, = 0.05, A} = 0.912, B = —5.2024, a = 5.01], (f2)
[c = 0.24, C, = 21.88, C3 = 398.34, C, = 1.81, x = 0.0401, A, = 0.0501, 4, = 0.9120, 8 = —1.2, a = 10.0106], respectively.
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Fig. 4. Spatio-temporal plot of IRg, ,;I* (29) ¢ = 0.24, C; = 1.23, C3 = 2.250, C4 = 1.024, k = 0.0401, Ay = 0.0501, A; = 0.912, § =

andt=0,t=5,t=10,t=15,t= 20 respectively.

2.3. On solving the Klein-Gordon-Zhakharov equation by the
extended rational sine-cosine method.

We adopt the efficient technique, namely; the extended rational
method. The marvel of this method reside in the fact that it leads to
different form of solutions obtained by adopting diverse integration
technique such as tanh-function method, the extended tanh-function

—70.20, a = 5.01 for — 25 < x < 25

why, in this paper, it became very useful to assume two cases. The
obtained results by handling the ODE Eq. (8) with this efficient tech-
nique will help to complete the obtained previous results by adopting
the auxiliary equation method and the sine-Gordon expansion method.
To do so, we first suppose that (13) has the following expression as
solution [42,43].

5

method, the sech-function method [31-37] and so on. In reality, this ~ o(¢) = M cos(uf) # A
integration scheme summarize many other analytical method. That is Ay + Acos(u€) 4 (42)
0.03 T T T T T T T T T
Lo 0021 —
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o \ \ | \ \
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0.01 — —
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il A J\\ L—/\_‘ 4//\
0 \ | . \
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X
0.03 T T T T T T T T T
=20 0.02 (—
0.01 — —
! \ ! | \
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X

Fig. 5. Spatio-temporal plot of |9Q¢A116|2 (29) ¢ =1.24, C; = 1.23, C3 = 2.250, Cy = 1.024, k¥ = 0.04, Ay = 0.05, A, = 0.05, 8 = 40.20, a = 4.01 for — 25 < x < 25 and

t=0,t=5,t=10,t=15,t= 20 respectively.
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Fig. 6. Spatio-temporal plot of IER¢A'16I2 (29) ¢ =1.24, C, = 1.43, C; = 4.250, C, = 1.508, x = 0.04, Ay = 0.05, A; = 0.05, § = 2.20, a = 20.01 for — 25 < x < 25 and

t=0,t=5,t=10,t=15,t =20 respectively.

A inug) # -2,

v® =7 Asin(uE)’ A (43)

where Ay, 4, and A, are real parameters to determine. Substituting Eq.
(42) into (13) is obtained the set of results

. _ (2-D(@ap+1 — = 2(xag+1)
Set 1: Ay = +, TAZ, A =4, =4, p== 212’
Set 2: Ag = +,/@=DE04D 44— A A = Ay, p=+ [2@0+D

A + 28 2, A1 D, A2 2, \/ 20- "

From set 1, it is recovered

(c = 1)(0( ap+1) sin Z(aao + 1) (X Ct)
1-

1 + cos 2(‘“’7‘)“) x —ct ))
( (\/ a- ( ) (44)
2
(@2 -1)(aag+1) o; 2(aag + 1) _
28 2f sm( | - (x ct))

(c2 - 1) (1 + COS( 2((olta0+1) (X Ct)))

To use set 2, it is obtained

@ -1)(aap+1) Sil’l( 2(aag+ l) (X Ct))
\ 2af a-

_ 2(aap+1) _
( 1+ cos(\/uz(1 7(x ct))) (46)

(-D(@ag+1) o; 2(oza0+1)
28 25 sm(\/ - x - ct))
-1 EPTYEY
( ) (_1 + COS(\/@@ C[)))

Next, we use (43), it is obtained that

¢C,11(x7 t) = i(l + l)

zpc,n(xy t) =

+ ao,

(45)

bern () = (1 + )

Yo, 1) =

¢c,13(x, H=+1+ l)\f (c? = Di@ao + 1) Cot( ‘e‘(oc do +021) (x— ct)),

2a \ 20 -
(48)

¢c,13(xa t)
2
2B (2= D(aag + 1) (@ag+1)
= @-D {\/ 20 cot(\/ 20— D) (x ct))} + ao,
(49)
,’(52—1)(aa0+1) COS( ’2(aa0+1) (x _ C[))
b D = £(1+ D) 246 Vo a-
. [2(xap+1)
(1 + s1n(\/7( 02 (x — ct))) 50)
- 2
(2= (aag+1) COS( [2(axag+1) (X _ Ct))
Yeale, 1) = (02213 - \/ 2ap Lfcz) o
(1 + sin(\/iz(("l“i";;) (x — ct)))
(51)

[(€2=1)(aag+1) 2(cag + 1)
| Ccos x —ct
Vg (\/ a-h ¢ ))
¢c,15(x, )=+ +1)

(—1 + sin(\/% (x — ct))) 52

2

’r‘ (- 1)(aap+1) COS( ’, Z(aao + 1) (x — ct))

2 \ 2ap N oa-
Yoo, 0 = s +ay,
(—1 + sin( [2eao+1) (o ct)))
NV a-c?»
(53)
2.4. On solving the Klein-Gordon-Zhakharov equation by the
extended rational sinh-cosh method.
Assume the solution of (13) as follow:
Apsinh(ué) A,
=————2° cosh -==,
?©) = I Acosh(@d) W) # -5 (54)
Aqcosh(u)
=————2- sinh —==
v® =7 Asinh(uf)’ W) # =55 (55)
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where A, A; and A, are real parameters to determine.

Using the same procedure in section (C), it is revealed the set system
of algebraic equations below.

Solving the above system of algebraic equations with aid of the
MAPLE, we attempt.

. _ . |_(@-D@a+D _ _ _ 2(«ag+1)
Set 1: Ay = i\/_TAl’ A =44y, A=Ay, u= i\/%,

From set 1, it is recovered

“‘J(CZ, D(cxap+ 1) sinh 2(axap+1) (x _ Ct)
X \‘w‘ 2apB (2-1)
o (6, ) =1+

(il + cosh( \/ 72(("0‘2“31)1) (x - ct))) 56)

2

‘w sinh 2@ag+1) X — ct
2B \/ 2ap (2-1) ( )

(Cz - 1) [2(cxag + 1)
+1 + cosh \/ﬂ(x ct))

¢D,11(x, t) = + ao,

(57)
From (55), it is obtained.

. _ (2= D(aap+1) _ _ _ 2(ccag+ 1)
Set 2: A = &\ 50 AL A= ik, A=A, p= 2 TR0,

From set 2, it is recovered

(2= D(aag+1) cosh 2(xap+1) (x —_ Ct)
\/ 2apB 2-1)

¢D,12(x, H=+1+1)

(i + sinh(\/% (x — ct))) &8)
J 2
[(c2=1)(aag+1) 2(aap+1) (4 _
E R TCOSh( "oy & “))
¢D,12(x’ t) - (C2 _ 1) + ao,

(i + sinh(\/% (x — ct)))
(59)

3. Conclusions

In this paper, complex traveling-wave solutions and solitons solu-
tions of the Klein-Gordon-Zakharov equations have been obtained by
employing three schemes of integration. More recently, some authors
studied the model and have pointed out bell-type, kink-type, singular,
periodic waves solutions, topological and non-topological by using tanh
method, hyperbolic function structure, extended hyperbolic functions
method, bifurcation method and sine-cosine method [38-41]. From
these studies, the obtained results are of paramount importance in the
field of solitary waves and give meaningful explanations of complex
systems. On the other hand, for example, in [39], authors obtained
bright, dark soliton solutions and rational solutions by extended hy-
perbolic function method. Unfortunately, they have not obtained so-
lutions (Eq. (24), Eq. (25) and Eq. (26)) which are the combined bright
and dark soliton solutions. Equally, in Ref. ([38]), the authors used
sech® (x) and tanh?(x) functions, as a results only bright and dark solu-
tions have been obtained compare to our work. On the same way in Ref.
[40], they have used three integration schemes such as sine-cosine
method, extended tanh method, rational sinh-cosh method and rational
exponential functions method, they obtained bright, dark and hyper-
bolic function solutions. Regarding this, we can safely make the mistake
that our results are the subject of a summary of the previous works and
set out fresh solutions. In addition, some new solutions have erred by
using the auxiliary equation method. To summarize, we have adopted
the traveling-wave transformation to construct the nonlinear ordinary
differential equation of the KGZ equations model. By using the auxiliary
equations, it is revealed dark (Fig. 3 and 4), double bright (Fig. 1),
double dark soliton (Fig. 2) and multi-bright solitons (5 and 6) compare
to the previous works [38-41]. Beside, the sine-Gordon expansion re-
vealed complex trigonometric function solutions and singular function
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as solutions. We note that some of the obtained results such as (24-29)
are new compare to the standard integration method summarized in
Table 1.2 by Li [30] and Refs. [38-40]. Nevertheless, the auxiliary
equations is independent of the integrability of NODE and we can also
obtained the periodic Jacobi elliptic function solutions that we omit to
present them inhere. Furthermore, from the sine-Gordon expansion,
dark, bright solitons and complex singular solutions are revealed. The
rational sine-cosine and sinh-cosh yield to some new complex trigo-
nometric function solutions. Moreover, the obtained results are new
compared to the works [11,12,21,32-35]. These solutions will be useful
in solitary waves theory and all satisfied the KGZE. In a future work, it
will be added some perturbation terms to KGZEs to investigate solitons
solutions and rogue waves.
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