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Abstract
In this article, we suggest a new notion of fractional derivative involving two singular
kernels. Some properties related to this new operator are established and some
examples are provided. We also present some applications to fractional differential
equations and propose a numerical algorithm based on a Picard iteration for
approximating the solutions. Finally, an application to a heat conduction problem is
given.
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1 Introduction
In many applications in applied sciences, the use of fractional derivatives with singular
kernels allows us to obtain more realistic models than those derived using the standard
derivative (see e.g. [2–7, 10, 11, 13, 14]). The literature contains various notions of frac-
tional derivatives with singular kernels. The best known are the Riemann–Liouville frac-
tional derivative and the Caputo fractional derivative (see e.g. [12, 22]). For other defini-
tions, see, for example [1, 8, 15–21] and the references therein.

In [1], Almeida introduced the notion of ψ-Caputo fractional derivative as a general-
ization of the Caputo derivative. Namely, given ψ ∈ Cn([a, b],R) with ψ ′ > 0, and f ∈
Cn([a, b],R), the left-sided fractional derivative order α ∈ (n – 1, n) of f with respect to
ψ is defined by

(CDα,ψ
a f

)
(t) =

(
In–α,ψ

a

(
1

ψ ′(t)
d
dt

)n

f
)

(t), a < t ≤ b,

where

(
Iθ ,ψ

a h
)
(t) =

1
Γ (θ )

∫ t

a
ψ ′(s)

(
ψ(t) – ψ(s)

)θ–1h(s) ds, θ > 0.
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The right-sided fractional derivative of order α of f with respect to ψ is defined by

(CDα,ψ
b f

)
(t) =

(
In–α,ψ

b

(
–1

ψ ′(t)
d
dt

)n

f
)

(t), a ≤ t < b,

where

(
Iθ ,ψ

b h
)
(t) =

1
Γ (θ )

∫ b

t
ψ ′(s)

(
ψ(s) – ψ(t)

)θ–1h(s) ds, θ > 0.

In the particular case ψ(t) = t, CDα,ψ
a reduces to the left-sided Caputo fractional derivative,

and CDα,ψ
b reduces to the right-sided Caputo fractional derivative. For other examples of ψ ,

one obtains other known fractional operators, as for example the fractional derivative of
Caputo–Hadamard (see [7]) and the fractional derivative of Caputo–Erdélyi–Kober (see
[9]). In all the above notions, the fractional derivatives involve only one singular kernel.

In this paper, a new concept of fractional derivative with two singular kernels k1(t, s) =
1

Γ (θ+1)ϕ
′(s)(ϕ(t) – ϕ(s))θ and k2(s, τ ) = 1

Γ (μ+1)ψ
′(τ )(ψ(s) – ψ(τ ))μ, where –1 < θ , μ < 0, is

proposed. We establish some properties related to this introduced operator and present
some applications to fractional differential equations. Namely, we investigate the existence
and uniqueness of solutions of a nonlinear fractional boundary value problem of a higher
order, and provide a numerical technique based on a Picard iteration for approximating
solutions. An application to a heat conduction problem is also provided.

In Sect. 2, the fractional derivative operator with two singular kernels is introduced and
some properties are established. The special case ϕ = ψ is discussed in Sect. 3. In Sect. 4,
we study a nonlinear fractional boundary value problem of a higher order. Namely, using
Banach fixed point theorem, we establish the existence and uniqueness of solutions, and
provide a numerical algorithm based on Picard iterations for approximating the solution.
In Sect. 5, an application to a heat conduction problem is given.

2 Fractional derivative with two singular kernels
First, we fix some notations. We denote by N the set of positive integers. Let n ∈ N and
a, b ∈ R with a < b. Let

Φ (n) =
{
ϕ ∈ Cn([a, b],R

)
: ϕ′(t) > 0, a ≤ t ≤ b

}
.

For ϕ ∈ Φ (n), let

L(n)
ϕ =

(
1

ϕ′(t)
d
dt

)n

.

Definition 2.1 Let α,β ∈ (n – 1, n), ϕ ∈ Φ (1), ψ ∈ Φ (n) and f ∈ Cn([a, b],R). The left-sided
(ϕ,ψ)-fractional derivative of f with parameters (α,β) is defined by

(
D(α,β),(ϕ,ψ)

a f
)
(t) = In–α,ϕ

a
(CDβ ,ψ

a f
)
(t), a < t ≤ b. (1)

The right-sided (ϕ,ψ)-fractional derivative of f with parameters (α,β) is defined by

(
D(α,β),(ϕ,ψ)

b f
)
(t) = In–α,ϕ

b
(CDβ ,ψ

b f
)
(t), a ≤ t < b. (2)
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Remark 2.1 From (1), for all a < t ≤ b, one has

(
D(α,β),(ϕ,ψ)

a f
)
(t) =

1
Γ (n – α)Γ (n – β)

∫ t

a
ϕ′(s)

(
ϕ(t) – ϕ(s)

)n–α–1

×
(∫ s

a
ψ ′(τ )

(
ψ(s) – ψ(τ )

)n–β–1(L(n)
ψ f

)
(τ ) dτ

)
ds.

Similarly, from (2), for all a ≤ t < b, one has

(
D(α,β),(ϕ,ψ)

b f
)
(t) =

1
Γ (n – α)Γ (n – β)

∫ b

t
ϕ′(s)

(
ϕ(s) – ϕ(t)

)n–α–1

×
(∫ b

s
ψ ′(τ )

(
ψ(τ ) – ψ(s)

)n–β–1(–1)n(L(n)
ψ f

)
(τ ) dτ

)
ds.

In C([a, b],R) we consider the norm

‖f ‖∞ = max
{∣∣f (t)

∣
∣ : a ≤ t ≤ b

}
, f ∈ C

(
[a, b],R

)
.

We endow Cn([a, b],R) with the norm

‖f ‖ =
n∑

K=0

∥
∥L(k)

ψ f
∥
∥∞, f ∈ Cn([a, b],R

)
,

where ψ ∈ Φ (n).

Theorem 2.1 Let α,β ∈ (n – 1, n), ϕ ∈ Φ (1), ψ ∈ Φ (n) and f ∈ Cn([a, b],R). Then

∣∣(D(α,β),(ϕ,ψ)
a f

)
(t)

∣∣ ≤ (ϕ(t) – ϕ(a))n–α

Γ (n – α + 1)
(ψ(t) – ψ(a))n–β

Γ (n – β + 1)
‖f ‖, a < t ≤ b, (3)

and

∣
∣(D(α,β),(ϕ,ψ)

b f
)
(t)

∣
∣ ≤ (ϕ(b) – ϕ(t))n–α

Γ (n – α + 1)
(ψ(b) – ψ(t))n–β

Γ (n – β + 1)
‖f ‖, a ≤ t < b. (4)

Proof Let a < t ≤ b. Then

∣∣(D(α,β),(ϕ,ψ)
a f

)
(t)

∣∣

≤ ‖f ‖
Γ (n – α)Γ (n – β)

∫ t

a
ϕ′(s)

(
ϕ(t) – ϕ(s)

)n–α–1
(∫ s

a
ψ ′(τ )

(
ψ(s) – ψ(τ )

)n–β–1 dτ

)
ds

≤ ‖f ‖
Γ (n – α)Γ (n – β + 1)

∫ t

a
ϕ′(s)

(
ϕ(t) – ϕ(s)

)n–α–1(
ψ(s) – ψ(a)

)n–β ds

≤ (ψ(t) – ψ(a))n–β(ϕ(t) – ϕ(a))n–α

Γ (n – α + 1)Γ (n – β + 1)
‖f ‖,

which proves (3). Using similar estimates, one obtains (4). �
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Corollary 2.1 Let α,β ∈ (n – 1, n), ϕ ∈ Φ (1), ψ ∈ Φ (n) and f ∈ Cn([a, b],R). Then

lim
t→a+

(
D(α,β),(ϕ,ψ)

a f
)
(t) = 0 (5)

and

lim
t→b–

(
D(α,β),(ϕ,ψ)

b f
)
(t) = 0. (6)

Proof Taking the limit as t → a+ in (3), (5) follows. Similarly, taking the limit as t → b– in
(4), (6) follows. �

Taking

(
D(α,β),(ϕ,ψ)

a f
)
(a) = 0,

one deduces from (5) that D(α,β),(ϕ,ψ)
a f ∈ C([a, b],R). Similarly, taking

(
D(α,β),(ϕ,ψ)

b f
)
(b) = 0,

one deduces from (6) that D(α,β),(ϕ,ψ)
b f ∈ C([a, b],R). Therefore, by Theorem 3.1, one ob-

tains the following.

Corollary 2.2 Let α,β ∈ (n – 1, n), ϕ ∈ Φ (1) and ψ ∈ Φ (n). Then, for any g ∈ Cn([a, b],R),
we have

∥∥D(α,β),(ϕ,ψ)
a g

∥∥∞ ≤ C‖g‖ and
∥∥D(α,β),(ϕ,ψ)

b g
∥∥∞ ≤ C‖g‖,

where

C =
(ϕ(b) – ϕ(a))n–α

Γ (n – α + 1)
(ψ(b) – ψ(a))n–β

Γ (n – β + 1)
.

Lemma 2.1 Let ϕ ∈ Φ (1) and f ∈ C1([a, b],R). Then

lim
θ→0+

(
Iθ ,ϕ

a f
)
(t) = f (t), a < t ≤ b, (7)

and

lim
θ→0+

(
Iθ ,ϕ

b f
)
(t) = f (t), a ≤ t < b. (8)

Proof Let θ > 0. One has

(
Iθ ,ϕ

a f
)
(t) =

1
Γ (θ )

∫ t

a
ϕ′(s)

(
ϕ(t) – ϕ(s)

)θ–1f (s) ds.

Integrating by parts, one obtains

(
Iθ ,ϕ

a f
)
(t) =

1
Γ (θ + 1)

((
ϕ(t) – ϕ(a)

)θ f (a) +
∫ t

a

(
ϕ(t) – ϕ(s)

)θ f ′(s) ds
)

.
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Passing to the limit as θ → 0+ in the above equality, (7) follows. Similarly, one has

(
Iθ ,ϕ

b f
)
(t) =

1
Γ (θ )

∫ b

t
ϕ′(s)

(
ϕ(s) – ϕ(t)

)θ–1f (s) ds.

Integrating by parts, one obtains

(
Iθ ,ϕ

b f
)
(t) =

1
Γ (θ + 1)

((
ϕ(b) – ϕ(θ )

)θ f (b) –
∫ b

t

(
ϕ(s) – ϕ(t)

)θ f ′(s) ds
)

.

Passing to the limit as θ → 0+ in the above equality, (8) follows. �

Theorem 2.2 Let n – 1 < β < n, ϕ ∈ Φ (1), ψ ∈ Φ (n) and f ∈ Cn([a, b],R).
(I) If CDβ ,ψ

a f ∈ C1([a, b],R), then

lim
α→n–

(
D(α,β),(ϕ,ψ)

a f
)
(t) =

(CDβ ,ψ
a f

)
(t), a < t ≤ b.

(II) If CDβ ,ψ
b f ∈ C1([a, b],R), then

lim
α→n–

(
D(α,β),(ϕ,ψ)

b f
)
(t) =

(CDβ ,ψ
b f

)
(t), a ≤ t < b.

Proof Using (1) and (7), (I) follows. Similarly, using (2) and (8), (II) follows. �

Theorem 2.3 Let α,β ∈ (n – 1, n), ϕ ∈ Φ (1), ψ ∈ Φ (n+1) and f ∈ Cn+1([a, b],R). For all
a < t ≤ b,

(
D(α,β),(ϕ,ψ)

a f
)
(t)

=
(L(n)

ψ f )(a)
Γ (n – α)Γ (n + 1 – β)

∫ t

a
ϕ′(s)

(
ϕ(t) – ϕ(s)

)n–α–1(
ψ(s) – ψ(a)

)n–β ds

+
1

Γ (n – α)Γ (n + 1 – β)

∫ t

a
ϕ′(s)

(
ϕ(t) – ϕ(s)

)n–α–1

×
(∫ s

a

(
ψ(s) – ψ(τ )

)n–β d
dτ

(
L(n)

ψ f
)
(τ ) dτ

)
ds. (9)

For all a ≤ t < b,

(
D(α,β),(ϕ,ψ)

b f
)
(t)

=
(–1)n(L(n)

ψ f )(b)
Γ (n – α)Γ (n + 1 – β)

∫ b

t
ϕ′(s)

(
ϕ(s) – ϕ(t)

)n–α–1(
ψ(b) – ψ(s)

)n–β ds

–
1

Γ (n – α)Γ (n + 1 – β)

∫ b

t
ϕ′(s)

(
ϕ(s) – ϕ(t)

)n–α–1

×
(∫ b

s

(
ψ(τ ) – ψ(s)

)n–β (–1)n d
dτ

(
L(n)

ψ f
)
(τ ) dτ

)
ds. (10)

Proof Equation (9) follows from (1) and [1, Theorem 1]. (10) follows from (2) and [1, The-
orem 1]. �
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Corollary 2.3 Let ϕ ∈ Φ (1), ψ ∈ Φ (n+1) and f ∈ Cn+1([a, b],R). Then

lim
α→n–

(
lim

β→n–

(
D(α,β),(ϕ,ψ)

a f
)
(t)

)
=

(
L(n)

ψ f
)
(t), a < t ≤ b, (11)

and

lim
α→n–

(
lim

β→n–

(
D(α,β),(ϕ,ψ)

b f
)
(t)

)
= (–1)n(L(n)

ψ f
)
(t), a ≤ t < b. (12)

Proof Let a < t ≤ b. From (9), for n – 1 < α < n, one has

lim
β→n–

(
D(α,β),(ϕ,ψ)

a f
)
(t)

=
1

Γ (n – α)
(
L(n)

ψ f
)
(a)

∫ t

a
ϕ′(s)

(
ϕ(t) – ϕ(s)

)n–α–1 ds

+
1

Γ (n – α)

∫ t

a
ϕ′(s)

(
ϕ(t) – ϕ(s)

)n–α–1
(∫ s

a

d
dτ

(
L(n)

ψ f
)
(τ ) dτ

)
ds

=
(ϕ(t) – ϕ(a))n–α

Γ (n – α + 1)
(
L(n)

ψ f
)
(a)

+
1

Γ (n – α)

∫ t

a
ϕ′(s)

(
ϕ(t) – ϕ(s)

)n–α–1((L(n)
ψ f

)
(s) –

(
L(n)

ψ f
)
(a)

)
ds.

Hence, taking the limit as α → n–, and using (7), (11) follows. Similarly, for a ≤ t < b, using
(10) and (8), (12) follows. �

3 The case ϕ = ψ

Let α,β ∈ (n – 1, n), ψ = ϕ ∈ Φ (n) and f ∈ Cn([a, b],R). In this case, by (1), for all a < t ≤ b,
one obtains

(
D(α,β),(ϕ,ψ)

a f
)
(t) =

(
D(α,β),(ϕ,ϕ)

a f
)
(t) = In–α,ϕ

a
(CDβ ,ϕ

a f
)
(t)

= In–α,ϕ
a

(
In–β ,ϕ

a L(n)
ϕ f

)
(t).

Using the semigroup property (see [1]), we have

(
D(α,β),(ϕ,ψ)

a f
)
(t) =

(
I2n–(α+β),ϕ

a L(n)
ϕ f

)
(t), a < t ≤ b. (13)

Similarly, by (2), one obtains

(
D(α,β),(ϕ,ψ)

b f
)
(t) =

(
I2n–(α+β),ϕ

b (–1)nL(n)
ϕ f

)
(t), a ≤ t < b. (14)

3.1 The case 2n – 1 < α + β < 2n
In this case, using (13), one has

(
D(α,β),(ϕ,ψ)

a f
)
(t) =

(
In–(α+β–n),ϕ

a L(n)
ϕ f

)
(t), a < t ≤ b,

i.e.

(
D(α,β),(ϕ,ψ)

a f
)
(t) =

(CDα+β–n,ϕ
a f

)
(t), a < t ≤ b.
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Similarly, using (14), one obtains

(
D(α,β),(ϕ,ψ)

b f
)
(t) =

(CDα+β–n,ϕ
b f

)
(t), a ≤ t < b.

Hence, the following result holds.

Theorem 3.1 Let α,β ∈ (n – 1, n), ϕ ∈ Φ (n) and f ∈ Cn([a, b],R). Suppose that 2n – 1 <
α + β < 2n. Then

(
D(α,β),(ϕ,ϕ)

a f
)
(t) =

(CDα+β–n,ϕ
a f

)
(t) =

(
D(β ,α),(ϕ,ϕ)

a f
)
(t), a < t ≤ b,

and

(
D(α,β),(ϕ,ϕ)

b f
)
(t) =

(CDα+β–n,ϕ
b f

)
(t) =

(
D(β ,α),(ϕ,ϕ)

b f
)
(t), a ≤ t < b.

3.2 The case 2n – 2 < α + β < 2n – 1
In this case, using (13), for a < t ≤ b, one has

(
D(α,β),(ϕ,ψ)

a f
)
(t)

=
(
I2n–(α+β),ϕ

a L(n)
ϕ f

)
(t)

=
1

Γ (2n – α – β)

∫ t

a
ϕ′(s)

(
ϕ(t) – ϕ(s)

)2n–α–β–1(L(n)
ϕ f

)
(s) ds

=
1

Γ (2n – α – β)

∫ t

a

(
ϕ(t) – ϕ(s)

)2n–α–β–1 d
ds

(
L(n–1)

ϕ f
)
(s) ds.

Integrating by parts, one obtains

(
D(α,β),(ϕ,ψ)

a f
)
(t)

=
1

Γ (2n – α – β)
[(

ϕ(t) – ϕ(s)
)2n–α–β–1(L(n–1)

ϕ f
)
(s)

]t
s=a

+
(2n – α – β – 1)
Γ (2n – α – β)

∫ t

a

(
ϕ(t) – ϕ(s)

)2n–α–β–2
ϕ′(s)

(
L(n–1)

ϕ f
)
(s) ds

= –
1

Γ (2n – α – β)
(
ϕ(t) – ϕ(a)

)2n–α–β–1(L(n–1)
ϕ f

)
(a) + gn(t), (15)

where

gn(t) =
1

Γ ((n – 1) – (α + β – n))

×
∫ t

a

(
ϕ(t) – ϕ(s)

)(n–1)–(α+β–n)–1
ϕ′(s)

(
L(n–1)

ϕ f
)
(s) ds.

Now, we discuss two cases.
• n = 1. In this case, one has

g1(t) =
1

Γ (1 – (α + β))

∫ t

a

(
ϕ(t) – ϕ(s)

)–(α+β)
ϕ′(s)f (s) ds

=
(
I1–(α+β),ϕ

a f
)
(t).
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Hence, by (15), one deduces that

(
D(α,β),(ϕ,ψ)

a f
)
(t) =

–1
Γ (2 – α – β)

(
ϕ(t) – ϕ(a)

)1–α–β f (a) +
(
I1–(α+β),ϕ

a f
)
(t).

• n ≥ 2. In this case, one has

gn(t) =
(CDα+β–n,ϕ

a f
)
(t).

Hence, by (15), one deduces that

(
D(α,β),(ϕ,ψ)

a f
)
(t)

= –
1

Γ (2n – α – β)
(
ϕ(t) – ϕ(a)

)2n–α–β–1(L(n–1)
ϕ f

)
(a) +

(CDα+β–n,ϕ
a f

)
(t).

Similarly, using (14), for a ≤ t < b and n ≥ 2, one obtains

(
D(α,β),(ϕ,ψ)

b f
)
(t)

=
1

Γ (2n – α – β)
(
ϕ(b) – ϕ(t)

)2n–α–β–1(–1)n(L(n–1)
ϕ f

)
(b) +

(CDα+β–n,ϕ
b f

)
(t)

and for n = 1,

(
D(α,β),(ϕ,ψ)

b f
)
(t)

=
–1

Γ (2 – α – β)
(
ϕ(b) – ϕ(t)

)1–α–β f (b) +
(
I1–(α+β),ϕ

b f
)
(t).

Hence, we have the following results.

Theorem 3.2 Let α,β ∈ (n – 1, n), n ≥ 2, ϕ ∈ Φ (n) and f ∈ Cn([a, b],R). Suppose that 2n –
2 < α + β < 2n – 1. Then

(
D(α,β),(ϕ,ϕ)

a f
)
(t)

= –
(ϕ(t) – ϕ(a))2n–α–β–1

Γ (2n – α – β)
(
L(n–1)

ϕ f
)
(a) +

(CDα+β–n,ϕ
a f

)
(t)

=
(
D(β ,α),(ϕ,ϕ)

a f
)
(t), a < t ≤ b,

and

(
D(α,β),(ϕ,ϕ)

b f
)
(t)

=
(ϕ(b) – ϕ(t))2n–α–β–1

Γ (2n – α – β)
(–1)n(L(n–1)

ϕ f
)
(b) +

(CDα+β–n,ϕ
b f

)
(t)

=
(
D(β ,α),(ϕ,ϕ)

b f
)
(t), a ≤ t < b.
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Theorem 3.3 Let 0 < α,β < 1, ϕ ∈ Φ (1) and f ∈ C1([a, b],R). Suppose that 0 < α + β < 1.
Then

(
D(α,β),(ϕ,ϕ)

a f
)
(t)

=
–1

Γ (2 – α – β)
(
ϕ(t) – ϕ(a)

)1–α–β f (a) +
(
I1–(α+β),ϕ

a f
)
(t)

=
(
D(β ,α),(ϕ,ϕ)

a f
)
(t), a < t ≤ b,

and

(
D(α,β),(ϕ,ϕ)

b f
)
(t)

=
–1

Γ (2 – α – β)
(
ϕ(b) – ϕ(t)

)1–α–β f (b) +
(
I1–(α+β),ϕ

b f
)
(t)

=
(
D(β ,α),(ϕ,ϕ)

b f
)
(t), a ≤ t < b.

3.3 The case α + β = 2n – 1
In this case, using (13), for a < t ≤ b, one has

(
D(α,β),(ϕ,ψ)

a f
)
(t) =

(
I2n–(α+β),ϕ

a L(n)
ϕ f

)
(t)

=
(
I1,ϕ

a L(n)
ϕ f

)
(t)

=
∫ t

a
ϕ′(s)

(
L(n)

ϕ f
)
(s) ds

=
∫ t

a

d
ds

(
L(n–1)

ϕ f
)
(s) ds

=
(
L(n–1)

ϕ f
)
(t) –

(
L(n–1)

ϕ f
)
(a).

Similarly, using (14), for a ≤ t < b, one obtains

(
D(α,β),(ϕ,ψ)

b f
)
(t) = (–1)n((L(n–1)

ϕ f
)
(b) –

(
L(n–1)

ϕ f
)
(t)

)
.

Hence, we obtain the following.

Theorem 3.4 Let α,β ∈ (n – 1, n), ϕ ∈ Φ (n) and f ∈ Cn([a, b],R). Suppose that α + β =
2n – 1. Then

(
D(α,β),(ϕ,ϕ)

a f
)
(t) =

(
L(n–1)

ϕ f
)
(t) –

(
L(n–1)

ϕ f
)
(a) =

(
D(β ,α),(ϕ,ϕ)

a f
)
(t), a < t ≤ b,

and

(
D(α,β),(ϕ,ϕ)

b f
)
(t) = (–1)n[(L(n–1)

ϕ f
)
(b) –

(
L(n–1)

ϕ f
)
(t)

]

=
(
D(β ,α),(ϕ,ϕ)

b f
)
(t), a ≤ t < b.

Example 3.1 Let 0 < α,β < 1. Consider the function

f (t) =
(
ϕ(t) – ϕ(0)

)2, 0 ≤ t ≤ 1, (16)
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Figure 1 Graph of (D(α,β),(ϕ ,ϕ)
0 f )(t), f is given by (16)

and ϕ(t) = t

where ϕ ∈ Φ (1). By (13), one has

(
D(α,β),(ϕ,ϕ)

0 f
)
(t) =

(
I2–α–β ,ϕ

0 L(1)
ϕ f

)
(t), 0 < t ≤ 1,

that is,

(
D(α,β),(ϕ,ϕ)

0 f
)
(t)

=
1

Γ (2 – α – β)

∫ t

0

(
ϕ(t) – ϕ(s)

)1–α–β f ′(s) ds

=
2

Γ (2 – α – β)

∫ t

0

(
ϕ(t) – ϕ(s)

)1–α–β(
ϕ(s) – ϕ(0)

)
ϕ′(s) ds

=
2(ϕ(t) – ϕ(0)1–α–β

Γ (2 – α – β)

∫ t

0

[
1 –

ϕ(s) – ϕ(0)
ϕ(t) – ϕ(0)

]1–α–β(
ϕ(s) – ϕ(0)

)
ϕ′(s) ds.

Using the change of variable z = ϕ(s)–ϕ(0)
ϕ(t)–ϕ(0) , one obtains

(
D(α,β),(ϕ,ϕ)

0 f
)
(t) =

2(ϕ(t) – ϕ(0)3–α–β

Γ (2 – α – β)

∫ 1

0
(1 – z)(2–α–β)–1z2–1 dz

=
2(ϕ(t) – ϕ(0)3–α–β

Γ (2 – α – β)
B(2 – α – β , 2)

=
2

Γ (4 – α – β)
(
ϕ(t) – ϕ(0)

)3–α–β ,

where B is the beta function. Observe that

lim
(α,β)→(1–,1–)

(
D(α,β),(ϕ,ϕ)

0 f
)
(t) = 2

(
ϕ(t) – ϕ(0)

)
=

f ′(t)
ϕ′(t)

=
(
L(1)

ϕ f
)
(t),

which confirms (11). Figures 1–3 show some graphs of (D(α,β),(ϕ,ϕ)
0 f )(t) for different func-

tions ϕ and different values of (α,β).

Following a similar argument to above, one obtains a theorem.

Theorem 3.5 Let α,β ∈ (0, 1) and θ > 0. Let

f (t) =
(
ϕ(t) – ϕ(a)

)θ , a ≤ t ≤ b,
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Figure 2 Graph of (D(α,β),(ϕ ,ϕ)
0 f )(t), f is given by (16)

and ϕ(t) = (t + 1)2

Figure 3 Graph of (D(α,β),(ϕ ,ϕ)
0 f )(t), f is given by (16)

and ϕ(t) = ln(t + 1)

where ϕ ∈ Φ (1). Then

(
D(α,β),(ϕ,ϕ)

a f
)
(t) =

Γ (θ + 1)
Γ (2 – α – β + θ )

(
ϕ(t) – ϕ(a)

)θ+1–α–β , a < t ≤ b.

The Mittag-Leffler function Eθ , θ > 0, is defined by

Eθ (t) =
∞∑

k=0

tk

Γ (θk + 1)
, t ≥ 0.

Theorem 3.6 Let ρ > 0 and 0 < α,β < 1 with 1 < α + β < 2. Let

f (t) = Eα+β–1
(
ρ
(
ϕ(t) – ϕ(a)

)α+β–1), a ≤ t ≤ b,

where ϕ ∈ Φ (1). Then

(
D(α,β),(ϕ,ϕ)

a f
)
(t) = ρf (t), a < t ≤ b.

Proof By Theorem 3.1, one has

(
D(α,β),(ϕ,ϕ)

a f
)
(t) =

(CDα+β–1,ϕ
a f

)
(t).

Next, using [1, Lemma 2], the desired result follows. �
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Theorem 3.7 Let ρ > 0 and 0 < α,β < 1 with 0 < α + β < 1. Let

f (t) = E1–α–β

(
ρ
(
ϕ(t) – ϕ(a)

)1–α–β)
, a ≤ t ≤ b,

where ϕ ∈ Φ (1). Then

(
D(α,β),(ϕ,ϕ)

a f
)
(t) =

f (t)
ρ

–
[

(ϕ(t) – ϕ(a))1–α–β

Γ (2 – α – β)
+

1
ρ

]
, a < t ≤ b.

Proof By Theorem 3.3, one has

(
D(α,β),(ϕ,ϕ)

a f
)
(t) =

–1
Γ (2 – α – β)

(
ϕ(t) – ϕ(a)

)1–α–β +
(
I1–(α+β),ϕ

a f
)
(t),

for all a < t ≤ b. On the other hand, an elementary calculation gives us

(
I1–(α+β),ϕ

a f
)
(t) =

f (t) – 1
ρ

,

for all a < t ≤ b. Hence, combining the above equalities, we obtain the desired result. �

Remark 3.1 By Theorems 3.6 and 3.7, one observes that, if 0 < ρ < 1, then

lim
(α+β)→1–

(
D(α,β),(ϕ,ϕ)

a f
)
(t) = lim

(α+β)→1+

(
D(α,β),(ϕ,ϕ)

a f
)
(t) =

ρ

1 – ρ
.

4 Applications to fractional differential equations
Let α,β ∈ (n – 1, n), ϕ ∈ Φ (1) and ψ ∈ Φ (n). We first consider the problem

⎧
⎨

⎩
(D(α,β),(ϕ,ψ)

a y)(t) = σ (t), a < t < b,

(L(k)
ψ y)(a) = μk , k = 0, 1, . . . , n – 1,

(17)

where σ ∈ C1([a, b],R) and σ (a) = 0.

Proposition 4.1 Problem (17) has a unique solution y ∈ Cn([a, b],R), which is given by

y(t) =
n–1∑

k=0

μk

k!
(
ψ(t) – ψ(a)

)k + Iβ ,ψ
a

(
I1–(n–α),ϕ

a L(1)
ϕ σ

)
(t), a ≤ t ≤ b. (18)

Proof Let y be the function given by (18). One observes easily that

(
D(α,β),(ϕ,ψ)

a
(
ψ(·) – ψ(a)

)k)(t) = 0, k = 0, 1, . . . , n – 1.

Hence, using (1), one has

(
D(α,β),(ϕ,ψ)

a y
)
(t) = D(α,β),(ϕ,ψ)

a Iβ ,ψ
a

(
I1–(n–α),ϕ

a L(1)
ϕ σ

)
(t)

= In–α,ϕ
a

CDβ ,ψ
a Iβ ,ψ

a
(
I1–(n–α),ϕ

a L(1)
ϕ σ

)
(t).
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Using the property (see [1]) CDβ ,ψ
a Iβ ,ψ

a f = f , one obtains

(
D(α,β),(ϕ,ψ)

a y
)
(t) = In–α,ϕ

a
(
I1–(n–α),ϕ

a L(1)
ϕ σ

)
(t).

Next, using the semigroup property, we have

(
D(α,β),(ϕ,ψ)

a y
)
(t) =

(
I1,ϕ

a L(1)
ϕ σ

)
(t)

=
∫ t

a
ϕ′(s)

1
ϕ′(s)

σ ′(s) ds

= σ (t) – σ (a).

Since σ (a) = 0, one deduces that

(
D(α,β),(ϕ,ψ)

a y
)
(t) = σ (t).

On the other hand, one can check easily that

(
L(k)

ψ y
)
(a) = μk

for all k = 0, 1, . . . , n – 1. Therefore, the function y given by (18) solves (17).
Now, suppose that y ∈ Cn([a, b],R) is a solution of (18). By (1), one has

In–α,ϕ
a

(CDβ ,ψ
a y

)
(t) = σ (t),

which yields

CDn–α,ϕ
a In–α,ϕ

a
(CDβ ,ψ

a y
)
(t) =

(CDn–α,ϕ
a σ

)
(t),

i.e.

(CDβ ,ψ
a y

)
(t) =

(CDn–α,ϕ
a σ

)
(t).

Then we have

Iβ ,ψ
a

(CDβ ,ψ
a y

)
(t) = Iβ ,ψ

a
(CDn–α,ϕ

a σ
)
(t) = Iβ ,ψ

a
(
I1–(n–α),ϕ

a L(1)
ϕ σ

)
(t). (19)

On the other hand, one has (see [1])

Iβ ,ψ
a

(CDβ ,ψ
a y

)
(t) = y(t) –

n–1∑

k=0

(L(k)
ψ y)(a)

k!
(
ψ(t) – ψ(a)

)k .

Using the initial conditions, one obtains

Iβ ,ψ
a

(CDβ ,ψ
a y

)
(t) = y(t) –

n–1∑

k=0

μk

k!
(
ψ(t) – ψ(a)

)k . (20)
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Further, combining (19) with (20), one deduces that

y(t) =
n–1∑

k=0

μk

k!
(
ψ(t) – ψ(a)

)k + Iβ ,ψ
a

(
I1–(n–α),ϕ

a L(1)
ϕ σ

)
(t). �

Consider now the nonlinear problem

⎧
⎨

⎩
(D(α,β),(ϕ,ψ)

a y)(t) =
∫ t

a f (s, y(s)) ds, a < t < b,

(L(k)
ψ y)(a) = μk , k = 0, 1, . . . , n – 1,

(21)

where f : [a, b] ×R →R is a continuous function. We suppose that

∣
∣f (t,λ) – f (t,η)

∣
∣ ≤ Cf |λ – η| (22)

for all t ∈ [a, b] and λ,η ∈R, where

0 < Cf <
Γ (β + 1)Γ (2 – n + α)

(ϕ(b) – ϕ(a))1–n+α(ψ(b) – ψ(a))β
. (23)

Theorem 4.1 Problem (21) admits one and only one solution y∗ ∈ Cn([a, b],R). Moreover,
for any y0 ∈ C([a, b],R), the Picard sequence {yn} ⊂ C([a, b],R) defined by

yn+1(t) =
n–1∑

k=0

μk

k!
(
ψ(t) – ψ(a)

)k + Iβ ,ψ
a

(
I1–(n–α),ϕ

a
1
ϕ′ f

(·, yn(·))
)

(t), a ≤ t ≤ b,

converges uniformly to y∗.

Proof Let A be the self-mapping defined in C([a, b],R) by

(Az)(t) =
n–1∑

k=0

μk

k!
(
ψ(t) – ψ(a)

)k + Iβ ,ψ
a

(
I1–(n–α),ϕ

a
1
ϕ′ f

(·, z(·))
)

(t), a ≤ t ≤ b,

i.e.

(Az)(t) =
n–1∑

k=0

μk

k!
(
ψ(t) – ψ(a)

)k

+
1

Γ (β)Γ (1 – n + α)

×
∫ t

a
ψ ′(s)

(
ψ(t) – ψ(s)

)β–1
(∫ s

a

(
ϕ(s) – ϕ(τ )

)–(n–α)f
(
τ , z(τ )

)
dτ

)
ds.

By Proposition 4.1, y ∈ Cn([a, b],R) is a solution of (21) if and only if y ∈ C([a, b],R) is a
fixed point of A. We shall show that A is a contraction in (C([a, b],R),‖ · ‖∞), and then, by
the fixed point theorem of Banach, we obtain the desired result. For any y, z ∈ C([a, b],R),
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one has
∣
∣(Az)(t) – (Ay)(t)

∣
∣

≤ 1
Γ (β)Γ (1 – n + α)

∫ t

a
ψ ′(s)

(
ψ(t) – ψ(s)

)β–1

×
(∫ s

a

(
ϕ(s) – ϕ(τ )

)–(n–α)∣∣f
(
τ , z(τ )

)
– f

(
τ , y(τ )

)∣∣dτ

)
ds.

Using (22), we have

∣∣(Az)(t) – (Ay)(t)
∣∣

≤ Cf

Γ (β)Γ (1 – n + α)

∫ t

a
ψ ′(s)

(
ψ(t) – ψ(s)

)β–1

×
(∫ s

a

(
ϕ(s) – ϕ(τ )

)–(n–α)∣∣z(τ ) – y(τ )
∣∣dτ

)
ds

≤ Cf ‖y – z‖∞
Γ (β)Γ (1 – n + α)

∫ t

a
ψ ′(s)

(
ψ(t) – ψ(s)

)β–1
(∫ s

a

(
ϕ(s) – ϕ(τ )

)–(n–α) dτ

)
ds

=
Cf ‖y – z‖∞

Γ (β)Γ (2 – n + α)

∫ t

a
ψ ′(s)

(
ψ(t) – ψ(s)

)β–1(
ϕ(s) – ϕ(a)

)1–n+α ds

≤ Cf (ϕ(b) – ϕ(a))1–n+α‖y – z‖∞
Γ (β)Γ (2 – n + α)

∫ t

a
ψ ′(s)

(
ψ(t) – ψ(s)

)β–1 ds

=
Cf (ϕ(b) – ϕ(a))1–n+α(ψ(t) – ψ(a))β

Γ (β + 1)Γ (2 – n + α)
‖y – z‖∞

≤ L‖y – z‖∞,

where

L =
(ϕ(b) – ϕ(a))1–n+α(ψ(b) – ψ(a))β

Γ (β + 1)Γ (2 – n + α)
Cf .

Hence,

‖Ay – Az‖∞ ≤ L‖y – z‖∞

for all y, z ∈ C([a, b],R). On the other hand, by (23), one has 0 < L < 1. Therefore, A is a
contraction. �

Example 4.1 Consider the fractional boundary value problem

⎧
⎨

⎩
(D(α,β),(ϕ,ψ)

0 y)(t) =
∫ t

0
cos(y(s))

s+ρ
ds, 0 < t < 1,

y(0) = 0,
(24)

where 0 < α,β < 1, ϕ(t) = t, ψ(t) = ln(t + 1) and Γ (α + 1)Γ (β + 1)ρ > (ln 2)β . Problem (24)
is a particular case of problem (21) with (a, b) = (0, 1), n = 1, μ0 = 0 and

f (t,λ) =
cosλ

t + ρ
, (t,λ) ∈ [0, 1] ×R.
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For all t ∈ [0, 1] and λ,η ∈R, one has

∣∣f (t,λ) – f (t,η)
∣∣ =

∣
∣∣∣
cosλ

t + ρ
–

cosη

t + ρ

∣
∣∣∣

≤ |λ – η|
t + ρ

≤ Cf |λ – ρ|,

where Cf = ρ–1. On the other hand, one has

Cf <
Γ (α + 1)Γ (β + 1)

(ln 2)β
=

Γ (α + 1)Γ (β + 1)
(ϕ(1) – ϕ(0))α(ψ(1) – ψ(0))β

.

Hence, by Theorem 4.1, problem (24) admits a unique solution y∗ ∈ C1([0, 1],R). More-
over, for any y0 ∈ C([0, 1],R), the Picard sequence

yn+1(t) =
1

Γ (β)Γ (α)

∫ t

0

1
s + 1

[
ln

(
t + 1
s + 1

)]β–1(∫ s

0

(s – τ )α–1

τ + ρ
cos

(
yn(τ )

)
dτ

)
ds,

for all ≤ t ≤ 1, converges uniformly to y∗.

5 Fractional model of a heat conduction problem
The standard Fourier law of thermal conduction in one dimension is given by

–ρ
dy
dx

= z(x), x > 0, (25)

where ρ is the material’s thermal conductivity, z is the density of the heat flux and y is
the temperature. Replacing d

dx by D(α,β),(ϕ,ψ)
0 , where α,β ∈ (0, 1), we obtain the fractional

version of (25)

–ρ
(
D(α,β),(ϕ,ψ)

0 y
)
(x) = z(x), x > 0. (26)

If z(0) = 0 and y(0) = y0, by Proposition 4.1, the unique solution of (26) is given by

y(x) = y0 – Iβ ,ψ
0

(
Iα,ϕ

0 L(1)
ϕ

z
ρ

)
(x), x ≥ 0,

i.e.

y(x) = y0 –
1

ρΓ (β)Γ (α)

∫ x

0
ψ ′(η)

(
ψ(x) – ψ(η)

)β–1

×
(∫ η

0

(
ϕ(η) – ϕ(λ)

)α–1z′(λ) dλ

)
dη. (27)
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Example 5.1 Consider (26) with ϕ = ψ and z(x) = ϕ(x) – ϕ(0). In this case, by (27), one
has

y(x) = y0 –
1

ρΓ (β)Γ (α + 1)

∫ x

0
ϕ′(η)

(
ϕ(x) – ϕ(η)

)β–1(
ϕ(η) – ϕ(0)

)α dη

= y0 –
(ϕ(x) – ϕ(0))β–1

ρΓ (β)Γ (α + 1)

∫ x

0
ϕ′(η)

[
1 –

(ϕ(η) – ϕ(0))
(ϕ(x) – ϕ(0))

]β–1(
ϕ(η) – ϕ(0)

)α dη

= y0 –
(ϕ(x) – ϕ(0))α+β

ρΓ (β)Γ (α + 1)

∫ 1

0
(1 – w)β–1wα dw,

which yields

y(x) = y0 –
1

ρΓ (α + β + 1)
(
ϕ(x) – ϕ(0)

)α+β , x ≥ 0.

Observe that in the case ϕ(x) = x one has

lim
(α,β)→(1–,1–)

y(x) = y0 –
1

2ρ
x2,

which is the unique solution of (25) with z(x) = x and y(0) = y0. Figures 4–6 show some
graphs of y for different functions ϕ and different values of (α,β).

Figure 4 Graph of y(x) for ϕ(x) = x

Figure 5 Graph of y(x) for ϕ(x) = ln(x + 1)
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Figure 6 Graph of y(x) for ϕ(x) =
√
x + 1

6 Conclusion
The goal of this article was to propose a new notion of fractional derivative involving
two singular kernels. Some properties of this introduced operator were proved and some
examples were provided. We also presented some applications to fractional differential
equations. Namely, an existence and uniqueness result was established for a nonlinear
fractional boundary value problem with a higher order, and a numerical algorithm based
on Picard iteration was provided for approximating the unique solution. Moreover, an ap-
plication to a heat conduction problem was presented. It will be interesting to develop
new numerical methods for solving fractional differential equations (or partial differential
equations that are fractional in time) involving this new concept, in particular in the case
ϕ �= ψ .
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