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1 Introduction

There are numerous problems wherein fractional derivatives (non-integer order deriva-
tives and integrals) attain a valuable position [1-9]. It must be emphasized that fractional
derivatives are furnished in many techniques, especially, characterizing three distinct ap-
proaches, which we are able to mention in an effort to grow the work in certainly one
of them. Every classical fractional operator is typically described in terms of a particu-
lar significance. There are many well-recognized definitions of fractional operators, we
can point out the Riemann-Liouville, Caputo, Grunwald—Letnikov, and Hadamard oper-
ators [10], whose formulations include integrals with singular kernels and which may be
used to check the issues involving the reminiscence effect [11]. Some special new formu-
las for the fractional operators can be found in the literature [12]. These new formulas are
different from the classical formulas in numerous components. As an example, classical
fractional derivatives are described in such a manner that in the limit wherein the order
of the derivative is an integer, one recovers the classical derivatives in the sense of Newton
and Leibniz. There have additionally been currently proposed new fractional operators
[13] with a corresponding integral whose kernel may be a non-singular mapping, as an in-
stance, a Mittag-Leffler function. Additionally, in such instances, integer-order derivatives
are rediscovered by supposing suitable limits for the values of their parameters.

On the other hand, there are numerous approaches to acquiring a generalization of clas-
sical fractional integrals. Many authors introduced new fractional operators generated
from general classical local derivatives (see [14—17] and the references therein). Other au-
thors introduced a parameter and enunciated a generalization for fractional integrals on
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a selected space. These are called generalized [C-fractional integrals. For such operators,
we refer to [4, 18—20] and the works cited in them.

It is well known that inequalities have potential applications in the technology, scientific
studies, and analysis [21-32] and numerous mathematical problems such as approxima-
tion theory, statistical analysis, and human social sciences [33—59]. In perspective on the
more extensive applications, such variants have acquired large interest. Presently, authors
have provided the unique version of such inequalities, which may be beneficial in the in-
vestigation of diverse forms of integrodifferential and difference equations. Those variants
are an extensive instrument to take a gander at the classes of differential and integral equa-
tions.

The most celebrated Griiss inequality can be described as follows.

Theorem 1.1 (see [60]) Let R be a set of real numbers, m, M,n,N' € R and P,S :
[o1,02] = R be two positive functions such that m < P(01) < M and n < S(0,) <N for
all 0, € [01,03]. Then

1 o9 1 o9 )
/ PEISE D - s / Py)dos / S(1) doy
o1 o1 o1

02 — 01 2—171)2

1
< ;L(M - m)(N —n), (1.1)
where the constant 1/4 cannot be improved.

Griss inequality (1.1) connects the integral of the product of two functions with the
product of their integrals. It is extensively identified that continuous and discrete cases of
Griss type variants play a considerable job in examining the qualitative conduct of differ-
ential and integral equations. Inspired by Griiss inequality (1.1), we intend to show modi-
fied versions of (1.1) by using generalized K-fractional integrals. For the reason that such
variants are supposed to be vital, the exploration has continued to develop the investiga-
tions for such kinds of variants. Our findings and their utilities appeared in a variety of
academic papers (see [61-64]). Amongst such sorts of inequalities, the Griiss inequality
is one of the most fascinating inequalities.

We are influenced to take a look at this inequality for the generalized IC-fractional inte-
gral. As a consequence, we obtain numerous fractional integral inequalities, such inequal-
ities are worthwhile in the fields of fractional differential equations. Also we apply these
fractional inequalities to find new versions for the generalized Riemann-Liouville frac-
tional integral. In this sequel, we present some preliminary results in order to prove our

main results later.
Definition 1.2 Let P € L,([01,03]) (the Lebesgue space). Then the left- and right-sided
generalized Riemann-Liouville fractional integrals of order p > 0 are defined by

0

U S
¥ PO = 15 [ -0 PO, 0>,

1

and

~0 _ 1 /02 _1\e-1
WP =1y [ € P@dE e <on

where I"(-) is the gamma function [65, 66].
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Now, we give the definition of more general fractional integral, which is mainly due to
Mubeen and Habibullah [18].

Definition 1.3 (see [18]) Let P € Li([o1,037]) (the Lebsegue space). Then the left-sided
and right-sided K-fractional integrals of order p, K > 0 are defined by

4
~ 0K _ Y !
It 7’(Q)——,CI,K(p) Gl(@ XTPE)d: (0>01)
and
~0,KC _ 1 7 PRY
WP =gy | €0k POE <o

Further, we demonstrate the concept of generalized Riemann-Liouville fractional inte-

gral as follows.

Definition 1.4 (see [11, 67]) Let 01,07 € (—00, +00) such that o7 < 0 and ¥ (¢) be an in-
creasing and positive monotone function on (o1, 03]. Then the left-sided and right-sided
generalized Riemann-Liouville fractional integrals of a function P with respect to another

function ¥ of order p > 0 are defined by

1 @ -
VIPQ= 55 [ Y OE@-v©0) PO,
3§;¢7’<@>=—F;) / O - w©) P de. (1.2)
Q

We define the more general form of generalized -fractional integral as follows.

Definition 1.5 Let 01,0, € (—00, +00) such that oy < 0y and ¥ (¢) be an increasing and
positive monotone function on (07,03]. Then the left-sided and right-sided generalized
KC-fractional integrals of a function P with respect to another function ¥ of order p, K > 0
are defined by

o L _
PO = | P OWE-we) P,

~ 0,

35 PG [ v -ve)t rea, (13)
4

) = 1
KTk (p)
where Ik is the -gamma function.

Remark 1.6 From Definition 1.5 we clearly see that Definition 1.2, Definition 1.3, and Defi-
nition 1.4 can be obtained if we take IC = 1, ¥ (o) = 0, and ¥ (¢) = ¢ and K = 1, respectively.

Griss type inequality and its useful consequences are investigated by Kacar et al. [68].
Motivated by [68], we provide new and novel results using generalized K-fractional inte-
gral related to (1.1). Consequently, the effects furnished in this research paper are an extra
generalization.
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2 Main results
Theorem 2.1 Let IC, p,§ > 0, P be a positive function on [0,00) and ¥ be an increasing and
positive function on [0, 00) such that W'(x) is continuous on [0, 00) with ¥(0) = 0. Suppose

that there exist integrable functions ©1, ©, on [0, 00) such that
©1(0) =P(e) < ©1(0) (2.1)
for all ¢ € [0,00). Then we have

A~ ~0,IC ~0,IC ~
355:01(0)35 75 Plo) + 355 ©2(0)35 5. Plo)

> 305 ©2(0)355. 01(0) + 35 P(2)355. P (o). (2.2)
Proof Using (2.1), for all 9; > 0,9, > 0, we have

(@2(01) = P(01))(P(0.) - ©1(02)) = O,
©2(01)P(0,) + ©1(0,)P(01) = O1(0,)O2(01) + P(01)P(2,). (2.3)

L1,
If we multiply both sides of (2.3) by #(@=¥Y@)X_ ¥ (1)

KT and integrate with respect to 0;

on (0, o), we obtain

7’:(0 )7‘/ (w( )—‘L( ))’C 111'/(0 )O"‘ (O )db
2 ICF]C( ) o 01 1)%2(V1 1
) (a ) / (W( ) lP(D ))K 1‘1//(0 );r (0 )da
1\U2 ’CF}C( ) 0 1 1 1 1

Q 3
Z@l(az)mfo (W(Q)—W(Dl)>7€7111//(01)@2(01)d01

?ib

+P(0,) — ¥ (01)) T (01)P(01) doy,

e, v

which can be written as

P0.)3575: ©2(0) + ©1(0.)34 5. Plo)

> @l(az)le 0+02(Q) +P(DZ)3W 0+P(Q) (24')

Y ,
Multiplying both sides of (2.4) by ¥@=¥®2)%_¥/0.)

K@) and integrating with respect to

0, on (0,0), we get

\jq/0+@l(Q)15q/0+ (Q)+dq/0+@2(g)3f]/’€0+7)(g)

A~y ~8, ~0,IC ~
> 30502000355, ©1(0) + 305, P)355. Plo). (2.5)

This completes the proof of Theorem 2.1. O
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Corollary 2.2 Let ¥ (o) = 0. Then Theorem 2.1 leads to the inequality for K-fractional

integral as follows:

3K010)3FP(0) + 3 02(0)3*  P(0)

> 37K 0,(0)3°* 01(0) + 37 P(0)3** P(0).

Corollary 2.3 Let m,M € R withm< M e R, K, p,8 >0 and P be a positive function on
[0, 00) such that m < P(o) < M. Then one has

2
UK sk

5
lI/K(Q) ~ 0, 3
T(p+K)™°

e + K)o

5 P
YK YK .ok ~8K
Tc(6+K) I'c(p +K) + 3w P03y 0+ Pl0)-

Plo) + M P(o)

v

mM

Remark 2.4 Theorem 2.1, Corollary 2.2, and Corollary 2.3 lead to the following conclu-
sions:

(1) If € =1in Theorem 2.1, then we get Theorem 2.11 in [68].

(2) If £ =1and ¥(p) = ¢ in Theorem 2.1, then we get Theorem 2 in [69].

(3) If € =1in Corollary 2.2, then we get Corollary 2.14 in [68].

(4) If £ =1and ¥(p) = ¢ in Corollary 2.3, then we obtain Corollary 3 in [69].

Theorem 2.5 Let K >0, p,§ >0, P and S be two positive functions on [0,00), and ¥ be
an increasing and positive function on [0,00) such that W (0) = 0 and W' is continuous on
[0, 00). Suppose that (2.1) holds and there exist integrable functions ¢, and ¢, on [0, 00)
such that

¢1(0) = S(0) < ¢a(0) (2.6)

for all ¢ € [0,00). Then we have four inequalities as follows:

@ 5@ P + 35 020375, S(0)

= 35 0200355 ©2(0) + 35,6- P(TY - S(e),
(b) 35, 0100355, S(0) + 355, 02(0)355. Plo)

> 355, 0100305, 02(0) + 355, P35, S 0),
(c) 36){& @2(@)33}]} ¢(0) + 3{;,’8* P(Q)‘T?I;’,‘C)*S(Q)

> 355 0200355, 5(0) + 35 0200355 Plo),
@ 3550100355 01(0) + 355 P35S, S(0)

,IC ~8, ~3, ~ 0,
> 3075 01(0)355- S(0) + 355 01(0)35 5 Pl0)- (2.7)

Proof For any o € [0,00), it follows from (2.1) and (2.6) that

(@2(01) = P(01))(S(02) - ¢1(02)) = 0
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and

@2(01)5(02) + ¢1(02)P(01) = ¢1(02)02(01) + P(01)5(2>). (2.8)

L1,
Taking product on both sides of (2.8) by Wi )W,(g }Q Zi) Y01 and integrating the resulting

identity for the variable 9; on (0, o) give
S0 - [ (o) w©)F 1w (0,)6s(01) do
2 m/o ( Q)— 1) 1)®2\01 1
f o0 )%fg(wm—m NE W 0)P0) do
1\VU2 ICF]C(,O) o 1 1 1 1

> 901(02); /Q(‘I’(Q) - l1’(01))7%71‘1’/(31)(”92(01)6501
KTik(p) Jo

?i\b

+8(0,) — ¥ (01)) T (01)P(01) doy,

R, v

which can be rewritten as

S@:)35. 02(0) + 91 (02)355.P(0)

> 01(0,)3075: 02(0) + S(0,)35%5. P(0). (2.9)

S 1
) (@)K " ¥'(0,)

Again, taking product on both sides of (2.9) by @ )

and integrating the
resulting identity for the variable d, on (0, ¢), we obtain

e ~ 0, A
3. 0103575 P(0) + 355 0200355, S(0)
> 35, 01(0)355 ©2(0) + 35 P03} S (0).

This proves part (a). To prove parts (b)—(d), we consider the subsequent inequalities:

(b)  (¢2(01) = S(01))(P(0.) - ©1(22)) = 0,
© (@2(01) =P (1)) (S®.) - ¢2(22)) <0,
d) (©1(01) - P(01))(S(0.) - ¢1(22)) <O0.

We use similar arguments as those in the proof of part (a) to get the rest of the inequali-
ties. O

The following inequalities are special cases of Theorem 2.5.

Corollary 2.6 Let K >0, p,8 >0,and P and S be two positive functions on [0, 00). Suppose
that there exist real constants m, M, n, N such that

m<P(g) <M, n<S@) <N

for all ¢ € [0,00). Then we obtain

0 n 2 (Q,)C)as,’gm( R S

Page 6 of 18
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g p
wK() YK ..k .
=" FK(S + IC) FIC(/) + IC) +‘J‘I/,0+P(Q)3lpyo+8(g),

) P
. lIljc(Q) ~ 0, lI/K(Q) ~8,IC
W e e SO N g g e P

N.w%@) vk

~P,C
. .S(0),
= T8+ K) I'c(p +K) 3500 P03y - S (o)

v vk s
T'c(6+K) I'e(p +K) .ot

(i) N M P(0)355-S(0)

K@) sk V20 .,k
= MErcp ) v S@ N s g v P

vi) wk(o)
. < ~p,IC ~8,KC
(W) T +K) I'(p +K) *Juip PeN g9 5(e)

P §
UK(0) .5k UK(0) .ok

— U — . 2.1
_mF;C(p+/C)Jw‘O S(Q)+nn€(8+}c)dw,0 P(o) (2.10)

Corollary 2.7 Let K >0, p,8 >0, P,S € L1[0,00] and ¥ (o) = 0. Suppose that there exist
real constants m, M, n, N such that

m<Pl)<M, n=<S@)=<N
for all ¢ € [0,00), then one has

@ I3 Plo) + I 02(0)3* S(0)

> 3010037 05(0) + 37 P(0)3 S (o),
(b) I**601(0)37*S(0) + 3" ¢2(0)3"  Plo)

> 1% 01(0)3"  2(0) + I P(0)37 S (0),
© 0203 ¢2(0) + I P(@)I " S(0)

> 37K @,(0)3"S(0) + 3" 02(0)3”*Po),
@ 30103 p1(0) + I P)I** S(0)

> 37X 01(0)3S(0) + 3 91(0)3"* Plo).

Remark 2.8 From Theorem 2.5, and Corollaries 2.6 and 2.7 we get four conclusions as
follows:

(1) If £ = 1, then Theorem 2.5 leads to Theorem 2.15 in [68].

(2) If £ =1and ¥ (o) = o, then Theorem 2.5 gives Theorem 5 in [69].

(3) If K =1, then Corollary 2.6 becomes Corollary 2.16 in [68].

(4) If £ =1 and ¥ (o) = o, then Corollary 6 in [69] can be derived from Corollary 2.7.

Lemma 2.9 Let K >0, p,8 >0, P be a positive function on [0,00), ©1, ®y be two inte-

grable functions on [0,00), and ¥ be an increasing and positive function on [0,00) such

Page 7 of 18
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that W (0) = 0 and W' is continuous on [0,00). If (2.1) holds, then

£© ux 2 (385 Pi0)?

F:c(p +K)
(\Jq/ 0+ QZ(Q) \s[[j 0+7)(Q)) (35}?&7)(@) _3$§+ @1(9))
vk (o)

vk ) )
’ Wf,c)a@’é (@P) - 5. 0135 Plo)

vk (o) . » ~
+Wflo 3o (©200P(@) - 55 ()35 Ple)
ok
Ao (LN (0:40) - %Si’é (61(0)03(0)). o)

Proof Since 91,0, >0, we have

(©2(0,) = P(22)) (P(01) - ©1(01)) + (@2(01) - P(01)) (P(0.) - ©1(0.))
= (©2(01) = P(01)) (P(01) - ©1(01)) — (©2(0,) - P(0,)) (P(0.) - ©1(02))
=P%(01) + P?(0,) —2P01)P0,) + O2(0,)P(01) + O1(01)P(D,)
= 01(01)01(0,) + ©2(01)P(2,) + ©1(0,)P(01) - ©1(0,)O2(01)
= 02(01)P(01) + ©1(01)O2(01) = ©1(01)P(01) - @2(2,)P(02)
+ 01(0,)05(0,) — O1(0,)P(0,). (2.12)

Taking product on both sides of (2.12) by ICF (lI/(Q) ¥ (01)) k-1 ¥’(01) and integrating
the resulting identity for the variable 9; on (0, Q) we get

(02(0.) - P(2.)) (355 Plo) - 355 ©1(0))

+ (3075 0200) ~ 355 P(0)) (P(22) - ©41(2,))
355 ((©:(0) - P(0) (P(0) - ©1(0)))

= (©:(0.) = P(2,)) (P(2.) - 01(2.) Tic(p +K)
=W PN+ (Q/)C)PZ(DZ)

—2P(0.)355: Po) + ©2(0.)355. P0) + P(2.)355. ©1(0)

- ©:(2,)3575:©1(0) + P0.)34 5 ©2(0)

+010.)3 5 Po) - ©10:.)35 5 O2(0)

~ 3575 (0200)P(0)) + 355+ (©1(2)02(0)) - 355 (O1(0)P(0))

¥ £ (o) vk (o)
- @2(DZ)P(DZ)W + @1(01)@2(02)m
- @1(02)7’(02)&. (2.13)

Tic(p + K)

Page 8 of 18
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Taking product on both sides of (2.13) by ICF )(lII(Q) v (0,)) %_111/’(01) and integrat-
ing the resulting identity for the variable 9, on (0 0), we get

(3% ©200) 345 P(0) (355 P - 355 €1()

+ (35/,,0+ QZ(Q) _33/,,0+P(Q)) (33/)§+P( ) 3/{}/’(?( OI(Q))

35610~ P (PO - 0110) e

~ 0,

- (3067 02(0) - 35 P(@) (355 Pl0) - Yo @) F

Wk (o) WE©Q) ok o .
Fep+ ) " Telp s w0 P 02) =23 ~POILS PO

~0,IC ~,IC ~p,IC ~0,IC ~p,IC ~0,IC
+J§;0+@2(Q)leo+7)( )+15f1)/()+,P( )Jﬁ/m()l(g)_Jf;/m@Z(Q)J{}/m@l(Q)

= 305 PXe)

+ 351}§+7)(Q)\5up ot OZ(Q) + Jup 0+@1(Q)Jq/ 0+P(Q) Jup ot @l(Q)Jq/ o+ QZ(Q)

WK ok
—F,C(:ig,)c;@’&(@z(g)?% ) + %@) 5 (01(0002(0))
wk() . W) .
T T+ )Y 7" (@1P©) - o+ % o (©20)P(0))
PO s @000) - D s eoPe). e

" T+ )
This is the proof of Lemma 2.9.

Corollary 2.10 Let ¥(g) = ¢ in Lemma 2.9, then we have the K-fractional integral in-

equality

oxr ~0,KC P2 _ (~PK 2
IOk P*(0) - (3" P(0))

= (37%03(0) - 3"*P(0)) (3" P(0) - 37" ©1(0))

L (17°0x(0) - I P() (7P () - 37561(0)
L("TP,K (@1(0)77(@)) _ 3P’K@1(Q)J'O”C'P(Q)

@ ~ K (g A K g K
+ mdp (Oz(Q)P(Q)) J7O4(0)3P(0)

+378(01(0)3 (02(0)) - ﬁ:‘”’c(@(@)%(@)) (2.15)

Corollary 2.11 Let m < M, IC, p,8 > 0, P be a positive function on [0,00) such that m <
P(o) < M, and ¥ be a positive and increasing function on [0, 00) such that ¥ (0) = 0 and
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¥’ is continuous on [0,00). Then

7(9’)7;’&792(@) (355 P())’

Tic(
) vE@) kg ok oy VK@)
‘(er(pm) %P (Q))< vo P mﬂc(p”@)
UK (o) ~pIC (./\/l Plo ))('P(Q)—Wl)) (2.16)

T Tlp + ) HO

Remark 2.12 From Lemma 2.9 and Corollary 2.11 we get three conclusions as follows.
(1) If £ =1, then Lemma 2.9 leads to Lemma 2.19 in [68].
(2) If K=1and ¥(p) = o, then Lemma 2.9 becomes Lemma 7 in [69].
(3) If £ =1 and ¥(p) = o, then Corollary 2.11 leads to Corollary 8 in [69].

Theorem 2.13 Let IKC,0 >0, P, S, O1, Oy, 91 and ¢, be six integrable functions defined on
[0,00), and ¥ be an increasing and positive function on [0, 00) such that ¥'(x) is continuous
on [0,00) and ¥ (0) = 0. If conditions (2.1) and (2.6) are satisfied, then one has

v
Wim o (P(@)S(0) - 355 P35S (e)
<JI(P,01,0,)%(S, 01, 9), 017)
where

I(,P)("DI:(HDZ)—(\5.1/0+(")2(Q) 1,‘11/0+,P(Q))(3p11/’(c)+7)(Q) Jq/oJr@l(Q))

-
' %~ (61(0)P(0)) - 35 ©1()355 Ple)
-
* %3@’,’& 62(0)P(0)
- 3$}§+ @2(Q)3§,’]§+77(Q) + 3{},’,’; ) (Q)J@ﬁ (o)
UK
W(f,)c) 5 (01(0)2(0))

and

TS, 91, 92) = (355-02(0) - 355-S(0)) (3575 S(@) - 305, 01(0))

wk (o)

s 10 (10)5() - o1 (@305 S(e)

' K (Q) ~ 0,

+ mdq/,y ((P2(Q)S(Q))

~0,IC ~0,IC
— 3 02003 S(0) + 355 01 ()3 02(0)

vk(o) .

m ((01(Q)§02(Q))
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Proof Let ¢ >0,01,0, € (0,0), P and S be two positive functions defined on [0, c0) such
that (2.1) and (2.6) are satisfied, and ¥(0,0,) be defined by

T(01,02) = (P(01) - P(0,))(S(01) - S(22)). (2.18)

L1, L1,
Taking product on both sides of (2.18) by £@=YQIE l‘;((lacllll(cw(g;;q/(al)) E_¥0®2) and in-

tegrating the resulting identity for the variable 9; and 0, from 0 to o, we obtain

o Q o o
2(ICF71;¢(M)2/0 /O (¥(0) - ¥ (1)) (¥(0) - ¥(0,) * ' T(01,0,)
X W' ()W’ (0,) doy b,

WK( ) ~0,K

" T+ ,C)\;q,m( ©)8(0)) - 355 (P(@) 3. (S(0)). (2.19)

Applying the Cauchy—Schwarz inequality to (2.19), we have

o o 0 o
<m fo /0 (¥() - ¥ @)X (¥(0) - ¥ (2.)) K7 (P(01) - P(22))

2
x (S(1) = S(2.,))¥'(21)¥'(2,) doy d02>

Q(KFK // 1(‘1’(Q) lI/(Dz))%fl(P(m)—77(02))2
xml) (0.)doy dd,
XW /0 /0 (@(0) - @)K (w(0) - ¥ (0.)) K7 (S1) - S(02))°

x ¥ (0)¥'(0,)do, do,. (2.20)
From (2.19) and (2.20) we get

vE@©) ok ok e 5
(r,c(p 100 (PS@) - 355 (P@)T5 5 (s<g)))

<< lI/ (Q) ~ 0,

mdw 0+P2(Q) - (3$I§+P(Q))2>

x (r@))sgﬁ"sz(g)-( oK) ) (2.21)

Since (@,(0) —P(0))(P(0) — ©1(0)) = 0and (p2(0) - S(0))(S(0) — ¢1(0)) = 0 for o € [0, 00),
we have

P
lI/7€(Q) JpIC
Ti(p+K)°

lI/K(Q) :‘pKZ
Ti(p+ )™

(©2(0) = P(0)) (P(0) - ©1(0)) = 0, (222)

(92(0) - S(0)) (S(0) - ¢1(0)) = 0. (2.23)

Page 11 0f 18
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Thus from Lemma 2.9 we obtain

UE©Q) i g\ (apk oy 2
(mdﬁ,mp (o) - (J@,m’P(Q)))

< (365 02(0) - 3575 P() (305 P0) - 355 ©1(0))

¥k (o) x

+ m (@1(Q)P(Q))

¥ £ (o) o
Tic(p + K)o

vk (o) 5
Tic(p +IC)

=3(P,01,0y), (2.24)

~p)C

— 305010355 Plo) + ©2(0)P(0) - 35 ©2(0)35 - P(0)

+ 3005 ©1(0)35 5 ©3(0) - 75+ (©1(0)©2(0))

wk() . .
(W—k@/@ ;I§+SZ(Q) (JFWI;S(Q))Z)

< (355 92(0) - 355:5(0)) (355: S (@) - 355. #1(0))
v ,C (Q) ~p K
_— S
o el o (01(0)S(0))
0K 0K ¥k (o) A K oK 0K
- 300 01(0)355+Slo) + Telo+ o0 (2200)8(0)) = 35 5+ 92(0)35 5+ S(0)
P
~pC ~p K vK(o) .
+ dsj,m WI(Q)JS/,W ¢2(0) - m (§01(Q)(02(Q))
=TS, 01, ¢2). (2.25)
Therefore, inequality (2.17) follows from (2.20), (2.24), and (2.25). O

Corollary 2.14 Let m,M,n,N € R, T(P,0,,0,) = X(P,m,M) and %(S,¢1,¢2) =
T(S,n,N). Then inequality (2.17) reduces to

‘F;c(p+ic)3‘”°*( (0)8(0)) = 355- P35+ S(0)
vk \’
= <m) (M = m)(N = n).

Corollary 2.15 Let m,M,n, N € R, ¥ (o) = 0, T(P,01,0,) = T(P,m M) and
S, 01, 92) = S, n,N). Then inequality (2.17) leads to

ok
———3""(P(0)S(0)) - 3" P(0)3""*S(0)
ey P@5@) e

L

L T
S(F)c(pHC)) M -m)N —n).

Remark 2.16 Theorem 2.13 and Corollary 2.14 lead to four conclusions as follows:
(1) If K =1, then Theorem 2.13 leads to Theorem 2.23 in [68].
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(2) If £ =1 and ¥ (o) = o, then Theorem 2.13 gives Theorem 9 in [69].
(3) If € =1, then Corollary 2.14 leads to Corollary 2.26 in [68].
(4) If £ =1 and ¥(p) = o, then Corollary 2.14 gives Remark 10 in [69].

Example 2.17 Let IC, p,8 >0, P and S be two positive functions defined on [0, 00), and ¥
be an increasing and positive function on [0, 00) such that ¥’ is continuous on [0, 00) with
¥ (0) = 0. Then one has

Tic(p + K)

2P0 [30K. 8355 P©)]

~0,IC ~ 0,
@) 3y PP +pIy S o) =

(b) 3N PP()3y) 87 (0) + P35 PU(0)ILK. S7(0) = pa (355 P(0)S(0))’,

(©  q35%5 P35 STe) + pIl s P1(0)35 5 SP (o)
> pady s P0)SP (0)35 5 PST (o),

(d) q35% PP(0)355 S™(0) + P35 PP (0)35 5 S (o)
> padye PP (0)ST ()35 5 PS(e),

() g3 PP(0)3y)-S*(0) + P35 P*(0)30 5+ S(0)
> a3l P(0)S(0)3LS. P17 (o),

) g3 P -S10) + p3y s PP (0)355-S*(0)
> pady. P7 (0)87 (00355 PP157 o),

(@) 435 PSU0) +p3y P2(0)S (o)

Tlp+ K) ’)C) WS P 0)ST 0)IN PT (08 (o).

Ko
Proof According to the well-known Young inequality [70]

1 1 1 1
—a’ + —-b?>ab <a,b20,p,q>1,—+— :1), (2.26)
b q b q

and putting a = P(0;) and b = S(0,), we have
1 1
1—977’”(01) + 55”1(01) >P01)50,) (2.27)

for all P(01),S5(0,) > 0.

Taking product on both sides of (2.27) by m(d’(g) - (1)) %_111/’(01) (which is pos-
itive due to ¢ € (0,01)) and integrating the resulting identity for the variable d; from 0 to
0, we get

) ,
I;’CFK(,O) ) ('I’(Q)—'I’(Dl))K 1‘1’/(01)73”(01)6101

1 1 e L1,
S0 /0 (¥ (0) - () K"/ (01) do,

1 e L1,
> S0 /0 (¥ () - () E '/ (0)P(01) do, (2.28)
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and

vk (o)

3K Pr(g) + 1 SO e =

> S(0,)355. P (o). (2.29)

SR

Again, taking product on both sides of (2.29) by ICF (lII(Q) l1/(02))%‘1&[//(02) and in-
tegrating the resulting identity for the variable 0, from 0 to o, we get

P P
1~pIC p K(Q) ~,olC q K(Q) ~p,IC ~ 0,
- + - + — 7 1\ + + 2~
deP( 0) = Tl IC) JMS( ) Tl ,C)_leo S(0)Jy 5+ Plo) (2.30)
and
1 1 Ic(p+ K
L3ok prigy+ Lank su(0) = LK) 50k s0)32K pio)) (231)
)% q ¥ £ (o)

which implies part (a). The rest of inequalities can be shown in a similar manner by using
the subsequent desire of parameters in the Young inequality:

(b) a=P@)S0@,),  b=P@,)S(0).

P(@) _PE.)
b=50) SEISE)Z0.

(c)

" Sy’ )
_ P(Dz) _ Dz)
@ P’ TS’ P(01)5(0,) #0.

© a=PE)S @),  b=Pi(0,)S®).

Pr () . Si(y)

(f) = P(Dz) ’ S( ) P(Dz)s(az)#o'
_Pr@y) P1(2,)
(8) a= S0, b= S0 01)5(0.) #
Repeating the foregoing argument, we can obtain parts (b)—(g). d

Example 2.18 Let K, p,8 >0, P and S be two positive functions defined on [0, 00), ¥ be
an increasing and positive function on [0, 00) such that ¥’ is continuous on [0, 00) and
¥ (0) = 0, and m and M be defined by

P(01) B P(01)

m= min , = max )
0<v1<0 S(01) 0=v1=<0 S(01)

(2.32)

respectively. Then we have

(m + M)?
- 4mM

2

(@) 0<355. P35 SM0) < —— (34 PS(0)",

(b) 0</305.P20)35%.S0) - (3075 P0)S(0)

(«/_ «/_)

= 2\/— w 0+P(Q)S(Q)
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Proof 1t follows from (2.32) and

Py PO o
(m - m) (M B 8(01)>S 01)>0 (0<po=<?y)

that
P201) + mMS(01) < (m + M)P(01)S®1). (2.33)

Multiplying (2.33) by m(lp(g) - W(Dl))%‘llll/(bl) and integrating with respect to 9;
over (0, 0), we get

2
ICF,C 0) Jo )7€ w'(01)P*(01) doy

MMW /0 (¥ (0) - ¥ (@) £ (0)5%(01) do,

_ m+ M
~ KIk(p) Jo

4 o
(¥ (0) - ¥ (01)) X W/ (0,)P(01)S(01) doy,
which implies that
o5 PH0) + MM SHo) < (m + M)FL P(0)S(0). (2.34)

Alternately, it follows from m, M > 0 and

(IS P20) - |/ mMILE.S2(0) 2 0

that

2,55, P2 () MM, S2(0) < 35N P2(0) + mMILK. S(0). (2:35)
Therefore,
M3 P S(0) < (m+ MY (355 P@S(0))’

follows from (2.34) and (2.35), and part (a) is proved. By using a few transformations to
part (a), we can obtain part (b). a

3 Conclusion

This article begins with a succinct review of fractional integrals in the frame of a new frac-
tional integral operator. We characterize the definition of generalized K-fractional integral
operators. We modify the Griiss type inequality by employing generalized K-fractional in-
tegrals; specifically, the variant involving fractional integrals in the generalized Riemann—
Liouville and K-fractional integrals frame is provided. The associated significant variants
including summed up generalized K-fractional integrals are also outlined. Numerous con-
sequences can be generalized for the utility of these recently presented fractional integral
operators.
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