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Abstract: Integral inequality plays a critical role in both theoretical and applied mathematics fields.
It is clear that inequalities aim to develop different mathematical methods (numerically or analytically)
and to dedicate the convergence and stability of the methods. Unfortunately, mathematical methods
are useless if the method is not convergent or stable. Thus, there is a present day need for accurate
inequalities in proving the existence and uniqueness of the mathematical methods. Convexity play
a concrete role in the field of inequalities due to the behaviour of its definition. There is a strong
relationship between convexity and symmetry. Which ever one we work on, we can apply to the
other one due to the strong correlation produced between them especially in recent few years. In this
article, we first introduced the notion of A-incomplete gamma function. Using the new notation,
we established a few inequalities of the Hermite-Hadamard (HH) type involved the tempered
fractional integrals for the convex functions which cover the previously published result such as
Riemann integrals, Riemann-Liouville fractional integrals. Finally, three example are presented
to demonstrate the application of our obtained inequalities on modified Bessel functions and
g-digamma function.

Keywords: Hermite-Hadamard inequality; incomplete gamma functions; fractional integrals

1. Introduction

Leth: ] C R — R be a convex function and X3, X4 € J with x5 < 4. Then, the well known
inequalities, namely, the Hermite-Hadamard inequalities [1], defined by

1 X4 h h
h(xs;><4>§>q4_>43/>43 h(x)dXSM- (1)

We recall that the Hermite-Hadamard inequalities are related to the integral mean of a convex
function. This provides an estimate from both sides of the mean value and assures the integrability of a
convex function. Several classical inequalities can be obtained with the help of Hadamard’s inequality
considering the use of peculiar convex functions 7. Moreover, these inequalities for convex functions
have a very important role in both applied and pure mathematics. Typical applications of the classical
inequalities are: probabilistic problems, decision making in structural engineering and fatigue life.
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The right and left part inequality of the inequalities (1) are called trapezoidal and midpoint
inequalities. Researchers have ben working on two types of inequalities (1). Many of them have been
worked only on the trapezoidal type inequality [2—4] or the midpoint type inequality [5,6] while the
others have been workingd on both of them at the same time [7-9]. Both trapezoidal and midpoint
inequalities can be explained using the following definition

Definition 1 ([7]). Suppose h : [x3,x4] C R — R is a twice differentiable function on an open

interval (x3,x4) with the second derivative bounded on the interval (X3, x4); that is, ||B"| =
SUP e (x13,4) |1 (x)| < oo, then, the trapezoidal and midpoint type inequalities are defined by
"y Mg — X Xg — x3)3
/ fi(x)dx — 4T3[75l(>43) +R(x4)]| < % 7] - @
~3
and
7! X3 4 X Xy — x3)3
/ R(x)dx — (4 — >«3>h( = 4) <! o AT 3)
X3
respectively.

From a complementary viewpoint to Ostrowski type inequalities [10], trapezoidal and midpoint
type inequalities provides a priory error bounds in estimating the Riemann integralby a generalized
midpoint and trapezoidal formula [7,11]. We know that the development of Ostrowski’s inequality
has experienced attractive growth in the past decade, with over two thousands papers on it. A large
number of refinements, generalizations, and extensions in both discrete and integral cases have been
discovered (see [8,9]). Generalised versions have been discussed, e.g., the corresponding versions on
time scales, form-time differentiable functions, for multiple integrals or vector valued functions as
well (see [7,12]). Numerous applications in numerical analysis, special functions, probability theory,
and other fields have been also given (see [8]).

In [2], Dragomir and Agarwal proved the following trapezoidal type equality and inequality,
respectively:

Lemmal. If7:]J° CR — Risan L function on J°, where X3, X4 € J° with X3 < Xg4. Then, we have

h h 4 - 1 I _ _
COlTRE) o [Mhds = M0 [ 20 (e + (- . @

Theorem 1. Let i : J° C R — R be an L' function on J° and let |i'| be convex on [x3, x4], where
X3, X4 € J° with x3 < Xy4. Then, we have

2 Ny — A3

< 24708 (10 (53) | + [ (x4)]) - 5)

RO ERL) L g <

A3

In [5], Kirmaci proved the following midpoint type equality and inequality, respectively:

Lemma 2. Letfi : J° C R — R bean L' function on J°, x3, x4 € J° with x3 < x4. Then, we have

1 M4 X3+ >44>
—_— h(x)dx —h | ————
Hg — N3 /><13 (x) * ( 2

= (314 — %3) l/oz??h/(anJr(l—X)M)dXJr/ll X—DH(Exs+(1—2)xa)dg|. (6
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Theorem 2. Let7i:J° C R — R bean L function on J°, X3, x4 € J° with x3 < x4 and |I'| be convex on
[%3, X4]. Then, we have

T LG (”33”4)\ < U] (80 )| 1 () ) %

HNg — A3 Jxg

The subject of the fractional calculus (integrals and derivatives) is a popular topic due to its
fundamental applications in dealing with the dynamics of the complex sytems. This subject is still
being studied extensively by many authors, see, for instance, [3,13-28].

One of the most important applications of fractional integrals is the well known inequality of the
Hermite-Hadamard type, see [3,7-9,11,26-34] for more detail.

First, let us recall the above definition of the Riemann-Liouville fractional integrals (left and right)
which are defined by [15,17]:

T ) =5 (1V) / (=0 h(Ddg x> a,

X3 X3

Tt = rgw / (X — )" "h(p)dx, x <b,

where the gamma function is defined as
T (v) :/ ' le"Xdx, v>o0.
0

Now, let us recall the basic expressions of Hermite-Hadamard inequality for fractional integrals
is proved by Sarikaya et al. in [3] as follows.

Theorem 3. Iffi: [x3, x4] — R is an L! function with x5 < xy. Then, we have

h(>43+>44>S 1‘(v+1)v
2 2 (x4 — X3)

i (X3) + 1 (Xy)
2

[Tapi(xg) + Ty _h(x3)] < 8)

withv > 0.

Meanwhile, in [3], Sarikaya et al. established the following trapezoidal type equality and
inequality for Riemann-Liouville integral, respectively:

Lemma 3. Iffi : [x3, x4] — R isan L! function with x3 < x4. Then, we have

e e ) 3]

_ 1
- %/0 [(A=%)" = X']H (x5 + (1= ) xq) dx. )

Theorem 4. Let 1 : [x3, x4] — R be an L' function and || be convex on [x3, x4] with x5 < x4. Then,
we have

‘h(><|3)+h(>44)_ F(v+1) [T h(xg) + Tp_h(x3)]

2 2(xgq — x3)"
< 3T (1 - 21) (1 (0a) + 1 (03)] (10)

On the other hand, the equality and inequalities of midpoint type are pointed out in
Remarks 10-12.
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Now, we recall the basic definitions and new notations of tempered fractional operators.

Definition 2 ([35,36]). Let [x3, x4] be a real interval and A > 0,v > 0. Then for a function i € L'[x3, xy),
the left and right tempered fractional integral, respectively, defined by

¢ =
SN = iy [ @ =0 e N IRGRAR, £ € oo,

X3

and
v 1 Ay Y o
) = /g (X — &) e M On(x)dx, & € [x3,%4).

We recall that several researchers the Riemann-Liouville fractionals integrals and provided
important generalizations of Hermite-Hadamard type inequalities utilising these type of integrals for
various type of convex functions, see, for instance, [3,19,20]. There is a strong relationship between
convexity and symmetry. Which ever one we work on we can apply to the other due to the strong
correlation produced between them especially in recent years (see [37]).

In this article, we followed the Sarikaya et al. [3] and Sarikaya and Yildirim [6] technique to
establish a few inequalities of Hermite-Hadamard type (including both trapezoidal and midpoint
type) which involved the tempered fractional integrals and the notion of A-incomplete gamma function
for convex functions. During the research, we found that our findings generalise the previous findings
in the literature and this fact can be observed in Remarks 2-12.

The rest of this article is designed as: In Section 2.1, we obtain the inequalities of trapezoidal- and
midpoint-type using integrals starting from the endpoints of the given interval, and in Section 2.2,
we obtain analogous results using integrals starting from the midpoint of the given interval and some
other relevant findings. Section 3, includes the application of our obtained results in special functions.
The discussion on the proposed findings and concluding remarks are given in Section 4.

2. Hermite-Hadamard Inequalities Involving Beta Function

First of all we define the new incomplete gamma function:

Definition 3. For the real numbers v > 0 and x, A > 0, we define the A-Incomplete gamma function by

X
YA (v,x) = /0 X teMdy.

If A =1, it reduces to the incomplete gamma function [38]:

x _
v (v, x) :/ 1 le7Xdy, v>o.
0
Remark 1. For the real numbers v > 0 and x, A > 0, we have

@) Yh(ag—y) (V1) = fol X/ leAbumn)tdy = mm(v, Xy — X3).

i ) — 2a(vx4—x3) (v+1,%4—x3)
(i) [, VA (xg—z) (v, X)dx = n(xv;%;a _ n(:rj:)vff '

Proof.

(i) The first item’s proof follows from the Definition 3 and changing the variable u := (x4 — X3)X.
(i) From the Definition 3, we have

1 1 ,x
/0 “YA(xrxs)(‘/fx)dx:/O /0 v le Mdy dx.



Symmetry 2020, 12, 595 50f17

By changing the order of the integration, we get

1 1 1
/%\(xrm(%x)dx:/ / v leMdy dx
0 0 Jy
1
= [ -y e ay
0
1 1
:/ yV_le_Aydy—/ ye Wy,
0 0

Making the use of Remark 1 (i) we get

1
v, Xy — x3) . MA(v+1, x4 — X3)
/0 ')//\(><14*>43)(V, x)dx = ()(]4 — ><]3)1/ ()44 _ ><]3)1/+1

This ends the proof of the second item. [J

In the next two subsections, we obtain some integral inequalities involved the A-Incomplete
gamma function.

2.1. Inequalities of (x5, x, )-Type

In this section, we prove a few inequalities of trapezoidal type or (X3, x )-type.

Proposition 1. Let 1 : [x3, x4] — R be a convex L' function on [x3, x4] with x3 < x4. Then, we have

() < e ] < L
forv>0,A>0.
Proof. The convexity of 71 allows us to write
h<f42r?) < @) 1) (12)
orfor ¥ = xx3+ (1 — x)xgand 7 = (1 — ) X3 + x X4 write
o (Z218) < (s + (- K0e0) +R (- D%+ 000), 7€ (0,1 (13)

Multiplying both sides of (13) by '~ 'e~*(*4=>3)X, and then integrating both sided with respect
to x over [0,1] to get

0

1
= / X/ lem ATy (g + (1 - X) %) dX
0

1 _
[ R le O (1 - 1) s + ) AR
0
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As consequence, we obtain

X3+ X
2n <324> VA(x4—x3) (1/,1)

1 X4 V=1 A(b—x) 1 / ”4 V=1 ,~A(x—x3)
< Xy — h(x)dx + ——— — X h(x)d
T (g —x3)" -/Ns (a2 e &) x+(>44—>43)v-x3 (x = 5)"e (x) dx

and so we have proved the first part inequality.
We have to prove the other half of the inequality in (11). Since  is convex for every x € [0,1],
we can find
(X34 (1= x)x4) 1 ((1—x) x5+ Xx4) <7 (XN3) +7(44). (14)

Then multiplying both sides of (14) by gV~ le~A(4—>3)

to x over [0,1] to get

X and integrating both sided with respect

M / x: (b— )" e M-I (x) dx + M / 2” (x = x13)" " e=ME=) g (1) dx
< VA(ag—ng) (V1) [ (M3) 4+ 7 (X4)]
and thus we have proved the second part inequality. This rearranges to the required result. O
Remark 2. Inequalities (11) become the inequalities (1) for A = 0and v = 1.
Remark 3. Inequalities (11) become the inequalities (8) for A = 0.
Now, we give an identity which use to assist us in proving our next results.

Lemma 4. Iffi : [x3, x4] — R isan L' function. Then, we have

fi(X3) +7(x4) I (v) [
2 2(”4 - ><]3)U VA(x4—x3) (U 1)

Xg — X3 [1
= 2522 [ Va1 = ) = Ty i) ()] 7 (B3 + (1= D)) dg - (15)

130 n0a) + T ()|

X
><]4 3

forv>0,A>0.

Proof. Applying integration by parts for the right part of (15) to get

1
81= [ Va0, 1= D (X><3+(1—X)>44)d7€

h(x _ ) (1—7) 2 /= _ =
= VA(xg—x5) (V1) ><]4<_4>43 BTe— / (1— V=1 ,=A(xs—x3)(1 X)h()mg + (1= %) xg)dx
= R(X4) VA (04— x5) (v, 1) = WLW (x— ><3)V71 e MY ) (x)dx

And similarly, we obtain

1
82= [ Va0 W (B3 + (1= 2)4a) A

(> 1 _ _
= D D o [ RN s (1 ) )R
= Oy (1) + / )1 e A0 p(x) dx.

4—>43
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Xy — A

5 3,we obtain (15). O

If we subtract A; from A1 and multiply by

Remark 4. Identity (15) becomes the identity (4) for A = 0and v = 1.
Remark 5. Identity (15) becomes the identity (9) for A = 0.
In the extensions of our results, we have:

Theorem 5. Let 1 : [x3, x4] — R be an L' function and || be convex on [x3, x14] with x5 < x4. Then,
we have

h(x3) +h(xg) I (v) () o
2 2(xg — Ns)v%\(xrxa) (v,1) L?j“ h(x4)+x;jx3 h(NS)}
B (x3)| + |1 (% v
= [| ) 2} ( 4)|] LU (x3,%4), (16)
where

1

2

LM (33, x4) = (34 — >q3)/0 {’)’A(mrxs) (V1= %) = Yagua—s) (V’X)} ax.

Proof. Making the use of Lemma 4 and the convexity of ||, we deduce

2 2 (x4 = 3)" Ya(sy—xs) (v, 1)

X
>44 3

‘h (3) +1 () L) LT3 0 + fﬁ(“)hm)}’

X4 — X 1 S . o 7
< ) i (01 = ) = Taagmy (0 )| I (03 + (1= R)na)] d%

A
(X4 — x3) L§" ) (X3, X4)
- 2 Mg — X3

lrh' (03)] + \ww\] LY (3, 4),

[ ()| + 1 (00)] ]

2
where we have used the inequality in Appendix A. Thus our proof is done. O
Remark 6. Inequality (16) becomes the inequality (5) for A = 0 and v = 1.
Remark 7. Inequality (16) becomes the inequality (10) for A = 0.

Theorem 6. Let 11 : [x3, x4] — R be an L! function and |1'|2, 0 > 1 be convex on [x3, x4] with x5 < 4.
Then, we have

2 2 (x4 — x3)" YA (3q—3) (V1)

1
W (x3)|C+ 7 (20)[*)
<<| Cooll H O L0 (s, 00, 7

fi(X3) + 1 (x4) I'(v) {

X
X3

1300 + T30 0w ’

where

1
1 2 _\°?
Lé”’)‘) (X3, X4) i= (Xg — X3) (/0 ‘7/\(%4—%3) (v,1-%) - 'Y?\(m—xa)(v’)z)‘ dX) '
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Proof. By making the use of Lemma 4, Holder’s inequality and the convexity of |#'|?, we deduce

‘h (23) + 7 (x4) I (v) [ 3 R0 + T30 ()]

2 2(Xg = %3)" YA (04— n) (v, 1)

/01 ' ((1—%)%3 +;m)|gdx> !

- ; at </01 "Y/\(mfm) (v,1-%) — VA(x4—3) (VrX)‘ng) '
/01 (1= %) 1 ()| + % [ (x4)|°] obz)E

Xg — A3 1 ~ Nt 7
ST(/O "Y/\(mrm)(1/,1*7()*'7/\(>q47>43)(V,)()‘ dx) (

_ (!h' (><13)|Q‘2F ' (><‘4)|Q> ‘ LI (43, x4),

which completes the proof of (17). O

Remark 8. Inequality (17) becomes the inequality (3) for A = 0and v = 1.

Remark 9. Inequality (17) becomes the inequality (2.7) in ([21], Theorem 8) for A = 0.

2.2. Inequalities of (@) -Type

In this section, a few inequalities of midpoint type or (%)—type will be proved.

Proposition 2. Let fi : [x3, x4] — R be a positive convex L' function on [x3, 4] with x3 < x4. Then,
we have

X3 + Xy 21/711“(1/) T~ (V,21) o (v,20)
h( 2 > S T (]/, >44—)<]3) <%>+J>¢4 h(x4)+<W)iJ>ﬂ3 h()ds)
w. a8)

<

Proof. Making the use of (12) for ¥ = %xg + #m and 7 = zg—xxg + §>Q4 to get

_ 7 _ % 2 _ % -
2h<w)§h()2(><]3+ X><I4>+Fl< 2X>43+)2(><]4>/ XG[Orl]

2 2

We multiply both sides by £V~ !e~*(*4=*3)X and then integrating with respect to ¥ over € [0,1]

to deduce

1 ) 1 )
oh (>43;>44> /O gV leACu—xa)t gy < /0 gV le ARy (22(%3 +— X>44) dx

o —A(u—x3)xp (2;X X3+ )2€><]4> dx.

;X X3 + §>44 and Remark 1 (i) in the last

0

=

|
N

By making the use of u := %)43 + S5t Xy, U =

inequality, we get

oh <><13 + >44) Ya (v, g — X3) < 2 />q4 (Xg — u)"_le_m(x“_u)h(u)du

2 (Xg — x3)Y (3g — x3)V J2atrs
>43+>44
2

21/

m § (U - NS)V_le_ZA(v_XS)h(’U)dU,
3

_l’_
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)

or equivalently,
h <><I3+ ><l4> < 2"*11”(1/)
2 YA (v, X4 — X3)

and this gives the proof of the first part inequality.
On the other hand, we have from the convexity of # that

) < Zn) + 27K n(0a)

o P00

X
X3+ 5

_ 2 _ 5
h(z X><14

and
5 _
h( X><]3+K><I4

Adding these to get
2—3x 2—3x X
&><|3+ 2X><4>+h< 2X><3+)2C><|4>§h(>43)+h(><14).

h <2
We multiply both sides by £V~ !e~*(*4=*3)X and then integrating with respect to  over § € [0,1]

o _
Xx3+§x4) dx

to deduce
= _ & 1
2 X><|4> dX_+/ X—l/le)L(X4><l3))(h(
0 2
valef/\(x47>43)xdx‘

Lyt 25
< [10ta) +1(09)] [

! v—1,—A(Xg—x3)%
v/ " LlpT 4—X3 h
/0 e <2
Xy, V= 2;—X>43 + §N4 and Remark 1 (ii) in the last

=

2—

N‘

Again, by making the use of u := %Ng +
h X3 + Xy
LR )]’YA(V,N4—>43),

(x4 — x3)V

IN

inequality, we get

2'T'(v) T (V,21) T~ (V,22)
(x4 — x3) { ( >«3;x4>+~’><14 n(xy) + < oy )*j><3 h(x3)
and this ends the proof of the second inequality. Therefore, the inequalities (18) is proved. O

Remark 10. If in Proposition 2, we set
A = 0, then inequalities (18) become the following inequalities
h(x3) + h(x4)

h(><l3)} < 5

7

1.
+h( )+ju><1 +x
)T ()

o[t Svall“(i/—i-l) -
2 (N4 _ )43)1/ (X3;N4

which is done by Sarikaya and Yildirim in [6].
A =0andv =1, then inequalities (18) become the inequalities (1).
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Lemma 5. Iffi : [x3, x4 — R isan L' function. Then, we have

2v-1T(v) (1/ 20) ~(v,24) 3 + X4
Y (v, 4 — x3) {(W) Ty h(x4) + (%)5”3 h(x3) p —h ()

(g — x3)""7 / X0 2=% 0\ ..
4y (v, xg — X3) A4~ Ns)(VX)h 2><]3+ 5 Y4 dx

where v, (v, ) is as before.

Proof. By making the use of integrating by parts and Remark 1 (i), we get

. _ _
L _ X 2—-x _
61-—/0 YA (x4—x3) (v,X)h’(§ 7 N4) dx

2y WX, (% 2-% !
A(xg—x3) Vs X —X
I VA g (A

Mg — X3 (2N3+ 2 >44)

2 ! v—1,—A(Xs4—x3)% X 2-x
= % n(t dy
e R 3t Tyt )t

2 _ L1 v+1
_ TA(x4—x3) (V )h (><13 + ><14) + ( 2 T(V) /::jm ()44 _ u)v71€72/\(>447u)h(u)du
2

Xg — X3 2 Mg — X3Vl frata
__2n (v, x4 — >43)h X3+ Xg 2VHIT (v) TJ(”’M)h(x )
(xg — x3)vH1 2 (3g = xg)vH1 (apme) ™o v

Analogously, we have

1 2 _ 5 -
€ :/0 TA(x4—x3) (v, x)H ( ZX>‘13Jr §N4> dx

2y WX, (2—% v !
)\(>447><13) 4 — X X
— I X

X4 — X3 ( 2 Bta M)

2 ! v—1,—A(X4—x3)% 2—-x X
_ h(2=X X -
><]4_><13/0)( e 5 ><3+2><4 dx

X3+xy

2 ,1 v+1 W23t
_ YA (x4—x3) (v )h (>43 + ><14) B : 2VHT(v) / 7 (0 ><13)V71872/\(U7>q3)h(‘0)dv

Mg — N3 2 Xy — ><]3)V+1
29 (v, X4 — X3) . [ X3+ Xy 2"T(v) (1/ 21)
(xg — x3)vH 2 (g — xg)VHL (2o D RO)

Consequently, we have

(xg — x3)v+1 ) (61 _€2> _ 2V-1r(v) ) {(w;m)fj V“)h(x )+ (ww) j(VZ/\)h(NB)} _h <>43 er N4> .

deyp (v, x4 — X3 Ya (V, X4 — X3

This ends the complete proof of Lemma 5. O

Remark 11. If in Lemma 5, we set

1. A =0, then equality (19) becomes the following equality

21/71]“(1/—1—1) ~ f~v X3+ X4
W J Ns;M +h(>44)+.1 >q3J2r>q4),h(>43) —h<2)

_ X4 — X3 Loy X 2-x __/1_1// 2-x X -
= {/O)ch<23 > >44>d)( Oxh R dx ¢,
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2. A =0andv =1, then equality (19) becomes the following equality

1 R X3+ Xy
R — A(x)dx —h | —4——=
><I4_>‘]3-/><13 (X)x ( 2 )
_ X4 — X3 (X 2-Xx - Vo (2-X X -
= 1 {/ xh (2 > ><14>d)( /())(h( 5 ><|3+2><14)dx},

these are both done by Sarikaya and Yildirim in [6].

Theorem 7. If i : [x3, x4] — R isan L! function. Then, for the convexity of |1'|%, 0 > 1 on [x3, x4] with
X3 < XNy, we have

2V-1T (1) (m) (1/2/\) <>43+ >44>
S 9 — <) J5e h(Xg) + I h(xg) p — 1 [ 2
Tr (1/, Xy — ><]3) {(ngzw) ( 4) <>4342r>44> ( 3) 5

o v+1 1 e
(204 = 03)"* Al—q(u,m{(l”’“jl'“m’(mgnuc(i'”m’(m)l@)

T 4ya (v, X4 — x3)
+(menu[”(j“m’(xnw)‘?}, (20)

o=

where

A(V )\) ,)/)\(U Ny — ><]3) ,)/)\(U + 1/ Ny — ><I3) B(V,)\) — 7)\(1// Ny — ><I3) . 7)\(1/-'— 1/ Ny — X?))

(Xg — x3)Y (Mg — xg)v+t 7 (Xg4 — X3)V (3g — xz)vtl
YAW 42,34 —x3) 41 (v+1, x4 —x3) | B9a(v, X4 — x3)
A .
Clmh) = (Mg — x3)vt2 (Xg4 — x3)vFl - (xg — x3)¥

Proof. At first, we let ¢ = 1. Then by making the use of Lemma 5, Remark 1 (ii) and the convexity of
|#'|2, we have

21’71]—'(1/) T~(V,21) T~ (V,21) X3 4 X4
e | g O g O - (024)

(g — x3)"F! (X 2-% i (2-X X _
< A X
yro FTp— /’Y/\M wy) (W X) S |1 2><13—i- 5 X4 + |n 5 >43+2><14 dx
(Xg — x3)¥" _
<
S Ty ()2 — 3 )(|h(>43)|+|h Xy)] / VA (xy—nz) (v, X) dX

X
_ (g —xg)vH [’M(V/M— X3)  ma(v+1, x4 — }
dyr (v, xg — x3) | (Mg — x3)Y (x4 — x3) ”“

3)| + 11 (x4)]).
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For ¢ > 1, we use the Lemma 5, power-mean inequality, Remark 1 (ii) and the convexity of |’|¢
to get

2V-1T(v) ~(v,20) ~(v,27) X3+ Xy
{(N%M)IJM h(><]4)+(x3§x4)f~1>a3 h(x3) 7h( ) )

TA (VI><|47><]3)
1
(x4 — x3)vH1 o \'e 1 e (X 2-Xx
<47A 1/ >44—><13 / VA(x4—x3) X)dX /0 VA (x5—x3) (V,X) h EXI3+ > Xy

1
1 2 _ 5 > Q 0
+ </0 TA(x5—x3) (v, X) i ( > XN?} + %N4> dX) }

< Lz {(/ Taguss 0 2) | S0 Ol + 252 e )

ol

4’)//\ (Vr Ny — XIS)

= e 0 {Z%X'F’W'g S ent dx)é}

(x4 — x3)V"!
4’)//\ (Vr Nyg — ><]3)

1 1
B(v, A Clv,A e C(v,A B(v,A e
x{((‘; M ra)fe + M o) o (M e 4 B2 )|h’<x4>@)g},
where we have used the identities in Appendix B. Thus our proof is done. [

Remark 12. If in Theorem 7, we set

1. A =0, then inequality (20) becomes the following inequality

w NV 9 ~V “ _ M
(x4 — x3)7 {J(stm)*h( 4)+J(w)—h( 3)} 71( > >|
Xg— X 1 % , ) %
§4é/+1§ {2(1/4—2)] {((”“)|h(>43)|g+(v+3)lh(m)lg)

=

+ (43I (53) |2+ (v + 1) (04)[)

|

which is done by Sarikaya and Yildirim in [6].
2. A =0andv = ¢ =1, then inequality (20) becomes the inequality (7).

3. Examples

There are many applications to demonstrate the use of integral inequalities, especially
applications on special means of the real numbers [2,5,8,39]. In this section, we present some
examples to demonstrate the applications of our proposed results on modified Bessel functions
and g-digamma functions.

Example 1. Consider the function g : R — [1,00), defined by

T5(z) =2°T (04 1)z I4(z), z€R.
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Here, we consider the modified Bessel function of the first kind L, defined by [40]:

(%)Q_+2n
B = L a1y

The first order derivative formula of T5(z) is given by [40]:

Iy(z) = ﬁz@rl (2). (21)

By making the use of Remark 2 and identity (21), we can deduce

T5(x4) — T5(x3)
N4 — X3

< %3Z5:1(X3) + XaZg11(x4)
4(0+1)

or 0 > —1,x3, X4 € Rwith0 < X3 < Xgy. Specifically, for T 1(z) = cosh(z) and 7, (z) = M,we et
Q P Y ! ! z 8
cosh(xy) — cosh(x3)
Hg — X3

< sinh(x3) + sinh(xy4)
— 2 .

Example 2. Here, we consider the modified Bessel function of the second kind Kg, defined by [40]:

T 5(z)+ I,

B /
Let hy(z) := — (Kigz)) with ¢ € R. Consider the integral representation [40]:

Ka(z) = /O ¢7 ONE cosh(oE)dE, 2 > 0.

It is clear that z — K;(z) is a completely monotonic function on an interval (0,c0) for all ¢ € R.
Since the product of two completely monotonic functions is also completely monotonic, so z — h(z) is a strictly
completely monotonic function on the same interval for all o > 1. Therefore, the function

ICQ(Z)>/ Kg+1(2)

=) == (22)

fp(z) = — (

is strictly completely monotonic on an interval (0,00) for all § > 1 and thus hy is a convex function. Then,
by making the use of Remark 2 and identity (2), we can deduce

5K (xa) — 35K q(x3)
Ny — A3

< >qg’cgﬂ(M) + ><§/Cg+1(>44)
- 2

forall g > 1and X3, x4 € Rwith0 < X3 < Xy4.

Example 3. Consider the g-digamma function Y ,, defined by

¥y(z) = —In(1 - g) +In(o) io ¢

— In(1-g)+In(g) . -2
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for0 <o <1, and

1 00 Qf(éﬁrz)
¥o(z) = ~In(e—1) +1Infe) { z— 5 — X 1—o ((+2)
(=01~

1 o fo z
=1+70
foro>1landz > 0.
From this definitions, we see that z — ‘I”Q(z) is a completely monotonic function on an interval (0, 00) for
all ¢ > 0, and consequently, z — Y, (z) is convex on the same interoval.
Let hy(z) := ¥ (z) with ¢ > 0. Thus, h’Q(z) := ¥} (2) is completely monotonic on the interval (0, ).
Then, from Remark 2, we have

R ACORRACH
— 2 .

¥, <>43+ >44> < ‘TQ(M) — ¥,(x3) 23)

2 ANy — A3

Combining the inequalities (3) and (23), and (7) and (23), we get

Yo (x3) +¥,(Ma)  Wo(xg) —Fo(x3)|  x4—x
4 Q _ Tol”4 e\ 73 ~ X4 3 ‘ 1 ‘ ’ I
2 X4 — A3 - 8 (\PQ(NS) + ‘YQ(X]4> )l
and
‘FQ(XI4)_YQ(>43) ;M3 + Xy Ny — A3 1 "
_ IACHLERGE I | R S B4
’ Xg — M3 ‘FQ( 2 — 8 (‘TQ(N3>‘+’TQ(N4) )/
respectively.

4. Conclusions

In this article, we introduced an extension of the well known incomplete gamma function, namely
the A-incomplete gamma function to connect with the model of tempered fractional integrals. In view
of this, we considered the integral inequalities of Hermite-Hadamard type in the context of tempered
fractional integrals. Integral inequalities form a crucial branch of analysis and were combined with
various types of fractional integrals but we had never seen this before with tempered fractional integrals.
For this reason, we studied the inequality of Hermite-Hadamard type and related inequalities via the
tempered fractional integrals which generalized the previous results obtained in [2,3,5,6].
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Appendix A

By using the properties of modulus and the convexity of |1i’|, we can deduce:
1
/0 ‘7A(>447><13) (1/,1 - X) - ’)’)\(><147><3)(Vr7€)‘ ‘h, (XX]?) + (1 - X)Nél)‘ dx
1
2 _
< /0 (V2040 (V1= X) = Y ogmsen) (0 0] [RIH (33)] + (1= ) [ (x4)]]
1
+A [7A(><4—>43) (V,X) - ')’)\(><14—><3) (Vrl - X)} [X ’h/ (N3)| + (1 *X) ‘h/ (N4)H dX
2
1
1 i i
= ’h/ (N3)| {/0 X {7/\(%47%3) (v,1-%) - YA (x5—x3) (1/,)()} dx
1 - -
+ /; X [7)\(%47%3) (V/X) T YA(xg—x3) (1/,1 - X)} dX}
2
1

+ [ (04)] { L7020 [Tt (1= ) = Ty ) ()] iR

+ / 1 —X ’)//\ >44 ><13) (V’X) - 7)\(%47%3) (V’]‘ - X):| dX}

—

= [|h’(>43)| + |1’ (M)” /0z [h(xrm) V(T =2X)) = YA(xy—x3) (V,X)} dx

_ Lﬁ”’” (X3, X4)

Xy — X3 [|Fz/(><13)|—|—‘h’(><14)|}.

Appendix B

By changing the order of the integration (just like Remark 1 (ii)), we have

15 _
- X X1 —A(xu— _
/27)\ (314—x13) vx)d)(_/o 2(/0 yle (x4 Ns)de)dX
15 1 1
_ v—1 ,—A(x4—x3)y / X s :7/ 2\ =1 ,—A(xg—x3)y
/Oy e (yzd)()dy 40(1 y)y e dy

_ 1 ’)//\(V/ ><]4_ ><]3) _r)//\(v_'—l/ ><4_ ><|3) _ B(V/A>
4\ (¥g4—x3) (x4 — xz)vHt 4 7

and analogously,

1 2 _ X B _ 1 _ _ X
/O 2 YA (x5—x3) (V,X) dx = /0 YA (x5—x3) (VrX) dx — 0 2’)//\(><14 X3) (V X) dx
=A(v,A) —B(v,A)
1 V+2 Xg—X3)  An(v+1, x4 — X3) +37A(V, Xy — X3)
4 >44 — x3)V T2 (xq — x3)vH (Mg — x3)Y
C (v, A
4
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