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Abstract: The Subdivision Schemes (SSs) have been the heart of Computer Aided Geometric Design
(CAGD) almost from its origin, and various analyses of SSs have been conducted. SSs are commonly
used in CAGD and several methods have been invented to design curves/surfaces produced by SSs to
applied geometry. In this article, we consider an algorithm that generates the 5-point approximating
subdivision scheme with varying arity. By applying the algorithm, we further discuss several
properties: continuity, Holder regularity, limit stencils, error bound, and shape of limit curves. The
efficiency of the scheme is also depicted with assuming different values of shape parameter along
with its application.

Keywords: approximating; varying arity; continuity; Holder regularity; limit stencils; error bound;
shape of limit curves; subdivision schemes

MSC: 65D17; 65D05; 65U07

1. Introduction

Computer Aided Geometric Design (CAGD) deals with studies of curves and surfaces used
in computer graphics, data structure, and computational algebra. In CAGD, geometric shapes are
related to the mathematical representations that satisfy approximation and interpolation properties
of curves and surfaces. Surface modeling is one of the important studies in the fields of CAGD
and computer graphics. It links mathematical sciences with computer science and engineering such
as the animation industry, automotive and industrial design, aerospace, mechanical engineering,
and numerical computing. Subdivision is an interesting subject and one of the common tools in
CAGD, which provides an elegant way for the description of curves and surfaces modeling. Initially,
Rham [1] worked on subdivision schemes and made a scheme which generates a function with the
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first derivative. Similarly, Chaikin started work and used subdivision scheme to design a curve [2].
Subdivision schemes gained importance when scientists generalized the tensor product in an arbitrary
topology. Doo and Catmull used the subdivision schemes to establish surface design and control
meshes in an arbitrary topology [3,4]. Deslauriers and Dubuc formed a 4-point scheme [5]. Later,
Dyn et al. [6] generalized the scheme of Dubuc and Deslauriers, known as the butterfly scheme, which
is based on approximated schemes. Cai used a 4-point scheme with non-uniform control points to
calculate convergence and error estimation. He illustrated that the curves and surfaces generated from
4-point schemes gave better results [7]. Hassan et al. [8,9] worked on arity and number of control
points, whereas Mustafa and Xuefeng [10] worked on the scheme of Bajaj with new a parameter which
controls the shape of models and gave more flexibility to design a model over the soft and rough mesh
network. Similarly, Siddiqui and Ahmad [11] presented a 6-point subdivision scheme that gives better
smoothness. Moreover, Hormann and Sabin [12] produced a family of subdivision schemes to calculate
support size, Holder regularity, precision set, and degree of polynomial curve. Khan and Mustafa [13]
calculated an interpolating 6-point subdivision scheme for complex eigenvalues as well as worked on
an approximating 4-point subdivision scheme. They showed that their scheme has higher smoothness
and small support size as compared to other 4-point schemes [14]. Mustafa et al. [15] worked on the
m-point approximating subdivision schemes and illustrated that their schemes have higher smoothness
as compared to other subdivision schemes. Siddigi and Rehan [16] worked on a 4-point binary scheme
to generate the family of curves. They introduced a scheme for C! continuity to generate a curve called
corner cutting. Mustafa et al. [17] further worked on odd-point ternary approximating subdivision
schemes and developed a formula to generalize them. Later, Ghaffar et al. [18] considered 3-point
approximating subdivision schemes and observed that the given approach is more universal and is
applied to schemes of arbitrary arity. Ghaffar et al. [19] introduced a general formula for 4-point a-ary
approximating subdivision scheme for curve designing for any arity a > 2.

In addition, Mustafa et al. [20] worked over odd point ternary families of approximating
subdivision schemes and showed that their schemes have high smoothness. They also worked
on subdivision regularization, in which they showed that unified frame work can work well for
both curve fitting and noise removal. They generalized unified families of interpolating subdivision
schemes of 2n-point and (2n — 1)-point p-ary which generate Lagrange’s polynomial for n > 2
and p > 3, presented in [21]. In 2013, Younus and Siddiqi [22] established an algorithm based on
Quaternary-point for (m > 1) approximating subdivision scheme which has high smoothness and
small support. Rehan et al. [23] discussed the continuity of a new class of 3-point ternary schemes
and generated limiting curves using the proposed schemes. They also proposed a 4-point ternary
scheme which creates C? interpolating and C!, C2, C® approximating limiting curves, described in [24].
For other recent work on this topic, we may refer to [25-29] and references therein.

The above-mentioned literature shows limited knowledge about the arity of the SSs.
This motivated us to construct a unified 5-point approximating SS of varying arity with the shape
controlling parameter. To show the performance of the schemes, we analyze the geometric properties
such as continuity, Holder regularity, and Limit stencils. Moreover, the limit curves with the specific
value of shape control parameter w are depicted by the significant application of derived conditions
on the initial data. The rest of the paper is organized as follows. The preliminaries regarding SSs are
presented in Section 2. In Section 3, we analyze the geometric properties of the proposed schemes. The
results and discussion are presented in Section 4. Some example are considered in this section to show
the efficiency of the schemes. Finally, the concluding remarks are given in final section.

2. Preliminaries

In this section, we recall some well known concepts and basic results.

Definition 1. A curve which is generated by applying a subdivision operator repeatedly to a given polygon is
known as subdivision curve.
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Definition 2. If the mask of the scheme is similar for all points of the control polygon, the scheme is known
as stationary.

Definition 3. If the mask of the scheme is not similar for all points of the control polygon, the scheme is known
as non-stationary.

Definition 4. In an approximating scheme, every data point that belongs to a function generated at stage k
does not belong at stage k + 1.

Definition 5. In an interpolating scheme, every data point belongs to a function at both stages/levels k and
k+1.

Theorem 1. [30] S, scheme converges iff the scheme S is contractive. S. is contractive if ||c;|| < 1 for some
I > 0with ||¢]| = max \c;(721| 0 < k < 2, where c} are the coefficients of the scheme S with Laurent
J

polynomial ¢! (x) = c(x)c(x2)...c(x? ).

Theorem 2. [30] If S, converges, then the limit curves of the scheme S, with Laurent polynomial a(x) =
(L2)™b(x) are C™ continuous, where Sy, is the scheme for the mth divided differences.

Theorem 3. [30] The scheme S, with Laurent polynomial a(x) = (1%) " b(x) generates limit curves with

Holder regularity r > m — log, ”le” forany L.

An g-ary scheme is said to be linear if it generates level k+1 from level k with linear combination
of control points, that is for all ‘k” and j’, there exists sets of real numbers known as masks a* = {a*}
such that
k+1 _ k k
)\ ] - Z a];m‘/\i .
i€Z
If the mask of the scheme is independent of k, then the scheme has finite support. Similarly, if the
mask is independent of ‘j’, that is each refinement rule operates in the same way at all locations, then
the scheme is known as uniform.
A general formula for the mask of the proposed scheme is defined as

a4 4 4
80 = 5 (75 ) g(i)wi M)
and

4 /4
ZS(I,)wi =a; where wj=w3 j and j=0,1,2, 2)
i=0

where w is called the shape controlling parameter and it is used to control the shape of the control of
the polygon.

3. The 5-Point Approximating Schemes

This section consists of different 5-point approximating schemes together with the properties:
convergence criteria, continuity, Holder regularity, and limit stencils.
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3.1. 5-point Binary Approximating Scheme

By substituting @ = 2 into Equations (1) and (2), we can get the scheme in the form

PUARIEE 2;—6 [(4+5w)AL_, + 842 + (140 — 14w)A] + (28 +8w)AL,; + WAL, |,
ML = 2;—6 (WA, + (28 4+ 8N + (140 — 14)M] +84A, + (4+5w0)A 5|, ()
called 5-point binary approximating scheme.
3.1.1. Convergence Criteria
The mask of the binary scheme using Equation (3) may be written as
a = 2;76 {w, (4+5w), (28 + 8w), 84, (140 — 14w), (140 — 14w), 84, (28 + 8w), (4 + 5w), w} . (4)

The even and odd stencil of the above scheme may be written as (w’(28+8w)’(14gg61 4w) 84,(4450)) g

the sum of the coefficients may be written as

{w+ (28 +8w) + (140 — 14w) + 84 + (4 + 5w) }
256

:1,

which shows the convergence condition of the scheme.
The Laurent polynomial a(x) of Equation (3) takes the form

a(x) = 2;6 {w + (4 4 5w)x + (28 4 8w)x? + 84x> + (140 — 14w)x* + (140 — 14w)x°
+84x6 + (28 + 8w)x” + (4 + 5w)x® + wx9} . ®)

After simplification, Equation (5) becomes

i = (55w, ©

where

(Wx*+ (4 —2w)x+ w)
5 .

b(x) =

3.1.2. Continuity

To find continuity of the scheme, Equation (6) gives the Laurent polynomial of the form

o) = (F3F) o, @)

where
w x® w 1 w 3 15 w
b _ Jjwux o 1N (w3 e (L _w) 5
1) {128+(32+32>x+<32+16)x+(32 32>x

8 64 32 32 32 16 32 32 128 | -

_|_
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C? continuity of the scheme S, analogous to a(x), by (x) should be convergent, where b (x) should

satisfy Theorem 1 with the given condition H% (Sp,)|| < 1. From Theorem 1, for -9 < w < 72/5, we
extract

b

‘ [0 9)

= Z—max 7_|_i zﬂ_g M—F 24_3_’_570]_3 <1
) 32 32 32 32| 128 |64 32 128 16 '

The given condition satisfies Theorem 1, thus it must satisfy Theorem 2. This shows that the
5-point scheme is C° continuous.

For C! continuity, Equation (6) takes the form

b0 = (135 ) ),

or
wx” (3w 1\ ¢ (w 5\ 5 5w 5\ 4
balx) = {64+(64+16>x+(64+16>x+<_64+8)x

(22 Ve (L) ey (29 ) e
64 '8 64 ' 16 64 ' 16 64 f

which satisfies Theorem 1 with the given condition H% (Sp,)
72/5, we extract

o

‘ < 1. From Theorem 1, for -9 < w <

o 16

6 lea 16| T ea 8T

‘ [e9)

lw| Jw 5 5w 5‘ 3w 1 ‘}
<1,

which shows that the scheme is C! continuous.
For C? continuity, Equation (6) may be written as

bg(x):( 2 )bz(x),

1+ x

or
D B SV SO LA O B (el T WV (eI A
by(x) = {32wx +(16+8)x +<32+2>x +<8 —|—4)x
(2N (L) 2
32 "2 168 2’

which satisfies Theorem 1 with the given condition H 3 (Sp,)
we can get

‘ < 1. From Theorem 1, for —6 < w < 10,
[e9)

~max l\w|—i—2 w_ 1 22—%1—0—8—§ <1
16 16 8 8 4 '

1
Hz (Sr,) 32 2

‘ [e9)

Hence, the scheme is C2 continuous.
For C3 continuity, Equation (6) takes the form

i) = (1 ) b,

1+ x

or

1 5 w 1\ 4 —w 3\ 3 w 3\ w 1 w
b4(x) = wa+ E+1 x* + ?Jri x” + T+i x° + E+E X+E ’
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which satisfies Theorem 1 with the given condition H 3 (Sp,)
we extract

‘ < 1. From Theorem 1, for —6 < w < 10,

= tmax{ L e +|9 -3 4|2 L o
— 2™ 16 8 4 ’

1
Hz (Sn,) 2 16 ' 4

o)

which shows that the scheme is C3 continuous.
For C* continuity, Equation (6) may be written as

b5(x):( 2 )b4(x),

1+ x

or

1 1 w X w
bs(x) = {8wx4+2x3+<—4+1)x2+2+8},

with the given condition H% (Sps) ‘ < 1. Thus, from Theorem 1, for —2 < w < 6, we can get

e

1 1

This satisfies Theorem 1, thus it must satisfy Theorem 2. Thus, the scheme is C* continuous.

’ o0

For C° continuity, Equation (6) may be written as

b6(x):( 2 )b5(x),

14+ x
or
1 4 —w > —w w
_ = Y A P
be(x) {4wx+<4+>x+(4+>x+4}

with the given condition H% (Sbe) ‘ < 1. From Theorem 1, for —2 < w < 6, we extract

1 1 1 w

Hz(sbﬁ) ’oo = 2max{4|w|+’4—1‘}<1,

which shows that the scheme is C° continuous.
For C® continuity, Equation (6) may be written as

br() = (15 ) b

1+ x

or

by;(x) = {;wx2+(—w+2)x+c;}, (8)

with the given condition H 3 (Sh,)

‘ < 1. If weextractfor0 < w < 2

1
-max {|w|} <1,

o - !

‘ [e0)

The given condition satisfies Theorem 1, thus it must satisfy Theorem 2, which shows C® continuity
of the scheme.
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Similarly, for C” continuity we substitute w = 1 in Equation (6) and get

bo(x) = {;(:H—l)(x—i-l)},

this implies that

or

From Theorem 2, we have

1 1
H2 (Spg) L = max {1,1} < 1.

Therefore, the scheme is C” continuous.

3.1.3. Holder Regularity

7 of 25

We use Theorem 3 to find Holder regularity of the scheme. The Laurent polynomial of the binary

scheme using Equation (3) may be written as

a(x) = = {w + (4 4 5w)x + (28 4 8w)x? + 84x> + (140 — 14w)x* + (140 — 14w)x°

256
+84x° 4 (28 + 8w)x” + (4 + 5w)x® + wxg} .

or

alx) = (1§")7b<x>,

where

(Wx*+ (4 —2w)x+w)
5 :

b(x) =

©)

(10)

(11)

If w = 1, we can get b = 2. Using Theorem 3 with m =7 and b = 2, we have r > 7 —log,(2) = 6.
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3.1.4. Limit Stencils

The matrix form of the scheme using Equation (3) for w = 1 has the form

1
o

21 63 9
% 6 18 e 6 0 0 0
AT 1 9 6 21 9 M oyj—1 7
Mg % e 18 o 36 0 0 0 A3
N Al
=2 0 9 21 e 9 1 0 0 -2
/\] ) 256 64 128 64 56 /\j—l
¥ 1 9 & 21 9 4
Ayl ]9 @ @ s @ ome 0000 A}
I o 9 21 6 9 1 j—1
M 0 0 % & 18 & 6 O M
A At
2 0 o0 L 9 & 2 9 2
)L] 256 64 128 64 256 )\]71
3 3
j 9 21 e 9 1 i—1
L Ay 0 0 0 % & 1 & 2 || A, |
1 9 63 21 9
L 0 0 0 5% & 18 & 5% 4
and the local subdivision matrix
-9 2 & 9 1 -
%% o 18 & w6 0 0 0 0
1 9 63 21 9
™% i 18 & m O 0 0
9 21 &8 9 1
0 % & 18 @& 2 O 0
1 9 63 21 9
X = 0 2% & 18 @ = O 0
B 9 21 63 9 1 ’
0 0 % & 18 & w6 VU
1 9 63 21 9
0 0 x5 & 18 & m VU
9 21 &8 9 1
0 0 0 = & ™8 & 2%
1 9 63 21 9
L 0O 0 0 = & 18 & 2% A

which shows that the size of the invariant neighborhood is 8. After simplification, matrix X has

eigenvalues A =1, %, }1, %, 11—6, %, é, ﬁ and eigenvectors

1 1 -1 1 -1 -1 -1 1
- - 7 o1 1 .29 _2 _5 _5 4
1 967 23 7 363 7 169 7
3 _3® 3 _1 4 o 9 _3 4
1 967 23 21 3267 469 7
1 7o 1 1 _1. 1 _1 _1 4
3 967 23 35 363 35 67 7
= 71 1 _1. _1 1 1 1
1 967 23 35 363 35 67 7
¥ B3 1L 4 g _9 3
o 967 23 21 3267 469 7
1
e . 127 11 1 29 2 5 5
L 128 %7 B 7 “3% 7 a9 7 1
|1 1 1 1 1 1 1 1 |
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Let
[ 1 -1 1 -1 -1 -1 17
27 1 1 _29 _2 _5 _5 4
967 7 363 7 469 7
33 3 _1 47 0o 9 _3 1
67 23 21 3267 469 7
7 _1 1 _1. 1 _1 _1 4
Y = 967 23 35 63 35 67 7
| 0z i a1 11 1 g
67 23 35 63 35 67 7
3 03 1 47 0 -9 3 1
967 23 21 3267 469 7
7 1 _1 _29 2 5 5 1
967 23 7 363 7 469 7
1 1 1 1 1 1 1 1|

Thus, the decomposition of the local subdivision matrix X has the form X = Y A YL,

1
o

63 9

‘ —_

21 T
m 4 &8 5 L0 0 o0 1 1 -1 1 1 -1 -1 1
19 e 21 9 g g 7 om 1 _29 2 _5 _5 4
256 64 128 64 256 967 23 7 363 7 469 7
9 21 63 9 1 33 3 1 47 9 3
0 % & 18 @& 2 0 O %7 33 2 367 O w 7 1
0 1 9 & 21 9 45 7 .1 1 _1 1 _1 _1 4
256 64 128 64 256 o 67 23 35 363 35 67 7
o o o 2 e 9 1 o | | 7z _i _1 _1  _1 1 1
256 64 128 64 256 967 23 35 363 35 67 7
1 9 63 21 9 3 3 1 47 9 3
0 0 o & 18 & m U ~9%7 23 2 ey 9 —amw 7 1
O o0 o0 o n & 9 1 7w 1 _29 2 5 5 4
256 64 128 64 56 967 23 7 363 7 469 7
1 9 63 21 9
Lo 0 0 & & & 4 21 [ 1 1 1 1 1 1 1 1]
r 9 r 967 6769 2901 18,373 18,373 _ 2901 6769 967
1 0 0 0 0 0 0 0 5760 5760 T 640 5760 5760 640 5760 5760
1 23 253 483 1127 1127 483 253 23
0 00 0 0 0 0 2880 576 20 T 56 T 56 30 576 2880
1 1 7 21 35 35 21 7 1
00z 0 0 0 0 0 —3 8 -5 g - 3 —8 8
1 363 363 3267 363 363 3267 363 363
000 5 0 0 0 O 1120 ~24 1120 T4 T4 1120 2?4 1120
1 7 161 7 665 665 7 161 7
0000 4 0 0 0 1@ 1 16 Ti4 4 16 14 14
1 469 469 469 2345 2345 469 469 469
0 0 0 0 0 32 0 0 1440 1440 160 288 288 160 ~ 1440 1440
1 1 119 119 245 245 119 119 1
000 00 0 0 & 0 ~Ta0 1480 160 288 288 To0 1440 T340
1 1 247 477 15,619 15,619 477 247 1
L 0 0 0 0 0 0 0 128 4 L 40,320 40,320 4480 40,320 40,320 4480 40,320 40,320 -

Using diagonalization A = X! AX, where as A represents diagonal matrixand A = X A X~ 1. In
addition, X = Y A Y~ implies that X/ = Y A/ Y~! and A = X' AX implies that A/ = X AJ X~1.
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Since the A is diagonal matrix and also the power of a diagonal matrix is equal to the power of
each diagonal element. Therefore,

Ty 0 0o 0 0 0 0 0
0 <%)j 0 0 0 0 0 0
0 0 (%)1 0 0 0 0 0
| 0 0 0 (g)j 0 0 0 0
A (%) o 0 0
o 0o 0o o o (H) o 0
0o 0 0 0 0 o (&) o

R R 0 o (&) |

Since X/ = Y A Y71, by substituting the eigen decomposition of X, we get / = XA/~1 =
X(XNM72) = X272 _upto N = XIA%, or M = (Y NV Y1)AL. Taking lim; e A® = im0 X/IA? =
X*A%0r A% =Y A% YIAL

r9 21 6 9 1 0 0 0 7
L 756 64 128 64 256 Wi o . . . . . .
I~ 1 9 63 21 9 .
A]fS % & 185 o m 0 0 0 o (3 o o o o o 0
Ao 0 2 2 & 9 1 o 1y
N 256 64 128 64 256 0 o (1) 0 0 0 0 0
-1
; 1 9 6 21 9 1
Mol |9 =% @ m & owm 000 o0 0 @) e e e
M 9 21 e 9 1 0 0 0 0 iy 0 0 0
! 0 0 2% & 18 & 2 U (%)
) 0 0 L 9 & a9 o 0000 (F) 0 o
j 76 64 128 64 25
As j
i1 0 0 o0 2 2 & 9 1 o000 () o
L Ay 256 64 128 64 25 )
0 0 o0 L o e zm oo |00 oo (s
L 76 64 128 64 256
A 6769 _ 2901 18,373 18373 _ 2901 6769 967 7]
5760 5760 5760 5760 640 5760 5760
23 253 483 _ 1127 _ 1127 483 253 23 j-1
2880 576 320 576 576 320 576 880 /\73
1 7 21 35 S 21 7 1 U
3 8 k3 5 T 8 3 =
363 _ 363 3267 _ 363 _ 363 3267 _ 363 363 Afl
1120 224 1120 224 224 1120 224 1120 ;\]0’1
_7 161 7 665 _665 7 161 7 A1
144 144 16 144 144 T6 144 T44 ]171
_460 460 460 235 25 469 _ 460 469 2
1440 1440 T60 288 288 160 1440 1440 )\g
1 _ 119 _ 19 _ 245 245 19 119 1 A1
1440 1440 T60 288 288 160 1440 1440 4
1 247 477 15,619 15,619 477 247 1
L 40320 40,320 4480 40,320 40,320 4480 40,320 40,320 _J
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After simplification, we can get

f1 .3 7 7 3 17
967 %7 %7 97 %7 967
[ A/~ 1 7] 127 33 7 7 3 127 [ =1 ]
As T o —9 9% 9% 9% 97 | A
N Mot
2 1l ® 7 7 3 1 2
Y ~%7 97 %7 “—9%7 97 967 e
7 VR LA - S S S S -/ A =
Ay . 967 97 967 967 %7 967 Ay
] - 127 33 7 7 33 127 =1
M -1 =57 % “9% 9% 97 97 1 M
A At
2 127 3 7 7 33 127 2
A -1 =57 %7 9w “9r %7 %7 1L N
3 3
i—1 _ 127 33 -7  _ 7 33 127 _ -1
M I =5 o 967 %7 %7 o7 1 AN
L "4 . L "4 .
1 o ® 7 73 17
L 967 %7 97 967 %7 967 -

which shows that the limit stencils are stable/constant.

3.2. The 5-point Ternary Approximating Scheme

Substituting a = 3 into Equations (1) and (2), the 5-point ternary approximating scheme may be
written as

A = 1296 [(28 +13w)AL_, + (480 — 4w) AL + (684 — 30w) A} + (104 + 20w)AL, | + wA] +2]
o 1 j j m j
Nl = o [(4+50)AL, + (260 4+ 16w)A]_ + (768 — 420)] + (260 + 160) ], + (445w, ],
Nl = Dag [@ALg+ (1044 200)A, + (684 —30w)A] + (480 — 4w)AL, + (28+13w)A 5], (12)
B = 12% {w, (445w), (28 + 13w), (104 +20w), (260 + 16w), (480 — 4cw), (684 — 30w),

(768 — 42w), (684 — 30w), (480 — 4w), (260 + 16w), (104 + 20w), (28 + 13w), (4 + 5w), w}  (13)

and the Laurent polynomial B(x) of Equation (12) is

B(x) = 12196 {w+(4+5w)x+(28+13w)x + (104 + 20 w) x> + (260 + 16 w) x* + (480 — 4w) x°
+ (684 — 30 w) x° 4 (768 — 42 w) x” + (684 — 30 w) x® + (480 — 4 w) x° + (260 + 16 w) x'0
+ (104 +20) ¥ + (28 4+ 130) ¥'2 4 (4 +50) ¥ + x| (14)
or
B(x) = 121—96<1+x+x2>5(1+x)2 (wx2—2wx+w+4x). (15)

3.2.1. Continuity

To find continuity of the scheme, further simplification of Equation (15) gives the Laurent
polynomial in the form

po = () aw,
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where

a) = (e Iy (@ oy (@ 19
W= a2 T \108 T 108 54 18 54 108
108 w61 g (w35 6 (—w 61 5
27 3 ' 108 24 54 36 ' 108

RS (S U VY (T T D S (KA O P
27 "\ 5" 108 51 18 108 "108) Tz

To check C° continuity of the scheme S p analogous to B(x), c1(x) should be convergent, where

c1(x) should satisfy Theorem 1 with the given condition H% (S¢;)

< 1. From Theorem 1, for

% <w < %, we extract

Hl(sc)‘ - 1max{MJrz’ﬁJr1—9‘+‘3—3—5 Lo '+10+’w+i'
30| 37216 " 7|54 " 108| " |24 54| |108 " 108 518
3— H S|ttt |+ - }<1
108| |108 * 108 54 18| |36 108

which satisfies Theorem 1. Since the given condition satisfies Theorem 1, it must satisfy Theorem 2.
This shows that the 5-point scheme is C° continuous.
Now, for C! continuity, Equation (15) may be written as

3
o(x) = [ ——— ) e1(x),
2@ = () al)
or
ox) = W @ 1N (@ 5 s (@ (18 g (Se 11
2= T T\ 6 36 ' 36 144 " 36 144 18
(zee By (e My (@ By e (@0 e (9 ),
18 18 144 18 144 " 36 36 ' 36 18" 36

Tigd)

To check C! continuity, the scheme S p analogous to B(x), c2(x) should be convergent, where c;(x)

should satisfy Theorem 1 with the given condition H % (Se,)
we extract

< 1. From Theorem 1, for —23 < w < 31,
[ee]

o

1 {\a)\_i_‘w 13’ ’5w 11‘ ‘w 1

= 3™ 74 (722 T 36| T 18| 7|28 T 36

2@ 2 e By
“136 36| |18 18 ’

’ (o)

which satisfies Theorem 1. This shows that the 5-point scheme is C! continuous.
For C? continuity, Equation (15) may be written as

aa(x) = <1+x3+x2)C2(x)’

or

(L) e (0 ) e (L D e (2 L) ep @
12 "6 24 '3 48 "3 2412 a8
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To check C? continuity, the scheme S p analogous to B(x), c3(x) should be convergent, where c3(x)

< 1. From Theorem 1, for —14 < w < 22,

.

should satisfy Theorem 1 with the given condition H 1(Se)
we extract
w 1

873

= 1max l|w\—0— w_2 +
B 48

1
Hs (Ses) 3 24 3

) [N A )
Sl T e

‘ (e )

Since the given condition satisfies Theorem 1, it must satisfy Theorem 2. This means that the
scheme is C2 continuous.
For C2 continuity, Equation (15) may be written as

ca(x) = <3>C3(x),

14+ x4 x2

or
1 6 w 1 5 —w 3 4 —w 3 —w 3 2
= {= — 4= — 4= — +1 — 4=
ca(x) {16wx +(16+4>x +<16+4>x +<8 + )x+ 6 1)~
YAV
16 4 16 | -

To check C? continuity, the scheme Sg analogous to (x), c4(x) should be convergent, where c4(x)

should satisfy Theorem 1 with the given condition H% (S¢,) ‘ < 1. From Theorem 1, for —8 < w < 16,

we extract

w
~ -1
8

7

b0

= 1max 1|cu|—i—’
-3 8

W Hpe Sy
16 4|6 1"

[e9)

This shows that the scheme is C3 continuous.
For C* continuity, Equation (15) may be written as

(0 = (1) @@,

3 4, 3, (=3 3\, 3 3
cs(x) = @Yty gwty |t xtw,.

To check C* continuity, the scheme S p analogous to B(x), cs5(x) should be convergent, where c5(x)

should satisfy Theorem 1 with the given condition H 1 (Se)
we extract
3 -3

‘ < 1. From Theorem 1, for —4 < w < 12,
(e}

 ax{ L) <3

31 16 4|8 2

1
7 A < 1/
3 }
which satisfies Theorem 1. Thus, the scheme is C* continuous.
To check C° continuity we substitute w = % in Equation (15) and get

b

‘ e}

1 3 3 1
cs(x) = {4x4+4x3+x2+4x+4},

which implies that

w0 = (o) sl

1+ x+ a2
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or

cg(x) = {i(l—l—Zx—i—xz)}.

Since from Theorem 2, we have

N

‘ = 1max{1 2}<1
o 3 4’4 ’

Therefore, the scheme is C° continuous.

3.2.2. Holder’s Regularity

To find Holder regularity, we use Theorem 3. The Laurent polynomial of the ternary scheme
using Equation (12) may be written as

Blx) =

where

1
1296 {w+(4+5w)x+(28+13w)x2+(1O4+20w)x3+(260+16w)x4—|—(480—4w)x5

+ (684 — 30 w) x°® + (768 — 42 w) x” + (684 — 30 w) x8 4 (480 — 4 w) x° + (260 + 16 w) x1°
+ (104 +20w) 2! + (28 + 13w) 12 + (4 + 5w) x13 + x14w},

B = 1o (1+x+2) elw), (16)
c(x) = (1+x)? (wxz—wa+w+4x>. (17)

If w = %, we can get b = 8. Using Theorem 3 with m = 5and b = 8, we have r > 5 —log,(8)

=4.09691.

3.2.3. Limit Stencils

The matrix form of the scheme using Equation (12) has the form

and the local subdivision matrix

ro17 8 16l 49 1 g T
- 386 243 324 186 972 I
Ay 2 a1 89 21 2 Ay
. 0 -
)\] 243 972 162 972 243 A j—1
1 -1
j 1 49 161 89 17 g 1
Ay | 972 18 324 243 486 A
i - 17 89 161 49 1 -1
)‘]1. 0 % 23 34 @6 97 )‘]171
A 0 2 21 8 21 2 Ay
)L] 243 972 162 972 243 /\]71
- 0 L 49 10 s 1z | ° °
L 972 486 324 243 486
r17 8 16l 49 1 g T
486 243 324 486 972
2 a1 8 21 2 g
243 972 162 972 243
1 49 161 89 17 g

X — 972 486 324 243 486
Sl o o8 1l o4 1|
486 243 324 486 972
0 .2 21 & a1 2
43 972 162 972 243
0 1 4 161 89 17
L 72 486 324 243 486
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which shows the size of the invariant neighborhood is 6. After simplification, matrix X has eigenvalues
A=1,1,3%, 4, &, 515 and eigenvectors.

1 -1 -1 1 1 -1 7
1 27 27 el 197 1 _3
1 91 365 3805 2483 5
% 5 23 313 283 1 1
5 91 365 3805 24,283 5
> 5 23 313 283 1 1
" 9T 365 3805 24,283 5
el 27 27 _661 1957 1 3
>3 91 365 3805 24,283 5
L 1 1 1 1 1 1

After simplification on the same manner as presented in Section 3.1.4, we can get

o1 27 _5 _5 27 1 7
) 91 91 91 91 )
(A, ] [V ]
-2 -1 _ 27 5 5 _27 -1 -2
v ; 91 91 91 91 /\1*11
i _ _27 5 5 27 _ i1
Ay | Lo=51 o1 o o1 —1 A
] - 27 5 5 27 it
M L5 -5 —o1 5t 1 M
A AL
2 1 27 _5 _5 27 1 2
A o1 91 91 o1 /\,3—1
B B -1 _2 5 5 _2 _4q B B
L 91 91 91 91 i

which shows that the limit stencils are stable/constant.

3.3. The 5-point Quaternary Approximating Scheme

By substituting a = 4 into Equations (1) and (2), we can get the scheme in the form

- ‘ . ‘
Ni = 1096 [(104 +25w) AL, + (1608 — 12w) AL, + (2104 — 50w)A] + (280 +36w)AL,
_H’U)\H-Z]
i+ 1 j j i+
Min = 100 [(28 +13w)AL_, + (1064 +20w) AL, + (2400 — 74w) AL + (600 + 36w) AL,
+(4+5w)AL, |,
j-+1 1 ; .
Ny = 1096 [(4 +5w)AL_, + (600 +36w) AL, + (2400 — 74w)A] + (1064 + 20w) AL,
+(28+13w)A, |,
1 j j j j
Mis = 006 [m _, + (280 + 36w)A]_; + (2104 — 50w) A} + (1608 — 12w) AL,
+(104 +25w)A], | (18)

The mask of the quaternary scheme using Equation (18) takes the form

12% {w, (4+5w), (28 + 13w), (104 + 13w), (104 + 25w), (280 + 36w), (600 + 36w),

(1064 + 20w), (1608 — 12w), (2104 — 50cw), (2400 — 74cw), (2400 — 74w), (2104 — 50w),
(1608 — 12w), (1064 + 20cw), (600 + 36cw), (280 + 36w), (104 + 25w), (28 + 13w),
(4+45w),w}. (19)
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1

y(x) = 109 {w+(4+5w)x+(28+13w)x + (104 + 25 w) % + (280 + 36 w) x*
+ (600 + 36 w) x° + (1064 + 20 w) x° 4 (1608 — 12 w) x” + (2104 — 50 w) x®

+ (2400 — 74cu)x -%(2400 74cu)x104—(2104 50 w) xM 4 (1608 — 12 w) x12

+
+ (1064 + 20 w) x'2 + (600 + 36 w) x'* + (280 + 36 w) x! +ﬂM+%wﬂw
+(284+13w)xV7 + (4 +5w) x! +wx”} (20)

or

y(x) = ﬁ <x2+1>5(1+x)7 (wxz—wa+w+4x).

Hence,

_ 1 2 2
y(x) = 1096 (1+x+x +x) (1+x) (wx —2wx+w+4x). (21)

3.3.1. Continuity

To find continuity of the scheme, further simplification of Equation (21) gives the Laurent
polynomial in the form

1+x+x2+2°
) = (B er(x),
where
alr) = {1024+(256+256)x *(m*m)x *(ﬁ*ﬁ)x *(aﬁﬁ)x

+<ﬂ+i) 11+(ﬂ_i>xw+ (E_&’%u(ﬁ_li“’)xs
256 = 256 128 128 256 256 32 512
+G§_EQXM(EL w)x+(§4wﬁ>5+cl+%ﬂﬂ
256 256 128 128 256 = 256 64 256
19 3w\ ;3 3\, (1

To check C° continuity, the scheme S, analogous to y(x), e1(x) should be convergent, where
‘ < 1. From Theorem 1, for

e1(x) should satisfy Theorem 1 with the given condition H% (Se;)

3775 <w < 4%5, we extract

1(S ) = 1max \w\ 7+E Ba 21 L SR iJrﬂ
4V T 4 1024 256 512 32|"|256 = 256 256 256
155 w 61
S = 2L S
256 256 256 256 128 128 128 128

which satisfies Theorem 1. Since the given condition satisfies Theorem 1, it must satisfy Theorem 2.
This shows that 5-point scheme is C continuous.
Now, for C! continuity, Equation (21) may be written as

2 3
o) = (P Yaw,
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or

() = (O (L 30N e (5 @) (@ 18) g0 (25w
2 - 256 64 256 64 64 64 64 64 256
32 256 32 32 32 32 32 256
(2 2 et (LB (2 9) ey (L39), @
64 256 64 64 64 64 64 256 256 |
To check C! continuity, the scheme S, analogous to y(x), ez(x) should be convergent, where

ez(x) should satisfy Theorem 1 with the given condition H% (Se,)
—57 < w < 71, we extract

‘ < 1. From Theorem 1, for
[ee]

_ LoaJIA 3wl |JY Se) 1B w | o
w 4 a 64 256 32 256 64 256 256’

23w w 13
+ + =+ +—r <L

5 w
—+

1
HZ (Ser) 64 ' 64

32 732 " |64 64

Since the given condition satisfies Theorem 1, it must satisfy Theorem 2. This means that the
scheme is C! continuous.

For C? continuity, Equation (21) may be written as

T+x+x2+x3
at) = (P Jaw,
or
e3(x) = LY (R I PN (S IV S O S (A P A
S 32" 16 64 4 2 R i 16 8

+ —ﬂ—i-é x4+1x3+ ﬁ—&-l x4 ﬂ-ﬁ-l x—&-ﬁ
32 4 2 64 4 32 16 64 )

To check C? continuity, the scheme S, analogous to (x), e3(x) should be convergent, where
es(x) should satisfies Theorem 1 with the given condition % (Ses)

< 1. From Theorem 1, for
(e}
—26 < w < 38, we extract

RO [ A B KA
w 4 64 (32 4] |64 4

which satisfies Theorem 1. This shows that the scheme is C2 continuous.
For C3 continuity, Equation (21) may be written as

L

73 (A [ A )
“ 1327 16| " |16 8 ’

T+x+x2+x3
) = (FEE e,
or

1 w 1 w 3 w w
ey(x) = {wwx“r(16+4>x6+(—16+4)x5+<—16+1)x4+(—16+1)x3

(L) e (L) e
16 1 161 6

—_
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To check C® continuity, the scheme S, analogous to y(x), es(x) should be convergent, where
es(x) should satisfy Theorem 1 with the given condition H% (Se,)
—24 < w < 36, we extract

‘ < 1. From Theorem 1, for

7

b

= 1max l|w\—0—‘£—1
4 16 16

LA A
o 16 4 16 4 ’
Since the given condition satisfies Theorem 1, it must satisfy Theorem 2. Thus, the scheme is C3
continuous.

For C* continuity, Equation (21) may be written as

T+x+x2+28
es(x) = (4)64(9(), (22)
or
1 w w
es(x) = {4wx4+x3+(—2+2>x2+x+4}.

To check C* continuity, the scheme S, analogous to 7(x), e5(x) should be convergent, where e5(x)

should satisfy Theorem 1 with the given condition H‘li (Ses) ‘
we extract

< 1. From Theorem 1, for -4 < w < 8,

1 1
L = 4rr1ax{2 |w|, ;)2‘} <1,

which satisfies Theorem 1. Since the given condition satisfies Theorem 1, it must satisfy Theorem 2.
Hence, the given scheme is C* continuous.

e

Now, for C° continuity, Equation (21) may be written as

o) = (HEEEES e,

Hence,

e(x) = {;(l—i-x)}.

‘ = 1rnax{1 1}<1
o 4 2'2 !

Since, from Theorem 2, we have

s

the scheme is C° continuous.
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3.3.2. Holder’s Regularity
To find Holder regularity, we use Theorem 3. The Laurent polynomial of the quinary scheme

using Equation (18) may be written as

1
1) = 1006 {w+ (4+5w)x+ (28 4+ 13 w) x* + (104 + 25w) x> + (280 + 36 w) x*

+ (600 + 36 ) x° + (1064 + 20 w) x°® + (1608 — 12 w) x” + (2104 — 50 w) x®

+ (2400 — 74 w) x° + (2400 — 74 w) x'° 4 (2104 — 50 w) xM 4 (1608 — 12 w) x12
+ (1064 + 20 w) x'3 + (600 + 36 w) x'* + (280 + 36 w) x™° + (104 + 25 w) x1©

+ (284 13w) 2V + (4+5w)x18+wx19},

5
y(x) = —— (1+x+x2+x3) e(x),
where

e(x) = (1+x)? (wxz—wa+w+4x).

If w = 2, we can get b = 8. Using Theorem 3 with m = 5and b = 8, we have r > 5 —log,(8)
=4.09691.

3.3.3. Limit Stencil
The matrix form of the scheme using Equation (18) has the form

r 77 99 501 11 1 .

) 2048 256 104 128 2088 Y .
[V, ] [ AT
-2 27 69 563 21 7 0 -2
v 2048 256 1024 128 2048 e
’]1 7 21 563 69 27 0 i1
A | 2088 128 1024 256 2048 Ay
] - 1 1 501 99 77 1
M 2048 128 1024 256 2088 0 M
)\] )L]_l
2 o 7. 9% s 11 1 2
A 2048 256 1024 128 2048 A1
-8 0 27 6 563 21 7 -
L 2048 256 1024 128 2048
and the local subdivision matrix
ro77 99 501 11 1 0
2048 256 1024 128 2048
27 69 563 21 7 0
2048 256 1024 128§ 2048
7 21 563 69 27 0
x_ | ©® T’ 102 2% 208
- 1 1 501 99 77 0 ’
2048 128 1024 256 2048
0 77 99 501 11 1
2048 256 1024 128 2048
0 27 69 563 21 7
L 2048 256 1024 128 2048
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which shows the size of the invariant neighborhood is 6. After simplification, matrix X has eigenvalues

11 1 1 1 .
/\ = 1, 1’167 64’ 256/ 1024 and elgenveCtOI'S
[ _ 45643 13 _ 3679 286,979 94 ]
796,637 17 9911 1,391,129 169
1 1 s 7 7 52171 19
1 796,637 17 S T390,129 169
i 1 7081 1 13 26369 _ 11
S 796,637 7 9911 1,391,129 169
& 1 9905 5 3 28201 4
A 796,637 17 901 1395129 169
2§6 1 — 34309 11 163 59,519 64
1052 796,637 17 901 1,391,129 169
1 1 1 1 1 1

After simplification on the same manner as presented in Section 3.1.4, we can get

i 1 1 1 1 1 1
[N, ] R
9 _ 45643 45643 45643 45643 45643 45,643 _
N 796,637 796,637 796,637 796,637 796,637 796,637 L
7 13 ! 13 13 13 13 1
Ay _ 17 17 17 17 17 17 Ay
A B _ 3679 _ 3679 _ 3679 _ 3679 _ 3679 _ 3679 AL
]1 9911 9911 99711 9911 9911 9911 ]1.71
Ag 286,979 286,979 286,979 286,979 286,979 286,979 )‘2
A 1391,129 1,391,129 1j391,129 1,391,129 1,391,129 1,391,129 At
- 91 o1 91 91 91 91 S
L 169 169 169 169 169 69 4

which shows that the limit stencils are stable/constant.

4. Results and Discussion

This section consists of three major parametric effects of the schemes presented by Equations (3),
(12), and (18).

4.1. Error Bound

This section presents the error between control polygon and limit curve after kth subdivision level
of 5-point binary, ternary, and quaternary subdivision schemes using different values mentioned in
Tables 1-3 by applying the approach of Hashmi [31]. The error is minimum over the interval w € [0, 8],
w € [0,15], and w € [0,25] for binary, ternary, and quaternary, respectively, and increases on both
sides of the intervals. In Tables 1-3, it is observed that increases in the arity of the schemes decrease
the error of the proposed schemes. Figures 1-3 illustrate graphical representation of error. Moreover,
the proposed computational cost decreases by increasing the arity of subdivision schemes. Therefore,
our experiments show that higher arity scheme are better than the lower arity schemes in the sense of
computational cost and error bounds.
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0.20

0.15

0.10

0.05

(. J/

Figure 1. Error bounds of binary scheme (Equation (3)).

Table 1. Binary scheme error bounds.

k 1 2 3 4 5 6
w €[0,8] 0.175000 0.087500  0.043750 0.021875  0.010938  0.005469
w= 0.239815 0.138643  0.080153 0.046338  0.026789  0.015488

w=-1 0.186290 0.096056  0.049529 0.025538  0.013168  0.006790
w=-2 0.225000  0.1125000 0.056250 0.0281500 0.0140750  0.00703850

0.12

0.10

0.08

0.06

0e(0,15)
0.044

0.02

- J

Figure 2. Error bounds of ternary scheme (Equation (12)).

Table 2. Ternary scheme error bounds.

k 1 2 3 4 5 6

w €[0,15] 0.083333 0.027778 0.009259 0.003086 0.001029  0.000343
w =16 0.088050 0.030437 0.010521 0.003637 0.001257  0.000435
w=-1 0.084496 0.028426 0.009563 0.003217  0.001082  0.000364
w=-2 0.085670  0.029085 0.009875 0.003353 0.001138  0.000386
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0.08

0.07

0.06 0=-1

005 o €(0,25)

0.04
0.03
0.021

0.01

Figure 3. Error bounds of Quaternary scheme (Equation (18)).

Table 3. Quaternary scheme error bounds.

k 1 2 3 4 5 6

w €[0,25] 0.054167 0.013542 0.003385 0.000846 0.000212 0.000053
w= -8 0.088050 0.030437 0.010521 0.003637  0.001257  0.000435
w=-1 0.054449 0.013665 0.003430 0.000861 0.000216  0.000054
w=-2 0.054732  0.013790 0.003474  0.000875 0.000221  0.000056

4.2. Continuity

This section describes the effects of parameters for the schemes in Equations (3), (12), and (18). The
order of continuity and effects of parameters w of the schemes are shown in Tables 4-6, respectively.
This can easily be found over the parametric intervals using the approach of Hassan [8].

Table 4. Continuity order of binary scheme (Equation (3)).

Scheme Parameter Continuity Scheme Parameter Continuity
Binary I<w< % Co Binary 2<w<6 C*
Binary I<w< % ct Binary 2<w<6 C°
Binary —-6<w<10 C? Binary O<w<?2 Co
Binary —-6<w<10 8 Binary w=1 c’

Table 5. Continuity order of ternary scheme (Equation (12)).

Scheme Parameter Continuity

Ternary % <w< 38—6 c?

Ternary —23 <w <31 ct

Ternary —14<w <22 2

Ternary -8 <w <16 c3

Ternary —4<w <12 ct

Ternary w = % co
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Table 6. Continuity order of Quaternary scheme (Equation (18)).

Scheme Parameter Continuity

Quaternary % <w < 4‘;% co

Quaternary 57 <w <71 ct
Quaternary —26 < w < 38 c?
Quaternary —24 < w < 36 c8
Quaternary —4<w <8 ct
Quaternary w =2 c®

4.3. Shapes of Limit Curves

The parametric effect and continuity of the limit curve of the schemes are shown in Figures 4-6,
respectively. These figures illustrate the role of free parameters when 5-point binary, ternary
,and quaternary approximating schemes are applied on discrete data point. One can see the
looseness/tightness of the limit curves in Figures 4-6 when the parameter values change.

e -
control point /’ Rconrol polgon

w=-8

& ‘% PRl J
3 &

Figure 4. Parameter effects on the limit curves with initial polygon of binary scheme.

( )

control point
\. «— control polygon|

w=-7

Figure 5. Parameter effects on the limit curves with initial polygon of ternary scheme.
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(" control point ontrol polgon )

0=-6 —>

(. J

Figure 6. Parameter effect on the limit curves with initial polygon of quaternary scheme.
5. Conclusions

In this work, we introduce the family of 5-point schemes which depict the representation of a
wide variety of shapes with high smoothness (continuity) and less computational cost (processing
time). These properties are useful in computer aided geometric design and geometric modeling. We
apply Laurent polynomial to analyze our schemes. The shape parameter w makes it able to provide
different results along with its applications.
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Writing—review and editing, K.S.N. and S.A.A.K.; All authors have read and agreed to the published version of
the manuscript.
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