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Abstract
A simple scheme is proposed for computing N×N spectral differentiation matrices of
fractional order α for the case of Legendre approximation. The algorithm derived here
is based upon a homogeneous three-term recurrence relation and is numerically
stable. The matrices are then applied to numerically differentiate.
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1 Introduction
In the last few decades, applied scientists have outstretched new models that include frac-
tional derivatives, fractional differential equations (FDEs). The classical and modern dy-
namical systems modeled by FDEs in physics, engineering, signal processing, fluid me-
chanics, and bioengineering, manufacturing, systems engineering, and project manage-
ment can be observed in the recently published book [1]. They indicated that non-integer
order derivatives are very appropriate for the explanation of properties of various real
materials. Also, it has been exhibited that new order-fractional models are more sufficient
than previously applied order-integer ones. In [2–6], the existence and uniqueness of so-
lutions to FDEs have been given. Besides, the authors of [7–13] have published some new
results of fractional operators and their applications. In general, it is impossible to gain
analytic solutions of FDEs. Therefore, we have to trust in linearization/discretization and
numerical integration to attain approximate solutions, see, e.g., [6, 14–17]. Moreover, the
applications of series solutions for solving some types of FDEs can be observed in [18–20].

The differentiation matrices have been extended in the last few decades. It has been
demonstrated that they are a useful tool in numerical integrations [21, 22]. Those could
approximate derivatives by differentiating trial or cardinal basis functions through collo-
cation points. It is noted that these matrices are both dense and very sensitive to rounding
errors.

The explicit formulas for the order-integer derivatives of Legendre approximation al-
ready exist. Moreover, the authors of [17] proposed a fractional operational matrix based
on the shifted Legendre polynomials on the interval [0, 1]. In this article, we present a
numerical algorithm for computing Legendre spectral differentiation matrices of order-
fractional α (LFDMs) on the interval [0, T]. This algorithm is based on a homogeneous

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02590-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02590-4&domain=pdf
mailto:aghorbani@um.ac.ir


Ghorbani and Baleanu Advances in Difference Equations        (2020) 2020:138 Page 2 of 9

three-term recurrence relation similar to the Legendre recurrence formula and is numer-
ically stable. The proposed LFDMs are then utilized to numerically differentiate.

2 Preliminaries and definitions
First here we give some basic definitions and properties of the fractional calculus theory,
the details of which can be found in [6, 23].

The Riemann–Liouville fractional integral operator of order α ≥ 0, of a function f (x) is
defined as follows:

D–αf (x) =
1

Γ (α)

∫ x

a
(x – t)α–1f (t) dt, x ∈ [a, b]. (1)

Properties of the fractional integral operator can be found in [6].
The fractional derivative of f (x) in the Caputo sense is defined as follows:

Dαf (x) =
1

Γ (m – α)

∫ x

a
(x – t)m–α–1f (m)(t) dt, x ∈ [a, b], (2)

for m – 1 < α ≤ m.
Also, we require here four of its main properties [6]:

Dαc = 0, c is a constant, (3)

Dαxβ = 0 for β ∈ {0, 1, . . .} and β < �α�, (4)

Dαxβ =
Γ (β + 1)

Γ (β + 1 – α)
xβ–α for β ∈ {0, 1, . . .} and β ≥ �α�, (5)

Dα
(
λf (x) + μg(x)

)
= λDαf (x) + μDαg(x), (6)

where �α� denotes the ceiling function, the smallest integer greater than or equal to α, and
λ and μ are constants.

The standard Legendre polynomials (LPs) are determined by the following three-term
recurrence formula:

Li+1(x) =
2i + 1
i + 1

xLi(x) –
i

i + 1
Li–1(x), i ≥ 1, x ∈ [–1, 1], (7)

where L0(x) = 1 and L1(x) = x. Here we define the shifted Legendre polynomials Pi(x) =
Li( 2

T x–1) on the interval [0, T]. Until further notice x ∈ [0, T] and x = 2
T x–1 (for simplicity

of statements). The general form of the shifted LP of order i is given by the sum:

Pi(x) =
�i/2�∑
k=0

(–1)k(2i – 2k)!
2ik!(i – k)!(i – 2k)!

xi–2k , i > 0, (8)

where �i/2� denotes the floor function, the largest integer less than or equal to i/2.
Let Λ = (0, T). The set of shifted LPs is the L2(Λ)-orthogonal system in Λ, i.e.,

∫
Λ

Pi(x)Pj(x) dx =
(

2i + 1
T

)–1

δij, (9)
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where δij is the Kronecker symbol. Thus, for any v ∈ L2(Λ), we have that

v(x) =
∞∑

n=0

v̂nPn(x), v̂n =
2n + 1

T

∫
Λ

v(x)Pn(x) dx. (10)

Here, the set of all algebraic polynomials of degree at most N , i.e., πN (Λ) = span{P0, . . . ,
PN }, is denoted by πN . We consider the orthogonal projection PN : L2(Λ) → πN . For any
v ∈ L2(Λ), it is defined by [24]

(v – PN v,φ) = 0 for any φ ∈ πN (11)

or, equivalently,

PN v(x) =
N∑

n=0

v̂nPn(x). (12)

A complete proof on estimating the difference between v and PN v is given by Guo [24].
Now from (12) we have

v(x) =
N–1∑
k=0

v̂kPk(x) = V TΦ(x), (13)

where the shifted Legendre coefficient vector V and the shifted LP vector Φ(x) are given
by [̂v0, . . . , v̂N–1] and [P0(x), . . . , PN–1(x)], respectively. We can express by dΦ(x)

dx = DΦ the
derivative of the vector Φ(x), where D is the N × N sparse first order Legendre spectral
differentiation matrix. The coefficients of the matrix D are given by

Di+1,j+1 =
2(2i + 1)

T
, i = 0, 1, . . . , N – 2, j = i + 1, i + 3, . . . , N – 1. (14)

3 Legendre fractional differentiation matrices
First of all, we require a set of N collocation points x0, . . . , xN–1 ∈ [0, T] for comput-
ing LFDMs. In this work, we consider the Legendre–Gauss–Lobbato nodes (LGL) xk ,
k = 0, 1, . . . , N – 1. In this case, x0 = –1, xN–1 = 1, and xk , 1 ≤ k ≤ N – 2 are the roots of
the first derivative of the standard LP of (N – 1) order. Since any interval [a, b] may be
scaled into [–1, 1], therefore we can obtain the LGL nodes on the desired interval.

Assume that we have the value v = (v(x0), . . . , v(xN–1)) and we want to approximate
derivatives of order α at those points, i.e., v(α) = (v(α)(x0), . . . , v(α)(xN–1)). One scheme is
to use the polynomial interpolation at the grid points xk and then analytically differentiate
it and evaluate these derivatives at the same points. The other scheme is to replace poly-
nomials by linear combinations of shifted LPs. In either case, then there is a matrix Dα

such that

v(α) =
dαv
dxα

= Dαv. (15)
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The concept of a collocation derivative operator based on trial basis functions is asso-
ciated with a finite expansion such as

v(x) ≈ vN–1(x) =
N–1∑
j=0

v̂jφj(x), (16)

where the functions φj(x) form a complete set of the approximating space πN–1. Here we
consider v : [0, T] → R and φj(x) = Pj(x), j = 0, 1, . . . , N – 1, i.e., the shifted LPs on the in-
terval [0, T]. As a result, the function v(x) can be represented in the spectral form

v(x) =
N–1∑
k=0

v̂kPk(x), x ∈ [0, T]. (17)

Now, using Eqs. (3)–(6) in Eq. (8), we have

P(α)
k (x) = 0, k = 0, 1, . . . , �α� – 1. (18)

Also, applying the above-mentioned spectral differentiation matric D, we get

v′(x) =
N–1∑
k=0

v̂kP′
k(x) =

N–1∑
k=0

(D̂v)kPk(x). (19)

First, let us consider α ∈ (0, 1). Substituting (19) into (2), according to (6), we get

Dαv(x) =
1

Γ (1 – α)

N–1∑
k=0

(D̂v)kJk(x), x ∈ [0, T], (20)

where

Jk(x) =
∫ x

0
(x – t)–αPk(t) dt, x ∈ [0, T]. (21)

In a similar way to [25], substituting N values of xk , k = 0, 1, . . . , N – 1, into (20), we can
obtain the fractional derivative formulation as follows:

Dαv(x) =
1

Γ (1 – α)
JDP–1v(x), (22)

where D is as noted in (14) and P is the following matrix of the values of LPs Pk , k =
0, 1, . . . , N – 1, at the vector x ∈ [0, T]:

P =
[
P0(η), . . . , PN–1(η)

]
, η =

2x
T

– 1, –1 ≤ η ≤ 1, (23)

which can be easily calculated based upon the recurrence formula of the standard LPs.
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The remaining problem is the estimation of Jk(xi) for i, k = 0, 1, . . . , N – 1. This can be
done using a homogeneous linear recurrence relation, as we shall illustrate in the following
theorem. Deriving this recurrence relation is based on the properties of LPs.

Theorem 1 The sequence Jk(x), k = 0, 1, . . . , N –1, for x ∈ [0, T] satisfies the following linear,
homogeneous, three-term recurrence relation:

[
1 +

1 – α

k + 1

]
Jk+1(x) =

2k + 1
k + 1

xJk(x) –
[

k
k + 1

–
1 – α

k + 1

]
Jk–1(x), k ≥ 2, (24)

with starting values

J0(x) =
x1–α

1 – α
, J1(x) =

px2–α

(2 – α)(1 – α)
+

qx1–α

1 – α
, (25)

J2(x) =
3p2x3–α

(3 – α)(2 – α)(1 – α)
+

3pqx2–α

(2 – α)(1 – α)
+

1
2

(3q2 – 1)x1–α

1 – α
, (26)

where p = 2
T and q = –1.

Proof Let

I =
∫ x

0
(x – t)–α

(
1 – t2)P′

k(t) dt. (27)

Using the identity

(
1 – x2)P′

k(x) =
k(k + 1)
2k + 1

[
Pk–1(x) – Pk+1(x)

]
, (28)

we can write (27) in the form

I =
k(k + 1)
2k + 1

[
Jk–1(x) – Jk+1(x)

]
. (29)

On the other hand, by means of the following properties of the Legendre polynomi-
als

Pk+1(x) =
2k + 1
k + 1

xPk(x) –
k

k + 1
Pk–1(x), (2k + 1)Pk(x) = P′

k+1(x) – P′
k–1(x), (30)

and by integration by parts of equation (27), we gain

I = –
k(k + 1)

1 – α
xJk(x) +

k(k + 1)2

(2k + 1)(1 – α)
Jk+1(x) +

k2(k + 1)
(2k + 1)(1 – α)

Jk–1(x). (31)

Now, equating (29) and (31) yields the desired recurrence relation (24). The starting
values can be readily calculated directly. �

In view of (22), LFDM in a physical form is given by

Dα
p =

1
Γ (1 – α)

JDP–1, α ∈ (0, 1), (32)
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and also, for a spectral form, we have

Dα
s =

1
Γ (1 – α)

P–1JD, α ∈ (0, 1). (33)

For the case α > 1, LFDMs will be

Dα
p =

1
Γ (1 – β)

JD(r+1)P–1, Dα
s =

1
Γ (1 – β)

P–1JD(r+1), 0 < β < 1, (34)

where r = �α� and β = α – �α�.
Note that the Legendre fractional integration matrices can be derived in an analogous

way. So, for α ≥ 0, the fractional integration matrices in physical and spectral forms will
respectively be as follows:

Iα
p =

1
Γ (α)

JP–1 and Iα
s =

1
Γ (α)

P–1J , (35)

where the matrix J can be computed from (24)–(26) with α → 1 – α.

4 Application of LFDMs
Here the results of two numerical tests are given by using Matlab 7 in double precision.

The fractional differentiation of the functions (x + 1)3 and ex was selected to verify the
correctness of LFDMs. That is because the fractional differentiation of those functions is
given by [15]

Dα
[
(x + 1)3] =

6x�α�–α

Γ (4 – �α�)Γ (�α� – α + 1) 2F1
(
1, �α� – 3; �α� – α + 1; –x

)
(36)

and

Dα
[
ex] = x�α�–αE1,�α�–α+1(x), (37)

which is used to compare the outputs gained by the above-mentioned method. In the
above expressions En1,n2 and 2F1 are respectively the two-parameter Mittag-Leffler func-
tion and Gauss’s hypergeometric function. When α = 0.5, 1.5 and T = 1, the absolute er-
rors (‖Dα

p v(x) – Dαv(x)‖∞) for the fractional differentiation are separately shown in Figs. 1
and 2.

Now we consider the following two examples of the fractional differentiation [26]:

Dα
[
(x + 1)α–1] = –

x1–α

(x + 1)Γ (1 – α)
, (38)

and

Dα
[
J0(2

√
x)

]
= x–α/2J–α(2

√
x) –

x–α

Γ (1 – α)
, (39)

where α ∈ (0, 1] and Jν(·) is a Bessel function of the first kind. As before, the numerical
results of the fractional differentiation for different values of α are reported in Table 1.
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Figure 1 Accuracy of the 0.5-order Legendre spectral derivative for two functions (x + 1)3 and ex

Figure 2 Accuracy of the 1.5-order Legendre spectral derivative for two functions (x + 1)3 and ex

Table 1 Accuracy of Legendre spectral derivative of the different orders for two functions (x + 1)α–1

and J0(2
√
x)

N Dα [(x + 1)α–1] Dα [J0(2
√
x)]

α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75

5 1.34×10–4 2.31×10–4 2.34×10–4 1.30×10–7 5.64×10–7 1.72×10–6

10 2.00×10–8 3.69×10–8 4.13×10–8 8.88×10–16 8.88×10–16 2.77×10–15

15 3.00×10–12 5.68×10–12 6.79×10–12

20 7.77×10–16 2.55×10–15 2.02×10–15
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5 Conclusion
Based on the shifted Legendre polynomials, we proposed an easy procedure for calculat-
ing spectral integration/differentiation matrices of the arbitrary order α. The developed
algorithm is based on a three-term recurrence relation, which is numerically stable. In
order to demonstrate the efficiency of the presented results, four examples of numerical
differentiations were given, and the present method performed excellently. Besides, the
promising results obtained in the present paper can further be used for solving fractional
order problems.
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