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Abstract: The key purpose of this study is to suggest a
new fractional extension of Hermite-Hadamard, Hermite—
Hadamard-Fejér and Pachpatte-type inequalities for
harmonically convex functions with exponential in the
kernel. Taking into account the new operator, we derived
some generalizations that capture novel results under
investigation with the aid of the fractional operators. We
presented, in general, two different techniques that can
be used to solve some new generalizations of increasing
functions with the assumption of convexity by employing
more general fractional integral operators having expo-
nential in the kernel have yielded intriguing results. The
results achieved by the use of the suggested scheme
unfold that the used computational outcomes are very
accurate, flexible, effective and simple to perform to
examine the future research in circuit theory and complex
waveforms.

Keywords: convex function, harmonically convex func-
tions, Hermite-Hadamard inequality, Hermite-Hadamard-
Fejér inequality, Pachpatte-type inequality

1 Introduction and preliminaries

The Hermite-Hadamard inequality is a well-known, para-
mount and extensively used inequality in the applied
literature of mathematical inequalities [1-17]. This
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inequality is of pivotal significance, because of other
classical inequalities, such as Hardy, Opial, Lynger,
Ostrowski, Minkowski, Hoélder, Ky-Fan, Beckenbach-
Dresher, Levinson, arithmetic-geometric, Young, Olsen and
Gagliardo—Nirenberg inequalities, but the most distin-
guished inequality is the Hermite-Hadamard-type in-
equality [18,19], which is stated as:

P['b + '72)
2

Inequality (1.1) and its generalizations, refinements,
extensions and converses have many applications in different
fields of science, for example, electrical engineering,
mathematical statistics, financial economics, information
theory, guessing and coding [20-23]. Convexity has played
a crucial role in the advancement of different areas of science
and technology. Due to its robustness, convex functions and
convex sets have been generalized and extended in various
areas. It has been proved that a function is convex, if and
only if, it satisfies an integral inequality (1.1). In the present
scenario, we propose an innovative class of functional
variants for harmonically convex functions and several other
generalizations for the convexity theory as novel fractional
operators with the exponential kernel are new and effectively
applicable.

In [21], Fejér contemplated the important general-
izations that are the weighted generalization of the
Hermite-Hadamard inequality.

Let 7 <R and a function £ : 7 - R be a convex
function. Then, the inequalities

1,
n+n
P(Tj IQ(z)dZ <

m m

7)(’71) + P (1)
o f Pz @)

m

(1.2)
P(’h) + 7)(’12) J’Q( ydz

m

hold, where Q : 7 — R is non-negative, integrable and
symmetric with respect to -2
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In [24], Pachpatte presented two novel versions of
Hermite-Hadamard variants for products of convex
functions as follows.

Let #,Q : I - R be two non-negative and convex
functions, then

m
e e el IO L
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Iscan [25] gave the concept of harmonically convex
functions.

Definition 1.1. [25] Let a real interval X ¢ R\{0} and a
function # : K — R is said to be harmonically convex, if

Xy
P L A—
((X + 1 -0y
for all x,y € K and ¢ € [0, 1]. If inequality (1.4) holds in

the reversed direction, then # is called the harmonically
concave function.

j <P +A-0OPX) (13)

It is worth mentioning that the Jensen harmonic
convexity has applications in the electrical circuit theory
and other branches of sciences. It is known that the total
resistance of a set of parallel resistors is obtained by
adding up the reciprocal of the individual resistance
value and then considering the reciprocal of their total.
For example, if s; and s, are the resistance of two parallel
resistors, then the total resistance

1 5152
1 N
S1+ S

which is half of the harmonic mean. The “conductivity
effective mass” of a semiconductor is also defined as the
harmonic mean of the effective masses along with the
three crystallographic directions. Also, harmonically
convex functions have unwanted higher frequencies
that superimposed on the fundamental waveform
creating a distorted wave pattern [26].
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Definition 1.2. [25] A function £ : K ¢ R\{0} - R is

said to be harmonically symmetric with respect to 2y

o+’
if

(1.4)

holds for all z € 1.

A few decades ago, classical calculus has been
revolutionized by tremendous innovations. The study of
differentiation and integration to a fractional order has
caught importance and popularity among researchers
compared to classical differentiation and integration.
Fractional operators used to illustrate better the reality of
real-world phenomena with the hereditary property. For
instance, various applications and comprehensive strategy of
the fractional calculus are addressed in the works of Baleanu
et al. [27], Miller and Ross [28] and Kilbas et al. [29]. A good
review of different fractional operators can be found in ref.
[22,23,27,30-33]. It has been proved that differential equations
with fractional order process more accurately than integer-
order differential equations do, and fractional arrangers
provide excellent performance of the description of hereditary
attributes than integer-order arrangers. Applications can be
found in complex viscoelastic media, electrical spectroscopy,
porous media, cosmology, environmental science, medicine
(the modeling of infectious diseases), signal and image
processing, materials and many others.

Moreover, fractional integral inequalities have sev-
eral applications in scientific areas that can be found in
the existing literature, see ref. [22,23,34-43]. The uses of
variants in applied sciences are generally studied and
now it is a profoundly appealing research-oriented area
where the researchers also investigate the existence and
uniqueness of the solutions of fractional differential
equations. Adil Khan et al. [1] derived the Hermite—
Hadamard inequality for s-convex functions. Rashid et al.
[44] contemplated weighted generalizations of Hermite—
Hadamard inequalities for extended generalized Mittag—
Leffler functions as fractional operators.

Following the aforementioned trend, we use the
fractional integral operator for the integrable functions
to establish Hermite-Hadamard, Hermite—Hadamard-
Fejér and Pachpatte-type integral inequalities for har-
monically convex functions. Additionally, several other
generalizations by a more general fractional integral
operator having exponential in the kernel are deliber-
ated. Our consequences are more fascinating and
effectively applicable than the existing ones. Finally, a
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complete agreement is achieved between the proposed
method and inequalities for convexity to manifest about
the performance and applicability of the more general
operator.

Here, we recall some concerned definitions from the
existing literature.

We now demonstrate some essential ideas asso-
ciated with the fractional integral, which is mainly due
to Ahmed et al. [2].

Definition 1.3. [2] Let # € Ly([n;, n,]). The fractional
integrals Xh and J Xlz of order y > O are stated as:

r

TIPE) =+ j e FOP@E)dS, r>8  (15)
y

m

and
1 m
TP == j eV ONPS)ds, r<b.  (L6)
y

r

Furthermore, we introduced the more general con-
cept of the fractional integral operator having exponen-
tial in the kernel as follows.

Definition 1.4. Let # : 7 - R, (0 < 1, < n,) be a func-
tion such that # be a positive and integrable, also ¥ be a
differentiable and strictly increasing on (1,, n,). Then, the
fractional integral operators XI;LP and J %;‘V of order
y > 0 are stated as:

j,yﬂw?)(r) = % I e’%”‘””*"‘“”‘l”(&)?(&)d5, r>68 (1.7)

m

and

m
J%i‘l/?(r) — l J. e—l;y(w(ﬁ)_\y(’))\P’(S)P(ﬁ)dﬁ, r<é. (1.8)
4

r

Next, we define the one-sided definition of a more
general fractional integral operator having exponential
in their kernel as follows.

Definition 1.5. Let # : 7 - R, (0 < 1, < 1,) be a func-
tion such that P be a positive and integrable, also ¥ be a
differentiable and strictly increasing on (1,, n,). Then, the

one-sided fractional integral operator J ,’;;\" is stated as:
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TEEP(r) =

r
1 j e OV Y §)P(8)dS, 1> 6. (1.9)
y
0

Throughout Sections 2 to 4, we set 9 = I'Ty (%)
2

2 Hermite-Hadamard-type
inequality for Harmonic convex
functions using fractional
integral having exponential in
the kernel

In this section, we derive the Hermite—Hadamard

inequality for harmonically convex functions in the
frame of a new fractional integral operator as follows.

Theorem 2.1. For y > 0 and let there is a positive function
P : I cR\{0} - R withn, >n, and P € Li([n,, n,]). If P
is a harmonically convex function on I, then

2, 1-y 1
P < TJhH-P - Q)| —
[nl + ’12} 2(1- e_s)l: ’77 ( )(’12]

LT o a)[iﬂ
7] n

< Pmny) + Pn,)
2

(2.1)

’

where Q(r) = %, re [nl’ H
2 1

Proof. By utilizing harmonically convexity of £ on 7, we
have for every zj, z, € 7 having { = %,

P[ 2212 JS P(z1) + 7)(22),
I+

5 (2.2)

mh 2 = mn
T+ (-Om’ 2~ e+ A-On,

230[ 2,1, ]S 7)[ W, ]
nLmtn (’72 +(1- ()?’[1
UYP
Pl—I.
((’11 +(1- ()’bj

Conducting product on both sides of (2.7) by e %,
then integrating with respect to { from 0 to 1, we get

choosing z; = , takes the form:

(2.3)
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s

r
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and established the first inequality.

For the proof of the second inequality in (2.1), we
first note that if £ is a harmonically convex function,
then, for { € [0, 1], it yields

i,
pl— b | rp 1- 0P
[(’lz - ()rh] <{Pny) + A -OPm,)

and

YA
pl— L | _rp 1- 0P
[(’71 - ()’b\J <{Pm,) + (1 -OPmy)

By adding the above inequalities, we have

M, mn,
P P
{(’b + (1 - ()nl] ' [Cm +(1- ()nz] (2.4)

<P + Py

Then, multiplying on both sides of (2.4) by e % and
integrating the inequality with respect to ¢ from O to 1,
one obtains

1 1
scp( Ml jd 9(@[ i, Jd
-([e [(nﬁ(l—{)m “le y+ Q- On, J
1
<[Pny) + Pny)] I e ¥d¢.
0

As a result, we have

y[ﬂj{ﬂl (@ - Q)[ij + IV (P o Q)[iﬂ
n-1n "1 1, 2 n

_ 9
<! (P + Pl
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The proof is completed. O

Remark. In the limiting case, when y — 1, observe that
1-y

lim _
y=1 2(1 - e‘l;y(”rzﬂgl)) 2()‘[2 - ’11)

which is proposed by Iscan in [34].

3 Hermite—Hadamard-Fejér-type
inequality for harmonically
convex functions

In order to prove our main result, we need the following
lemma which will help us in proving the Hermite—

Hadamard-Fejér-type inequality.

Lemma 3.1. For y>0 and let there is a function
Q : 7 < R\{0} — R integrable and harmonically sym-

metric with respect to "1"2 , then

T(y@- w(m]
-I1,y@ - (”)(nz]
e o]

1
, Z €
|:'1 ’71:|

Proof By the given assumption and substituting

(3.1)

wherey > 0 and U(z) =

(= ”— + ”— - z in the following integral and performing
1 2

some computation we get

7y, y@- |k -

1
,le m m 3.2
n
= 1 J‘ e’s(( 'le)Q(l)dz
V4 z
m
JT QU
MO [ ]
the required result. O
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Theorem 3.2. For y > 0 and let there is a harmonically Applying Lemma 3.1 on the left hand side of (3.6),
convex function P :I<R\{0} >R such that we have
P e Li([n;, n,]) with n, > n, and ny, n, € 1. Also, if there
is non-negative, integrable and harmonically symmetric mn, 2mn, y 1
1 s g Y Sy — 2P| = TV Qo U)| —
with respect to %, then ~-h b+t ("l) b
1+
1
y R =
{2 o7 @ of2) e @l vapy@ewfz]
L+ (rTl) . (,le) m 2 1 (3.7)
1
<|g7, Q- w[i] + TV PQ . w[ij (3.3) < gy (pQ ’Ll){—j
(’Tl) o (niz) h n,-1n ('Tl) 2
Py +PL)| [Lj y M} 1
< TV Qe — |+ T @)=, y . L
5 (m) ,12 ('le) 711 +j(ni2)+(7)Q Uu) m .

=1 11
where U(z) = 7,z E[ ’ ] For the proof of the second inequality in (3.3),

. . . -9 mn.
Proof. Since P is a harmonically convex function on 7, we multiplying on both sides of (2.4) by e %Q ( G+ éfm)
have inequality (2.4) for all { € [0, 1]. Multiplying on both and integrating the inequality with respect to { from

sides of (2.4) by e¥Q (QL) and then integrating O © 1, we obtain

p+(1=-m
the inequality with respect to { from O to 1, we obtain j- o [ Wi, ] ( Wi, jd(
e
G+ A -0n) (g +0-Ony
2?{ 20,1, j I e-sm[( r?lnz . Jd( ,
o)) T L ¥ P
L ! G+ 0 -om) G 0-om )"
< jeﬂf@{ Wb __pl MW lgr (3.4) i
i, + Q- On i, + Q- On < -9 ( iYP) ]
<[Pm) + Pl | e¥Q| ——-2——|d¢.
(1) ! ? ! G+ 1 -Om
o 1 + = my ) (4 + (1= O, Again, setting z = %219 a0 after simple calcu-
102
Setting z = @+ A-Om g utilizing that Q is harmo- lations, we conclude the second inequality (3.3). O
102
nically symmetric, we have Remark 3.1. In Theorem 3.2:
3[;11;1'22 (1) If one takes y — 1, then one has Theorem 4 in [35].
2mn, P[ 2mn, J I e[},"z",l,?f (z—,,iz)] al- 11 dar (2) If one takes Q(r) =1 and y — 1, then one has
m-m \m+tm) 4 wtm~? Theorem 2 in [35].
5 1 5]
12,
| G <za>1a(1)p[%}z<3.5) —
LI Zolwtw 4 Pachpatte-type inequalities for
e harmonically convex functions
.\ J e(n;f#f(szz))a(l)p(z)dz.
i Z/ A\ Theorem 4.1. For y > 0 and let there are two harmoni-
cally convex functions P, W : I < R\{0} —» R such that
It follows that P, W e Li(lny, n,]) withn, > ny and n;, n, € I, then
2,1,y [%’bj y [lj ymn [1] [1] 1 1
—P| — T \HQ > U)| — U gyl W =y FY e 2w =
n-n ) (h) 1 n-ml" () 1, (%) \m m
mMn, 1 92 -29+4-(92+29+4)e? (4.1)
Sy——| I, (PQ - 71){—} 3.6 :
y']z - ’71{ ('111) m (3.6) < Y0t 1) 293

9-2+e3%9+2
# T (P w{lﬂ. N ) g

n 1
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and

1, 1-y [IJ [IJ

2P < IV Pl — W] =

[’11 + ’bj 201 - es)[ ('Tl) m m
+J7

1 1
2| = |w| =
() ['IJ [mﬂ
92 -29+4-e992+29 +4)
n
292(1 - e9)

9-2+ (O +2e?
92(1 - )

(4.2)

Yoy, 1)
(M5 15)s

where
Yi(ny, 1) = [P W) + Pn,) Win,)] (4.3)
and

B, 1) = [P W) + Plp) W) . (4.4)

Proof. Since £ and ‘W are harmonically convex
functions on 7, then, for { € [0, 1],

7)( mn, J(W[ YP J
(rlz +(1 - ()rh (rlz +(1- ()rll

(4.5)
<CPmY)Wn) + (1 - (PP Wn,)
+¢A - OPH)Wh,) + Pn,) W)l
and
50( mn, jw( mn, j
y + (1= On, ny + (1= On, 46)

<P M) W) + (1 - (PP W)
+{(1 - P W) + Plp) Wnl.

Adding (4.5) and (4.6), we have
ettt
g, + (1= i, + (1=

P( 771’12 j(w( ’71’12 j (4.7)
(’71 +(1- C)rlz (rll +(1- C)rlz

<Q02-20+ D[P W) + P) Wn,)]
+200 - OP) W) + P,) W) 1.

Multiplying on both sides of (4.7) by e-% and integrating
the inequality with respect to ¢ from O to 1, we have

1
~9¢ mn; M
{e P(c’nﬁ(l—()m)(W((nﬁ(l—(ml)d(
1
~9¢ s ) ( iy )
" {e P((nﬁ(l—()nz w S+ 1-Omn, d¢

1
<[P W) + PO W) [ e %242 - 24+ )df
0
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1

+2AP(Y W) + P W] [ %22 -2 +1)
0

x {1 - d¢

Consequently, we get

nzy cibnl {j(yi)go [nizj(w[’lij ' j(ynlz v [HLJ(W[H%H

(1-e9(92+29 +4)
293

9-2+e3%09+2
93

< [PO) W) + Pn) Win,)]

+ [P(Th)(w(rlz) + P(T[z)(W(Tll)]

P2 -29+4-e%92+29+4)
293
9-2+e3%09+2
93 ’

=Y4(1y, 1)
+ YZ("lp 712)

which completes the proof of (4.8).

Furthermore, we prove inequality (4.2). By utilizing
the harmonically convexity of the functions £ and W
on 7, we have for all z;,2, € T

,P( 212 jg P(z) + P(2) 48)
21+ 2 2
and
(W[ 2212, JS W(z) + (W(Zz). 4.9)
2+ 2 2
ituti - Mmh - M
Substituting z = TR and z = -0
we have
49[,[ 21, jw{ 2nn, j
ntn nt+n
_ P( My JW( T, j
i+ A -0On n, + 1 -On
P N, mn,
G+ (1= On, G+ (1= On,
P mn, mn,
G+ 1= Omy G+ 1=,
+ 7_) 721712 721712
f + A -n, G, + A=y

_ SD( Y }W( mn, J
m,+ A -0On i, + 1 -0On

70[ mn, J,W[ mn, J
G+ (- On, G+ (1 - On,
+((2+ Q- OHPM) W) + Pn) Wn,)]
+20(1 - OP) W) + P,) W)l
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_ SD[ UYP) ]‘W{ UYP J
(’72 +(1- ()771 (722 +(1- ()rll

'P[ mn, j,w( mn, J (4.10)
g+ (1= Ony g+ (1= Ony

+ (267 = 20+ DYo(my, 1) + 26(1 = ) Yay, 1,)-

Multiplying on both sides of (4.11) by e% and then
integrating the resulting inequality with respect to
¢ € [0, 1], we have

4(1 - e‘S)P[ 2, j(w( n,m, J
) mnt+n nt+n

1
< I 6'8{7)[ mn, ](W'[ mn, ]
o n, + Q-0 G, + (1- Oy

mn, LYP
w d
P[(”h +01- ()Tbj [()’[1 +01- ()rlzj} d

1

%oy, 1) j e (242 - 2¢ + 1d{

0

1 (4.11)
+ 260 m) j ¢ - Odg
0

_ I | gy p[i](w[i]
nL-n ('Tl) m, 1,
+9J7

a6

92 -29+4-(92+29 +4)ed
+ o
9-2+ 09 +2e?®
+—
93

L1y, 1)
(15 115)s

after suitable rearrangements, we get the desired
inequality 4.2. O

Lemma 4.2. For y > 0 and let there is a differentiable
function P :7<R\{0} DR on I° such that
P e Li([ny, n,)) withn, > n, and n;, n, € 1. Also, if there
is a non-negative, integrable and harmonically symmetric

with respect to 2 then

m+n’

Py + P,)
2

m

+ T Qe u)[iﬂ
(sz) n

TR -

URCE w[ij

7 2

S
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-Smny

¢
'[ emn-mn ('111_5) (@Q o U)(6)dé

Y

]
[ SN

X (P o U)'(O] 1)

1 /1

m 1
1 I j e (-5)(@ - 14)(6)ds
e

x (P o U)'($)d]T,

where U(z) = %, Z € {1, 1}.

Proof. Consider

-1

¢
I enit(h0)(@ o U)(6)ds
y

— — |

x (P o U)'(()d(]

1 1
n

f rj enti (1)@ - U)(6)ds

1
mn

(4.13)

4

X (P o U'(()]d{ =L - L.

¢
j e (59)@ o U)(6)d8 (@ - U)()dC

¢
I eni (59)(Q o U)(6)dS |(P » UY(()

-9ny

_ I e (19(@Q o U@ o UY()dS

1 -9my

e, (u)[_J I en (1)@ » U)(6)d5

n

-Snyn

enti (1)@ - U)(Q)d(
= |:7)(rl1)jy1

@- wH g, Pa fm[iﬂ,
(m) m () n

taking into account Lemma 3.1, we have

5 O —
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Pn,)

1 1
L=—397 (@QU|—|+T)\(Q°U|—
2 { ()" {m} ()¢ )[nzﬂ

-7 Q- W){l}

7] rll
Analogously,
) wl¢
=l [ | [erittla@ - w@as|@ - wds
y 4
¢ \n
_ P IV Qo (m(lJ +J7,4Q o (u)(iJ
2 ) n (%) 1,
~ g PQ W)H-
('Tl) m

Substituting I and L in (4.19), then we get the
desired identity (4.12). O

For the sake of simplicity, we symbolize

A'i L (P, Q,U;9) = M{jzl)(g} ° (L{)(i]

e 2 ny m

pgo-ofd]
[yra-af2)

+ g7, )+(7>a o fu)(lﬂ.

(nz 1

Theorem 4.3. For y > 0 and let there is a differentiable
function P : 7 < R\{0} — R on I °(the interior of I') such
that P' € Li([n;, n,]) with n, >n, and n,, n, € I. Also,

there is a continuous and harmonically function
Q : I -> R symmetric with respect to nz"% If |P'] is
1 2

harmonically convex on I, then

- 1Qllom (1, — my)
= y (4.14)

‘Aﬂ (P, Q,U;I)

n’n

(AP ()] + AP ()],

sup |Q({)],
nemn,n,]

where |Q|ls =

z —9(1-x) _ -9
| [ R
(an +(1- K)rh)

e—SK _ e—S(l—K)

—xd
i+ (-2

K +

NN

and
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e—S(l—K) _ e—SK

A= | | ————
2 (kn, + (1 — x)n)?

(1-x)dx

O C— ol

e—Sx _ e—S(l—x)

" .!‘ (kn, + (1 — K)n)?

2

1 -x)dx |

Proof. Using Lemma 4.2, we have

» i(7),@,11;3)‘
n’n

I ¢
<1 et (1170)(@ o U)(6)ds.
Va4 (4.15)
m n
i
- .[ enn (1)@ - U)(6)ds | @ - 1) ()dl.
¢

Utilizing harmonically symmetric property of Q with

2mn,
m+n,

respect to and establishing the relation for the right

hand side

-Smny

em-m ('111_6)(0 o U)(6)dé

| ey

-Sminp 1

_ J eni (0-1)(Q - U)(6)d5
¢

-Smn

_ e (55)(Q - U)(6)ds

1.1
ntn

¢
_ J en(6-5)(Q o 1) (6)ds
I
1
¢ (4.16)

—Onynp (57 1

- eni (-5)(Q - U)(6)d5

[
m m+n
<
e (1)@ o U)(6)ds |,
1,1 ¢
nmomn
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Using (4.19) and (4.16), we have

N L(P,Q,(H;S)‘
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in (4.17), we have
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Using harmonically convexity of |P’'| on 7, we have
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This completes the proof.

5 Some new generalizations for
convex functions via fractional
integral having exponential in
the kernel

Throughout this article, we assume that ¥({) is an
increasing, positive and monotone function defined on
[0, c0) such that W(0) =0, and ¥'({) is continuous
on [0, 00).

Theorem 5.1. For y > 0 and let there are two positive
functions P and U with P < U defined on [0, co).
Moreover, there is an increasing function # and a

decreasing function % defined on [0, co), then for a

convex function @ with ®(0) = 0, the fractional integral
operator defined in (1.9) satisfies the inequality

JRhPmn)] .
Ylum)

TEEDP 1))

(5.1)
[q)(ﬂ(r))]

I Ngs
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Proof. By the given hypothesis, the function

increasing. As P is increasing, so is the function

Pr)
U(r)

Obviously, the function is decreasing. Thus, for all

¢, A € [0, c0), we have

[@(P(()) ~ cD(P(A))j[SD(}L) ~
P) PN \UQ)

It follows that

D(P(9)) PA)
PO UR)
_9®@Q) PE)
P() ‘Ll(()

Multiplying (5.3) by U({)U(A), we have
D(P(()) D(PN)
PAU
P0) MUK + )

_ DPO)
p TOUO
P

P ()

P(¢)
Uu@)

j >0. (5.2

QP©)) PE©)
PA) UQ)

_O®PQ) PA)

PQA) (H(/l)(m)

PEOUN)

(5.4)

P)UWD) = 0.

Multiplying (5.4) by e*T“”(’) YOIW!({), which is

positive because (€ (O, r), r>0 and integrating the
inequality from O to r, yields
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Again, multiplying (5.5) by ;e B =¥ ) g (),

which is positive because A € (0,r),r >0 and inte-
grating the inequality from O to r, yields

(Ll(r)j

U )}7 (P (1)

D (1)
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y [ PP (1))
ik ( P(r)

UNTY:

NGl ))jy““(

(5.6)

2Ty P @P )T R (UT)).

It follows that
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Now, since P <U on [0,co0) and is an

o)
r
increasing function, for {, A € [0, z), we have

PE) _ DU
PC) UG

(5.8)

Multiplying both sides of (5.8) by 1971%(\1/(041;(( DY),

which is positive because ¢ € (0,r),r > 0 and integrating
the inequality from O to r, yields

¢
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r
-1 [ e o) q’@(%))m\)wodc J’”’((Dgz(;))ﬂ(r)J < TEU@UD).  (59)
0
r Hence from (5.7) and (5.9), we get (5.1). O
- ooy qﬂpg))ﬂowmmo 0.
Y 0 Theorem 5.2. For y > 0 and let there are two positive
This follows that functions P and U with P < U defined on [0, co).
Moreover, there is an increasing function P and a
()jy“’(q)g)((; D (r)] decreasing function % defined on [0, o), then for a
DPEW) convex function @ with ®(0) = 0, the fractional integral
+ [ P (“(/‘))j b P(r) operator defined in (1.9) satisfies the inequality
(5.5)
DPQ)) :
‘( P P(A)jj AU Proof. By the given hypothesis, the function CD(P((;)) is
(IJ(r)
U [q)g)(r))”fﬂ o increasing. As # is increasing, so is the function
" Obviously, the function % is decreasing for all
NS [P(f)]j [(D("U(f))] + j [P(r)]j [qJ(‘U(r))] (5.10)
NS [’U(f)]j [@(7)(0)] + ff [‘U(T)]j [®(7’(r))] .
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¢, A€ [0, r). Multiplying %ef%“’(r*“““”qﬂ(/\), which is

positive because A € (0,r), A >0 and integrating the
resulting identity from O to r, we get

(r)]

wuj&%ﬁwnn>

QP ¢,
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I [ P(r)

Jh: W%DJ”[

(5.11)
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Now, d @ is an

since P <U on [0,00) an
increasing function, for {, A € [0, r), we have

OPQ) _ UC))
PE T U

(5.12)

Multiplying (5.12) by %e‘kTy(\y(’)”/’(())‘I"(C)’U(C),

which is positive because { € (0, r), r > 0 and integrating
the inequality from O to r, yields
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By utilizing (1.9), it follows that

o DP())
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Hence from (5.8), (5.11) and (5.14), we get the

required result. O

Remark. If ones take S =y, then Theorem 5.2 will
become Theorem 5.1.

Theorem 5.3. For y > 0 and let there are three positive
functions P, U and Q defined on [0, co) with P < U
defined on [0,00). Moreover, there are increasing functions

P, Q and a decreasing function % defined on [0, co0), then
for a convex function @ with ®(0) = 0, the fractional

integral operator defined in (1.9) satisfies the inequality
Vs [P(r)] J [Q(P(r))Q(r)]
0@%@1 O@mwmmm1

(5.15)

Proof. Since # < U on [0, o) and m is increasing, for

¢, A e [0, r), we have
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Multiplying (5.16) by ée‘y;l(w(”“y(())‘l”(( YU,

which is positive because { € (0, r), r > 0 and integrating
the inequality from O to r, yields
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Also, since the function @ is convex and such that
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¢
. Clearly, the function % is decreasing for all
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positive because (€ (0,r),r >0 and integrating the
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It follows that
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Again, multiplying (5.21) by ie‘yf(‘*'(’)“*'("))‘lf’(/l),

which is positive because A € (0,z),A >0 and inte-

grating the inequality from O to r, yields
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It follows that
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P(r)

Hence from (5.22) and (5.23), we get the required
result. O

Theorem 5.4. For y > 0 and let there are three positive
functions P, U and Q defined on [0, o) with P < U
defined on [0, co). Moreover, there are increasing func-
tions P, Q and a decreasing function % defined on [0, 00),
then for a convex function ® with ®(0) = 0, the fractional
integral operator defined in (1.9) satisfies the inequality

TrEPmITh
T ',mmuo

> 1.

b PITE @Pr)QM)

Jo@m)QM] + T
,,[(D(P(r))a(r)] + IE Um0 e)Qm) (5.24)

both

which is

Proof. Multiplying sides of (5.24) by

-1
Lo~ (YO-Y) g1 (), because

positive

Ae(0,r),A >0 and integrating the inequality from O
to r, yields

{,A € [0,r), we have

OP(K) _ D(UW))
< . 5.26
PO S UQ) ©-20)
Multiplying both sides of (5.26) by

1e‘y;l(‘*’(”“"(o)‘I”(()‘ll(()a((), {€(0,r),{>0 and inte-

grating the resulting identity from O to {, we have

J’”(q’;z‘;))w )Q(r)J TEL@UMQ). (5.27)
Similarly, multiplying both sides of (5.26) by

% o (e~ YOWOUE)QQ), Ce(0,1),{>0 and inte-
grating the inequality from O to r, yields

jl;\p(cb(?)(r))

P0) le(r)Q(r)J<j L(@(UM)QM). (5.28)

Hence, we get the required result. O

Remark. If ones take =y, then Theorem 5.4 will
become Theorem 5.3.

6 Conclusions

In this work, we have fruitfully applied the fractional
integral operators with an exponential kernel to derive
the Hermite—-Hadamard, Hermite—-Hadamard-Fejér and
Pachpatte-type integral inequalities involving the frac-
tional integral operator essentially using the functions
having the harmonically convexity property. The key
procedure of the new adaption in extended form with an
exponential kernel to the more general fractional integral
operator is helpful in deriving several generalizations for the
convexity theory. Finally, the present investigation illumi-
nates the effectiveness of the considered operator. We
presented two different schemes and show that the results
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of the proposed method are in excellent agreement with the
results of the Riemann-Liouville fractional integral operator
which approves the validity of the derived outcomes. From
the obtained results, it can be noted that both the featured
techniques are reliable and efficient to handle the different
nonlinear problems appearing in science and engineering.
We conclude that the results derived in this article are
general in character and give some contributions to circuit
theory and complex waveforms. Such a potential connection
needs further investigation.
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