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ABSTRACT
In this article, a semi-analytical technique is implemented to solve Kuramoto–Sivashinsky equa-
tions. The present method is the combination of two well-known methods namely Laplace
transform method and variational iteration method. This hybrid property of the proposed
method reduces the numbers of calculations and materials. The accuracy and applicability of
the suggested method is confirmed through illustration examples. The accuracy of the pro-
posed method is described in terms of absolute error. It is investigated through graphs and
tables that the Laplace transformation and variational iteration method (LVIM) solutions are in
good agreement with the exact solution of the problems. The LVIM solutions are also obtained
at different fractional-order of the derivative. It is observed through graphs and tables that the
fractional-order solutions are convergent to an integer solution as fractional-orders approaches
to an integer-order of the problems. In conclusion, the overall implementation of the present
method support the validity of the suggestedmethod. Due to simple, straightforward and accu-
rate implementation, the present method can be extended to other non-linear fractional partial
differential equations.
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1. Introduction

Over recent years, the theory of fractional calculus (FC)
has drawn global attention to its implementations over
complex systems. According to the fractional deriva-
tive principles, the simulation of significant-world prob-
lems containing fractional-order derivatives provides
better predictability compared to modelling involving
integer-order derivatives. FC defines the background
and non-local dispersed effects of any physical system,
in specific phenomenon related to the analysis of chaos
in wave motion, solitary waves, phase turbulence in
reaction–diffusion schemes [1–4], wrinkled flame front
propagation [5], chaotic driftingwaves induced by pho-
ton collision [6], time fractional-coupledmKdVequation
[7–9], fractional-order wave equations [10] and frac-
tional space–time diffusion equation [11–13].

In 1977, Gregory I. Sivashinsky measured a sce-
nario for such a laminar flaming front. An other
researcher, Yoshiki Kuramoto, created a certain prob-
lem when simultaneously designing diffusion-induced
chaotic in a three-dimensional experiment of the
Belousov–Zabotinskii transformation [4,14–16]. Their
combined result is named the Kuramoto–Sivashinsky
(KS) model. This system defines the changes in that
burning front orientation, themotionof the liquiddown

acircular surface andadynamically particular oscillating
chemical compound in a homogeneous fluid [17–19]. It
introduces chaotic behaviour, requiring a result such as
moving waves travelling to a finite space domain with-
out altering size. That has a variety of implementations
in a range of conceptual ideas, along with response dif-
fusion systems [20], thin film hydrodynamics [21] and
front burn instability [22], long waves on functionality
among a couple vicious fluids [23].

As stated in [24], the generalized KS equation is a
form of non-linear partial differential equations (PDEs)
naturally found in the research of fluid materials that
displays a chaotic type of conduct.

∂κμ

∂tκ
+ μ

∂μ

∂x
+ η

∂2μ

∂x2
+ θ

∂3μ

∂x3
+ ω

∂4μ

∂x4
= 0, (1)

where η, θ and ω are non-zero constants.
For θ = 0, Equation (1) is named the KS model, a

canon non-linear reproduction equation that arises in
a multitude of physical situations. For η = ω = 1 and
θ = 0, it denotes pattern structure designs on unbal-
anced flame fronts and thin hydrodynamic movies,
Equation (1) has been researched extensively [25,26].

In past decade, multiple types of mathematical sys-
tems have been produced for the numerical methods
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of time dependent PDEs [27]. The KSE has been stud-
ied by different methods, such as, homotopy analysis
method [28], Runge-Kuttamethod [29], finite difference
scheme [30], B-spline functions [31], mesh-free numeri-
calmethod [32], Reduceddifferential transformmethod
[33], Lattice Boltzmann method [34], Quasi-exact KS
equation solutions [35], Sub-equation Method [36] and
modified tanh–coth method [37].

A Lagrange multiplier method has been commonly
used to solve a variety of non-linear equations [38].
This occurs in physics andmathematics or other related
areas but has been developed as a basic analytical
technique, i.e. a variational iteration method (VIM) for
modelling differential equations [39]. The VIM was first
suggested by He [40] and was effectively implemented
in dealing with heat transform problems [40–42]. The
fractional variational iteration technique (FVIM) was
developed viamodified Riemann–Liouville derivative in
2010 [43]. Recently, a procedure combined in this sense
VIM and Laplace transform technique was proposed
[44,45] and Wu developed a modification via FC and
Laplace transformation [46]. Laplace transformation
and variational iterationmethod (LVIM) for solving non-
linear PDEs [47] and system of fractional PDEs [48,49].

In the present research work, we implemented a
hybrid technique for the solution of family of fractional-
order Kuramoto–Sivashinsky equations. The present
technique is the combination of two well-knownmeth-
ods namely LVIM is discussed in Section 3 of the paper.
The convergence analysis of the suggested method is
discussed in Theorem5.1 of themanuscript. For thepur-
pose of the validity of the current method, some illus-
trative examples are presented. The graphical represen-
tations of Examples 6.1, 6.2 and 6.3 in the paper have
shown close contact of LVIM solutions with the exact
solutions of the problems. Moreover, the LVIM solu-
tions are calculated at different fractional-order of the
targeted problems. It is investigated that the fractional-
order solutions are converged to an integer-order solu-
tion for the problem as fractional-orders approaches to
an integer-order. The accuracy of the proposed meth-
ods analysed with the help of Tables 1– 3 in term abso-
lute error (AE). From the table, it is clear that LVIM has
the desired degree of accuracy. The overall, discussion
and numerical implementation of the current method
have suggestedextending that it canbeextendedeasily
to solve other fractional-order differential equations.

2. Preliminaries and definitions

2.1. Definition

Laplace transformation of ρ̃(t), t > 0 represented as
[51,52]

Q(s) = L[ρ̃(t)] =
∫ ∞

0
e−stρ̃(t)dt. (2)

2.2. Definition

The Laplace transforms in forms of convolution

L[ρ̃1 ∗ ρ̃2] = L[ρ̃1(t)] ∗ L[ρ̃2(t)], (3)

here ρ̃1 ∗ ρ̃2, define the convolution between ρ̃1 and ρ̃2,

(ρ̃1 ∗ ρ̃2)t =
∫ τ

0
ρ̃1(τ )ρ̃2(t − τ)dt. (4)

Laplace transform is a fractional derivative

L (
Dκ
t ρ̃(t)

) = sκQ(s) −
n−1∑
k=0

sκ−1−kρ̃(k)(0),

× n − 1 < κ < n, (5)

where Q(s) is the Laplace transformation of ρ̃(t).

2.3. Definition

Riemann–Liouville fractional integral [53,54]

Iκx g(x) =

⎧⎪⎨
⎪⎩
g(x) if κ = 0

1
	(κ)

∫ x
0 (x − κ)κ−1g(κ .)dκ if κ > 0,

(6)

where 	 represent the gamma function as,

	(κ) =
∫ ∞

0
e−xxκ−1 dx, κ ∈ C, (7)

2.4. Definition

The following mathematical expression is given to the
Caputo of fractional derivative of order κ for m̄ ∈ N,
x>0, g ∈ Ct , t ≥ −1.

Dκg(x) = ∂κg(x)

∂tγ
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Im̃−κ

[
∂κg(x)

∂tκ

]
,

if m̃ − 1 < κ ≤ m̃, m̃ ∈ N

∂κg(x)

∂tκ
,

(8)

2.5. Lemma

If m̃ − 1 < κ ≤ m̃ with m̃ ∈ N and g ∈ Ct with t ≥ −1,
then [55]

Iκ Iag(x) = Iκ+ag(x), a, κ≥0.

Iκxλ = 	(λ + 1)
	(γ + λ + 1)

xκ+λ,

× κ > 0, λ > −1, x > 0.

IκDκg(x) = g(x) −
m̃−1∑
k=0

g(k)(0+)
xk

k!
,

× for x > 0, m̃ − 1 < κ ≤ m̃.

(9)
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Table 1. The LVIMand reproducingKernel Hilbert spacemethod (RKHSM) their corresponding absolute errors
(AE) at different fractional-order κ of Example 6.1.

t x κ = 0.75 κ = 1 Exact AE (RKHSM) [50] AE(LVIM)

0.1 1 2.8742118170 2.4972002150 2.497723372 5.55E−04 5.55E−04
2 −2.323008368 −2.4484441260 −2.448081016 3.66E−04 3.66E−04
3 −3.708744132 −3.7332570560 −3.733169900 1.48E−04 1.48E−04
4 −3.956558383 −3.9603797970 −3.960365210 1.51E−04 1.51E−04
5 −3.993901852 −3.9944471490 −3.994445020 2.69E−05 2.68E−05

0.5 1 4.1763182870 3.11557827900 3.127995924 2.03E−02 2.03E−02
2 −1.870376356 −2.2425245620 −2.232914697 2.56E−03 2.56E−03
3 −3.618654104 −3.6930007580 −3.690623590 6.48E−03 2.48E−03
4 −3.942412918 −3.9541031590 −3.953700660 1.10E−04 1.10E−04
5 −3.991877906 −3.9935514540 −3.993492270 1.63E−05 1.61E−05

Table 2. LVIM and AE at distinct fractional-order κ of Example 6.2.

t x κ = 0.75 κ = 1 Exact AE(κ = 1)

0.1 1 −6.846609544 −7.072056697 −7.166875017 9.48E−02
2 −4.427777312 −4.613806338 −4.615821774 2.01E−03
3 −1.148219426 −1.222770396 −1.204329860 1.84E−02
4 0.525722483 0.501353776 0.511441910 1.00E−02
5 1.181394942 1.173387101 1.177359330 3.97E−03

0.5 1 −5.539425367 −6.701156428 −7.181246074 4.80E−01
2 −3.880210462 −4.308828578 −4.319499133 1.06E−02
3 −0.861200835 −1.100276823 −1.021195210 7.90E−02
4 0.613459178 0.541362538 0.586878520 4.55E−02
5 1.209030933 1.186524333 1.204762410 1.82E−02

Table 3. LVIM and AE at distinct fractional-order κ of Example 6.3.

t x κ = 0.75 κ = 1 Exact AE(κ = 1)

0.1 1 −0.52531204 −0.535712512 −0.537461933 1.74E−03
2 2.048065728 2.089519721 2.098276512 8.75E−03
3 4.394074956 4.427256229 4.434021119 6.76E−03
4 5.519284464 5.534215367 5.537207116 2.99E−03
5 5.951376432 5.956968910 5.958082037 1.11E−03

0.5 1 −0.49268345 −0.527604267 −0.536307927 8.70E−03
2 1.936408163 2.056955205 2.100455409 4.35E−02
3 4.300387227 4.401361744 4.435249580 3.38E−02
4 5.475218700 5.522623576 5.537703222 1.50E−02
5 5.934596588 5.952636153 5.958261217 5.62E−03

2.6. Definition

Function of Mittag-Leffler, Eκ(b) for κ > 0 is defined as

Eκ(b) =
∞∑

m̃=0

bm̃

	(κm̃ + 1)
, κ > 0 b ∈ C, (10)

3. Basics of the VIM

In order to explain the basic knowledge of the method,
consider the following common non-linear
scheme:

∂κμ

∂tκ
+ R(μ) + N (μ) = P(t), (11)

whereμ = μ(t),R is a linear operator, N is a non-linear
operator and P is a given continuous function.

The basic character of the technique is to construct
the followingcorrectionwell-designed for Equation(11):

μm+1 = μm +
∫ t

0
λ(t, τ)

(
∂κμ

∂τκ
+ R(μm)

+ N (μm) − P(τ )

)
dτ , (12)

where λ(t, τ) is called the general Lagrange multiplier
and μm is the nth-order estimated solution.

4. The procedure of LVIM

In the case of an algebraic equation, let us revisit the
original idea of the Lagrange multipliers. In the first
place, an iteration formula for the solution of algebraic
equation g(x) = 0 can be constructed as

χm+1 = χm + λg(χm). (13)

The optimal situation for the maximum κχm+1/κχm =
0 leads to

λ = − 1
g′(χm)

, (14)

In which κ is a classic variational operator. From (13)
and (14), we can discover the estimated method χm+1

by the iterative system for (14) for a specified original
value χm.

χm+1 = χm − g(χm)

g′(χm)
, g′(χ0) �= 0, m = 0, 1, 2, . . .

(15)
Now they expand its concept to find the unidentified
Lagrange multiplier. The primary stage is to bring the
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Laplace transformation to Equation (13) first. Therefore,
the linear portion is converted in to an algebraic state-
ment as given:

sκμ(s) − μκ−1(0) − sκ−1μ(0)

× +$ [R(μ) + N (μ) − P(μ)] = 0, (16)

where μ(s) = $(μ(t)) = ∫ ∞
0 e−stμ(t)dt.

The iteration algorithm (16) are used to recommend
the key iterative system that included a Lagrange mul-
tiplier as

μm+1(s) = μm(s) + λ(s)[sκμ(s) − μκ−1(0) − sκ−1μ(0)

+ $ [R(μ) + N (μ) − P(μ)] . (17)

Considered $[R(μ) + N (μ)] as limited conditions, a
Lagrange calculation can be derived as

λ(s) = − 1
sκ
. (18)

Because of Equation (18) and the inverse Laplace
transformation $−1, iteration method (5) can also be
expressly stated as

μm+1(t) = μm(t) − $−1
[
1
sκ

{
sκμ(s) − μκ−1(0)

−sκ−1μ(0) + $ (R(μ) + N (μ) − P(μ))
}]

.
(19)

The Laplace solution for equation (19) represent the
general iterative formula for the targeted problem.

5. Convergence analysis

Theorem 5.1: Let χ and Y be two Banach spaces and
T : χ → Y bea contractive non-linear operator, such that
for all u; u∗ ∈;χ , ||T(u) − T(u∗)|| ≤ K||u − u∗||, 0<K< 1
[56].

Then, in view of Banach contraction theorem, T has a
unique fixed point u, such that Tu = u : Let us write the
generated series (19), by the Laplace variational iteration
method as

χm = T(χm−1), χm−1 =
m−1∑
j=1

uj, j = 0, 1, 2, . . .

and supposed that χ0 = u0 ∈ Sp(u), where Sp(u) =
{u∗ ∈ χ : ||u − u∗|| < p} then, we have

(B1)χm ∈ Sp(u)

(B2) lim
m→∞ χn = u.

Proof: (B1) In view of mathematical induction for
m = 1, we have

||χ1 − u1|| = ||T(χ0 − T(u))|| ≤ K||u0 − u||.

Let the result is true form−1, then

||χm−1 − u|| ≤ Km−1||u0 − u||.

We have

||χm − u|| = ||T(χm−1 − T(u))|| ≤ K||χm−1 − u||
≤ Km||u0 − u||.

Hence, using (B1), we have

||χm − u|| ≤ Km||u0 − u|| ≤ Kmp < p,

which implies that χm ∈ Sp(u). (B2): Since ||χm − u|| ≤
Km||u0 − u|| and as a limm→∞
Km = 0.

Therefore, we have limm→∞ ||un − u|| = 0 ⇒
limm→∞ un = u. �

6. Numerical examples

Example6.1: In this instance,wediscover theequation
KS as described by η = θ = 1 and ω = 4 [31,32,50].

∂κμ

∂tκ
+ μ

∂μ

∂x
+ η

∂2μ

∂x2
+ θ

∂3μ

∂x3
+ ω

∂4μ

∂x4
= 0, (20)

with initial condition

μ0(x, 0) = 11 + 15 tanh
(−1

2
x

)
− 15 tanh2

(−1
2

x

)

− 15 tanh3
(−1

2
x

)
.

Using LVIM on both sides equation (20), we get

μm+1(x, t) = $−1
[
um(x, t)

s

]

+ $−1
[
λ(s)

{
sκ

∂μm

∂s
+ μm

∂μm

∂x

+ η
∂2μm

∂x2
+ θ

∂3μm

∂x3
+ ω

∂4μm

∂x4

}]
, (21)

where λ(s) is the Lagrange multiplier

λ(s) = −1
sκ

,

μm+1(x, t) = um(x, t) − $−1
[
1
sκ

{
sκ

∂μm

∂s
+ μm

∂μm

∂x

+ η
∂2μm

∂x2
+ θ

∂3μm

∂x3
+ ω

∂4μm

∂x4

}]
. (22)

Now take,

μ0(x, t) = 11 + 15 tanh
(−1

2
x

)
− 15 tanh2

(−1
2

x

)
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− 15 tanh3
(−1

2
x

)
,

consequently, we get,

μ1(x, t) = u0(x, t) − $−1
[
1
sκ

{
sκ

∂μ0

∂s
+ μ0

∂μ0

∂x

+ η
∂2μ0

∂x2
+ θ

∂3μ0

∂x3
+ ω

∂4μ0

∂x4

}]
,

μ1(x, t) = 11 + 15 tanh
(−1

2
x

)
− 15 tanh2

(−1
2

x

)

− 15 tanh3
(−1

2
x

)

− 60 (−2 + cosh(x) − sinh(x))

cosh2(x) + 2 cosh(x) + 1

tκ

	(κ + 1)
,

μ2(x, t) = u1(x, t) − $−1
[
1
sκ

{
sκ

∂μ1

∂s
+ μ1

∂μ1

∂x

+ η
∂2μ1

∂x2
+ θ

∂3μ1

∂x3
+ ω

∂4μ1

∂x4

}]
,

μ2(x, t) = 11 + 15 tanh
(−1

2
x

)
− 15 tanh2

(−1
2

x

)

− 15 tanh3
(−1

2
x

)

− 60(−2 + cosh(x) − sinh(x))

cosh2(x) + 2 cosh(x) + 1

tκ

	(κ + 1)

+
60(cosh2(x) − cosh(x) − sinh(x)

cosh(x) − 2 + 5 sinh(x))

cosh3(x) + 3 cosh2(x) + 3 cosh(x) + 1

× t2κ

	(2κ + 1)
,

and

μ3(x, t) = u2(x, t) − $−1
[
1
sκ

{
sκ

∂μ2

∂s
+ μ2

∂μ2

∂x

+ η
∂2μ2

∂x2
+ θ

∂3μ1

∂x3
+ ω

∂4μ2

∂x4

}]
,

μ3(x, t) = 11 + 15 tanh
(−1

2
x

)
− 15 tanh2

(−1
2

x

)

− 15 tanh3
(−1

2
x

)

− 60(−2 + cosh(x) − sinh(x))

cosh2(x) + 2 cosh(x) + 1

tκ

	(κ + 1)

×
60(cosh2(x) − cosh(x) − sinh(x)

cosh(x) − 2 + 5 sinh(x))

cosh3(x) + 3 cosh2(x) + 3 cosh(x) + 1

× t2κ

	(2κ + 1)

×
cosh2(x) − 13 cosh(x) − sinh(x) cosh(x)

+16 + 5 sinh(x)

cosh3(x) + 3 cosh2(x) + 3 cosh(x) + 1

× t3κ

	(3κ + 1)
,

...

Form = 3, 4, 5 . . .

μm+1(x, t) = um(x, t) − $−1
[
1
sκ

{
sκ

∂μm

∂s
+ μm

∂μm

∂x

+ η
∂2μm

∂x2
+ θ

∂3μm

∂x3
+ ω

∂4μm

∂x4

}]
.

The exact result is

μ(x, t) = 11 + 15 tanh
 − 15 tanh2 
 − 15 tanh3 
,
(23)

then 
 = − 1
2x + t, on the interval [−1, 1].

Example 6.2: The KS equation as defined by η = 2 θ =
1 and ω = 0 [31,32].

∂κμ

∂tκ
+ μ

∂μ

∂x
+ η

∂2μ

∂x2
+ θ

∂3μ

∂x3
+ ω

∂4μ

∂x4
= 0, (24)

with initial condition

u0(x, 0) = −
√
418
11

− 270
361

√
418 tanh

(√
418
38

x

)

+ 330
361

√
418 tanh3

(√
418
38

x

)
,

Using LVIM on both sides equation (24), we get

μm+1(x, t) = $−1
[
um(x, t)

s

]

+ $−1
[
λ(s)

{
sκ

∂μm

∂s
+ μm

∂μm

∂x

+ η
∂2μm

∂x2
+ θ

∂3μm

∂x3

}]
, (25)

where λ(s) is the Lagrange multiplier

λ(s) = −1
sκ

,

μm+1(x, t) = um(x, t) − $−1
[
1
sκ

{
sκ

∂μm

∂s
+ μm

∂μm

∂x

+ η
∂2μm

∂x2
+ θ

∂3μm

∂x3

}]
. (26)

Now take,

u0(x, 0) = −
√
418
11

− 270
361

√
418 tanh

(√
418
38

x

)

+ 330
361

√
418 tanh3

(√
418
38

x

)
,

consequently, we get,

μ1(x, t) = μ0(x, t) − $−1
[
1
sκ

{
sκ

∂μ0

∂s
+ μ0

∂μ0

∂x



JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 407

+ η
∂2μ0

∂x2
+ θ

∂3μ0

∂x3

}]
,

u1(x, t) = −
√
418
11

− 270
361

√
418 tanh

(√
418
38

x

)

+ 330
361

√
418 tanh3

(√
418
38

x

)

−
[
90

√
418

{
−152 cosh3

(√
418
38

x

)

+ 209 cosh

(√
418
38

x

)
+ 88 sinh

(√
418
38

x

)

× cosh2
(√

418
38

x

)
− 242 sinh

(√
418
38

x

)}]

× tκ

6859
(
cosh5

(√
418
38 x

))
	(κ + 1)

,

μ2(x, t) = μ1(x, t) − $−1
[
1
sκ

[
sκ

∂μ1

∂s
+ μ1

∂μ1

∂x

+ η
∂2μ1

∂x2
+ θ

∂3μ1

∂x3

]]
,

u2(x, t) = −
√
418
11

− 270
361

√
418 tanh

(√
418
38

x

)

+ 330
361

√
418 tanh3

(√
418
38

x

)

−
[
90

√
418

{
−152 cosh3

(
1/38

√
418
38

x

)

+ 209 cosh

(√
418
38

x

)
+ 88 sinh

(√
418
38

x

)

× cosh2
(√

418
38

x

)
− 242 sinh

(√
418
38

x

)}]

× tκ

6859
(
cosh5

(√
418
38 x

))
	(κ + 1)

+
[
180

√
418

{
288574 sinh

(√
418
38

x

)

× cosh4
(√

418
38

x

)
− 2495625 sinh

(√
418
38

x

)

× cosh2
(√

418
38

x

)
+ 2635380 sinh

(√
418
38

x

)

+ 444752 cosh5
(√

418
38

x

)

− 436810 cosh3
(√

418
38

x

)

−63536 cosh7
(√

418
38

)
x

+ 73264 sinh

(√
418
38

x

)
cosh6

(√
418
38

x

)}]

× t2κ

2476099 cosh9
(√

418
38

)
x	(2κ + 1)

,

...

Form = 2, 3 . . .

μm+1(x, t) = um(x, t) − $−1
[
1
sκ

[
sκ

∂μm

∂s
+ μm

∂μm

∂x

+ η
∂2μm

∂x2
+ θ

∂3μm

∂x3

]]
. (27)

The exact result is

u(x, t) = − 1
ϕ

+ 60
19

ϕ(−38θϕ2 + η) tanh(
)

+ 120θϕ3 tanh3(
), (28)

then 
 = ϕx + t and ϕ = 0.5
√

22
19 , On the interval

[−1, 1] (Figures 1–3).

Example 6.3: Consider the KS equationfighere F0001
as defined by η = 1 θ = 0.5 and ω = 0 [31,32].

∂κμ

∂tκ
+ μ

∂μ

∂x
+ η

∂2μ

∂x2
+ θ

∂3μ

∂x3
+ ω

∂4μ

∂x4
= 0, (29)

with initial condition

u0(x, 0) = −0.1858640755 − 2.973310349 tanh(√
418
38

x

)
+ 9.344689666 tanh3

(√
418
38

x

)
,

Using LVIM on both sides equation (29), we get

μm+1(x, t) = $−1
[
um(x, t)

s

]
+ $−1

[
λ(s)

{
sκ

∂μm

∂s

+ μm
∂μm

∂x
+ η

∂2μm

∂x2
+ θ

∂3μm

∂x3

}]
,

(30)
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Figure 1. (a) The solution graph of exact and LVIM solution at κ = 1 of Example 6.1 and (b) the solution-graph of Example 6.1 at
different fractional-order κ . (a) Graph of LVIM and exact solutions for t = 0.1 and κ = 1 for Example 6.1. (b) Graph of LVIM solutions
for different value of κ for Example 6.1.

Figure 2. (a) The solution graph of exact and LVIM solution at κ = 1 of Example 6.2 and (b) the solution-graph of Example 6.2 at
different fractional-order κ . (a) Graph of LVIM and exact solutions for t = 0.1 and κ = 1 for Example 6.2. (b) Graph of LVIM solutions
for different value of κ for Example 6.2.

where λ(s) is the Lagrange multiplier

λ(s) = −1
sκ

,

μm+1(x, t) = um(x, t) − $−1
[
1
sκ

{
sκ

∂μm

∂s
+ μm

∂μm

∂x

+ η
∂2μm

∂x2
+ θ

∂3μm

∂x3

}]
. (31)

Now take,

u0(x, t) = −0.1858640755 − 2.973310349 tanh

×
(√

418
38

x

)
+9.344689666 tanh3

(√
418
38

x

)

Form = 0

μ1(x, t) = u0(x, t) − $−1
[
1
sκ

{
sκ

∂μ0

∂s
+ μ0

∂μ0

∂x

+ η
∂2μ0

∂x2
+ θ

∂3μ0

∂x3

}]
,

u1(x, t) = −0.1858640755 − 2.973310349 tanh

×
(√

418
38

x

)
+ 9.344689666 tanh3

(√
418
38

x

)

−
[
1.00 × 10−17

{
8.00 × 107 cosh7(0.53x)

−2.50 × 1017 cosh5(0.53x) + 2.80 × 1017

× cosh3(0.53x) − 2.64 × 109 sinh(0.53x)

× cosh6(0.53x) + 6.29 × 1018 sinh(0.53x)

× cosh4(0.53x) − 8.92 × 1018 sinh(0.53x)

× cosh2(0.53x) − 3.59 × 108 sinh(0.53x)
}]

× tκ

cosh7(0.53x)	(κ + 1)
.

Form = 1

μ2(x, t) = u1(x, t) − $−1
[
1
sκ

{
sκ

∂μ1

∂s
+ μ1

∂μ1

∂x

+ η
∂2μ1

∂x2
+ θ

∂3μ1

∂x3

}]
,

u2(x, t) = −0.1858640755 − 2.973310349
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Figure 3. (a) The solution graph of exact and LVIM solution at κ = 1 of example 6.3 and (b) the solution-graph of example 6.3 at
different fractional-order κ . (a) Graph of LVIM and exact solutions for t = 0.1 and κ = 1 for Example 6.3. (b) Graph of LVIM solutions
for different value of κ for Example 6.3. (c) Error plot of Example 6.3 for κ = 1.

× tanh

(√
418
38

x

)
+ 9.344689666 tanh3

×
(√

418
38

x

)

−
[
1.00 × 10−17

{
8.00 × 107 cosh7(0.53x)

−2.50 × 1017 cosh5(0.53x) + 2.80 × 1017

× cosh3(0.53x) − 2.64 × 109 sinh(0.53x)

× cosh6(0.53x) + 6.29 × 1018 sinh(0.53x)

× cosh4(0.53x) − 8.92 × 1018 sinh(0.53x)

× cosh2(0.53x) − 3.59 × 108 sinh(0.53x)
}]

× tκ

cosh7(0.53x)	(κ + 1)

− [1.00 × 10−27{−3.22 × 1030 sinh(0.53x)

× cosh6(0.53x) − 1.80 × 1020 sinh(0.53x)

+ 1.69 × 1029 cosh7(0.53x) − 2.40 × 1029

× cosh5(0.53x) + 9.86 × 1028 cosh3(0.53x)

+ 6.28 × 1030 sinh(0.53x)

× cosh4(0.53x) − 3.59 × 1030 sinh(0.53x)

× cosh2(0.53x) − 8.86 × 1019 cosh10(0.53x)

× sinh(0.53x) + 4.09 × 1029 cosh8(0.53x)

× sinh(0.53x) + 1.10 × 109 cosh11(0.53x)

− 2.97 × 1028 cosh(0.53x)9}]

× t2κ

cosh11(0.53x)	(2κ + 1)
.

Form = 2, 3, . . .

μm+1(x, t) = um(x, t) − $−1
[
1
sκ

[
sκ

∂μm

∂s
+ μm

∂μm

∂x

+ η
∂2μm

∂x2
+ θ

∂3μm

∂x3

]]
.

The exact result is

u(x, t) = −0.5
ϕ

+ 60
19

ϕ(−38θϕ2 + η) tanh(
)

+ 120θϕ3 tanh3(
), (32)
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then 
 = ϕx + 0.1t and ϕ = 0.5
√
11η/19θ , On the

interval [−1, 1].

7. Conclusion

In the current research work, an extended Laplace vari-
ational iteration method is applied to obtain analytical
solution of fractional Kuramoto–Sivashinsky equations.
The proposed method is a simple and effective tool
to solve fractional PDEs because it uses the Lagrange
multiplier directly to solve fractional PDEs.

In conclusion, the present method have the straight-
forward implementation and small number of calcu-
lations and therefore can be implemented to other
fractional-order PDE, that frequently arises in science
and engineering.

Moreover, in future, the present method can be
implemented to solve some important system of high
non-linear fractional-order PDEs in applied science. In
particular, the fractional-view analysis of some dynam-
ical systems in economic, biology, physics, chemistry
and engineering provide the best information about its
physical, chemistry and engineering provide the best
information about its physical behaviour. Therefore, in
future, the proposed techniquewill be considered as an
important tool to analyse and describe the fractional-
order analysis of the important physical model.
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