

TRAJECTORY PLANNING AND OBSTACLE AVOIDNACE FOR

OMNIDIRECTINONAL ROBOTS

MOHAMMED RABEEA HASHIM AL-DAHHAN

FEBRUARY 2020

TRAJECTORY PLANNING AND OBSTACLE AVOIDNACE FOR

OMNIDIRECTINONAL ROBOTS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

MOHAMMED RABEEA HASHIM AL-DAHHAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

DOCTOR OF PHILOSOPHY

IN

THE DEPARTMENT OF

ELECTRONIC AND COMMUNICATION ENGINEERING

FEBRUARY 2020

iv

ABSTRACT

Trajectory Planning and Obstacle Avoidance for Omnidirectional Robots

Al-Dahhan, Mohammed Rabeea Hashim

Ph.D., Department of Electronic and Communication Engineering

Supervisor: Assoc. Prof. Dr. Hüsnü Deniz BAŞDEMİR

Co-Supervisor: Prof. Dr. Klaus Werner SCHMIDT

February 2020, 120 pages

Path planning algorithms for mobile robots are concerned with finding a feasible

path between a start and goal location in a given environment without hitting

obstacles. In the existing literature, important performance metrics for path planning

algorithms are the path length, computation time and path safety, which is quantified

by the minimum distance of a path from obstacles.

The subject of this thesis is the development of path planning algorithms that consist

of straight-line segments. Such paths are suitable for omni-directional robots and can

as well be used as initial solution paths for applying smoothing. As the main

contribution of the thesis, we develop three new planning methodologies that address

all of the stated performance metrics.

The original idea of the first approach is the pre-processing of the environment map

by increasing the obstacle region. That is, when applying sampling-based path

planning algorithms such as PRM* (probabilistic roadmap), RRT* (rapidly exploring

random tree) or FMT (fast marching tree), node samples in irrelevant regions of the

environment are avoided. This measure speeds up the path computation and

increases path safety.

The second approach proposes the computation of a modified environment map that

confines solution paths to the vicinity of the Voronoi boundary of the given

environment. Using this modified environment map, we adapt the sampling strategy

of the popular path planning algorithms PRM, PRM* and FMT. As a result, we are

able to generate solution paths with a reduced computation time and increased path

safety.

v

Different from the first two approaches, the third approach uses information about

the topology of the environment from the generalized Voronoi diagram of the

environment. Specifically, initial solution paths that follow Voronoi edges are

iteratively refined by introduce shortcuts and by adding new waypoints to remove

corners in the path.

The thesis performs comprehensive computational experiments to illustrate the

advantages of the proposed approaches. In particular, the third approach proves to be

most promising since it addresses the properties of environments for mobile robots.

Keywords: Path planning, omni-directional robots, sampling-based algorithms,

Voronoi diagram, safety, fast computation, shortest path.

vi

ÖZ

HER YÖNDE HAREKET EDEBİLEN ROBOTLAR İÇİN YOL PLANLAMA VE ENGELDEN
KAÇINMA

Al-Dahhan, Mohammed Rabeea Hashim

Doktora., Elektronik ve Haberleşme Mühendisliği Anabilim Dalı

Tez Yöneticisi: Assoc. Prof. Dr. Hüsnü Deniz BAŞDEMİR

İkincil Tez Yöneticisi: Prof. Dr. Klaus Werner SCHMIDT

Şubat 2020, 120 sayfa

Mobil robotlar için yol planlama algoritmaları, belirli bir ortamda engellere

çarpmadan başlangıç noktası ile hedef konum arasında uygun bir yol bulmak ile

ilgilidir. Mevcut literatürde, yol planlama algoritmaları için önemli performans

ölçütleri; yol uzunluğu, hesaplama zamanı ve bir yolun engellere olan azami

mesafesi ile ölçülen yol güvenliği olarak belirtilmiştir.

Bu tezin konusu, düz doğru parçalarından oluşan yol planlama algoritmalarını

geliştirmektir. Bu tür yollar, her yönde hareket edebilen robotlar için uygundur ve

düzleştirmeyi uygulamak için başlangıç çözüm yolları olarak da kullanabilirler

Tezimizi asıl amacı, belirtilen tüm performans ölçütlerini ele alan üç yeni planlama

yöntemi geliştirmeye katkıda bulunmaktır.

İlk yaklaşımın altında yatan görüş, engel bölgesini arttırarak çevre haritasının

önceden işlenmesidir. Yani, PRM* (olasılıksal yol haritası), RRT* (hızlı keşfeden

rastgele ağaç) veya FMT (hızlı yürüyen ağaç) gibi örnekleme tabanlı yol planlama

algoritmaları uygulanırken ortamın alakasız bölgelerindeki düğüm örneklerinden

kaçınılmaktadır. Bu ölçüm, yol hesaplamasını hızlandırır ve yol güvenliğini ise

arttırır.

İkinci yaklaşım, çözüm yollarını verilen ortamın Voronoi sınırının çevresine

sınırlayan değiştirilmiş bir çevre haritasının hesaplanmasını ileri sürmektedir.

Değiştirilmiş bir çevre haritasını kullanarak yaygın yol planlama algoritmaları olan

PRM, PRM* ve FMT örneklem stratejilerini uyarlamaktayız. Sonuç olarak daha az

hesaplama süresi ve artan yol güvenliği ile çözüm yolları üretebilmekteyiz.

vii

İlk iki yaklaşımdan farklı olarak üçüncü bir yaklaşım ise çevrenin genelleştirilmiş

Voronoi diyagramından çevrenin topolojisi hakkındaki bilgileri kullanmaktır.

Özellikle, Voronoi kenarlarını takip eden ilk çözüm yolları; kısa yollar ortaya

koyarak ve yoldaki köşeleri ortadan kaldırmak üzere yeni ara noktalar ekleyerek

tekrarlanarak düzeltilmektedir.

Tezde, önerilen yaklaşımların faydalarını göstermek için kapsamlı hesaplama

deneyleri uygulanmıştır. Bilhassa üçüncü yaklaşımın, mobil robotların çevre

özelliklerini ele aldığı için daha çok umut vaat edici olduğu görülmüştür.

Anahtar Kelimeler: Yol planlama, her yönde hareket edebilen robotlar, örnekleme

tabanlı algoritmalar, Voronoi diyagramı, güvenlik, hızlı hesaplama, en kısa yol.

viii

ACKNOWLEDGEMENTS

It is a pleasure to thank the many people who made this thesis possible. I would like

to take this opportunity to express my appreciation and respect to my Co-Supervisor

Prof. Dr. Klaus Werner SCHMIDT who assisted me with his countless guidance,

suggestions and encouragements throughout this project. He enthusiastically shared

his vision, knowledge and expertise, and generously spent his time to help me to

generate ideas and research concepts .

I would like to express my profound gratitude to my supervisor Asso. Prof. Dr.

Hüsnü Deniz BAŞDEMİR.

It is my honor to express my thankfulness to the man who I proudly carry his name,

my dear father Rabeea.

To the woman whose prayers are the secret of my success, my dear mother Annam.

To my brothers who always encourage me, Dr. Omer and Eng. Yassen.

To my sisters who always support me with their love.

To my friends whose their pictures and voices represent the most beautiful moments

and days of my life.

ix

TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISM. iii

ABSTRACT. iv

ÖZ. vi

ACKNOWLEDGEMENTS. viii

TABLE OF CONTENTS. ix

LIST OF FIGURES. xii

CHAPTERS:

1 INTRODUCTION. 1

 1.1 Background. 1

 1.2 Path Planning for Mobile Robots. . . . 1

 1.3 Minimizing the Path Length. 2

 1.4 Computation of Safe Robot Paths. 3

 1.5 Fast Computation of Robot Paths. 5

 1.6 Discussion and Motivation. 5

 1.7 Contributions of this Thesis. 6

 1.8 Thesis Organization. 7

2 BACKGROUNDS. 8

 2.1 Basic Definitions 8

 2.1.1 Notation 8

 2.1.2 Generalized Voronoi Diagram 10

 2.1.3 Voronoi Diagram and Dijkstra’s Algorithm 11

 2.2 Completeness and Optimality. 12

3 PRE-PROCESSING ENVIRONMENTS FOR EFFICIENT

SAMPLING.

13

 3.1 Comparison of Existing Methods. 13

 3.1.1 Methods for Minimizing the Path Length. 13

 3.1.2 Methods for Path Safety. 15

 3.1.3 Methods for Fast Computation. 16

 3.1.4 Evaluation. 17

 3.2 Methodology for Safe Path Planning. 21

 3.2.1 Extended Generalized Voronoi Diagram. 21

 3.2.2 Safety Guarantees and Proposed Methodology. 23

 3.2.3 Evaluation. 25

x

 3.2.4 Discussion. 29

4 MODIFYING THE SAMPLING STRATEGY FOR FAST

CLASSI-CAL ALGORITHMS.

31

4.1 Background on Classical Methods . 31

 4.1.1 Relevant Functions for Sampling-based Methods. 31

 4.1.2 Probabilistiy Roadmap (PRM). 32

 4.1.3 PRM*. 33

 4.1.4 Fast Marching Tree (FMT). 33

 4.1.5 Confidence Random Tree (CRT) . 33

 4.2 Proposed Method. 36

 4.2.1 Inflated Path. 36

 4.2.2 Inflated-path PRM (IPRM) and Inflated-path PRM*

(IPRM*).

38

 4.2.3 Improved FMT. 38

 4.3 Evaluation. 39

 4.3.1 Experimental Setup and Maps. 39

 4.3.2 Polygon Map . 40

 4.3.3 Maze Map with Straight Lines 42

 4.3.4 U-Map . 43

 4.3.5 Maze Map with Spiral . 45

 4.3.6 Discussion . 47

5 EFFICIENT PATH PLANNING METHOD BASED ON THE

VORONOIBOUNDARY.

49

 5.1 Voronoi Boundary Visibility for Efficient Path Planning 49

 5.1.1 Connection of the Start and Goal Position. 49

 5.1.2 Voronoi Boundary Visibility Algorithm. 53

 5.1.3 VV with Steiner Points. . 56

 5.1.4 Overall Path Computation. 58

 5.1.5 Inflated Obstacle Region. 61

 5.2 Evaluation. 62

 5.2.1 Properties of the VV Algorithm. . 63

 5.2.2 Comparison with State-of-the-Art Algorithms. 71

6 CONCLUSIONS AND FUTURE WORK 80

APPENDIX. 90

A Comparison of the Solution Paths for VV-ST-R. 91

 A.1 DS = 0. 91

 A.2 DS = 5. 94

 A.3 DS = 10. 95

B Comparison of the Solution Paths with the State-of-the-Art Methods. 98

 B.1 DS = 0. 98

xi

 B.2 DS = 5. 99

 B.3 DS = DCRT + 1. 113

LIST OF FIGURES

Figure 2.1 Example robot environment. 9
Figure 2.2 Example environment with GVD. 11

Figure 3.1 Environments used for the evaluation: (a) Polygon map (224× 400);
(b) Regular maze map (401× 400)); (c) T map (293× 291)); (d) Irregular maze
map (544×512). 18
Figure 3.2 Comparison of the classical methods. 19
Figure 3.3 Computation of the EGVD: (a) Obstacle map with ps and pg; (b) GVD
for the obstacle map; (c) pruned GVD; (d) GVD with filled start and goal regions. . 22
Figure 3.4 Desired subsets of Cfree: (a) CS; (b) CD. 23
Figure 3.5 Pre-processed polygon map with DEGVD = 8, DS = 6, DD = 4: (a)
using CS; (b) using CD.. 25
Figure 3.6 Pre-processed regular maze map with DEGVD = 7, DS = 4, DD = 4:
(a) using CS; (b) using CD. 25
Figure 3.7 Pre-processed T map with DEGVD = 14, DS = 9, DD = 7: (a) using
CS; (b) using CD. 26
Figure 3.8 Pre-processed irregular maze map with DEGVD = 3, DS = 2, DD = 2:
(a) using CS; (b) using CD. 26
Figure 3.9 Comparison of the PRM methods.. 27
Figure 3.10 Comparison of the RRT-based methods. 28
Figure 3.11 Comparison of the most suitable methods. 29
Figure 3.12 Comparison of the standard deviation of the most suitable methods.. . 30

Figure 4.1 Example solution paths: (a) PRM; (b) PRM*; (c) FMT; (d) CRT. . . 35
Figure 4.2 Example environment with different path width: (a) D = (6 pixels) (b)
D = (12 pixels) . 37
Figure 4.3 Environments used for the evaluation. 39
Figure 4.4 Polygon map: extended GVD and inflated Voronoi boundary. 40
Figure 4.5 Comparison of the performance metrics for the polygon map. 41
Figure 4.6 Solution paths for the polygon map. 41
Figure 4.7 Maze map: extended GVD and inflated Voronoi boundary. 42

xii

Figure 4.8 Comparison of the performance metrics for the maze map with straight
lines. 43
Figure 4.9 Solution paths for the maze map with straight lines. 43
Figure 4.10 U-map: extended Voronoi diagram and inflated Voronoi boundary. . . 44
Figure 4.11 Comparison of the performance metrics for the U-map. 45
Figure 4.12 Solution paths for the U-map. 45
Figure 4.13 Maze Map with Spiral: extended GVD and inflated Voronoi boundary. 46
Figure 4.14 Comparison of the performance metrics for the map in Fig. 4.3 (d). . . 47
Figure 4.15 Solution paths for the maze map with spiral. 47

Figure 5.1 Connection of ps and pg to V : (a) GVD; (B) BPs; (c) Connection to
BPs on Vs and Vg; (d) Resulting V . 51
Figure 5.2 (a) Original GVD with BPs; (b) Artificial BP b5. 52
Figure 5.3 Graph for the example environment. 52
Figure 5.4 VV-path illustration for: (a) PW1 with L(PVV) = 657.1; (b) PW2 with
L(PVV) = 677.5; (c) PW3 with L(PVV) = 755.0; (d) PW5 with L(PVV) = 840.1. . . . 55
Figure 5.5 (a) PVV with L(PVV) = 657.1; (b) PRR with L(PRR) = 666.2. 56
Figure 5.6 (a) Algorithm 6 for PW1 with L(PVV) = 657.1; (b) Algorithm 6 and
7 for PW1 with L(PS) = 637.0; (c) Algorithm 6 for PW2 with L(PVV) = 677.5; (d)
Algorithm 6 and 7 for PW2 with L(PS) = 645.4. 58
Figure 5.7 (a) Algorithm 9 for PW1 with L(PS) = 635.6; (b) Algorithm 8 for PW1

with L(PS) = 633.9; (c) Algorithm 9 for PW2 with L(PS) = 644.6; (d) Algorithm 8
for PW2 with L(PS) = 631.6. 61
Figure 5.8 Inflated obstacle region for the example environment: (a) Cobs(5) with
L(PS) = 636.9; (b) Cobs(10) with L(PS) = 642.4. 62
Figure 5.9 Environment maps and corresponding graphs: (a) VV1; (b) VV2. . . 64
Figure 5.10 Environment maps and corresponding graphs: (a) VV3; (b) VV4 . . 64
Figure 5.11 Path length comparison for VV1. 65
Figure 5.12 Path length comparison for VV2. 65
Figure 5.13 Path length comparison for VV3. 66
Figure 5.14 Path length comparison for VV4. 66
Figure 5.15 Computation time comparison for VV1. 67
Figure 5.16 Computation time comparison for VV2. 67
Figure 5.17 Computation time comparison for VV3. 68
Figure 5.18 Computation time comparison for VV4. 68
Figure 5.19 Solution paths for VV1 and DS = 5. 69
Figure 5.20 Solution paths for VV2 and DS = 10. 69
Figure 5.21 Solution paths for VV3 and DS = 5. 70
Figure 5.22 Solution paths for VV4 and DS = 0. 70

xiii

Figure 5.23 Maps for the comparative evaluation. 72
Figure 5.24 Several interesting cases of solution paths for VV-ST-R, PRM*-L and
RR-ST. 76
Figure 5.25 Solution paths of VV-ST-R for different maps. 77
Figure 5.26 Comparison of safe solution paths. 79

Figure A.1 VV1, DS = 0. 91
Figure A.2 VV2, DS = 0. 92
Figure A.3 VV3, DS = 0. 92
Figure A.4 VV4, DS = 0. 93
Figure A.5 VV1, DS = 5. 93
Figure A.6 VV2, DS = 5. 94
Figure A.7 VV3, DS = 5. 94
Figure A.8 VV4, DS = 5. 95
Figure A.9 VV1, DS = 10. 95
Figure A.10 VV2, DS = 10. 96
Figure A.11 VV3, DS = 10. 96
Figure A.12 VV4, DS = 10. 97

Figure B.1 Z1, DS = 0. 98
Figure B.2 Z2, DS = 0 . 98
Figure B.3 Z3, DS = 0 . 99
Figure B.4 Z4, DS = 0 . 99
Figure B.5 Z5, DS = 0 . 100
Figure B.6 Z6, DS = 0 . 100
Figure B.7 Z7, DS = 0 . 101
Figure B.8 Z8, DS = 0 . 101
Figure B.9 Z9, DS = 0 . 102
Figure B.10 Z10, DS = 0 . 102
Figure B.11 Z11, DS = 0 . 103
Figure B.12 Z12, DS = 0 . 103
Figure B.13 Z13, DS = 0 . 104
Figure B.14 Z14, DS = 0 . 104
Figure B.15 Z15, DS = 0 . 105
Figure B.16 Z1, DS = 5. 105
Figure B.17 Z2, DS = 5. 106
Figure B.18 Z3, DS = 5. 106
Figure B.19 Z4, DS = 5. 107
Figure B.20 Z5, DS = 5. 107

xiv

Figure B.21 Z6, DS = 5. 108
Figure B.22 Z7, DS = 5. 108
Figure B.23 Z8, DS = 5. 109
Figure B.24 Z9, DS = 5. 109
Figure B.25 Z10, DS = 5. 110
Figure B.26 Z11, DS = 5. 110
Figure B.27 Z12, DS = 5. 111
Figure B.28 Z13, DS = 5. 111
Figure B.29 Z14, DS = 5. 112
Figure B.30 Z15, DS = 5. 112
Figure B.31 Z1, DS = DCRT. 113
Figure B.32 Z2, DS = DCRT. 113
Figure B.33 Z3, DS = DCRT. 114
Figure B.34 Z4, DS = DCRT. 114
Figure B.35 Z5, DS = DCRT. 115
Figure B.36 Z6, DS = DCRT. 115
Figure B.37 Z7, DS = DCRT. 116
Figure B.38 Z8, DS = DCRT. 116
Figure B.39 Z9, DS = DCRT. 117
Figure B.40 Z10, DS = DCRT. 117
Figure B.41 Z11, DS = DCRT. 118
Figure B.42 Z12, DS = DCRT. 118
Figure B.43 Z13, DS = DCRT. 119
Figure B.44 Z14, DS = DCRT. 119
Figure B.45 Z15, DS = DCRT. 120

xv

CHAPTER 1

INTRODUCTION

1.1 Background

Nowadays, with the vast developments in the technologies, autonomous and mobile
robots [1] are employed in many application fields such as autonomous driving [2, 3,
4], navigation in complex environments [5, 6, 7, 8], vehicle routing [9], buildings [10],
industrial automation [11] and Unmanned Air Vehicles (UAVs) [12, 13, 14]. Depend-
ing on the application and the task to be solved, robots have to navigate in different
types of environments without colliding with obstacles. In static environments, the lo-
cation of obstacles is known [15, 16, 17, 18, 19, 20, 21, 22, 23, 24], whereas obstacles
can change their location in dynamic environments [25, 26, 27, 28, 29]. When ap-
plying methods of computational geometry, maps represent objects such as obstacles
in the form of geometrical objects such as lines, polygons or circular shapes [30, 31].
On the other hand it is possible to employ binary images, where the free space and
obstacles are represented by white and black pixels, respectively [32, 33, 34].

1.2 Path Planning for Mobile Robots

As an important application, path planning for mobile robots has attracted much atten-
tion in the recent years [35, 36, 37, 38, 15]. Path planning is concerned with finding a
feasible robot path between a start and goal location, while avoiding obstacles in the
robot environment [39, 40]. Hereby, the most common performance metrics to validate
the quality of solution paths are the path length, the minimum distance to obstacles,
which quantifies path safety and the computation time [30, 20].

There are different possible scenarios for robotic path planning depending on the
availability of information about the environment [16, 41, 17, 18, 19], the type of
obstacles (static or dynamic) [7, 25, 29] and the robot type [40, 37, 42]. In this thesis,
we focus on the path planning in static environments, where robot paths are represented
by straight-line segments. Such paths are for example suitable for omni-directional
robots [42] or can be used as initial solutions when applying path smoothing [43].

1

1.3 Minimizing the Path Length

The most important performance metric in robotic path planning is the path length.
That is, it is highly desired to obtain short paths in order to save travel time and re-
sources. In the recent literature, sampling-based algorithms are most popular for path
planning in known environments with static obstacles [15, 16, 17, 18, 19, 20, 21, 22,
23, 24]. A large majority of such algorithms is based on probabilistic roadmaps (PRM)
or rapidly exploring random trees (RRT). On the one hand, PRMs generate random
sample nodes and introduce connections between close nodes in the obstacle-free re-
gion to determine a solution path [16]. On the other hand, RRTs are based on the idea
of growing a tree in the obstacle-free region from the start location to the goal loca-
tion [18]. Moreover, there are various extensions of these algorithms. The PRM* and
RRT* algorithms ensure convergence to an optimal path [17] and the FMT algorithm
in [19] combines features of PRMs and RRTs to determine shorter solution paths.

In addition, the recent literature provides several methods and comparative studies
involving sampling-based methods [21, 44, 45, 46, 47]. Path planning optimization
based on the PRM algorithm is presented in [21]. This work proposes new strategies
for distributing nodes in order to produce short paths that are comparable with the path
produced by PRM. A comparison of different path planning algorithms is performed
in [44]. In this work the environment representation is obtained by a SLAM algorithm.
Then, different algorithms are applied to find the optimal path such as A*, RRT, bRRT,
GA and PRM. The result indicates that A* search could find the shortest path but in
needed a long time to find it. An enhanced PRM algorithm used to solve the path
planning problem in a static environment was presented in [45]. This work uses the
piece-wise Cubic Hermite Interpolation (PCHIP) technique with PRM to enhance the
performance of the algorithm. PCHIP takes the points of the path generated by PRM
and re-draws the graph to minimize the length of the path. The result shows that the
enhanced PRM can find shorter paths than the classic PRM path. A heigh quality so-
lution for Rapidly-exploring Random Trees (RRT) was presented in [46]. Here, the
sampling strategy is modified by controlling the sampling space by using a Gaussian
mixture model. The performance of this algorithm was compared to the classic RRT,
RRT* and informed RRT*. Reference test maps were introduced to examine the per-
formance of PRM and A* algorithms in [47]. The results show that the computation
time of A* is long in maze maps and comparable to PRM in polygon maps. Never-
theless, A* is able to produce shorter paths in maze maps and longer paths in polygon
maps.

Different from sampling-based methods, [29] uses the generalized Voronoi dia-
gram (GVD) to create a static roadmap and [48] employs the ray-casting and tracking

2

(RCT) method to solve the problem of global path planning. A comparison with the
Visibility graph method, A* and RRT was done to show the efficiency of the algorithm.
The aim of the study in [49] is to demonstrate the efficacy of two approaches in path
planning, specifically, probabilistic roadmap (PRM) and genetic algorithm (GA). The
algorithm executes a test on both simple and complex environments respectively. This
work indicates that PRM is faster than genetic algorithm in finding the path while the
genetic algorithm has the ability to produce smooth paths for navigation.

1.4 Computation of Safe Robot Paths

A second important performance metric in robotic path planning is path safety. Here,
it is desired to keep a sufficient distance from obstacles in order to avoid collisions
and account for possible uncertainties during path following. In addition paths with
a large clearance to obstacles are beneficial in dynamic environments, where it might
be necessary to re-plan paths depending on moving objects [27, 29]. Methods that
take into account path safety are frequently based on the generalized Voronoi diagram
(GVD) [50, 51, 52, 53], which partitions an environment in Voronoi regions of points
that are closest to an obstacle. Then, the Voronoi boundary represents the border of the
Voronoi regions such that each point on the Voronoi boundary has the same distance
to its closest obstacles. Using the GVD, methods such as [51, 53] guide the search
for a solution path along the GVD while applying sampling-based methods in narrow
passages [51] or satisfying differential constraints [53]. The method in [52] combines
visibility graphs, GVDs and potential fields to obtain short paths. Although these
methods make use of the GVD, they do not specifically address path safety. [50]
first determines a graph from the GVD and then finds the shortest path in that graph
using Dijkstra’s algorithm [54]. In this case, the solution path has the largest possible
distance to obstacles but can be unnecessarily long. As a remedy, [30] suggests to first
refine the shortest path in the GVD by removing unnecessary turns and then introduces
additional points in order to shorten the solution path. Differently, [55] applies the fast
marching method on an inflated Voronoi boundary.

Artificial Bee Colony ”ABC” with Probabilistic roadmap ”PRM” was presented as
a hybrid algorithm in [56]. Whereas PRM is three times faster in finding a path than the
ABC algorithm, the hybrid algorithm has the ability to find a fast and safe path. The
reason is that PRM generally generates the path very close to obstacles, while ABC
can enhance the path by make it smooth and safe. Path planning in static environment
for mobile robot was presented in [57]. The work combines three algorithms which are
biogeography-based optimization (BBO), particle swarm optimization (PSO) and ap-
proximate Voronoi boundary network (AVBN). Based on the paths produced by AVBN

3

the position will be adapted by PSO to increase the diversity of the population in BBO.
Since the algorithm searches the path around the branching points of the AVBN dia-
gram it stays away from the obstacles. Tangential escape with A* algorithm is intro-
duced in [58] to solve the navigation problem for mobile robot. The benefit of adding
Tangential escape is to avoid obstacles on the robot path by making deviations while
the benefit from using A* is to find the shortest path between the two configurations.
The global path planning in a multi robot environment is presented in [59]. The GVD
with electric circuit based path planning ”ECPP” was presented to solve this problem.
Here, the benefit of using the GVD is to obtain a basic roadmap, while the benefit from
using ”ECPP” is used for multiple robot path planning. According to the clearance of
the path, the robot will chose the way in order to reach the goal. However, this work in-
dicates that this algorithm is not good for single mobile robot because the major idea of
this work is how to choose the widest path. A combination of potential fields with the
A* algorithm was introduced in [60] too solve the real-time path planning problem for
nonholonomic unmanned ground vehicles (UGV). The algorithm is capable of finding
a collision free path between the starting and ending point in real-time using the idea of
distributing nodes around all the obstacles. A modified version of RRT was presented
in [61]. The algorithm is able to reach the goal safely in static environments. The idea
of this work is to applying gradient descent on the samples generated by RRT, it will
move these samples to the free space. As a result the algorithm provides a collision free
path. The Confidence random tree algorithm to find safe paths was presented in [20].
In each iteration, the algorithms determines the clearance of samples from obstacles
and computes a confidence value. Based on this confidence. IN addition, the algorithm
provides a rejection method for removing unnecessary samples. Path planning in par-
tially known environment using optimized rapidly exploring random tree (ORRT-A*)
was presented in [62]. Speeding up the generation of the is tree done by introducing
additional step size based RRT, while A* is used to find the shortest path between the
starting and ending points. Cubic spline interpolation was used to optimize the path
while morphological operations help providing safety. Simulation result indicate that
the proposed algorithm succeeds in finding a path comparable with RRT-based and
RRT-A* algorithms. A* based on human experience was presented in [63] to solve
the path planning problem. The simulation results indicate higher efficiency in finding
safe and smooth path between two configurations, comparable with other algorithms
like RRT.

4

1.5 Fast Computation of Robot Paths

Computing robot past quickly is of high importance in the case of real-time path plan-
ning and dynamic path planning. Here, it is required to find a solution path within a
few seconds after determining the map of the robot environment. In this context, the
Quick RRT* (Q-RRT*) algorithm in [22] promises faster convergence to the optimal
path as an extension to the classical RRT* algorithm. The idea in this work is to re-
move intermediate vertexes, i.e. small turns in the path, to reduce the path length. In
addition, Q-RRT* combines informed-RRT* to make the tree explore narrow passages.
Similarly, the synchronized biased-greedy RRT algorithms in [24] grows trees towards
the goal location. A GVD with path optimization was presented in [64]. The article
shows the efficiency in finding the path locally and globally by adjusting the weight of
the path. Then, Dijkstra’s algorithm is used to find the path and the is path optimized
using the visibility of the graph. PRM and Spline algorithm was introduced by [45] to
find paths for mobile robot in uncertain static environments. The benefit from using
PRM is to find the shortest path between two configurations, while the benefit from
using Spline curve is to optimize the path which produced by PRM. The result indicate
that the hybrid algorithm will produced shorter path with a smaller computation time
than the classic PRM. In [65]. the PRM algorithm with a new sampling technique was
studied to decrease the computation time in finding two robots paths in the same homo-
topic roadmap. Sampling based on the boundaries of the obstacle was used to ensure
that there are nodes even in narrow corridors to cover all the environment, while PRM
is used to find the path between the starting and ending point. Self-localization based
on the GVD and Dijkstra’s algorithm was used to solve the path planning problem
in indoor environments in [66]. The real time result shows that the robot is capable
of reaching the goal safely. The comparison of different path planning algorithms in
[44] indicates that PRM is the best of the studied algorithms in finding short paths for
real-time path planning.

1.6 Discussion and Motivation

The main motivation of this thesis is the observation that there is a large variety of
robot path planning methods that focus on different performance metrics as discussed
in the previous sections. In this context, it has to be noted that the stated perfor-
mance metrics are in principle conflicting. That is, obtaining shorter path generally
lead to unsafe paths and a longer computation time, whereas solution methods with
small computation times will produce longer robot paths. Apart from this fact, it has
to be pointed out that the path planning problem for mobile robots is performed ei-
ther in 3D or 2D space. In particular, when considering nonholonomic mobile robots

5

(that cannot arbitrarily move in any direction), it is important to take into account the
robot position (x- and y-direction) as well as the heading angle when planning robot
paths. However, when planning paths for robots that can move in any direction (such
as omni-directional robots), straight-line paths that only depend on waypoints in 2D-
space are suitable. More importantly, such straight-line paths can as well be used as
initial solutions for generating smooth paths for nonholonomic mobile robots.

On the one hand, path planning methods for higher-dimensional spaces such as
PRM* or RRT* are not as beneficial for the low-dimensional spaces of mobile robots.
Although these methods are probabilistically complete (that is, the probability that the
planner fails to return a solution decays to zero as the number of samples approaches
infinity) and asymptotically optimal (the solution path length converges almost surely
to the shortest path length) [17], they do not guarantee finding a short path when putting
restrictions on the computation time. Specifically, these methods do not make use of
the topology of the robot environment.

On the other hand, the GVD captures the topology of the robot environment in
the sense that it provides Voronoi edges that represent points in the robot environment
with a maximum distance from obstacles. In particular, it is possible to follow such
Voronoi edges from the start position to a desired goal position of a mobile robot. That
is, the existence of a solution path is guaranteed if there is a connection along the
Voronoi edges. Nevertheless, such solution path is generally unnecessarily long since
it includes many turns to keep a maximum distance from obstacles [30].

1.7 Contributions of this Thesis

In view of the above discussion, the main motivation of this thesis is the efficient
usage of the topology of the robot environment based on the GVD in order to generate
short and safe paths for mobile robots with a small computation time. To this end,
the thesis suggests three different approaches. The first approach is based on the idea
of pre-processing the environment map using information from the GVD. The aim of
pre-processing is to add obstacle points in regions of the environment where solution
paths are undesired. Then, we apply existing sampling-based methods to the modified
environment map. Since the free space for solution paths is reduced, solution paths
are expected to be safer and less samples are needed in order to obtain short paths.
Since the computation time of the sampling-based methods depends on the number of
samples, this further reduces the computation time. The second approach develops a
new method for generating samples in a pre-processed environment map. Different
from the first approach, knowledge about the GVD is used to directly place samples
only in regions that are considered as safe. This approach leads to further savings

6

in the computation time. At this point, we note that the performance of the previous
approaches still depends on the placement of random samples. Differently, the third
approach does not use sampling-based methods. Instead, a new iterative refinement
of initial solutions paths along Voronoi edges of the GVD is proposed. As the first
step, the refinement removes waypoints in case it is possible to introduce an obstacle-
free shortcut. As the second step, additional waypoints are introduced in order to cut
corners that are generated by the edges between waypoints. This procedure is then
iteratively applied in order to gradually cut corners and introduce shortcuts. As an
important feature, the third approach is able to find a solution path whenever it exists.

In the scope of this thesis, all proposed approaches are evaluated based on a com-
prehensive comparison with existing state-of-the-art methods. In these comparative
experiments, it is shown that all the methods are able to generate short and safe paths
with a small computation time and improvements compared to the existing algorithms.

1.8 Thesis Organization

This Thesis is organized as follows. Chapter 2 introduces the necessary background for
the methods developed in this thesis. Chapter 3 proposes a new method for sampling-
based path planning based on pre-processed environment maps. Chapter 4 develops an
improved sampling strategy for fast and safe path planning and Chapter 5 introduces
an iterative method for refining paths obtained from the generalized Voronoi diagram.
Conclusions and directions for future work are presented in Chapter 6.

7

CHAPTER 2

BACKGROUND

This chapter gives the necessary background information for the methods proposed
in this thesis. First, basic definitions regarding the robot environment and the repre-
sentation of solution paths are given in Section 2.1. In addition, Section 2.2 recalls
important formal properties of robot paths.

2.1 Basic Definitions

We next consider the basic definitions regarding to path planning.

2.1.1 Notation

The subject of this work is the path planning for mobile robots in two-dimensional
(2D) static environments with obstacles. Hereby, we focus on the generation of paths
that consist of straight-line segments. Such paths can for example be followed by
omni-directional robots, which are able to turn on the spot [42] or can be used as
a starting point for generating smooth robot paths [43]. Formally, the configuration

space is defined as C ∈ R2 and obstacles in C are represented by the obstacle region

Cobs⊆C . Accordingly, the obstacle-free region that is available for the robot motion is
determined as Cfree = C \Cobs. Fig. 2.1 shows an illustration of the previously defined
regions with an obstacle region that consists of three circular obstacles that should not
be hit by the mobile robot.

Any point p ∈ C ⊆ R2 can be represented by its coordinates x and y. That is, we
write p = (x,y) as shown in Fig.2.1. Considering that we are interested in straight-line
paths in this thesis, a robot path P is defined by sequence of n points p1, p2, . . . , pn in
C . Hence, we write P = (p1, p2, . . . , pn), whereby pi ∈ C for i = 1, . . . ,n. Defining
the start and goal position of a mobile robot as ps and pg, respectively, it must hold
that p1 = ps and pn = pg for any suitable robot path. The actual robot path is then
determined by connecting subsequent points pi and pi+1 of a path P by straight lines
lpi,pi+1 for each i= 1, . . . ,n−1. Then, the set of points traversed by the robot from ps to
pg is given by PP ⊆ C , whereby PP consists of all the points that are covered by the
line segments lp1,p2, . . . , lpn−1,pn . Accordingly, we denote a path P as collision-free if

8

Figure 2.1: Example robot environment.

PP∩Cobs = /0, that is, there is no intersection of the points covered by the path and the
obstacle region. For later use in different algorithms, we also introduce the function

CollisionFree(p, p̂,Cobs) =

{
true if lp,p̂∩Cobs = /0
false otherwise

that determines if the straight-line connection lp,p̂ between two points p and p̂ inter-
sects the obstacle region Cobs.

We write
A = {P|PP ⊆ Cfree} (2.1)

for the set of obstacle-free paths. We further introduce the distance between two points
pi = (xi,yi), p j = (x j,y j) ∈ C as

d(pi, p j) =
√

(xi− x j)2 +(yi− y j)2, (2.2)

the minimum distance between a point p ∈ C and a subset C ′ ⊆ C

d(p,C ′) = min
p′∈C ′

d(p, p′) (2.3)

and the minimum distance between two subsets C ′,C ′′ ⊆ C

d(C ′,C ′′) = min
p′∈C ′,p′′∈C ′′

d(p′, p′′). (2.4)

Using (2.4), the minimum distance of a path P from the obstacle region can be written

9

as d(PP,Cobs). Finally, we compute the path length of P as

LP =
n−1

∑
i=1

d(pi, pi+1). (2.5)

Using the notation introduced above, the main aim of this thesis is the computation
of suitable obstacle-free robot paths between a given start position pS ∈ Cfree and goal
position pG ∈Cfree. In this context, we characterize suitability of robot paths by perfor-
mance metrics such as the path length (finding the shortest path), path safety (finding
a path distant from obstacles) and the computation time.

2.1.2 Generalized Voronoi Diagram

The results presented in this thesis are based on the usage of the generalized Voronoi
diagram (GVD), which is a basic data structure in robotic path planning [30, 25, 51,
52, 53]. In order to formalize the related terminology, we consider a configuration
space C that contains a set of geometric objects O1,O2, . . . ,Om such that Oi ⊆ C for
i = 1, . . . ,m as illustrated in Fig. 2.2.

Each object Oi is associated to a Voronoi region Vi. Specifically, Vi defines the
set of all points p ∈ C that are closer to Oi than to any other object O j with i 6= j

[51, 52, 53]. Formally, we define

Vi = {p ∈ C |d(p,Oi)≤ d(p,O j),∀ j 6= i}. (2.6)

Using (2.6), the collection of all regions V1, . . . ,Vm is denoted as the generalized

Voronoi diagram (GVD). As can be seen in Fig. 2.2, adjacent Voronoi regions share a
border that consists of all points with an equal distance to at least two objects. Accord-
ingly, we write V for the set of all such points and we call V the Voronoi boundary

(VB). Formally,
V = {p ∈ C |∃i 6= j,d(p,Oi) = d(p,O j)}. (2.7)

That is, for each point p ∈ V , there are at least two different objects Oi,O j with i 6= j

with an equal distance to p. In particular, any robot path following the VB keeps a max-
imum distance from the objects Oi, i = 1, . . . ,m, which can be identified as obstacles.
In addition, we denote points, where multiple borders of the VB meet as branching

points (BPs). To this end, we define the set of BPs B as the set of all points on the
boundary of at least 3 Voronoi regions.

B ={p ∈ V |∃i, j,k, i 6= j 6= k,

d(p,Oi) = d(p,O j) = d(p,Ok)}. (2.8)

10

Finally, we denote parts of the VB between BPs as segments of the VB. Consider-
ing two BPs bi,b j ∈B, we write Pbi,b j ⊆ V for the points covered by the segment
between bi and b j and consider |Pbi,b j | as the length of the segment.

There are various studies for the computation of the GVD in the existing literature
[67, 68, 69, 30, 51, 52, 70]. The underlying assumption in this thesis is that the robot
environment is represented by a binary image. That is, the relevant regions Cfree and
Cobs are not identified by geometric objects but by the pixel color such that obstacle
pixels are black and the free space is characterized by white pixels as demonstrated
in Fig. 2.2 (a). We note that the focus of this thesis is not the computation of GVDs.
Hence, we employ the fact that GVDs can for example be obtained based on the me-
dial axis transform [71, 72, 73]. Accordingly, we use the morphological operation of
”skeletonization” as in [74, 75, 76] to determine an approximation of the VB that con-
sists of the image pixels on the medial axis with an equal minimum distance to obstacle
pixels (see (2.7)). Then, BPs are determined as image pixels that are connected to at
least three segments of the VB.

2.1.3 Voronoi Diagram and Dijkstra’s Algorithm

The VB V of the GVD can be used to determine robot paths with a maximum dis-
tance/clearance from the obstacles [70, 51, 52, 55, 77, 78, 30, 50, 25, 29]. Hereby,
given start and goal points ps and pg, it is first required to connect these points to the
VB in order to obtain a connection between ps and pg via V . Generally, such con-
nection is achieved by computing the shortest collision-free path from ps and pg to V

[50, 30, 25, 53, 79] and extending the GVD by these paths. Then, Dijkstra’s algorithm
[54, 80, 50] can be applied to determine the shortest path between ps and pg in this
extended GVD as depicted in Fig. 2.2 (b).

Figure 2.2: Example environment with GVD.

11

2.2 Completeness and Optimality

The literature provides a multitude of algorithms for robotic path planning. These
algorithms are generally classified according to the properties of their solution paths
[81]. We next summarize the most relevant properties for later use in the thesis.

An algorithm is said to be complete if it terminates in a finite time with a valid
solution if such solution exists or with failure if there is no solution to the path planning
problem. Moreover, an algorithm is called optimal if any returned solution is optimal
with respect to a given cost function such as the path length [17], [19]. In this thesis,
we focus on sampling-based algorithms such as PRM [16], PRM* [17], RRT [18],
RRT* [17] or FMT [19] due to their computational efficiency. Although sampling-
based algorithms are neither complete nor optimal, they can give completness and
optimality guarantees in a probabilistic sense. The related notions are probabilistic

completeness and asymptotic optimality. An algorithm is probabilistically complete if
the probability that the planner fails to return a solution decays to zero as the number
of samples approaches infinity in case a solution exists. In addition, an algorithm is
asymptotically optimal if the cost of the returned solution converges almost surely to
the optimal cost. Since a formal analysis of these notions is not required in the scope
of this thesis, we refer to formal definitions of these notions in [17].

12

CHAPTER 3

PRE-PROCESSING ENVIRONMENTS FOR EFFICIENT SAMPLING

This chapter develops the first original approach of this thesis. In order to put this
approach into perspective Section 3.1 first performs a comparative analysis of various
state-of-the-art methods for robotic path planning. Then, Section 3.2 introduces our
methodology and compares its performance to the existing methods.

3.1 Comparison of Existing Methods

The literature provides a vast number of algorithms for path planning with different
objectives such as minimizing the path length, obtaining safe paths or finding a path
with minimum computation time. Since the main aim of this thesis is the development
of a methodology for safe and fast path planning, we first determine important fea-
tures and weaknesses of existing algorithms. To this end, Section 3.1.1 to 3.1.3 give
a brief description of the relevant methods. Section 3.1.4 performs a comprehensive
comparative evaluation of these methods using different environments and discusses
their performance regarding path length, safety and computation time. We note that
the description of the relevant algorithms rather focuses on the basic features of the
algorithms. We refer to the referenced literature for a full formal description of these
algorithms.

3.1.1 Methods for Minimizing the Path Length

We next consider the most popular algorithms for computing short paths.

Probabilistiy Roadmap (PRM)

The PRM algorithm is one of the most popular algorithms for robotic path planning
[41, 16], Although the method is in principle developed for multi-query applications,
it is as well beneficial for single-query applications [82]. The PRM algorithm has two
phases. In the first (learning) phase, it creates a graph by successively generating ran-
dom nodes in Cfree and tries to connect theses nodes to existing nodes by straight lines.
Connections are attempted to nodes within a certain connection radius and without in-
tersections with Cobs. The learning phase is complete when a pre-defined number of N

13

nodes has been processed. In the second (query) phase, the algorithm tries to connect
the given start point ps and goal point pg to the roadmap from the first phase and then
returns the shortest path in the resulting graph as the solution path.

The PRM algorithm is reported to be very fast and is able to generate short paths
[17]. In addition, the PRM algorithm is proven to be probabilistically complete [83]
without being asymptotically optimal. In addition, the PRM algorithm does not include
any measure for path safety.

PRM*

The PRM* algorithm was proposed as a modified Version of PRM in [17]. It is differ-
ent from the classical PRM algorithm in the first phase by decreasing the connection
radius between nodes with an increasing number of nodes. As a result, the PRM*
algorithm is both probabilistically complete and asymptotically optimal. The PRM*
algorithm does not address path safety and has a slightly increased computational effort
compared to the PRM algorithm.

Rapidly Exploring Random Tree (RRT)

The rapidly exploring random tree (RRT) algorithm was developed in [18] for effi-
cient single-query applications in high dimensional environments. The RRT algorithm
grows a tree starting from the given start position ps towards the unvisited part of the
free region. In each iteration of the algorithm, a random node prand is generated. This
node is connected to the closest existing node pnear if the connection is collision free.
Otherwise, a new node xnew with a collision-free connection is computed based on
prand. The RRT algorithm terminates if a path between ps and the goal position pg has
been found or a pre-defined maximum number of samples NRRT is exceeded.

The RRT algorithm is probabilistically complete [18] but not asymptotically opti-
mal. Moreover, the RRT algorithm does not address safety.

RRT*

The RRT* algorithm was proposed in [17] as a modified version of the RRT algorithm.
Different from the RRT algorithm, edges for a new node pnew are not only inserted to
the nearest node pnear but to all nodes inside a ball, whose radius decreases with the
number of explored nodes. In addition, the RRT* algorithms removes redundant edges
that cannot lead to a shortest path.

The RRT* algorithm is both probabilistically complete and asymptotically optimal
[17]. The RRT* algorithm does not address path safety and has an increased computa-
tional effort compared to the RRT algorithm.

14

Fast Marching Tree (FMT)

The FMT algorithm was proposed in [19] to combine the advantages of RRT* and
PRM*. It keeps sets of closed, open and unvisited nodes, whereby each node in the
open set is associated to the cost of traveling to that node. In each iteration, the FMT
algorithm selects the node with the lowest cost in the open set and finds all of its
neighbors in the unvisited set. Similar to PRM* and RRT*, neighbors are defined based
on a connection distance that decreases with the number of iterations. The neighbors
found are then connected to the closest nodes in the open set. The selected node is
removed from the open set and added to the closed set. The algorithm terminates
successfully if a connection to the goal node is established and is unsuccessful if a
pre-defined number of iterations is reached (or the unvisited set becomes empty).

According to [19], the FMT algorithm is asymptotically optimal but it does not
address path safety.

3.1.2 Methods for Path Safety

Path safety is generally addressed by increasing the minimum distance of a planned
path to the obstacle region, while avoiding a considerable increase in the path length
[20]. Path safety is of utmost importance in the case of uncertainties in the environ-
ment or the path following capabilities of the mobile robot. In addition, path safety
contributes to the applicability of path planning algorithms in dynamic environments
[29].

Voronoi Diagram and Dijkstra’s Algorithm

GVDs can be used for path planning in order to obtain a path with a maximum distance
from the obstacle region [70, 51, 52, 55, 30]. Hereby, the existing methods generally
proceed as follows. First, the GVD of the environment is generated as explained in
Section 2.1.2 and is extended by the shortest obstacle-free connection of the start and
end position to the GVD [25, 53, 79]. Then, a graph is extracted from this extended
GVD such that the start position, goal position and BPs correspond to vertexes. Edges
are introduced between vertexes that are connected by the Voronoi boundary and are la-
beled with the connection distance. Finally, Dijkstra’s algorithm [54] is applied to this
graph to determine the shortest path in the extended GVD. The described algorithms
are complete but generally produce long paths.

Medial Axis PRM (MAP)

A possible shortcoming of the classical PRM algorithm is that it places nodes ran-
domly in Cfree. As a result, it is unlikely that a sufficient number of nodes is placed in

15

narrow passages, which makes it difficult to find solution paths in such environments.
In addition, nodes might be generated very close to Cobs, affecting path safety. As a
remedy, medial axis PRM (MAPRM) is proposed in [84]. The main idea of MAPRM
is to generate nodes in the close vicinity of the Voronoi boundary, denoted as medial
axis (MA) of Cfree. The MAPRM algorithm first generates random nodes similar to
PRM. In a second step, these nodes are retracted towards the MA in an iterative proce-
dure without explicitly computing the GVD. Although the MAPRM algorithm enables
passing narrow passages, it has two possible disadvantages. First, the iterative proce-
dure for retracting nodes to the MA increases the computational effort. Second, while
it is ensured that nodes are generated far from Cobs, the connecting lines can still be
close to obstacles, which decreases path safety.

Medial Axis RRT (MAR)

Following the same line of argument as in the previous section (for MAPRM), MARRT
is introduced as an improvement to RRT in order to grow the tree in the vicinity of
the MA [85]. The MARRT algorithm iteratively generates a random node and then
expands the tree from the nearest node towards the random node along the MA. Dif-
ferent from MAPRM, the MARRT algorithm is probabilistically complete under mild
assumptions. Otherwise, the MARRT algorithm has the same advantages and disad-
vantages as the MAPRM algorithm.

Confidence Random Tree (CRT)

The confidence random tree (CRT) algorithm is specifically designed for path safety
[20]. Instead of generating random nodes, the CRT algorithm expands a tree by gen-
erating new nodes at a pre-computed distance from previously accepted nodes starting
from the start node. Hereby, the distance is adjusted based on the confidence of the se-
lected node, which depends on its distance from Cobs. In order to limit the number of
nodes, the CRT algorithm includes a node rejection method to avoid generating nodes
in previously explored areas. Due to the consideration of node confidence, the CRT
algorithm generates a safe path at the expense of an increased path length. A short-
coming of the CRT algorithm is the possibility of rejecting necessary nodes, which can
lead to longer paths or failure to find a solution.

3.1.3 Methods for Fast Computation

Fast computation of solution paths is of particular importance in real-time applications
[86]. Accordingly, several algorithms aim at the fast computation of solutions with a

16

possible loss of completeness and optimality. We next summarize two such extensions
of the RRT algorithm.

Obstacle Directed RRT (ObsRRT)

The ObsRRT algorithm is introduced as an extension of RRT for high-dimensional
environments in [87]. Since this thesis considers 2D-environments, our explanation
focuses on this case. Similar to RRT, the ObsRRT algorithm expands a tree from a
nearest node towards a randomly generated node if the nearest node is far away from
Cobs. On the other hand, if the nearest node is close to Cobs, ObsRRT tries to expand the
tree parallel to the obstacle boundary. This measure leads to a reduced computation
time especially in environments with narrow passages. However, ObsRRT does not
provide any guarantees regarding path safety, path length, completeness and optimality.

Goal-biased RRT (GBRRT)

The goal-biased RRT (GBRRT) algorithm is a modification of RRT with the aim of
growing the tree towards the goal fast [88]. The GBRRT algorithm defines a goal-bias
probability pGB and draws a random number before generating a new sample. If the
random number is below pGB, a normally distributed random sample around the goal is
generated. Otherwise, uniform sampling is used as in the original RRT algorithm [18].
The main advantage of the GBRRT algorithm is the fast computation of a solution
path, whereby it has to be noted that the path is generally longer than the minimum
path, path safety is not taken into account and completeness and optimality are not
addressed.

3.1.4 Evaluation

We next perform a comparison of the described algorithms based on different envi-
ronments. All algorithms were implemented in Matlab using the same functions for
common tasks of the different algorithms such as computing the distance of points
from Cobs. The experiments were run on a personal computer with Intel(R) Core(TM)
i5-6500 CPU @ 3.20GHz and 8.00 GB RAM. Here, we note that this section does
not present novel results regarding the stated algorithms. The aim of this section is
to compare the algorithms regarding their path length, safety and computation time.
This comparison is then the basis for the development of the proposed methodology in
Section 3.2.

17

Environments and Parameters

We consider the environments in Fig. 4.3 which are given as binary images, where
pixels in Cfree are white and pixels in Cobs are black. The start position and the goal
position are shown by a green circle and red diamond, respectively.

(a) (b)

(c) (d)

Figure 3.1: Environments used for the evaluation: (a) Polygon map (224× 400); (b)
Regular maze map (401×400)); (c) T map (293×291)); (d) Irregular maze map (544×
512).

The maps are selected according to their different properties as follows. The poly-
gon map in Fig. 3.1 (a) has different obstacles that are represented by polygon shapes
and that leave sufficient free space. There are multiple alternative routes between the
start and goal position. In the regular maze map in Fig. 3.1 (b), obstacles are repre-
sented by straight lines or circular lines, whereby the distance between obstacles is
small. Although there is a unique route between the start and end position, there are
many potential routes to be explored by sampling-based algorithms. The T map in
Fig. 3.1 (c) offers free space both towards the goal position and away from the goal
position. In addition, there is a comparatively narrow passage when traveling on the
unique route from the start to the goal position. The irregular maze map in Fig. 3.1 (d)
provides a multitude of narrow and irregular routes between the start and goal position.

18

Computational Experiments

We next evaluate the computational experiments for the different environments in Fig.
3.1 and the described algorithms. Since the considered algorithms are based on random
sampling, we take the average of 100 trials for each of the algorithms for each param-
eter. In order to quantify the performance of the solution paths P for each algorithm,
we determine the path length LP, the minimum distance to the obstacle d(PP,Cobs)

and the computation time T . The experimental results are shown in Fig. 3.2. We again
recall that all algorithms are applied for the case of a 2D configuration space which is
suitable for omnidirectional robots.

Figure 3.2: Comparison of the classical methods.

Regarding the computation time, it can be observed that VD, ObsRRT and GBRRT
generate solution paths in the shortest time for all environments. The PRM-based
algorithms are generally faster than the RRT-based algorithms with the exception of the
irregular maze map. MA-based algorithms mostly show the largest computation times,
which is expected due to the computationally expensive retraction of nodes to the MA.
Although CRT has a faster computation time than the RRT-based algorithms for the
environments with free spaces (polygon map and T map), it leads to long computation
times in maze environments, since too many nodes are generated along alternative
routes.

When analyzing the path length, it can be seen that the shortest paths are achieved
by FMT and the PRM-based algorithms. The RRT-based algorithms including CRT
generally lead to longer solution paths. In particular, algorithms such as ObsRRT and
GBRRT generate the longest path due to their fast termination. Solution paths are as
well long for VD since they strictly follow the Voronoi boundary.

Figure 3.2 clearly indicates that path safety is only taken into account by VD and

19

CRT. This is expected since both algorithm explicitly consider the obstacle distance
during the path computation. The remaining algorithms provide poor results regarding
path safety. Even MAPRM and MARRT try to place nodes close to the MA, these
algorithms cannot ensure a sufficient distance of the solution paths to the obstacle
region.

In addition to the above parameters, Table 3.1 shows the number of nodes and the
success rate of finding a solution path for each algorithm. Hereby, we note that the
number of nodes for each algorithm was adjusted so as to obtain a meaningful success
rate without requiring an extensive computation time. Accordingly, the table shows
that most of the algorithms provide a high success rate, whereby the required number
of nodes is closely related to the resulting computation time. Only the MA-based
algorithms show a large computation due to the computationally expensive retraction
of nodes to the MA. It is further interesting to inspect the results for the regular maze
map. Here, algorithms such as PRM*, MAP and CRT show a low success rate, which
is due to the required exploration of unnecessary parts of the configuration space.

Table 3.1: Success rate and number of nodes for the classical methods on the polygon
map.

VD PRM PRM* MAP RRT RRT* MAR ObsR GBR CRT FMT
Polygon Map

Rsuc 100 100 100 100 100 100 100 100 100 100 92
Nnodes 589 1000 1000 500 2910 2900 357 804 537 1200 3000

Regular Maze Map
Rsuc 100 100 79 60 96 100 100 100 97 82 95

Nnodes 602 1500 1500 500 2580 2650 343 2900 839 2020 3000
T Map

Rsuc 100 100 100 100 100 100 100 100 100 99 97
Nnodes 342 1000 1000 500 2810 2810 624 583 343 396 3000

Irregular Maze Map
Rsuc 100 100 98 97 100 100 100 100 100 98 98

Nnodes 728 2500 2500 500 6080 6050 373 1350 692 4050 3000

Discussion of Existing Methods

Together, the comparison in the previous section indicates that

• FMT leads to the shortest paths but without any guarantee of safety and with a
possibly large computation time,

• PRM-based methods perform better than RRT-based methods regarding compu-
tation time and path length,

20

• path safety is not taken into account by any of the methods except for VD and
CRT. Hereby, VD generates long paths and CRT leads to large computation times
and can have a low success rate especially in difficult environments,

• MAPRM and MARRT that generated nodes around the MA do not contribute to
path safety since the connections between node can come close to the obstacle
region and they have large computation times,

• the only method giving formal safety guarantees is VD. Consider a solution path
P computed by the VD algorithm. Then, it holds that its minimum distance from
Cobs is lower bounded by the minimum distance of the Voronoi boundary from
the obstacle region:

d(PP,Cobs)≥ d(V ,Cobs). (3.1)

Differently, it is the case that, although the CRT algorithm achieves a safer path
than the other methods, there is no formal guarantee about the minimum dis-
tance.

In summary, none of the existing methods can achieve short paths with a small
computation time and provide formal guarantees regarding path safety. Accordingly,
the main aim of this thesis is the development of a methodology that combines the
advantages of the existing methods in order to compute solution paths with the de-
scribed properties. The next section proposes such methodology based on the idea of
pre-processing the given environment map.

3.2 Methodology for Safe Path Planning

This section develops a general methodology for pre-processing environment maps
that are suitable for the fast computation of short and safe solution paths. As a com-
mon feature, these pre-processed environment maps enable the application of any of
the sampling-based path planning algorithms. As the first novel idea of this thesis, Sec-
tion 3.2.1 describes a modification of the GVD that is the basis for the pre-processing
methodology. Then, Section 3.2.2 formalizes the desired safety guarantees and de-
scribes the computation of the pre-processed environment map. Finally, Section 3.2.3
evaluates the performance of different sampling-based algorithms on the pre-processed
maps.

3.2.1 Extended Generalized Voronoi Diagram

In general, the start and goal position (ps and pg) are not located on the Voronoi bound-
ary. As described in Section 3.1.2, the existing methods suggest to connect these points

21

to the Voronoi boundary with a shortest obstacle-free path. In this section, we pro-
pose a different modification of the Voronoi boundary that will serve as the first pre-
processing step of our methodology. To this end, we propose the following procedure
to determine an extended GVD (EGVD), which is also illustrated in Fig. 3.3.

1. Extend Cobs by the start and goal position: Cobs = Cobs∪{ps, pg} (Fig. 3.3 (a)),

2. Compute the GVD for the resulting Cobs (Fig. 3.3 (b)),

3. Prune the GVD by removing parts that cannot be part of a solution path (Fig. 3.3
(c)),

4. Mark the regions around the start and goal position as free space (Fig. 3.3 (d)).

Figure 3.3: Computation of the EGVD: (a) Obstacle map with ps and pg; (b) GVD
for the obstacle map; (c) pruned GVD; (d) GVD with filled start and goal regions.

We next discuss the steps of the proposed procedure. Since ps and pg lie in the
obstacle-free region and are marked as Cobs (step 1), the GVD will encircle these
points, whereby all points inside the circle must belong to Cfree (step 2). That is,
any solution path must start within the circle around ps and end in the circle around
pg. Accordingly, all parts of the GVD that terminate at open ends cannot be part of
a solution path and hence can be pruned as suggested in [52] (step 3). Furthermore,
marking the regions around ps and pg as Cfree enables reaching ps and pg from the
remaining part of the GVD (step 4).

22

3.2.2 Safety Guarantees and Proposed Methodology

We next formulate subsets of Cfree that we consider as desirable for solution paths of
the robotic path planning problem when considering both path length and safety. Writ-
ing VEGVD for the Voronoi boundary of the EGVD, we define the minimum distance
of the EGVD from Cobs as

DEGVD = d(VEGVD,Cobs). (3.2)

Based on DEGVD and assuming that a solution path for the path planning problem
exists in the EGVD1, we identify two interesting subsets of any given environment.
First, given a safety distance DS < DEGVD, the set CS consists of all points, whose
distance from Cobs is larger than DS:

CS = {p ∈ Cfree|d(p,Cobs)> DS}. (3.3)

The set CS is illustrated in Fig. 3.4 (a), whereby the set CS is shown in white, the
original obstacles are black, the inflated obstacles are red and the EGVD is blue. As
an important property, the set CS fully contains the Voronoi boundary VEGVD of the
EGVD since DS < DEGVD. That is, assuming that a solution path exists in VEGVD, it is
ensured that a solution path exists in CS. Moreover, according to (5.4), any path in CS

has a distance greater than DS from Cobs and any path that does not belong to CS has a
distance closer than DS to Cobs.

Figure 3.4: Desired subsets of Cfree: (a) CS; (b) CD.

Second, given a distance DD < DEGVD, the set CD consists of all points, whose
distance from VEGVD is smaller than DD:

CD = {p ∈ Cfree|d(p,VEGVD)≤ DD}. (3.4)

1We note that there is no solution of the path planning problem if there is no solution path in the
EGVD.

23

The set CD is illustrated in Fig. 3.4 (b). Similar to CS, the set CD fully contains the
Voronoi boundary VEGVD of the EGVD since DD < DEGVD. That is, assuming that a
solution path exists in VEGVD, it is ensured that a solution path exists in CD. Moreover,
according to (3.4), paths are directed towards the goal along VEGVD since CD does not
deviate from VEGVD by more than DD and the minimum distance to Cobs is larger than
DEGVD−DD.

The methodology proposed in this thesis is based on the sets CS and CD. In par-
ticular, we point out that any of the sampling-based methods can be applied to the
environments with the modified free space CS or CD.

Consequently, we introduce the methods S-PRM, S-PRM*, S-RRT, S-RRT*, S-
FMT, S-GBRRT, which apply the respective sampling-based method on the pre-processed
map with Cfree =CS. For all of the proposed methods, path safety is directly taken into
account since a lower bound on the distance from Cobs is ensured by the pre-processed
environment according to (5.4). Formally, the stated methods address the following
safe path planning problem.

arg min
P,PP∈CS

LP. (3.5)

That is, the proposed methods attempt to find the shortest possible path with the min-
imum given distance DS to the obstacle region. As an interesting feature, each of the
above algorithms has the same properties as the corresponding classical algorithm re-
garding probabilistic completeness and asymptotic optimality for the problem in (3.5).

We note that the idea of using an inflated obstacle region was previously used
in [34] in combination with the application of goal-biased RRT. Different from our
methodology, the work in [34] does not quantify how much obstacles should be in-
flated, does not formalize the properties of the computed paths and only applies GBRRT
on the modified map with inflated obstacles.

As a possible shortcoming of using CS, it has to be considered that CS contains the
entire part of the free space with a safety distance of DS to the obstacles. Hence, it
is expected to contain regions that need not be explored during path planning as can
be observed in Fig. 3.4 (a). Accordingly, we further define the methods D-PRM, D-
PRM*, D-RRT, D-RRT*, D-FMT, D-GBRRT for the pre-processed map with Cfree =

CD. These methods address the directed path planning problem

arg min
P,PP∈CD

LP. (3.6)

Since CD always stays close to the EGVD according to (3.4), it does not contain
unnecessary regions of the free space. Furthermore, path safety is ensured by the
lower bound DEGVD−DD on the distance to Cobs. Again, each of the above algorithms
has the same properties as the corresponding classical algorithm regarding probabilis-

24

tic completeness and asymptotic optimality for the problem in (3.6). As a possible
shortcoming of this method, regions that could lead to a shorter path might be missed
depending on DD.

3.2.3 Evaluation

We next evaluate the proposed methodology regarding the resulting path length, safety
distance and computation time as well as the comparison to the existing methods in
Section 3.1. To this end, we apply the proposed methodology to the environments in
Section 3.1.4. The resulting pre-processed maps for the different environments with
their parameters DEGVD, DS, DD are shown in Fig. 3.5 to 3.8. Following the procedure
in Section 3.2.1, we determine the GVD from a digital image in the jpeg format using
morphological operations and the pruning algorithm in [52]. Similarly, the sets CS and
CD are obtained by inflating Cobs and VEGVD, respectively, using the morphological
operation dilation.

Figure 3.5: Pre-processed polygon map with DEGVD = 8, DS = 6, DD = 4: (a) using
CS; (b) using CD.

Figure 3.6: Pre-processed regular maze map with DEGVD = 7, DS = 4, DD = 4: (a)
using CS; (b) using CD.

25

Figure 3.7: Pre-processed T map with DEGVD = 14, DS = 9, DD = 7: (a) using CS;
(b) using CD.

Figure 3.8: Pre-processed irregular maze map with DEGVD = 3, DS = 2, DD = 2: (a)
using CS; (b) using CD.

The next sections perform a comparison of the PRM-based methods (Section 3.2.3)
and RRT-based methods (Section 3.2.3) on the pre-processed environment maps. Based
on this comparison, the most suitable methods for finding short and safe solution paths
with a short computation time are determined in Section 3.2.4.

PRM-based Methods

We first investigate the performance of the PRM-based methods in comparison to the
safety-oriented methods in Section 3.1.2 (Voronoi-Dijkstra – VD) and Section 4.1.5
(CRT). The results regarding computation time, path length and path safety for the
different environments are shown in Fig. 3.9.

26

Figure 3.9: Comparison of the PRM methods.

Fig. 3.9 shows that VD generally provides the fastest and safest solution but with
a much longer solution path. It can further be seen that the proposed methods (D-
PRM, S-PRM, D-PRM*, S-PRM*, D-FMT, S-FMT) significantly increase path safety
compared to the classical algorithms PRM, PRM* and FMT. Hereby, S-PRM, S-PRM*
and S-FMT achieve shorter paths with a similar or better safety distance compared to
D-PRM, D-PRM* and D-FMT. However, the computation time of S-PRM, S-PRM*
and S-FMT is higher due to the larger free space to be explored. It is important to note
that the proposed methods are superior to CRT regarding path length, path safety and
computation time. In particular, CRT does not perform well for maze environments
and environments with multiple candidate routes, whereas the algorithms based on CD

can find safe paths within a short time. Comparing among the proposed algorithms,
the algorithms D-PRM* and S-PRM* are preferable to achieve a short computation
time.

A further important parameter is the success rate Rsuc of each algorithm, which
quantifies the percentage of all trials where a solution path could be found. The val-
ues for the PRM-based algorithms are summarized in Table 3.2. Here, the interesting
observation is that the success rate of safe algorithms such as S-PRM, S-PRM* and
CRT is clearly below 100% for the regular maze map. The reason is that the origi-
nal environment in Fig. 3.1 as well as the pre-processed map in Fig. 3.6 (a) has tight
passages and large irrelevant portions that need to be explored. For such type of envi-
ronments, the methods D-PRM and D-PRM* that are directed along VEGVD provide a
much higher success rate.

27

Table 3.2: Success rate for the PRM-based methods.

VD PRM DPRM SPRM PRM* DPRM* SPRM* CRT FMT DFMT SFMT
Polygon Map

Rsuc 100 100 100 100 100 100 100 100 92 97 94
Regular Maze Map

Rsuc 100 100 100 92 79 100 65 82 95 56 86
T Map

Rsuc 100 100 100 100 100 100 100 99 97 96 98
Irregular Maze Map

Rsuc 100 100 100 100 99 99 98 98 98 0 93

RRT-based Methods

We next perform a comparison of the RRT-based methods. The computational results
regarding path length, path safety and computation time are shown in Fig. 3.10.

Figure 3.10: Comparison of the RRT-based methods.

First, it can be observed that, although the algorithms based on GBRRT provide
fast results, they generally lead to even longer paths than the VD algorithm. Regarding
the other proposed methods, it is evident that D-RRT, S-RRT, D-RRT* and S-RRT*
considerably increase path safety and decrease the computation time compared to RRT
and RRT* at a slightly increased path length. Furthermore, especially D-RRT and D-
RRT* run faster than CRT in most of the cases, whereby it has to be noted that these
algorithms show a low success rate in maze maps as can be seen in Table 3.3. S-
RRT and S-RRT* require a slightly larger computation time but offer a higher success
rate. Nevertheless, it has to be recognized that CRT provides similar results to the
RRT-based algorithms regarding path length and safety. That is, different from the
PRM-based algorithms, the proposed RRT-based algorithms do not offer considerable
improvements in the studied 2D environments.

28

Table 3.3: Success rate and number of nodes for the RRT-based methods.

VD RRT DRRT SRRT RRT* DRRT* SRRT* GBRRT DGBRRT SGBRRT
Polygon Map

Rsuc 100 100 100 100 100 100 100 100 100 100
Regular Maze Map

Rsuc 100 96 68 86 100 61 84 97 64 81
T Map

Rsuc 100 100 100 100 100 100 100 100 100 100
Irregular Maze Map

Rsuc 100 100 28 100 100 18 100 100 15 100

3.2.4 Discussion

We next discuss the main outcomes of our evaluation. For convenience, Fig. 3.11
displays the results of the methods that were found most suitable in Section 3.2.3.
Recalling that the focus was on the average values of 100 computational experiments,
we also provide the standard deviation (STD) of these experiments in Fig. 3.12.

Figure 3.11: Comparison of the most suitable methods.

Inspecting Fig. 3.11, it is evident that the PRM-based algorithms provide the best
results when taking into account the average values of path length, path safety and com-
putation time. CRT generally leads to longer paths, a smaller safety distance, a larger
computation time and a smaller success rate compared to D-PRM* and S-PRM*. In
addition, different from these algorithms, CRT does not provide any guarantee regard-
ing probabilistic completeness and asymptotic optimality. The RRT-based algorithms
show an increased path length and a possibly reduced success rate compared to the
PRM-based algorithms. Although D-FMT and S-FMT can find short paths, the com-
putation time and success rate are worse than for the PRM-based algorithms.

29

Figure 3.12: Comparison of the standard deviation of the most suitable methods.

Looking at Fig. 3.12, it can be seen that D-PRM* is superior to the other methods
regarding the STD of the different performance metrics. In particular, confining solu-
tion paths to the vicinity of the EGVD ensures that there are small deviations in the
lengths of different solution paths for most of the environments. The only exception
is the irregular maze map, which offers a multitude of routes between the start and
goal position as was discussed in Section 3.1.4. Accordingly, similar to the other algo-
rithms, the D-PRM* algorithm finds solution paths along different routes, leading to
larger differences in the path lengths.

Overall, we conclude that the proposed methodology outperforms existing algo-
rithms that both minimize path length and take into account path safety such as CRT
[20] and SGBRRT [34]. Especially the PRM-based algorithms D-PRM* and S-PRM*
compute solution paths with a short path length, guaranteed safety and a small com-
putation time. Hereby, D-PRM* provides better results regarding the success rate, the
computation time and the STD of the performance parameters such that different so-
lution paths show only small differences. On the other hand, S-PRM* is able to find
shorter paths due to the availability of more free space (see also Fig. 3.5 to 3.8). As
an important property, the proposed methods provide formal guarantees regarding path
safety. While the minimum distance Dmin of the CRT algorithm is a result of applying
the algorithm, the minimum distance obtained from D-PRM* and S-PRM* is deter-
mined by the given parameters DEGVD, DS and DD as is confirmed by the observed
STD in Fig. 3.12.

30

CHAPTER 4

MODIFYING THE SAMPLING STRATEGY FOR FAST CLASSICAL
ALGORITHMS

The methodology proposed in the previous chapter suggest to use pre-processed envi-
ronment maps in order to restrict the free space available for robot paths. However, the
original sampling-based methods are applied on these modified environment maps. In
particular, samples are generated everywhere on the map and rejected if they happen to
lie in the obstacle region. Since the sample generation and rejection adds to the com-
putation time, this chapter focuses on reducing the number of samples to be generated.
That is, instead of applying the original sampling-based methods, we next propose ef-
ficient modifications of the classical sampling-based algorithms. To this end, Section
4.1 highlights the relevant functions of classical sampling-based methods. Section 4.2
explains the proposed method for reducing the number of required samples and Section
4.3 performs a comprehensive comparison based on different environment maps.

4.1 Background on Classical Methods

This section summarizes the required background information for the prposed method.

4.1.1 Relevant Functions for Sampling-based Methods
Sampling-based algorithms for robotic path planning are of high interest due to their
fast computation of reasonable solution paths. We next outline common functions of
these sampling-based algorithms.

All sampling-based methods are based on the generation of random samples in
Cfree. We denote the function that generates N samples in Cfree that are drawn from a
uniform distribution as

Xrand = SampleFree(Cfree,N)⊆ Cfree.

Hereby, each x ∈ Xrand represents a random sample in Cfree. In addition, we intro-
duce the function

Xnew = SampleRad(x,r,N,Cfree)⊆ Cfree

31

that generates N random samples Xnew in Cfree on a circle with radius r around a point
x. Further,

Xnear = Near(V,x,r) = {x̂ ∈V |d(x, x̂)≤ r}

determines all points in the set V that lie on a disk with radius r around a point x.
Finally,

CollisionFree(x, x̂,Cobs) =

{
true if lx,x̂∩Cobs 6= /0
false otherwise

returns true if the straight line lx,x̂ between the points x and x̂ intersects Cobs and false
otherwise.

4.1.2 Probabilistiy Roadmap (PRM)

The PRM algorithm in Algorithm 1 is one of the most popular algorithms for robotic
path planning [16, 41] that has initially been introduced for multi-query applications.
However, the PRM algorithm is as well suitable for single-query applications [82].
In this case, the PRM algorithm first generates a set of NPRM random nodes in Cfree

and creates a graph G = (V,E). Initially, the vertexes consist of Xrand, pS and pG

and there are no edges. Then, the PRM algorithm iteratively picks one of the sample
nodes (line 4) and determines all neighbor nodes Xnear of xrand within a radius rPRM

(line 4). Edges from nodes xnear ∈ Xnear to xrand are introduced if xrand and xnear do
not belong to the same connected component in G and if they can be connected by
a collision free line (line 5 to 8). Each edge (xrand,x),(x,xrand) is labeled by its cost
c((xrand,x)) = c((x,xrand)), which is represented by the distance between the related
nodes (line 9). Finally, the algorithm returns the shortest (minimum cost) path P from
ps to pg in the resulting graph G.

Algorithm 1 PRM algorithm (for fixed value of rPRM) and PRM* algorithm (for
rPRM = γPRM · (log(n)/n)2)).

1: Input: P = PRM(pS, pG,NPRM,C ,Cobs,Cfree)
2: Initialize: Xrand = SampleFree(Cfree,NPRM); V = {pS, pG}∪Xrand; E = /0
3: for i = 1, . . . ,NPRM do
4: Pick xrand ∈ Xrand; Xrand = Xrand \{xrand} Xnear = Near(V,xrand,rPRM)

5: for x ∈ Xnear in order of increasing d(x,xrand) do
6: if xrand and x are not in the same connected component of G then
7: if CollisionFree(xrand,x,Cobs) then
8: E = E ∪{(xrand,x),(x,xrand)}
9: c((xrand,x)) = c((x,xrand)) = d(xrand,x),(x,xrand)

10: return shortest path P from pS to pG in G.

32

4.1.3 PRM*

The PRM* algorithm was proposed as a modified version of PRM in [17]. Its only
difference to the classical PRM algorithm in Algorithm 1 is that the connection radius
rPRM between nodes in line 4 decreases with an increasing number of nodes in the form
rPRM = γPRM ·

√
log(n)/n. Hereby, γPRM is a constant that has to be chosen larger than

2 ·
√

1.5 · µ(Cfree)/π for 2D-environments (µ(Cfree) denotes the area of Cfree). As
a result, the PRM* algorithm is expected to produce shorter solution paths than the
PRM algorithm with a possibly increased computational effort.

4.1.4 Fast Marching Tree (FMT)

The FMT algorithm was proposed in [19]. Its set of nodes V is generated in the same
way as for the PRM algorithm. Moreover, it keeps sets of closed (Vclosed), open (Vopen)
and unvisited (Vun) nodes that are initialized in line 1. Hereby, c(x) represents the cost
(distance) of traveling from pS to x along the graph G = (V,E). In each iteration, the
FMT algorithm selects the node with the lowest cost in the open set (line 15) and finds
all of its neighbors Xnear in the unvisited set (line 3). In analogy to PRM*, neighbors
are defined based on a connection distance rFMT = γFMT ·

√
log(n)/n that decreases

with the number of iterations. Each neighbor x ∈ Xnear is then connected to the closest
neighbor ymin in the open set Ynear if the connection is collision free and the relevant
sets are updated (line 5 to 13). The algorithm terminates without success if no more
nodes are left to be processed (Vopen = /0 in line 14). Otherwise, a solution path is
returned if pG is found to be the unprocessed node with the lowest cost.

4.1.5 Confidence Random Tree (CRT)

The previously discussed algorithms are designed for finding short paths with a small
computation time. Including path safety as a performance metric, the confidence ran-
dom tree (CRT) algorithm tries to generate solution paths that stay away from obsta-
cles [20]. To this end, the CRT algorithm introduces the notion of confidence of a node
x ∈ Cfree as

Conf(x,Cobs) = min{d(x,Cobs)/cmax,1}.

Hereby, cmax is a maximum distance parameter and the confidence gives an indication
of the distance of x to the obstacle region. Then, the CRT algorithm expands a tree
G = (V,E) starting from pS (line 2). In each iteration, a set Xnew of new nodes is
determined at a distance d = Conf(x,Cobs) ·cmax from each node x in the current open
set Xopen (line 5 to 9). Hereby, each element of Xnew stores the generated node xnew

and its parent node x (line 9). In order to limit the number of nodes, the CRT algorithm
includes a node rejection method to avoid generating nodes in previously explored

33

Algorithm 2 FMT algorithm.

1: Input: P = FMT(pS, pG,NFMT,C ,Cobs, Cfree) Initialize: V = {pS, pG} ∪
SampleFree(Cfree,NFMT); E = /0; Vun = V \ pS; Vopen = {pS}; Vclosed = /0;
c(pS) = 0; z = pS

2: while z 6= pG do
3: V̂open = /0 Xnear =Vun∩Near(V \{z},z,rFMT)
4: for x ∈ Xnear do
5: Ynear =Vopen∩Near(V \{x},x,rFMT)
6: ymin = argminy∈Ynear{c(y)+d(y,x)}
7: if CollisionFree(ymin,x,Cobs) then
8: E = E ∪{(ymin,x)}
9: V̂open = V̂open∪{x}

10: Vun =Vun \{x}
11: c(x) = c(ymin)+d(ymin,x)
12: Vopen = (Vopen∪V̂open)\{z}
13: Vclosed =Vclosed∪{z}
14: if Vopen = /0 then
15: return no path found

z = argminx∈Vopen{c(x)}
16: return shortest path P from pS to pG in G.

areas (line 10 to 22). Here, nodes are rejected if they are too close to previously
explored nodes in Xclosed (line 14 to 16) or if they are too close to an accepted node
xnew with a higher confidence (line 20 to line 22). Accepted nodes xnew are added to
Xopen for processing and an edge to the parent node is introduced in G (line 18 and
19). The CRT algorithm terminates without a solution path if Xopen is empty or with a
solution path P if a connection to pG is found (line 25).

Due to the consideration of node confidence, the CRT algorithm generates safe
solution paths at the expense of an increased path length.

34

Algorithm 3 CRT algorithm.

1: Input: P = CRT(pS, pG,cmax,cmin,C ,Cobs, Cfree)
2: Initialize: Xopen = {pS}; Xclosed = /0; V = {pS}, E = /0
3: while Xopen 6= /0 do
4: Xclosed = Xclosed∪Xopen; Xnew = /0
5: for x ∈ Xopen do
6: Xrand = SampleRad(x,Conf(x,Cobs) · cmax,nCRT,Cfree)
7: for xnew ∈ Xrand do
8: if Conf(xnew,Cobs)≥ cmin then
9: Xnew = Xnew∪{(xnew,x)}

10: Sort Xnew with decreasing confidence
11: Xopen = /0
12: while Xnew 6= /0 do
13: Take first element (xnew,x) from Xnew; Xnew = Xnew \{(xnew,x)}; faccept = 1
14: for x̂ ∈ Xclosed do
15: if Conf(x̂) · cmax > d(xnew, x̂) then
16: faccept = 0 break
17: if faccept 6= 0 then
18: Xopen = Xopen∪{xnew}
19: V =V ∪{xnew}; E = E ∪{(x,xnew)}
20: for (x̂new, x̂) ∈ Xnew do
21: if Conf(xnew) · cmax > d(xnew, x̂new) then
22: Xnew = Xnew \{(x̂new, x̂)}
23: xnear = argminx∈Xopen d(x, pG)
24: if Conf(xnear) · cmax > d(xnear, pG) then
25: return path P from pS to pG in G = (V,E)
26: return P = /0

Figure 4.1: Example solution paths: (a) PRM; (b) PRM*; (c) FMT; (d) CRT.

35

For illustration, Fig. 4.1 shows solution paths for the described algorithms using
an example map. It is readily observed that the paths obtained for PRM, PRM* and
FMT come very close to the obstacles. This is expected since these algorithms try to
minimize the path length and do not account for path safety. On the other hand, the
example path for CRT in Fig. 4.1 (d) stays away from the obstacles but leads to an
increased path length. The main focus of this thesis is the adaptation of algorithms
such as PRM, PRM* and FMT in order to address path safety without a significant
increase in path length.

4.2 Proposed Method

This section develops the method for safe and fast path planning based on the knowl-
edge of the extended GVD and the corresponding Voronoi boundary V in Section
3.1.2. Section 5.1.5 describes the general methodology and Section 4.2.2 and 4.2.3
combine the proposed methodology with the classical path planning algorithms de-
scribed in Section 4.1.

4.2.1 Inflated Path

We assume that the Voronoi boundary is available in the form of a set of points V ⊆
Cfree and the start and goal point pS and pG are elements of V in analogy to Section
3.1.2. Specifically, we consider the case where a solution path exists in the extended
GVD.1 As the first step of our algorithm, we suggest to prune the extended GVD in
order to remove parts of V that cannot lie on a solution path from pS to pG similar to
[52].

Next, we define a distance DI and we inflate V by the width DI. Considering that
the environment is given in the form of a digital image (such as JPEG), whereby V is
represented by pixels in this image, the inflated Voronoi boundary VI can be computed
by a morphological dilation operation:

VI = V ⊕BDI =
⋃

b∈BDI

Vb, (4.1)

whereby BDI represents a disk with radius DI, ⊕ represents the dilation operation and
Vb is the translation of V by b ∈ BDI . The resulting map for the environment in Fig.
4.1 with the inflated pruned Voronoi boundary VI for DI = 6 and DI = 12 is shown in
Fig. 4.2.

1We note that this is not a restriction of the general case. If there is no solution in the extended GVD,
there is generally no solution of the path planning problem.

36

Figure 4.2: Example environment with different path width: (a) D = (6 pixels) (b) D
= (12 pixels)

Using VI, the main idea of this thesis is a modification of the sampling method
SampleFree used in the sampling-based path planning algorithms in Section 4.1.
Instead of generating random samples in the free space Cfree, we suggest to generate
samples only in VI. To this end, we next both develop an efficient method for generat-
ing such samples and provide a formula for deciding on the number of required node
samples.

In order to efficiently generate samples in VI, we first observe that all such samples
should have a maximum distance of DI from the original Voronoi boundary V . That
is, we first select a number of NV random points PV from V . For each point p ∈ PV ,
we generate random values d ∈ [0,DI] and θ ∈ [0,2,π] and determine the sample

v = p+d ·

[
cos(θ)
sin(θ)

]
. (4.2)

That is, each node sample is represented by a point, whose distance to V is bounded
by DI. The proposed procedure is summarized in Algorithm 4.
Writing |V | for the overall sum of all path lengths on V , we observe that the number
of required node samples increases with |V | and decreases with DI since a larger value
of DI leaves more free space for obstacle-free connections (compare Fig. 4.2 (a) and
(b)). Hence, we suggest to compute the number of node samples as

NV = γV ·
|V |
DI

, (4.3)

whereby γV is a safety coefficient that can be adjusted depending on the specific
environment. We next point out the proposed modifications of the algorithms (PRM,
PRM’, FMT) in Section 4.1.

37

Algorithm 4 Computation of samples close to V .

S = SampleInflated(NV,V ,DI)
Initialize: S = /0
Select NV random points PV from V
for p ∈ PV do

Generate random d ∈ [0,DI]
Generate random θ ∈ [0,2,π]
Generate new sample v according to (4.2)
S = S∪{v}

return S

4.2.2 Inflated-path PRM (IPRM) and Inflated-path PRM* (IPRM*)

The original PRM algorithm (Section 4.1.2, Algorithm 1) computes node samples in
the overall free space using SampleFree(C ,Cobs,NPRM) and checks if connections
between nodes are collision-free using CollisionFree(xrand,x,Cobs) with the ob-
stacle region Cobs. The proposed algorithms inflated-path PRM (IPRM) and inflated-
path PRM* (IPRM*) generate node samples as described in Section 5.1.5 and check
collision-freeness using the modified obstacle region Ĉobs = C \VI. That is, line 2 in
Algorithm 1 is replaced by

Xrand = SampleInflated(NV ,V ,DI);V = {pS, pG};E = /0

and line 7 in Algorithm 1 is replaced by

if CollisionFree(xrand,x, Ĉobs) then.

4.2.3 Improved FMT

Similar to the modification of PRM and PRM*, we suggest to change the sampling
method and the obstacle region of the FMT algorithm in Section 4.1.4. To this end, we
replace line 1 in Algorithm 2 by

V = {pS, pG}∪SampleInflated(NV ,V ,DI);E = /0;Vun =V \ pS;Vopen = {pS};

In addition, we replace line 7 in Algorithm 2 by

if CollisionFree(ymin,x, Ĉobs) then.

38

4.3 Evaluation

We next perform a comparison of the proposed methods and the existing methods in
Section 4.1 regarding the resulting path length, safety distance and computation time.
Section 4.3.1 explains the setup of the computational experiments and Section 4.3.2 to
4.3.5 evaluate the considered algorithms for different environments. A discussion of
the obtained results is given in Section 4.3.6.

4.3.1 Experimental Setup and Maps

We apply the described algorithms to the environments in Figure 3.1 which are given
as binary images, where pixels in Cfree are white and pixels in Cobs are black. The start
position and the goal position are shown by a green diamond and red circle, respec-
tively.

The maps are selected according to their different properties as follows. The poly-
gon map in Fig. 4.3 (a) has different obstacles that are represented by polygon shapes
and that leave sufficient free space for multiple routes between pS and pG. In the maze
map in Fig. 4.3 (b), obstacles are represented by straight lines and there are multiple
routes between pS and pG. The U-map in Fig. 4.3 (c) offers U-shaped obstacles, where
candidate paths can be trapped. The maze map in Fig. 4.3 (d) provides a single long
and narrow circular solution route.

Figure 4.3: Environments used for the evaluation.

In order to perform a fair evaluation, all the algorithms were implemented in Matlab
using the same functions for common tasks of the different algorithms as indicated
in Section 4.1.1. The experiments were run on a personal computer with Intel(R)

39

Core(TM) i5-6500 CPU @ 3.20GHz and 8.00 GB RAM. For each environment, 100
test runs of each algorithm were performed.

4.3.2 Polygon Map

We first consider the polygon map in Fig. 4.3 (a). Following the procedure in Section
2.1.2 and 3.2.1, we determine the extended GVD and the inflated Voronoi boundary
as shown in Fig. 4.4 for different values of DI = 14, DI = 10 and DI = 6. Here, VI is
shown in white, V is shown in green and Cobs is shown in black. The light blue region
represents the part of Cfree that is not close enough to V and hence is not considered
for solution paths.

Figure 4.4: Polygon map: extended GVD and inflated Voronoi boundary.

The computational results for the polygon map are shown in Fig. 4.5. For each
method the average values of computation time (T̄comp), path length (L̄path), minimum
obstacle distance (D̄min) and number of nodes (N̄nodes) for 100 runs (represented by a
bar) are displayed. In addition, the error bars show the maximum and minimum value
among the 100 test runs. We point out the following main observations from the figure.

• Regarding the computation time, it is observed that the proposed algorithms are
always faster than the related classical algorithm, whereby the computation time
increases for a narrower inflated path. This change in the computation time is
directly related to the number of nodes N̄nodes as computed with (4.3).

• Although it is the case that PRM, PRM* and FMT produce short solution paths,
these algorithms do not account for path safety, that is, D̄min is small. All the pro-
posed algorithms achieve increased safety depending on the value of DI. Most
interestingly, path safety is comparable to the results of the CRT algorithm if DI

40

is chosen small enough, whereas the computation time, the path length and the
variation among solutions are smaller for the proposed algorithms.

• Only the VD algorithm can achieve safer paths than the proposed algorithms but
with a significantly increased path length.

Figure 4.5: Comparison of the performance metrics for the polygon map.

In summary, the proposed algorithms clearly outperform the existing algorithms for
the polygon map when taking into account computation time, path length and safety.
For illustration, Fig. 4.6 compares solution path examples for the different methods
(Di = 6). It can be seen that the path for CRT has unnecessary turns, which extend the
path compared to the paths generated by IPRM, IPRM* and IFMT, which attempt to
find the shortest path within the inflated Voronoi boundary.

Figure 4.6: Solution paths for the polygon map.

41

4.3.3 Maze Map with Straight Lines

We next consider the maze map in Fig. 4.3 (b). The extended GVD and the inflated
Voronoi boundary for this map are shown in Fig. 4.7 for DI = 9, DI = 7 and DI = 5,
whereas Fig. 4.8 depicts the computational results for this map.

Figure 4.7: Maze map: extended GVD and inflated Voronoi boundary.

We point out the following main observations from this experiment.

• Regarding the computation time, it can again be seen that the proposed algo-
rithms are generally faster than the related classical algorithm, whereby the
IPRM* algorithm is fastest.

• Path safety can be significantly increased compared to the classical algorithms
when using the proposed algorithms. Moreover, an increase in path safety com-
pared to the CRT algorithm is possible at a significantly reduced computation
time, path length and variation of the obtained solutions. Here, the main reason
for the increased computation time of the CRT algorithm is the generation of
node samples in parts of the map that are not relevant for finding a solution path.
The proposed algorithms only generate node samples along the possible routes
along the inflated Voronoi boundary.

42

Figure 4.8: Comparison of the performance metrics for the maze map with straight
lines.

Fig. 4.9 compares solutions paths of the different methods. Similar to previous
section, CRT generates longer paths due to unnecessary turns when following straight
passages. On the contrary, the solution paths of IPRM, IPRM* and IFMT use straight
line connections in such passages.

Figure 4.9: Solution paths for the maze map with straight lines.

4.3.4 U-Map

We further study the U-map in 4.3 (c). The extended GVD and the inflated Voronoi
boundary for this map are shown in Fig. 4.10 for DI = 20, DI = 15 and DI = 10,
whereas Fig. 4.8 depicts the computational results for this map.

43

Figure 4.10: U-map: extended Voronoi diagram and inflated Voronoi boundary.

The main observations from this experiment are summarized as follows.

• The proposed algorithms lead to a reduced computation time compared to the
existing algorithms except for the VD algorithm, which generates a very long
path.

• The proposed algorithms allow adjusting path safety by selecting an appropriate
value of DI. For this environment, it has to be mentioned that the CRT algo-
rithm generates safe paths with a similar path length as the proposed algorithms.
Nevertheless, the CRT algorithm still leads to a larger computation time and sig-
nificant variations in the minimum distance from the obstacle region. The main
reason is that the CRT algorithm generates random samples that can be more or
less close to the obstacle region depending on the found confidence values. On
the other hand, the node samples of the proposed algorithms are restricted to the
inflated Voronoi boundary such that the lower bound for Dmin is well-defined.

44

Figure 4.11: Comparison of the performance metrics for the U-map.

We further note that the solution paths in Fig. 4.12 confirm the observations from
the previous sections and solution paths of CRT might come close to obstacles.

Figure 4.12: Solution paths for the U-map.

4.3.5 Maze Map with Spiral

We finally investigate the maze map in 4.3 (d) that has a very long solution path. The
extended GVD and the inflated Voronoi boundary for this map are shown in Fig. 4.13
for DI = 8, DI = 6 and DI = 4, whereas Fig. 4.14 depicts the computational results for
this map.

45

Figure 4.13: Maze Map with Spiral: extended GVD and inflated Voronoi boundary.

We next describe the main observations from this experiment.

• The proposed algorithms mostly lead to significantly smaller computation times
compared to the existing algorithms. It can only be observed that a very small
value of DI should be avoided due to the increase in the required number of
nodes.

• For this map with a narrow space between obstacles, the proposed algorithms
enable a significant increase of path safety without much increase in the path
length compared to the classical methods. In addition, the proposed algorithms
outperform the CRT algorithm in all performance metrics.

Finally, the solution paths in Fig. 4.15 again support the superiority of the proposed
methods compared to CRT.

46

Figure 4.14: Comparison of the performance metrics for the map in Fig. 4.3 (d).

Figure 4.15: Solution paths for the maze map with spiral.

4.3.6 Discussion

Overall, the computational experiments for different environments indicate that the
proposed methods are superior to both existing sampling-based methods such as PRM
[41], PRM* [17] and FMT [19] as well as recent methods for path safety such as
CRT [20]. In particular, the proposed IPRM algorithm outperforms the original PRM
algorithm, the proposed IPRM* algorithm outperforms the original PRM* algorithm
and the proposed IFMT algorithm outperforms the original FMT algorithm regarding
both computation time and path safety while accepting a slight increase in path length.

47

Moreover, all the proposed algorithms (IPRM, IPRM* and FMT*) lead to a reduced
computation time and path length while providing comparable path safety as the CRT
algorithm. When comparing the proposed algorithms IPRM, IPRM* and IFMT, it can
be observed that all of these algorithms provide similar results regarding computation
time, path length and path safety. It is only the case that the IFMT algorithm leads to an
increased computation time in case of a small width of the inflated Voronoi boundary
and for environments with very long solution paths.

In this context, it has to be noted that the proposed algorithms benefit from confin-
ing the generated node samples to the inflated Voronoi boundary. This helps avoiding
the exploration of irrelevant regions of Cfree. Moreover, this ensures the generation of
reliable solution paths with small variations in the path length, minimum distance from
obstacles and computation time.

48

CHAPTER 5

EFFICIENT PATH PLANNING METHOD BASED ON THE VORONOI
BOUNDARY

The approaches proposed in the previous chapters use sampling-based methods in or-
der to determine short and safe robot paths. A possible disadvantage of these methods
is that they do not always find a solution path due to the random generation of samples.
In addition, the approach in Chapter 3 does not use information about the topology of
the robot environment, whereas the approach in Chapter 4 only uses the idea of an
inflated Voronoi path without exploring the possible routes from the start to the goal
position. Differently, the approach in this chapter precisely determines the possible
routes in the environment map by refining paths along the edges of the Voronoi di-
agram. Section 5.1 describes our iterative refinement method step by step. Then,
Section 5.2 performs a comprehensive evaluation of the proposed method based on
state-of-the-art methods.

5.1 Voronoi Boundary Visibility for Efficient Path Planning

In this section, we develop our proposed method for the fast computation of short
paths using information from the GVD as described in Section 2.1.2. Section 5.1.1 in-
troduces a new method for connecting the start/goal point to the GVD and then defines
a graph that captures the connectivity of the VB V using the BPs in B. Then, Section
5.1.2 and 5.1.3 introduce the new Voronoi-Visibility (VV) algorithm and a method
for its iterative application for computing short paths starting from the VB. Finally,
Section 5.1.5 discusses how this method can be extended in case of additional safety
requirements on robot paths.

5.1.1 Connection of the Start and Goal Position

As described in Section 2.1.3, one way of connecting ps and pg to the VB is finding the
shortest collision-free path from ps/pg to V . In this section, we propose an alternative
method that leads to shorter solution paths. In particular, for ps, we determine all points
on the VB that have an equal distance to ps and to the obstacle region Cobs. Formally,

49

we determine the set Vs ⊆ V such that

∀p j ∈ Vs,d(p j, ps) = d(p j,Cobs). (5.1)

Similarly, for pg, we compute the set Vg ⊆ V such that

∀p j ∈ Vg,d(p j, pg) = d(p j,Cobs). (5.2)

These points are guaranteed to have a collision-free connection to ps and pg, respec-
tively. Moreover, these points can be computed efficiently based on an image with a
modified obstacle region Ĉobs = Cobs∪{ps, pg}. To this end, we follow the procedure
described in Algorithm 5.

Algorithm 5 Connection of the start and goal point
1: Input: C , Cobs, ps, pg

2: Output: V , B

3: Initialize: Ĉobs = Cobs∪{ps, pg}
4: Determine the VB V for C and Ĉobs

5: Determine all BPs B on the VB
6: Determine Vs ⊆B as the BPs on the circle around ps

7: Determine Vg ⊆B as the BPs on the circle around pg

8: Connect ps/pg to the respective BPs in Vs/Vg

9: Remove all segments of V on the circles around ps/pg

That is, the proposed algorithm first determines the GVD for image with the mod-
ified obstacle region Ĉobs = Cobs ∪{ps, pg} (line 3) with the VB V . This GVD has
the property that the start point ps and the goal point pg are encircled by the VB as
illustrated in Fig. 5.1 (a). Then, the algorithm determines all BPs on V (line 5). The
BPs on the circle around ps are identified as Vs (line 6), whereas the BPs on the circle
around pg belong to Vg (line 7) as can be seen in Fig. 5.1 (b). Then, the points ps/pg

are connected to the corresponding BPs in Vs/Vg (line 8). This procedure is depicted in
Fig. 5.1 (c). Finally, the unnecessary parts of the circles around ps and pg are removed
(line 9) to obtain the resulting VB V in Fig. 5.1 (d).

50

Figure 5.1: Connection of ps and pg to V : (a) GVD; (B) BPs; (c) Connection to BPs
on Vs and Vg; (d) Resulting V .

Using the outputs V , B of Algorithm 5, we next compute a graph G = (V,E)

that characterizes the connectivity of the VB. That is, the vertexes of G are defined
as V = B and the edges E contain all (unordered) pairs {bi,b j} with bi,b j ∈ V such
that there is a direct connection between bi and b j on V . We further take into account
the special case, where different connections between a pair of vertexes bi,b j exist on
V . This case can for example be seen in Fig. 5.2. Here, there are two connections
between the BPs b1 and b4. In order to resolve this ambiguity, we simply insert an
artificial BP on one of the connections (for example the longer one) and update the
edges accordingly.

51

Figure 5.2: (a) Original GVD with BPs; (b) Artificial BP b5.

The graph for the example environment in Fig. 5.2 is given by the vertexes
V = {ps, pg,b1,b2,b3,b4,b5} and the edges E = {{ps,b1},{ps,b2},{b1,b4},{b1,b5},
{b2,b3},{b2, pg},{b3, pg},{b3,b4},{b4,b5}}. We finally label each edge {bi,b j} ∈ E

by the path length |Pbi,b j | on V between the BPs bi and b j. The labeled graph for the
example environment is shown in Fig. 5.3.

ps

b2

b1

b5

b4 b3

pg

161.6

561.0

247.2 247.2

265.3 17.4
286.4

228.8

233.4

Figure 5.3: Graph for the example environment.

For the graph G = (V,E), we define a walk in G by a finite sequence of vertexes
(v1,v2, . . . ,vn) with v1, . . . ,vn ∈V such that each edge {vi,vi+1} ∈E for i= 1, . . . ,n−1.
In particular, we are interested in walks from ps to pg, that is, v1 = ps and vn = pg.
In order to avoid confusion with the notion of a ”path” in the robot environment, we
use the notion of a start-goal walk for a walk from ps to pg in G. Using G, it is possi-
ble to determine the shortest start-goal walk along V using Dijkstra’s algorithm [54].
Moreover, it is possible to compute the k shortest (cycle-free) start-goal walks using
Yen’s algorithm [89]. Accordingly, we introduce the notation W1, . . . ,Wk to denote the
k shortest (collision-free) start-goal walks from ps to pg along V . We further note that
the maximum number of different shortest start-goal walks depends on the topology
of each environment and can also be determined by Yen’s algorithm. For the example
environment, there are 6 different start-goal walks, which are given in Table 5.1.

52

Table 5.1: k = 6 shortest start-goal walks for the example

Path Length [px]
W1 = (ps,b1,b4,b3, pg) 730.2

W2 = (ps,b2, pg) 794.4
W3 = (ps,b1,b4,b3,b2, pg) 906.0
W4 = (ps,b1,b5,b4,b3, pg) 959.3

W5 = (ps,b2,b3, pg) 1076.2
W6 = (ps,b1,b5,b4,b3,b2, pg) 1135.1

For each edge {vi,vi+1} ∈ E, we write Pvi,vi+1 ⊆ V for the corresponding path
between the points vi,vi+1 ∈ V (recall that V = B). Then, the path PW j ⊆ V that
corresponds to a start-goal walk Wj = (v1, . . . ,vn), is given by the concatenation of the
paths Pv1,v2 , . . . ,Pvn−1,vn (note that v1 = ps and vn = pg). Accordingly, any path PW j ,
j = 1, . . . ,k, constitutes a solution of the path planning problem and there is no solution
of the path planning problem if k = 0.

5.1.2 Voronoi Boundary Visibility Algorithm

It is a well-known fact that robot paths following the VB V take unnecessary turns and
are hence comparably long [90, 51, 52, 55, 30, 50]. Accordingly, we suggest to first
employ a shortcut heuristic to reduce the path length. Our method uses the information
obtained from the VB V and the corresponding graph G in Section 5.1.1 to determine
a collision-free path PVV = (p1, . . . , p|PVV|) such that {p1, . . . , p|PVV|} ⊆ V .

Since our algorithm is based on the visibility of points on V , we denote it as
Voronoi Boundary Visibility (VV). We next explain the VV algorithm following the
pseudo-code given in Algorithm 6. It is based on an initial solution path P=(p1, . . . , p|P|)

that is for example obtained from a start-goal walk Wj as in Section 5.1.1 and the ob-
stacle region Cobs (line 1). The algorithm then determines two different sequences of
waypoints to be followed. In the first case (l = 1 in line 13), the algorithm follows the
given path P from ps to pg. In the second case (l = 2), the waypoints of P are ordered
in the reverse direction from pg to ps (line 5). PVV is initialized with p1, which is
equal to ps for l = 1 and to pg for l = (line 5). Moreover, the points pcur and plast keep
track of the current point to be explored and the last collision-free connection point,
respectively. The algorithm loops over all points in P (line 6). It is then checked if the
straight-line connection from pcur to pi is collision-free (flag = true in line 7). If flag
is true, plast is updated since there is no collision on the straight-line connection from
pcur to pi (line 9). If flag is false, it holds that the straight-line connection from pcur

to pi intersects with the obstacle region Cobs (line 10). Nevertheless, we know from
the previous iteration (where flag must have been true that the straight-line connection

53

from pcur to plast is collision-free. Hence, we accept plast on the solution path (line 11)
and restart the search for a collision-free connection from plast (line 12 and 13). The
search for new points terminates if a connection to the goal position pg is found (line
14). The algorithm finally compares the two solution paths P1 (for l = 1) and P2 (for
l = 2) and returns the shorter one as the result. In the sequel, we will denote the path
PVV resulting from Algorithm 6 as a VV-path.

Algorithm 6 ComputeVV(P,Cobs)

1: Input: P, Cobs

2: Output: PVV

3: for l = 1,2 do
4: if l = 2 then
5: ∀i = 1, . . . , |P|: pi = p|P|−i+1

Initialize: Pl = (p1); pcur = p1; plast = p1

6: for k = 2, . . . , |P|1 do
7: flag = CollisionFree(pcur, pi,Cobs)

8: if flag = true then
9: plast = pi

10: else
11: Pl = (Pl, plast)

12: pcur = plast

13: l = l−1
14: if plast = p|P| then
15: break
16: return argminP1,P2{L(P1),L(P2)}

For illustration, we compute the VV-paths for W1, W2, W3 and W5 in Table 5.1.
That is, for i = 1,2,3,5, we apply Algorithm 6 with the initial path PWi . The resulting
VV-paths are shown in Fig. 5.4.

54

Figure 5.4: VV-path illustration for: (a) PW1 with L(PVV) = 657.1; (b) PW2 with
L(PVV) = 677.5; (c) PW3 with L(PVV) = 755.0; (d) PW5 with L(PVV) = 840.1.

Remark 1. We note that shortcut heuristics with the same objective of reducing the

number of waypoints and removing unnecessary turns were introduced in [90, 78,

91, 92, 30]. Different from our algorithm, the algorithm in [91, 92, 30] suggests to

iteratively remove points from a given path P if the connection between its adjacent

points is collision-free. Although this method is also able to reduce the path length, we

will show in Section 5.2 that our algorithm generally leads to shorter paths. For later

usage, we refer to the algorithm in [30] (denoted as ”Remove Redundancy”) as

PRR = RemoveRedundancy(P,Cobs).

The algorithm in [78] also uses the idea of checking connections to waypoints until a

collision is detected. Differently, that algorithm only evaluates the path from ps to pg

but omits the path from pg to ps. It is obtained from Algorithm 6 by iterating only for

l = 1 in line 13.

For illustration, we show two paths that are obtained for the initial path PW1 of
the example environment. Fig. 5.5 (a) and (b) depict the solution paths PVV and PRR

obtained from ComputeVV and RemoveRedundancy, respectively. It can be seen

55

that both paths select waypoints on PW1 . Hereby, PVV defines a shorter connection
since computeVV looks ahead more.

Figure 5.5: (a) PVV with L(PVV) = 657.1; (b) PRR with L(PRR) = 666.2.

5.1.3 VV with Steiner Points

The VV-paths computed by Algorithm 6 are able to avoid unnecessary turns when
following the VB as can be seen in Fig. 5.4. Nevertheless, it is still the case that
VV-paths have unnecessary corners that increase the path length. Accordingly, we
suggest to apply the technique of adding Steiner points in order to cut corners. We note
that this technique was first introduced in [91, 92, 30]. Nevertheless, in this work we
propose a particular combination with Algorithm 6 and the graph G that both reduces
the computation time and enables the reduction of the path length.

We first formalize the technique in [91, 92, 30] in Algorithm 7 for later usage in
our improved algorithms. Algorithm 7 computes a solution path PS (line 2) based on
a given feasible path P that is for example obtained from Algorithm 6, the obstacle
region Cobs and a distance value ∆ (line 1). The solution path is initialized with the
given path (line 3) and the algorithm terminates if PS only contains the start and goal
position (line 5). Otherwise, the algorithm repeats the following iteration (line 6 to
22): The algorithm tries to reduce the path length by looking at 3 consecutive points
pL, p, pR (line 7) starting from ps = PS[1]. Hereby, the notation PS[i] denotes the i-th
waypoint in PS and the main idea is to remove a potential corner with p when moving
from pL to pR. Then, the algorithm tries to put new points pSL and pSR between p,
pL and p, pR. These points are generated at increasing distances k ·∆ from p (line
12). pSL and pSR are accepted as new waypoints if their straight-line connection is
collision-free (line 15). No more new points can be generated if there is a collision
(line 17) or the generated points do no longer lie between p, pL and p, pR (line 11).
After completing the generation of new points, the algorithm checks if any new points

56

could be found (line 18). If there are new points, the original point p is removed from
PS and replaced by p̂SL and p̂SR (line 19). Then, the algorithm continues from the
next unvisited waypoint (line 20 or 22). If the goal position pg is reached (line 9), the
inner loop (line 9) terminates. If no more improvement in the solution path PS can be
achieved (line 6), PS is returned.

Algorithm 7 ComputeST(P,Cobs,∆)

1: Input: Collision-free path P= (p1, . . . , p|P|) such that p1 = ps and p|P|= pg; Cobs;
∆

2: Output: Solution path PS

3: Initialize: PS = P; nold = ∞

4: if |PS|= 2 then
5: return PS

6: while |PS| 6= nold do
7: nold = |PS|; p = PS[2]; pL = PS[1]; pR = PS[3]
8: dL = d(pL, p); dR = d(pR, p); uL = pL−p

dL
; uR = pR−p

dR

9: while p 6= pg do
10: p̂SL = p; p̂SR = p; k = 1
11: while k ·∆ < dL and k ·∆ < dR do
12: pSL = p+uL · k ·∆; pSR = p+uR · k ·∆
13: flag = CollisionFree(pL, pR,Cobs)

14: if flag = true then
15: p̂SL = pSL; p̂SR = pSR

16: else
17: break
18: if p̂SL 6= p then
19: PS = (ps, . . . , pL, p̂SL, p̂SR, pR, . . . , pg)

20: p = p̂SL

21: else
22: p = pR

23: return PS

Fig. 5.6 illustrates the successive application of computeVV in Algorithm 6 and
Algorithm 7 for the initial paths PW1 and PW2 in Fig. 5.4. In both cases, it can be seem
that additional waypoints are introduced in order to remove unnecessary corners in the
VV-paths.

57

Figure 5.6: (a) Algorithm 6 for PW1 with L(PVV) = 657.1; (b) Algorithm 6 and 7 for
PW1 with L(PS) = 637.0; (c) Algorithm 6 for PW2 with L(PVV) = 677.5; (d) Algorithm
6 and 7 for PW2 with L(PS) = 645.4.

5.1.4 Overall Path Computation

As can be seen in Fig. 5.6, the length of solution paths can be reduced when applying
Algorithm 6 and 7 consecutively. Nevertheless, it also has to be noted that the solution
path PS of Algorithm 7 can have an increased number of waypoints since it repeat-
edly adds new waypoints. That is, shorter connections between some of the added
waypoints might be possible. Accordingly, we next define two particular combina-
tions of Algorithm 6 and 7 for the efficient computation of short solution paths with a
small number of waypoints. The first method is stated in Algorithm 8. Here, the input
parameters ∆init and ∆min represent the initial and minimum distance value for the re-
finement according to Algorithm 7. The algorithm first computes the VB B and the set
of BPs B according to Algorithm 5 (line 3) and then determines the k shortest paths
PW1 , . . . ,PWk from ps to pg along the VB following the graph construction in Section
5.1.1 (line 4). Then, the shortest path is initialized with the shortest path PW1 along
the VB and the algorithm tries to reduce all the paths PWk , i = 1, . . . ,k (line 6 to 14).
In each iteration, the solution candidate P is initialized with PWi . The algorithm first

58

applies the VV algorithm (line 8) and then repeatedly inserts points in P in order to
remove corners (line 10). Hereby, ∆ is decreased until the minimum resolution given
by ∆min is reached (line 9 and 12). Moreover, ComputeVV is repeatedly applied (line
11) in order to keep the number of points in PS small. At the end of each iteration,
the solution candidate is updated if the current path P is shorter than the previously
found paths (line 14). The algorithm returns the shortest path PS found among all the
candidates (line 15).

Algorithm 8 VV-ST-R(C ,Cobs, ps, pg,k,∆init,∆min)

1: Input: C ; Cobs; ps; pg;∆init; ∆min.
2: Output: Solution path PS

3: Compute V and B using Algorithm 5
4: Compute the k shortest paths PW1 , . . . ,PWk as described in Section 5.1.1
5: Initialize: PS = PW1

6: for i = 1, . . . ,k do
7: P = PW1; ∆ = ∆init

8: P = ComputeVV(P,Cobs)

9: while ∆≥ ∆min do
10: P = ComputeST(P,Cobs,∆)

11: P = ComputeVV(P,Cobs)

12: ∆ = ∆/2
13: if L(P)< L(PS) then
14: PS = P

15: return PS

The second method is a modification of Algorithm 8 that is stated for comparison
with the work in [30]. The main difference of Algorithm 8 and 9 is the usage of
ComputeVV. While this function is used in each iteration of the loop in Algorithm 8,
it is only used at the end of Algorithm 9 (line 12).

59

Algorithm 9 VV-ST(C ,Cobs, ps, pg,k,∆init,∆min)

1: Input: C ; Cobs; ps; pg;∆init; ∆min.
2: Output: Solution path PS

3: Compute V and B using Algorithm 5
4: Compute the k shortest paths PW1 , . . . ,PWk as described in Section 5.1.1
5: Initialize: PS = PW1

6: for i = 1, . . . ,k do
7: P = PW1; ∆ = ∆init

8: P = ComputeVV(P,Cobs)

9: while ∆≥ ∆min do
10: P = ComputeST(P,Cobs,∆)

11: ∆ = ∆/2
12: P = ComputeVV(P,Cobs)

13: if L(P)< L(PS) then
14: PS = P

15: return PS

Remark 2. We note that Algorithm 9 is shown in this work in order to evaluate the

improvements of our method compared to [91, 92, 30]. In particular, using k = 1
and replacing ”ComputeVV” by ”RemoveRedundany” in line 8 and 12 leads to

the algorithm in [30]. The comprehensive evaluation in Section 5.2 will reveal that

both Algorithm 8 and 9 lead to considerable reductions in the path length without

increasing the computation time. We further note that we evaluated different methods

for creating additional waypoints. For example, [90] uses the idea of Bisection in order

to generate Steiner points on neighboring edges of a solution path. Nevertheless, there

was no considerable effect on the final result (regarding path length and computation

time) when using different methods.

For illustration, we apply Algorithm 8 and 9 to the paths PW1 and PW2 of the example
environment as shown in Fig. 5.7. Due to the repeated application of the VV algorithm
in Algorithm 8, it is the case that shorter solution paths are found by this algorithm.
Specifically, we get L(PS) = 633.9, L(PS) = 635.6, L(PS) = 631.6 and L(PS) = 644.6
for the solution paths in Fig. 5.7 (a), (b), (c) and (d), respectively. It is further interest-
ing to note that the solution path of Algorithm 8 for the second-shortest start-goal walk
W2 along VB is shorter than the solution path for the shortest start-goal walk W1 along
VB. This demonstrates the advantage of taking into account several short start-goal
walks instead of only the shortest start-goal walk.

60

Figure 5.7: (a) Algorithm 9 for PW1 with L(PS) = 635.6; (b) Algorithm 8 for PW1 with
L(PS) = 633.9; (c) Algorithm 9 for PW2 with L(PS) = 644.6; (d) Algorithm 8 for PW2

with L(PS) = 631.6.

5.1.5 Inflated Obstacle Region

In addition to finding a shortest path in a given environment, it is frequently required
to determine a path that keeps a specified safety distance DS from the obstacle region
Cobs [30, 20, 29, 34]. That is, it is desired for the solution path Ps that

d(PPS ,Cobs)> DS. (5.3)

In order to address this issue within the proposed methodology, we define the inflated
obstacle region Cobs(DS) that contains all points in C , whose distance from Cobs is less
or equal to DS:

Cobs(DS) = {p ∈ C |d(p,Cobs)≤ DS}. (5.4)

In particular, it holds that Cobs = Cobs(0). A viable method for determining Cobs(DS)

in a digital map is to inflate Cobs using the morphological dilation operation

Cobs(DS) = Cobs⊕BDS =
⋃

b∈BDS

Vobs,b, (5.5)

61

whereby BDS represents a disk with radius DS, ⊕ represents the dilation operation and
Cobs,b is the translation of Cobs by b ∈ BDS .

Using Cobs(DS) instead of Cobs, all the algorithms in the previous sections (Algo-
rithm 5 to 9) can be applied in order to find short solution paths that keep a distance of
at least DS to the obstacle region Cobs. In this case, we first compute Cobs(Ds) using
(5.5) and determine the VB for the resulting map with inflated obstacle region using
Algorithm 5. After that, we apply Algorithm 8 using Cobs(DS) to obtain a solution
path PVV.

In order to illustrate the proposed method, we apply the proposed method to the
example environment. The inflated obstacle region and the resulting safe solution paths
for DI = 5 and DI = 10 are shown in Fig. 5.8. As can be seen from Fig. 5.7 (d) and Fig.
5.8, the solution paths become longer as the safety distance increases. This is expected
since the available free space for the robot motion is reduced for larger values of DS.

Figure 5.8: Inflated obstacle region for the example environment: (a) Cobs(5) with
L(PS) = 636.9; (b) Cobs(10) with L(PS) = 642.4.

5.2 Evaluation

In this section, we evaluate the solution paths PVV of the proposed algorithms regarding
the obtained path length L(PVV) and the computation time TVV for obtaining the so-
lution path. To this end, we compare the obtained solutions to several state-of-the-art
methods [30, 17, 18, 19, 20] for a large variety of environment maps. All the algo-
rithms are implemented in Matlab [93] and run under the same conditions on a Laptop
with Intel(R) Core(TM) i7-4510 CPU @ 2.60Ghz processor and 6GB RAM. Section
5.2.1 investigates the properties of the VV algorithm for maps with different properties
and Section 5.2.2 provides a comprehensive comparison of different algorithms.

62

5.2.1 Properties of the VV Algorithm

We first analyze the properties of the proposed path planning algorithm depending on
its constituent components. That is, we evaluate the improvements achieved when
applying Algorithm 8 compared to Algorithm 6 and 9. For comparison, we also show
the results when using the Voronoi-Dijkstra (VD) algorithm in Section 2.1.3, the RR
algorithm and the RR-ST algorithm according to [30] and the PRM* algorithm in
[17]. Hereby, the latter algorithm is applied with a large number of 15 000 samples
and serves as a reference due to its proven convergence to a minimum path.

Our evaluation in this section is based on four maps which feature different prop-
erties and that are shown together with their graphs in Fig. 5.9 and 5.10. Since this
section focuses on the evaluation of the VV algorithm, we denote these maps as VV1,
VV2, VV3, VV4. The maps VV1 and VV2 in Fig. 5.9 allow for multiple start-goal
walks with similar length in their respective graphs GVV1 and GVV2. Hereby, VV1 pro-
vides scattered circular and polygonal shapes that leave sufficient space for the robot
motion, whereas the maze map VV2 offers tight passages as well as regions with free
space. The maps VV3 and VV4 in Fig. 5.10 have a single start-goal walk. Although
there is sufficient space for the robot motion in VV3, this maps requires sharp turns of
the robot. Differently, the map VV4 is a maze map with curved obstacle boundaries
and tight passages. For each map, we consider three scenarios with safety distances of
DS = 0 (original map), DS = 5 and DS = 10 in order to validate the performance of our
algorithm in the case of additional safety requirements as specified in Section 5.1.5.

We first compare the different methods regarding the path length. The obtained
results for the different maps are shown in Fig. 5.11 to 5.14. It is readily observed that
VV-ST-R in Algorithm 8 produces the shortest paths among the VB-based algorithms
for all the maps and for all the considered safety distances DS. It can also be seen that
replacing the function RemoveRedundancy in [30] by the proposed VV-algorithm
(Algorithm 6) already leads to a considerable improvement. That is, VV improves on
RR and VV-ST improves on RR-ST. Moreover, an additional improvement is achieved
by VV-ST-R since it iteratively removes corners by adding Steiner points and then
reduces the number of waypoints using the VV-algorithm. Hereby, it is interesting to
note that VV-ST-R produces path lengths that are either very close to or shorter than
the ones from the close-to-optimal PRM* paths.

63

Figure 5.9: Environment maps and corresponding graphs: (a) VV1; (b) VV2.

ps pg ps pg
911.0 1462

GVV3 GVV4

(a) (b)

Figure 5.10: Environment maps and corresponding graphs: (a) VV3; (b) VV4

64

Figure 5.11: Path length comparison for VV1.

Figure 5.12: Path length comparison for VV2.

In addition, our results regarding the computation time are depicted in Fig. 5.15 to
5.18. Here, we note that the computation time for PRM* is not shown in these figures
since it exceeds 10 min and the computation time for all the algorithms includes the
computation of the GVD, which is the prerequisite of all the VB-based algorithms. It
holds that all algorithms show a similar computation time with slight variations de-
pending on the chosen map. Hereby, it is interesting to point out that applying the VV-
algorithm repeatedly (VV-ST-R) as suggested in Algorithm 8 reduces the path lengths
compared to Algorithm 9 and the algorithm in [30] without increasing the computation
time.

In addition to the computational results, Fig. 5.19 to Fig. 5.22 show a selection
of solution paths for different maps and methods (all related figures are shown in the

65

Figure 5.13: Path length comparison for VV3.

Figure 5.14: Path length comparison for VV4.

supplementary material). Fig. 5.19 and 5.20 illustrate that the solution paths of Algo-
rithm 8 do not necessarily follow the shortest start-goal walk, which is different from
the algorithm in [30]. Furthermore, Fig. 5.21 and 5.22 highlight that the paths gener-
ated by Algorithm 8 are able to tightly follow the shape of obstacles, while favoring
straight-line connections in free space. As a result, these paths are even shorter than
the paths obtained from applying the PRM*-algorithm with a large number of nodes.

66

Figure 5.15: Computation time comparison for VV1.

Figure 5.16: Computation time comparison for VV2.

67

Figure 5.17: Computation time comparison for VV3.

Figure 5.18: Computation time comparison for VV4.

68

Figure 5.19: Solution paths for VV1 and DS = 5.

Figure 5.20: Solution paths for VV2 and DS = 10.

69

Figure 5.21: Solution paths for VV3 and DS = 5.

Figure 5.22: Solution paths for VV4 and DS = 0.

70

5.2.2 Comparison with State-of-the-Art Algorithms

The results in the previous section indicate that the VV-ST-R algorithm outperforms
other VB-based algorithms. We next perform a comparison of this algorithm with sev-
eral state-of-the-art sampling-based path planning methods. To this end, we consider
the 15 different maps in Fig. 5.23 that were previously used in path planing applica-
tions.

For the comparison, we choose the PRM* (Probabilistic Roadmap) and RRT*
(Rapidly Exploring Random Tree) algorithm since they are probabilistically complete
and asymptotically optimal [17]. In addition, we apply the FMT (Fast Marching Tree)
algorithm that is supposed to generate shorter paths than PRM* and RRT* with a rea-
sonable computation time without being asymptotically optimal [19]. Finally, the very
recent CRT (Confidence Random Tree) algorithm is tailored for finding solution paths
that keep a safe distance from obstacles without computing the GVD [20]. For all these
sampling-based algorithms, we take the average of 100 trials and we select a suitable
number of nodes/samples in order to ensure finding a solution path in more than 98%
of the trials. In addition, similar to the previous section, we perform runs of the PRM*
algorithm with 15 000 nodes as a reference for close-to-optimal paths.

The results of our computational experiments are summarized in Table 5.2 and
5.3. For convenience the cells of the method with the shortest path and the shortest
computation time are shaded in gray. As the first main observation, it can be seen
that the VV-ST-R algorithm always generates the shortest path among the algorithms
that produce a solution path in a practical time. In addition, VV-ST-R has the smallest
computation time in almost all of the cases. As a further advantage, the VV-ST-R
algorithm is guaranteed to find a solution path if such path exists since it starts from
the connection of start and goal point along the VB. The implication of this fact can
for example be be seen when inspecting the computation time for the map Z7 or Z12
for DS = 5. Here, PRM* and FMT require a large number of nodes in order to find a
solution path since (i) there is only a narrow passage between obstacles and (ii) most of
the sampled nodes are generated in the obstacle region or in the part of the free space
that does not contribute to the solution path. In contrast, VV-ST-R is able to shorten
the initial solution path, which is given by the connection of ps and pg along the VB.

71

Figure 5.23: Maps for the comparative evaluation.

72

Ta
bl

e
5.

2:
Pa

th
le

ng
th

co
m

pa
ri

so
n

M
ap

Z
1

Z
2

Z
3

Z
4

Z
5

Z
6

Z
7

Z
8

Z
9

Z
10

Z
11

Z
12

Z
13

Z
14

Z
15

D
S
=

0
V

V
-S

T-
R

72
0

66
1

53
3

48
6

50
0

95
9

93
1

65
1

12
34

91
5

65
1

45
6

53
3

58
5

55
1

PR
M

*-
L

on
g

72
7

67
1

54
2

49
0

50
8

95
8

94
5

65
5

12
67

92
5

66
0.

7
45

7
53

6
60

1
55

7
R

R
-S

T
76

9
69

3
57

7
49

8
51

1
10

27
98

3
65

8
14

21
10

05
70

0
46

2
54

1
61

6
56

4
PR

M
*

78
7

69
0

57
1

51
1

50
9

10
09

10
12

67
5

13
79

98
1

69
9

46
2

54
7

61
7

59
2

R
R

T
*

10
86

85
6

81
9

65
5

74
8

13
02

13
50

91
2

20
04

13
16

11
02

47
6

66
3

81
7

73
5

FM
T

75
6

67
8

55
1

49
5

51
1

10
46

95
5

67
4

12
89

95
4

67
1

46
3

53
7

59
6

56
8

C
R

T
87

8
80

6
66

5
60

6
59

0
12

09
11

51
77

5
14

84
11

38
80

9
50

9
61

3
68

2
65

7
D

S
=

5
V

V
-S

T-
R

74
6

68
6

55
3

50
3

51
1

11
11

99
2

67
7

12
77

94
6

67
7

47
0

53
9

60
0

57
5.

4
PR

M
*-

L
on

g
75

7
69

1
56

4
51

1
51

4
11

06
99

7
68

4
13

05
95

5
68

8
47

1
54

1
60

7
58

2
R

R
-S

T
77

8
72

0
56

2
54

0
53

0
11

16
10

53
70

1
14

59
99

5
72

3
47

2
55

7
61

9
58

3
PR

M
*

76
5

69
8

63
8

52
5

53
1

11
24

10
20

69
1

14
86

10
06

72
3

47
3

55
9

65
2

60
3

R
R

T
*

11
48

87
6

85
0

70
7

82
3

12
77

13
24

85
3

20
24

13
17

11
74

47
9

67
6

84
6

74
5

FM
T

75
9

69
8

60
5

52
1

52
5

11
23

10
20

70
3

13
63

98
6

70
5

47
5

54
7

62
7

59
2

C
R

T
88

4
79

7
66

7
60

6
59

0
12

08
11

51
77

7
14

83
11

31
80

8
50

8
61

3
68

4
65

8

73

Ta
bl

e
5.

3:
C

om
pu

ta
tio

n
tim

e
co

m
pa

ri
so

n

M
ap

Z
1

Z
2

Z
3

Z
4

Z
5

Z
6

Z
7

Z
8

Z
9

Z
10

Z
11

Z
12

Z
13

Z
14

Z
15

D
S
=

0
V

V
-S

T-
R

1.
7

1.
4

1.
7

1.
3

1.
2

0.
49

1.
1

1.
2

1.
5

1.
2

1.
5

0.
9

1.
4

1.
4

1.
5

R
R

-S
T

1.
6

1.
6

2.
2

2.
2

1.
8

0.
89

2.
1

2.
2

2.
5

1.
7

1.
9

1.
9

2.
4

2.
5

2.
1

PR
M

*
2.

1
14

10
3.

8
4.

3
9.

2
4.

4
9.

8
3.

8
1.

9
1.

9
2.

3
2.

8
4.

3
2.

7
R

R
T

*
2

9.
1

9
12

1.
2

3.
8

4.
4

1.
3

3.
4

1.
6

1.
8

1.
6

4
3.

5
5.

5
FM

T
4.

1
39

28
14

7.
6

4.
4

5.
1

2.
9

5.
6

3.
3

9.
1

3.
9

9
13

.2
10

C
R

T
13

12
8.

7
12

2.
4

4.
8

10
2.

3
14

7.
7

10
.5

4.
3

10
15

9.
1

D
S
=

5
V

V
-S

T-
R

1.
7

1.
4

1.
6

1.
3

1.
2

0.
49

1.
1

1.
2

1.
5

1.
3

1.
6

0.
9

1.
5

1.
6

1.
6

R
R

-S
T

2.
1

2
1.

9
2

1.
6

0.
9

1.
9

1.
7

3.
6

2.
2

2.
2

1.
4

2.
5

1.
8

2.
1

PR
M

*
16

16
1.

6
8.

1
5.

5
8.

2
87

12
1.

5
2

1.
9

32
.5

1.
9

1.
6

8.
6

R
R

T
*

3.
4

3.
1

1.
5

7.
5

3
5.

8
13

3
1.

3
1.

3
1.

3
4.

5
1.

5
1.

4
4.

9
FM

T
54

70
3.

1
17

12
16

29
28

3.
7

3.
4

5.
4

20
6.

6
4.

3
16

C
R

T
5.

6
5.

3
8.

4
15

12
7.

2
12

4.
5

14
7.

6
9.

8
5.

2
10

15
9.

3

74

We further highlight several interesting observations from the solutions obtained
using the VV-ST-R algorithm for the maps Z9, Z10, Z14 and Z15. A comparison of the
solution paths for VV-ST-R, PRM*-L and RR-ST is shown in Fig. 5.24. The upper plot
shows Z6 for DS = 0. Here, it can be seen that VV-ST-R is able to generate solution
paths that turn around sharp corners, while finding short connections in free space.
In contrast, RR-ST cannot reduce the path length in case the generated waypoints
become too close to each other. This observation is also supported by the second plot
for Z9 and DS = 0. This plot further illustrates that the solution paths of VV-ST-R can
tightly follow straight walls. This is not the case for the solution paths of the PRM*s
algorithm, which depend on the locations of the randomly sampled nodes. The second
plot from bottom shows solution paths for Z10 and DS = 0. It can be readily observed
that solution paths generated by VV-ST-R can follow curved objects by placing an
increased number of waypoints where necessary. Finally, the lower plot with Z14 and
DS = 5 illustrates the advantage of computing solution paths for multiple start-goal
walks along the VB. Here, VV-ST-R chooses a different start-goal walks and is hence
able to generate a solution path that is considerably shorter than the paths for PRM*-L
and RR-ST. For completeness, the solution paths of VV-ST-R for the remaining maps
and DS = 0 are shown in Fig. 5.25

We next discuss the ability of the VV-ST-R algorithm to compute safe solution
paths. To this end, we consider the safety distance DCRT obtained by applying the CRT
algorithm for each of the maps and select DS = DCRT + 1 as the safety distance for
the other methods. We note that this choice of DS is made in order to compare the
idea of inflating the obstacle region with a method that generates safe paths without
inflating the obstacle region. In principle, any choice of DS would be possible as long
as there is a connection between ps and pg along the VB. In addition to path length and
computation time, we also investigate the minimum distance to the obstacle region as
shown in Table 5.4.

Looking at the results for the path length, we first note that the methods based on the
inflated obstacle region are able to find a shorter solution path than the CRT algorithm,
which is specifically targeted for safety. Most importantly, VV-ST-R always finds the
shortest safe solution paths among all the methods with a practical computation time.
In the most of the cases, the solution paths of VV-ST-R are determined with the shortest
computation time and are as well shorter than the ones of PRM*-L.

75

Figure 5.24: Several interesting cases of solution paths for VV-ST-R, PRM*-L and
RR-ST.

76

Figure 5.25: Solution paths of VV-ST-R for different maps.

77

Ta
bl

e
5.

4:
Pe

rf
or

m
an

ce
ev

al
ua

tio
n

fo
rs

af
e

pa
th

s
w

ith
D

S
=

D
C

R
T
+

1

M
ap

Z
1

Z
2

Z
3

Z
4

Z
5

Z
6

Z
7

Z
8

Z
9

Z
10

Z
11

Z
12

Z
13

Z
14

Z
15

Pa
th

le
ng

th
V

V
-S

T-
R

79
8

68
0

60
4

54
3

53
4

11
11

10
34

70
5

13
71

10
27

72
7

47
0

56
1

63
2

59
4

PR
M

*-
L

on
g

80
2

69
1

60
7

55
2

54
3

11
06

10
42

70
1

13
84

10
23

73
2

47
1

56
3

66
6

60
2

R
R

-S
T

81
7

72
0

62
8

55
9

53
5

11
16

10
79

70
8

14
35

10
69

79
5

47
2

56
6

65
8

59
5

PR
M

*
81

9
69

8
61

8
58

6
68

1
11

24
10

50
70

7
14

78
10

33
74

3
47

3
57

5
69

0
61

0
R

R
T

*
11

76
87

6
90

3
70

6
82

6
12

77
13

20
83

0
20

46
13

16
11

86
47

9
71

7
95

7
73

5
FM

T
88

6
69

8
63

6
57

7
62

1
11

23
10

60
71

0
14

38
10

25
75

5
47

5
57

2
68

4
60

4
C

R
T

88
3

79
7

65
4

60
8

58
9

12
08

11
63

77
4

14
85

11
31

80
7

50
8

61
4

68
5

65
6

C
om

pu
ta

tio
n

tim
e

V
V

-S
T-

R
1.

7
.9

7
1.

7
1.

7
1.

3
0.

49
1.

6
2.

4
2.

1
2.

2
1.

6
0.

95
2

1.
8

1.
7

R
R

-S
T

2.
3

2.
9

2
2.

1
2.

1
0.

94
2.

5
1.

7
2.

8
2.

4
1.

9
1.

4
2

2.
1

2.
2

PR
M

*
8.

3
16

9.
6

23
12

8.
2

15
0

62
4.

2
36

9.
4

32
13

8.
9

45
R

R
T

*
2.

3
3.

1
2.

7
3.

3
3.

7
5.

8
19

5.
3

3.
4

3.
5

2.
4

4.
5

4.
2

3.
7

5.
7

FM
T

25
70

.4
27

46
51

16
53

14
0.

5
5.

6
26

28
19

.9
43

14
41

C
R

T
4.

1
5.

3
4.

3
5.

7
12

7.
2

11
9.

3
13

7.
7

3.
7

5.
2

10
15

9.
1

M
in

im
um

di
st

an
ce

to
ob

st
ac

le
re

gi
on

V
V

-S
T-

R
14

6
16

11
.7

12
6

11
8.

5
16

15
.9

14
6.

4
16

.8
13

10
PR

M
*-

L
on

g
14

6
16

.1
12

13
6

11
9

16
16

14
.5

6
18

15
10

.5
R

R
-S

T
14

6.
1

17
11

.2
12

6
12

8.
5

19
.1

18
.2

15
6.

1
16

.9
13

10
.2

PR
M

*
14

.2
6.

1
17

.4
12

12
.2

6
11

.3
9.

1
17

.9
15

.8
14

.6
6.

5
17

.1
17

.5
9.

4
R

R
T

*
14

6
16

.9
12

12
.1

6
11

.8
9

17
.3

16
.5

14
.4

6.
4

15
.8

17
.4

9
FM

T
14

.7
6.

3
17

.5
12

.1
12

.2
6

11
.8

9
17

.8
15

.6
14

.8
6.

6
17

.2
17

.2
9.

6
C

R
T

10
.8

5.
4

13
.4

9.
2

9.
8

4.
6

10
.2

7.
2

13
13

.7
11

.4
5.

7
12

.9
12

.2
8.

6

78

We finally illustrate the findings of this experiment by comparing the solution paths
of VV-ST-R, PRM*-L and CRT for the maps Z4, Z13 and Z14 in Fig. 5.26. Here, it
can be first noted that both PRM*-L and CRT require a large number of waypoints,
leading to large computation times. The upper plot shows that, even all the methods
follow the same start-goal walk, the shortest path is computed by VV-ST-R due to the
effective placement of a small number of waypoints. In contrast, the solution paths of
CRT show unnecessary turns since this algorithm tries to find a path with the highest
confidence of avoiding obstacles but without knowledge about the VB. This is true
both in cases where CRT follows the correct start-goal walk (upper and center plot)
and in cases where CRT follows different start-goal walk (bottom plot). Furthermore,
the safety distance achieve by CRT is a result of applying the algorithm and cannot be
adjusted as for VV-ST-R by setting DS.

Figure 5.26: Comparison of safe solution paths.

79

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The subject of this thesis is the path planning problem for mobile robots in a two-
dimensional configuration space with obstacles. That is, the presented work specifi-
cally addresses the case of omni-directional robots that can perform turning maneuvers
on the spot. When solving the described path planning problem, different performance
metrics have to be taken into account. First, it is desired to compute robot paths that
are as short as possible. Second, it is beneficial for safety if solution paths have a
sufficient obstacle clearance. Finally, it is very important for real-time applications to
generate suitable paths with a short computation time. The thesis addresses the stated
requirements by developing three new approaches for robotic path planning. The first
approach focuses on the pre-processing of environment maps that can then be used for
any sampling-based path planning method. Here, the main aim is to increase the ob-
stacle region in order to generate samples only in the part of the map that is promising
for safe solution paths. It is hence expected that safe solution paths can be computed
in a shorter time. The second approach consists of three new path planning algorithms
that are extensions of the PRM (probabilistic roadmap) algorithm, PRM* algorithm
and FMT (fast marching tree) algorithm. The underlying idea for defining the new
algorithms is to first compute a generalized Voronoi diagram (GVD) of the robot envi-
ronment. The Voronoi boundary of this GVD is then inflated by a certain width. Each
of the stated algorithms (PRM, PRM* and FMT) is adapted such that node samples are
only generated on the inflated Voronoi boundary and node connections lie fully within
the inflated Voronoi boundary. The resulting algorithms are denoted as IPRM (Inflated
PRM), IPRM* (Inflated PRM*) and IFMT (Inflated FMT). As a particular feature,
the proposed algorithms require fewer nodes when determining a solution path and
ensure a minimum distance to obstacles by appropriately choosing the width of the
inflated Voronoi boundary. Different from the first two approaches, which employ
sampling-based strategies, the third approach uses information about the topology of
the environment from the GVD. Specifically, initial solution paths that follow Voronoi
edges are iteratively refined by introduce shortcuts and by adding new waypoints to
remove corners in the path.

Our comprehensive evaluation of the first approach shows that safe robot paths can

80

be obtained with small computation times for all of the proposed algorithms. Hereby,
the algorithms which use PRM-based sampling provide the best results. Specifically,
the obtained solution paths are better than the paths produced by algorithms such as
CRT (confidence random tree), MAPRM (medial axis PRM) and MARRT (medial axis
RRT) which are designed for path safety. As a particular feature of the proposed algo-
rithms, they provide formal guarantees regarding path safety. Our second approach is
evaluated by computational experiments with different environments. In these experi-
ments, it was confirmed that the proposed methods IPRM, IPRM* and IFMT outper-
form the existing methods PRM, PRM* and FMT regarding computation time and path
safety at a slight increase of the path length. Moreover, a comparison with the recent
CRT algorithm that specifically addresses path safety was performed. This compar-
ison indicates that the proposed algorithms are significantly faster, generate shorter
paths and lead to a comparable path safety. Furthermore, large variations of these
performance metrics that are observed for the CRT algorithm can be avoided for the
proposed algorithms since solution paths are confined to the inflated Voronoi boundary.
As an important result regarding the second approach, we conclude that it is preferable
to apply proven algorithms such as PRM, PRM* or FMT on pre-processed environ-
ment maps instead of designing specific algorithms such as CRT for the original envi-
ronment map. The third approach constitutes the most promising algorithm developed
in this thesis. Here, we emphasize that this algorithm is guaranteed to find a solution
path if such path exists. In addition, our evaluation show that the algorithm is able to
produce shorter paths in a shorter time compared to other methods using the GVD. The
main reason for this result is the iterative removal and addition of waypoints and the
consideration of multiple start-goal connections. It can further be concluded that the
third approach successfully addresses the properties of low-dimensional spaces.

There are several directions for future work. Regarding the first approach, it is the
case that the pre-processing is done based on global properties such as the minimum
distance of the Voronoi edges from obstacles. As an improvement, it is possible to use
local properties of environment maps for pre-processing. A similar improvement can
be employed for the second approach. Regarding the third approach, it has to be stated
that the formulation is for static environments. That is, an extension to environments
with dynamic obstacles would be beneficial. In addition, it would be interesting to
apply smoothing in order to make the generated path usable for non-holonomic robots.

81

REFERENCES

[1] F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mobile robots: Concepts,
methods, theoretical framework, and applications,” International Journal of Ad-
vanced Robotic Systems, vol. 16, no. 2, p. 1729881419839596, 2019.

[2] S. Spanogianopoulos and K. Sirlantzis, Car-Like Mobile Robot Navigation: A
Survey, pp. 299–327. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.

[3] G. R. Bermüdez-Bohórquez, C. A. Mancipe-Bernal, and J. E. Ortiz-Velásquez,
“Control of a robotic convoy through path planning and orientation strategies,”
Revista cientifica, pp. 237–251, 12 2017.

[4] S. G. Tzafestas, “Mobile robot control and navigation: A global overview,” Jour-
nal of Intelligent & Robotic Systems, vol. 91, pp. 35–58, 2018.

[5] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-free navi-
gation of mobile robots in complex cluttered environments: a survey,” Robotica,
vol. 33, no. 3, p. 463–497, 2015.

[6] I. Noreen, A. Khan, H. Ryu, N. L. Doh, and Z. Habib, “Optimal path planning in
cluttered environment using rrt*-ab,” Intell. Serv. Robot., vol. 11, p. 41–52, Jan.
2018.

[7] B. Patle, A. Pandey, D. Parhi, A. Jagadeesh, et al., “A review: On path planning
strategies for navigation of mobile robot,” Defence Technology, 2019.

[8] L. G. D. O. Véras, F. L. L. Medeiros, and L. N. F. Guimaráes, “Systematic litera-
ture review of sampling process in rapidly-exploring random trees,” IEEE Access,
vol. 7, pp. 50933–50953, 2019.

[9] D. G. Macharet and M. F. M. Campos, “A survey on routing problems and robotic
systems,” Robotica, vol. 36, no. 12, p. 1781–1803, 2018.

[10] Y. Dong, E. Camci, and E. Kayacan, “Faster rrt-based nonholonomic path plan-
ning in 2d building environments using skeleton-constrained path biasing,” J.
Intell. Robotics Syst., vol. 89, p. 387–401, Mar. 2018.

[11] S. Agnisarman, S. Lopes, K. C. Madathil, K. Piratla, and A. Gramopadhye, “A
survey of automation-enabled human-in-the-loop systems for infrastructure vi-
sual inspection,” Automation in Construction, vol. 97, pp. 52 – 76, 2019.

[12] R. Cui, Y. Li, and W. Yan, “Mutual information-based multi-auv path planning
for scalar field sampling using multidimensional rrt*,” IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, vol. 46, pp. 993–1004, July 2016.

82

[13] P. Pandey, A. Shukla, and R. Tiwari, “Aerial path planning using meta-heuristics:
A survey,” in 2017 Second International Conference on Electrical, Computer and
Communication Technologies (ICECCT), pp. 1–7, Feb 2017.

[14] G. Jain, G. Yadav, D. Prakash, A. Shukla, and R. Tiwari, “Mvo-based path plan-
ning scheme with coordination of uavs in 3-d environment,” Journal of Compu-
tational Science, vol. 37, p. 101016, 2019.

[15] T. T. Mac, C. Copot, T. T. Duc, and R. D. Keyser, “Heuristic approaches in robot
path planning: A survey,” Robotics and Autonomous Systems, vol. 86, pp. 13–28,
2016.

[16] L. Kavraki, P. Svestka, J. claude Latombe, and M. Overmars, “Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,” in
IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION,
pp. 566–580, 1996.

[17] D. Scaramuzza, R. Siegwart, and A. Martinelli, “Sampling-based algorithms
for optimal motion planning,” The International Journal of Robotics Research,
vol. 28, no. 2, pp. 149–171, 2009.

[18] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The
international journal of robotics research, vol. 20, no. 5, pp. 378–400, 2001.

[19] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree: A fast
marching sampling-based method for optimal motion planning in many dimen-
sions,” The International journal of robotics research, vol. 34, no. 7, pp. 883–921,
2015.

[20] Y. N. Kim, D. W. Ko, and I. H. Suh, “Confidence random tree-based algorithm for
mobile robot path planning considering the path length and safety,” International
Journal of Advanced Robotic Systems, vol. 16, no. 2, p. 1729881419838179,
2019.

[21] L. Gang and J. Wang, “Prm path planning optimization algorithm research,”
Wseas Transactions on Systems and control, vol. 11, pp. 81–86, 2016.

[22] I.-B. Jeong, S.-J. Lee, and J.-H. Kim, “Quick-rrt*: Triangular inequality-based
implementation of rrt* with improved initial solution and convergence rate,” Ex-
pert Systems with Applications, vol. 123, pp. 82–90, 2019.

[23] T. Bai, Z. Fan, M. Liu, S. Zhang, and R. Zheng, “Multiple waypoints path plan-
ning for a home mobile robot,” in 2018 Ninth International Conference on Intel-
ligent Control and Information Processing (ICICIP), pp. 53–58, IEEE, 2018.

[24] K. Yang, “Anytime synchronized-biased-greedy rapidly-exploring random tree
path planning in two dimensional complex environments,” International Journal
of Control, Automation and Systems, vol. 9, no. 4, p. 750, 2011.

[25] D. A. L. Garcı́a and F. Gomez-Bravo, “Vodec: A fast voronoi algorithm for
car-like robot path planning in dynamic scenarios,” Robotica, vol. 30, no. 7,
pp. 1189–1201, 2012.

83

[26] D. Connell and H. M. La, “Dynamic path planning and replanning for mobile
robots using RRT,” in 2017 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), pp. 1429–1434, IEEE, 2017.

[27] N. Piccinelli, F. Vesentini, and R. Muradore, “Planning with real-time collision
avoidance for cooperating agents under rigid body constraints,” in 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1261–1264,
IEEE, 2019.

[28] M. Mohanan and A. Salgoankar, “A survey of robotic motion planning in dy-
namic environments,” Robotics and Autonomous Systems, vol. 100, pp. 171 –
185, 2018.

[29] B. B. K. Ayawli, X. Mei, M. Shen, A. Y. Appiah, and F. Kyeremeh, “Mobile robot
path planning in dynamic environment using voronoi diagram and computation
geometry technique,” IEEE Access, vol. 7, pp. 86026–86040, 2019.

[30] P. Bhattacharya and M. L. Gavrilova, “Roadmap-based path planning - using the
voronoi diagram for a clearance-based shortest path,” IEEE Robotics & Automa-
tion Magazine, vol. 15, 2008.

[31] P. Loncomilla, J. R. del Solar, and L. Martı́nez, “Object recognition using lo-
cal invariant features for robotic applications: A survey,” Pattern Recognition,
vol. 60, pp. 499 – 514, 2016.

[32] F. M. S., E. J. G., and H. M. A., “Navigable points estimation for mobile
robots using binary image skeletonization,” in Eighth International Conference
on Graphic and Image Processing (ICGIP 2016) (Y. Wang, T. D. Pham, V. Voze-
nilek, D. Zhang, and Y. Xie, eds.), vol. 10225, pp. 19 – 23, International Society
for Optics and Photonics, SPIE, 2017.

[33] R. Samaniego, J. Lopez, and F. Vazquez, “Path planning for non-circular, non-
holonomic robots in highly cluttered environments,” Sensors, vol. 17, no. 8, 2017.

[34] B. Ayawli, X. Mei, M. Shen, A. Y. Appiah, and F. Kyeremeh, “Optimized rrt-a*
path planning method for mobile robots in partially known environment,” Infor-
mation technology and control, vol. 48, no. 2, pp. 179–194, 2019.

[35] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based methods for motion
planning with constraints,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 1, no. 1, pp. 159–185, 2018.

[36] M. M. Costa and M. F. Silva, “A survey on path planning algorithms for mobile
robots,” in 2019 IEEE International Conference on Autonomous Robot Systems
and Competitions (ICARSC), pp. 1–7, April 2019.

[37] A. Khan, I. Noreen, and Z. Habib, “On complete coverage path planning al-
gorithms for non-holonomic mobile robots: Survey and challenges,” J. Inf. Sci.
Eng., vol. 33, pp. 101–121, 2017.

84

[38] A. S. H. H. V. Injarapu and S. K. Gawre, “A survey of autonomous mobile robot
path planning approaches,” in 2017 International Conference on Recent Inno-
vations in Signal processing and Embedded Systems (RISE), pp. 624–628, Oct
2017.

[39] P. Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB.
Springer Publishing Company, Incorporated, 1st ed., 2013.

[40] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and
S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press, 5 2005.

[41] L. Kavraki and J. . Latombe, “Randomized preprocessing of configuration for
fast path planning,” in Proceedings of the 1994 IEEE International Conference
on Robotics and Automation, pp. 2138–2145 vol.3, May 1994.

[42] M. R. H. Al-Dahhan and M. M. Ali, “Path tracking control of a mobile robot
using fuzzy logic,” in 2016 13th International Multi-Conference on Systems, Sig-
nals & Devices (SSD), pp. 82–88, IEEE, 2016.

[43] E. Magid, R. Lavrenov, M. Svinin, and A. Khasianov, “Combining voronoi graph
and spline-based approaches for a mobile robot path planning,” in International
Conference on Informatics in Control, Automation and Robotics, pp. 475–496,
Springer, 2017.

[44] M. Korkmaz and A. Durdu, “Comparison of optimal path planning algorithms,”
in 2018 14th International Conference on Advanced Trends in Radioelecrtronics,
Telecommunications and Computer Engineering (TCSET), pp. 255–258, IEEE,
2018.

[45] P. Sudhakara, V. Ganapathy, and K. Sundaran, “Probabilistic roadmaps-spline
based trajectory planning for wheeled mobile robot,” in 2017 International
Conference on Energy, Communication, Data Analytics and Soft Computing
(ICECDS), pp. 3579–3583, IEEE, 2017.

[46] J. Wang, W. Chi, M. Shao, and M. Q.-H. Meng, “Finding a high-quality initial
solution for the rrts algorithms in 2d environments,” Robotica, vol. 37, no. 10,
pp. 1677–1694, 2019.

[47] J. Kim and S. H. A. Woo, “Reference test maps for path planning algorithm
test,” International Journal of Control, Automation and Systems, vol. 16, no. 1,
pp. 397–401, 2018.

[48] I.-S. Kim, W.-K. Lee, and Y.-D. Hong, “Simple global path planning algorithm
using a ray-casting and tracking method,” Journal of Intelligent & Robotic Sys-
tems, vol. 90, no. 1-2, pp. 101–111, 2018.

[49] R. M. C. Santiago, A. L. De Ocampo, A. T. Ubando, A. A. Bandala, and E. P. Da-
dios, “Path planning for mobile robots using genetic algorithm and probabilistic
roadmap,” in 2017IEEE 9th International Conference on Humanoid, Nanotech-
nology, Information Technology, Communication and Control, Environment and
Management (HNICEM), pp. 1–5, IEEE, 2017.

85

[50] H. Dong, W. Li, J. Zhu, and S. Duan, “The path planning for mobile robot based
on voronoi diagram,” in 2010 Third International Conference on Intelligent Net-
works and Intelligent Systems, pp. 446–449, IEEE, 2010.

[51] M. Foskey, M. Garber, M. C. Lin, and D. Manocha, “A voronoi-based hybrid
motion planner,” in Proceedings 2001 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the
the Next Millennium (Cat. No. 01CH37180), vol. 1, pp. 55–60, IEEE, 2001.

[52] E. Masehian and M. Amin-Naseri, “A voronoi diagram-visibility graph-potential
field compound algorithm for robot path planning,” Journal of Robotic Systems,
vol. 21, no. 6, pp. 275–300, 2004.

[53] Q. Wang, M. Wulfmeier, and B. Wagner, “Voronoi-based heuristic for non-
holonomic search-based path planning,” in Intelligent Autonomous Systems 13,
pp. 445–458, Springer, 2016.

[54] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,” Nu-
merische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[55] S. Garrido, L. Moreno, M. Abderrahim, and F. Martin, “Path planning for mobile
robot navigation using voronoi diagram and fast marching,” in 2006 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pp. 2376–2381, IEEE,
2006.

[56] N. Alpkiray, Y. Torun, and O. KAYNAR, “Probabilistic roadmap and artificial
bee colony algorithm cooperation for path planning,” in 2018 International Con-
ference on Artificial Intelligence and Data Processing (IDAP), pp. 1–6, IEEE,
2018.

[57] H. Mo and L. Xu, “Research of biogeography particle swarm optimization for
robot path planning,” Neurocomputing, vol. 148, pp. 91–99, 2015.

[58] G. C. de Oliveira, K. B. de Carvalho, and A. S. Brandão, “A hybrid strategy for
robot navigation in semi-structured environments,” in 2018 IEEE International
Conference on Industrial Technology (ICIT), pp. 23–28, IEEE, 2018.

[59] Q. Wang, M. Langerwisch, and B. Wagner, “Wide range global path planning
for a large number of networked mobile robots based on generalized voronoi
diagrams,” IFAC Proceedings Volumes, vol. 46, no. 29, pp. 107–112, 2013.

[60] M. A. A. Hemmat, Z. Liu, and Y. Zhang, “Real-time path planning and following
for nonholonomic unmanned ground vehicles,” in 2017 International Conference
on Advanced Mechatronic Systems (ICAMechS), pp. 202–207, IEEE, 2017.

[61] R. Acharya and D. Jena, “Gradient descent in sample-based single-query path
planning algorithm,” in 2018 IEEMA Engineer Infinite Conference (eTechNxT),
pp. 1–6, IEEE, 2018.

[62] B. B. K. Ayawli, X. Mei, M. Shen, A. Y. Appiah, and F. Kyeremeh, “Optimized
rrt-a* path planning method for mobile robots in partially known environment,”
Information Technology and Control, vol. 48, no. 2, pp. 179–194, 2019.

86

[63] W. Gong, X. Xie, and Y.-J. Liu, “Human experience–inspired path planning
for robots,” International Journal of Advanced Robotic Systems, vol. 15, no. 1,
p. 1729881418757046, 2018.

[64] E. Magid, R. Lavrenov, and I. Afanasyev, “Voronoi-based trajectory optimization
for ugv path planning,” in 2017 International Conference on Mechanical, System
and Control Engineering (ICMSC), pp. 383–387, IEEE, 2017.

[65] R. Kala, “Homotopic roadmap generation for robot motion planning,” Journal of
Intelligent & Robotic Systems, vol. 82, no. 3-4, pp. 555–575, 2016.

[66] F. Carreira, J. Calado, C. Cardeira, and P. Oliveira, “Navigation system for mo-
bile robots using pca-based localization from ceiling depth images: Experimental
validation,” in 2018 13th APCA International Conference on Automatic Control
and Soft Computing (CONTROLO), pp. 159–164, IEEE, 2018.

[67] D. A. L. Garcı́a and F. Gomez-Bravo, “Vodec: A fast voronoi algorithm for
car-like robot path planning in dynamic scenarios,” Robotica, vol. 30, no. 7,
pp. 1189–1201, 2012.

[68] Q. Wang, M. Wulfmeier, and B. Wagner, “Voronoi-based heuristic for non-
holonomic search-based path planning,” in Intelligent Autonomous Systems 13,
pp. 445–458, Springer, 2016.

[69] K. Sugihara, “Approximation of generalized voronoi diagrams by ordinary
voronoi diagrams,” CVGIP: Graphical Models and Image Processing, vol. 55,
no. 6, pp. 522–531, 1993.

[70] K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver, “Fast computation
of generalized voronoi diagrams using graphics hardware,” in Proceedings of
the 26th annual conference on Computer graphics and interactive techniques,
pp. 277–286, 1999.

[71] D. T. Lee, “Medial axis transformation of a planar shape,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. PAMI-4, pp. 363–369, July
1982.

[72] M. Couprie, D. Coeurjolly, and R. Zrour, “Discrete bisector function and eu-
clidean skeleton in 2d and 3d,” Image and Vision Computing, vol. 25, no. 10,
pp. 1543 – 1556, 2007. Discrete Geometry for Computer Imagery 2005.

[73] S. Biasotti, D. Attali, J.-D. Boissonnat, H. Edelsbrunner, G. Elber, M. Mortara,
G. S. di Baja, M. Spagnuolo, M. Tanase, and R. Veltkamp, Skeletal Structures,
pp. 145–183. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

[74] R. Ogniewicz and M. Ilg, “Voronoi skeletons: theory and applications,” in Pro-
ceedings 1992 IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, pp. 63–69, June 1992.

[75] R. Tam and W. Heidrich, “Shape simplification based on the medial axis trans-
form,” in IEEE Visualization, 2003. VIS 2003., pp. 481–488, Oct 2003.

87

[76] L. Mestetskiy and A. Semenov, “Binary image skeleton - continuous approach,”
in International Conference on Computer Vision Theory and Applications, 2008.

[77] R. Wein, J. P. van den Berg, and D. Halperin, “The visibility–voronoi complex
and its applications,” Computational Geometry, vol. 36, no. 1, pp. 66–87, 2007.
Special Issue on the 21st European Workshop on Computational Geometry.

[78] M. Hasan, M. L. Gavrilova, and J. G. Rokne, “A geometric approach to clear-
ance based path optimization,” in Computational Science and Its Applications
– ICCSA 2007 (O. Gervasi and M. L. Gavrilova, eds.), (Berlin, Heidelberg),
pp. 136–150, Springer Berlin Heidelberg, 2007.

[79] D. Ji, J. Cheng, and B. Wang, “Path planning for mobile robots in complex en-
vironment via laser sensor,” in 2018 Chinese Control And Decision Conference
(CCDC), pp. 2715–2719, IEEE, 2018.

[80] M. L. Wager, “Making roadmaps using voronoi diagrams,” 2000.

[81] A. D. D. H. K. E. B. Rahul Shome, Kiril Solovey, “Scalable and informed
asymptotically-optimal multi-robot motion planning,” Autonomous Robots, 2019.

[82] C. Martı́nez Alandes, “A comparison among different sampling-based planning
techniques,” 2015.

[83] L. E. Kavraki, M. N. Kolountzakis, and J. . Latombe, “Analysis of probabilistic
roadmaps for path planning,” IEEE Transactions on Robotics and Automation,
vol. 14, pp. 166–171, Feb 1998.

[84] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “Maprm: a probabilistic
roadmap planner with sampling on the medial axis of the free space,” in Pro-
ceedings 1999 IEEE International Conference on Robotics and Automation (Cat.
No.99CH36288C), vol. 2, pp. 1024–1031 vol.2, May 1999.

[85] J. Denny, E. Greco, S. Thomas, and N. M. Amato, “Marrt: Medial axis bi-
ased rapidly-exploring random trees,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA), pp. 90–97, May 2014.

[86] S. Chen, M. Song, and S. Sahni, “Two techniques for fast computation of
constrained shortest paths,” IEEE/ACM Transactions on Networking, vol. 16,
pp. 105–115, Feb 2008.

[87] Rodriguez, Xinyu Tang, Jyh-Ming Lien, and N. M. Amato, “An obstacle-based
rapidly-exploring random tree,” in Proceedings 2006 IEEE International Confer-
ence on Robotics and Automation, pp. 895–900, May 2006.

[88] R. Hess, F. Kempf, and K. Schilling, “Trajectory planning for car-like robots us-
ing rapidly exploring random trees*,” IFAC Proceedings Volumes, vol. 46, no. 29,
pp. 44 – 49, 2013. 3rd IFAC Symposium on Telematics Applications.

[89] J. Y. Yen, “Finding the k shortest loopless paths in a network,” Management
Science, vol. 17, no. 11, pp. 712–716, 1971.

88

[90] D. Hsu, J. . Latcombe, and S. Sorkin, “Placing a robot manipulator amid ob-
stacles for optimized execution,” in Proceedings of the 1999 IEEE International
Symposium on Assembly and Task Planning (ISATP’99) (Cat. No.99TH8470),
pp. 280–285, July 1999.

[91] P. Bhattacharya and M. L. Gavrilova, “Geometric algorithms for clearance based
optimal path computation,” in Proceedings of the 15th Annual ACM Interna-
tional Symposium on Advances in Geographic Information Systems, GIS ’07,
(New York, NY, USA), Association for Computing Machinery, 2007.

[92] P. Bhattacharya and M. L. Gavrilova, “Voronoi diagram in optimal path plan-
ning,” in Proceedings of the 4th International Symposium on Voronoi Diagrams
in Science and Engineering, ISVD ’07, (USA), p. 38–47, IEEE Computer Soci-
ety, 2007.

[93] MATLAB, version 9.6.0.1072779 (R2019a). Natick, Massachusetts: The Math-
Works Inc., 2019.

89

Appendices

90

APPENDIX A

Comparison of the Solution Paths for VV-ST-R.

Several examples for the comparison of the solution paths for the methods VV, RR,
VV-ST, RR-ST, VV-ST-R and PRM*-L are given in Section IV-A of the main docu-
ment. This section provides the complete set of solution paths for the maps VV1, VV2
,VV3 and VV4 as well as the safety distances DS = 0, DS = 5 and DS = 10.

A.1 DS = 0

Figure A.1 to A.4 show the solution paths for the different maps and DS = 0.

Figure A.1: VV1, DS = 0.

A.2 DS = 5

Figure A.5 to A.8 show the solution paths for the different maps and DS = 5.

91

Figure A.2: VV2, DS = 0.

Figure A.3: VV3, DS = 0.

92

Figure A.4: VV4, DS = 0.

Figure A.5: VV1, DS = 5.

93

Figure A.6: VV2, DS = 5.

Figure A.7: VV3, DS = 5.

94

Figure A.8: VV4, DS = 5.

A.3 DS = 10

Figure A.9 to A.12 show the solution paths for the different maps and DS = 10.

Figure A.9: VV1, DS = 10.

95

Figure A.10: VV2, DS = 10.

Figure A.11: VV3, DS = 10.

96

Figure A.12: VV4, DS = 10.

97

APPENDIX B

Comparison of the Solution Paths with the State-of-the-Art Methods

This part shows a comparison of the solution paths for the proposed VV-ST-R algo-
rithm and the most relevant state-of-the-art algorithms for the maps Z1 to Z15.

B.1 DS = 0

Figure B.1: Z1, DS = 0.

Figure B.2: Z2, DS = 0

98

Figure B.3: Z3, DS = 0

Figure B.4: Z4, DS = 0

B.2 DS = 5

99

Figure B.5: Z5, DS = 0

Figure B.6: Z6, DS = 0

100

Figure B.7: Z7, DS = 0

Figure B.8: Z8, DS = 0

101

Figure B.9: Z9, DS = 0

Figure B.10: Z10, DS = 0

102

Figure B.11: Z11, DS = 0

Figure B.12: Z12, DS = 0

103

Figure B.13: Z13, DS = 0

Figure B.14: Z14, DS = 0

104

Figure B.15: Z15, DS = 0

Figure B.16: Z1, DS = 5.

105

Figure B.17: Z2, DS = 5.

Figure B.18: Z3, DS = 5.

106

Figure B.19: Z4, DS = 5.

Figure B.20: Z5, DS = 5.

107

Figure B.21: Z6, DS = 5.

Figure B.22: Z7, DS = 5.

108

Figure B.23: Z8, DS = 5.

Figure B.24: Z9, DS = 5.

109

Figure B.25: Z10, DS = 5.

Figure B.26: Z11, DS = 5.

110

Figure B.27: Z12, DS = 5.

Figure B.28: Z13, DS = 5.

111

Figure B.29: Z14, DS = 5.

Figure B.30: Z15, DS = 5.

112

B.3 DS = DCRT +1

Figure B.31: Z1, DS = DCRT.

Figure B.32: Z2, DS = DCRT.

113

Figure B.33: Z3, DS = DCRT.

Figure B.34: Z4, DS = DCRT.

114

Figure B.35: Z5, DS = DCRT.

Figure B.36: Z6, DS = DCRT.

115

Figure B.37: Z7, DS = DCRT.

Figure B.38: Z8, DS = DCRT.

116

Figure B.39: Z9, DS = DCRT.

Figure B.40: Z10, DS = DCRT.

117

Figure B.41: Z11, DS = DCRT.

Figure B.42: Z12, DS = DCRT.

118

Figure B.43: Z13, DS = DCRT.

Figure B.44: Z14, DS = DCRT.

119

Figure B.45: Z15, DS = DCRT.

120

CURRICCULUM VITAE

PERSONAL INFORMATION

Surname, Name: Al-Dahhan, Mohammed Rabeea Hashim Al-Dahhan

Nationality: Iraqi (IRAQ)

Date and Place of Birth: 06/January / 1992 ,Anbar

Marital Status: Single

Phone: +9647711088666, +905383797946

Email: alanymohammed5@gmail.com

EDUCATION

Degree Institution Year

MS
Philadelphia university.

Mechatronics Eng.
2015

B.Sc.
Al Maaref University

College. Computer Eng.
2013

High School AL-Fallujah high school 2009

FOREIGN LANGUAGES

Arabic, English

PUPLICATIONS

Al-Dahhan, M. R. H., & Schmidt, K. W. (2019). Safe and Efficient Path Planning for Omni-directional

Robots using an Inflated Voronoi Boundary. Çankaya Üniversitesi Bilim ve Mühendislik Dergisi, 16(2),

46-69.

Al-Dahhan, M. R. H., & Schmidt, K. W. (2019). Path Planning Based on Voronoi Diagram and PRM for

Omnidirectinal Mobile Robots. Digital Transformation & Smart Systems, Turkey.

Al-Dahhan, M. R. H., & Ali, M. M. (2016). Path tracking control of a mobile robot using fuzzy logic.

In 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD) (pp. 82-88). IEEE.

HOBBIES

Sport, Reading

mailto:alanymohammed5@gmail.com

	f09da47553a32bc4274e5506b28ed95712300aaae9109cd03f1a9233c5844b4e.pdf
	6e94c187e0e8ac6fd5fa24f2b2cade605de99719c87d4e476ac10c6713bf81c4.pdf
	9c0618b5cc726ff166c19198af211a9a796470de05499360a0bc372bb2838fd9.pdf
	f09da47553a32bc4274e5506b28ed95712300aaae9109cd03f1a9233c5844b4e.pdf

