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ABSTRACT 

  

  

SCATTERING OF INHOMOGENEOUS PLANE WAVES BY A 

CYLINDRICAL REFLECTOR 

  

  

SARIÇOBAN, Mehmet Ceyhun 

M.Sc. Department of Electronic and Communication Engineering  

Supervisor: Assoc. Prof. Dr. Hüsnü Deniz Başdemir 

  

January 2020, 49 pages  

 

In this thesis, scattering by a cylindrical reflector which has a Perfectly Magnetic 

Conductor (PMC) surface illuminated by a inhomogeneous plane waves were 

investigated. The physical optics method (PO), one of the current based methods, has 

been used in this study. The current induced by the incident wave on the cylindric 

reflector has been found by aid of the boundary conditions. The obtained current has 

formed the kernel of the PO scattering integral of the PO scattering integral by the 

method of stationary phase method (SP), yields the geometrical optics (GO). The edge 

diffracted fields have been obtaiened by using the edge point method. At first, the 

solutions were obtained for the homogenous waves. Later on, considering the 

analytical conditions, the result were extended by interesting the complex angle values 

instead of real angle values. Lastly, the obtained expressions have been numerically 

analyzed for the parameters such as the reflectors of different sizes and different 

complex angle values. 

 

Keywords: Cylindrical Reflector, Geometric Optics, Perfectly Magnetic Conducter,  

Physical Optics.  
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ÖZ 

  

   

SİLİNDİRİK BİR REFLEKTÖR İLE HOMOJEN OLMAYAN DÜZLEM 

DALGALARININ SAÇILMASI 

  

  

SARIÇOBAN, Mehmet Ceyhun 

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı  

Tez Yöneticisi: Doç. Dr. Hüsnü Deniz Başdemir  

Ocak 2020, 49 sayfa  

  

Bu tezde inhomojen dalgalar ile aydınlatılmış mükemmel manyetik iletken yüzeye 

sahip silindirik reflektörden saçılan alanlar incelenmiştir. Yapılan incelemede, akım 

bazlı metodların bir tanesi olan fiziksel optik metodu kullanılmıştır. Silindirik reflektor 

üzerinde gelen alan tarafıdan indüklenen akım, sınır koşulları yardımıyla bulunmuştur. 

Elde edilen akım fiziksel optik saçılma integralinin çekirdeğini oluşturmuştur. Saçılma 

integralinin stasyonel faz metoduyla değerlendirilmesiyle geometrik optik alanlar 

bulunmuştur. Köşe kırınım alanları ise saçılma integralinin köşe noktası tekniği ile 

değerlendirilmesi sonucunda elde edilmiştir. Başlangıçta homojen dalgalar için elde 

edilen çözümler, analitik süreklilik göz önüne alınarak, reel açı değerlerinin complex 

açı değerleri ile değiştirilmesi sonuncunda inhomojen dalga çözümlerine 

genişletilmiştir. Son olarak, elde edilen ifadeler farklı büyüklükteki reflektörler ve 

farklı kompleks açı değerleri gibi parametreler için sayısal olarak analiz edilmişlerdir. 

 

Anahtar Kelimeler: Silindrik Reflektör, Geometrik Optik, Mükemmel Manyetik 

İletken, Fiziksel Optik, 
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CHAPTER 1  

INTRODUCTION 

  

  

1.1 Objectives 

The current study aims to scrutinize the scattered fields of inhomogeneous plane waves 

by a cylindrical reflector. For this ultimate aim, the researcher utilized the theory of 

physical optics(PO) on cylindrical antenna with perfectly magnetic conducting 

surface. As is known the stationary phase method(SP) and the edge point technique 

(EPT) are generally preferred to evaluate edge diffracted fields and the geometrical 

optics (GO). Finally, the homegeneous and inhomegeneous scattered fields were 

plotted and compared numerically using by Matlab code. The reflecting surface has a 

Perfectly Magnetic Conductor (PMC) boundary condition. 

 

1.2 Organization of the Thesis 

This thesis consists of five chapters. Chapter 1 is an introduction to the study that 

contains information about objectives, organization of the thesis, background 

and inhomogeneous waves. 

In Chapter 2 the current based methods in the related field are briefly expalined and 

the current based techniques which are used in this thesis are introduced.
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In Chapter 3 our problem and its solution is introduced. 

In Chapter 4 includes the numerical analysis of the fields and currents. 

In Chapter 5 the conclusion is presented. 

 

1.3 Background 

It is generally acknowledged that the homogeneous waves have spatially dependent 

amplitudes and the real phase functions [1]. Basdemir suggests that inhomogeneous 

waves have complex phase functions as opposed to homogeneous wave. According to 

Choudhary and Felsen and Felsen inhomogeneous wave fields, so called evanescent 

fields [2,3], are generally exposed to perpendicular attenuation toward the direction of 

propagation [1]. The deatil description of inhomogeneous waves are given below. In 

this thesis the fields scattered from the cylindric reflectors that has a PMC surface 

boundary conditions and are illuminated with inhomogenous waves will be analyzed. 

 

1.4 Inhomogeneous Waves 

It is widely considered that there is a lack of study conducted on in the field of 

inhomogeneous wave although techniques utilized for analyzing propagation and 

diffraction of ordinary high-frequency fields are well developed. Choudhary and 

Felsen report that inhomogeneous wave fields in lossless media, so called evanescent 

fields, exist on the dark side of caustics delimiting a region illuminated by geometric 

optical rays, and on the optically thinner side of dielectric interfaces illuminated from 

the optically denser side by totally reflected fields [2]. Evanescent fields also 

characterize phenomena associated with Gaussian beams, with leaky waves, and with 

creeping waves. 
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At this vein Kara considers inhomogeneous waves, along with the Gaussian beams, in 

the category of evanescent waves that have been under investigation for decades [4]. 

The most important characteristic of these evanescent waves is that because of their 

rapid fading with respect to the distance, they become negligible in the far field. 

However, they are considered important in the near field thanks to their contribution.  

 

In addition, Ronchi et al. conducted a study on the scattering of evanescent waves [5]. 

They used complex angles to express an inhomogeneous wave. Similarly, Keller and 

Streifer made a study on complex ray application for the Gaussian beams [6]. Besides 

these researchers, Choudhary and Felsen scrutinized the asymptotic theory for 

inhomogeneous waves [2]. For the scattering problems, Wang and Deschamps applied 

complex ray tracing technique [7]. On the otherhand, Shevernev and Kouyoumjian et 

al. analyzed the diffraction of an inhomogeneous plane wave [8,9] and Bertoni et al. 

studied on the shadowing of an inhomogeneous plane wave by a wedge [10], Manara 

et al. analyzed the diffraction of an inhomogeneous plane wave by an impedance in 

lossy medium where they asymptotically evaluated the rigorous integral representation 

of the field by utilizing the uniform geometrical theory of diffraction (UTD) [11], 

wheras Deschamps et al. examined the diffraction of an evanescent plane wave by a 

half plane [12]. Later, Felsen made a study on evanescent waves [3].  

 

Kouyoumjian et al. are reported to have made a study on inhomogeneous 

electromagnetic plane wave diffraction by a perfectly electric conducting wedge at 

oblique incidence [4,13]. The uniform theory, another important theory, was preferred 

by Umul in which he examined the diffraction of homogeneous and inhomogeneous 

plane waves by a planar junction between perfectly electric conducting (PEC) and 
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impedance half planes [14]. In additio he also made studies on the diffraction of 

evanescent plane waves by a resistive half-plane [14]. Scattering of a line source by a 

cylindrical parabolic impedance surface, and scattering of inhomogeneous plane 

waves by a resistive half-screen were investigated by Umul [15,16]. On the other hand, 

Kara is reported to have made a study on the scattering of a plane wave by a cylindrical 

parabolic perfectly electric conducting reflector [17]. By using PO and Geometrical 

Theory of Diffraction (GTD), the cylindric reflector that has a perfectly electric 

conducting (PEC) surface conditions has been examined by Başdemir [1]. In addition 

to the above mentioned studies conducted by different researchers, this study aims to 

examine the scattered fields of inhomogeneous plane waves by a cylindrical reflector. 
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CHAPTER 2  

CURRENT BASED METHODS 

 

  

2.1 Introduction of Methods 

In this thesis, our objective is to obtain the scattered fields by a PMC cylinder using 

PO method. It can be acquired by giving an answer to the Helmholtz equation for basic 

geometries. The analysis of electromagnetic problems relys on the anlaysis of 

Helmholtz wave equation by taking into account the coordinates suitable to the 

problem geometry and the suitable edge conditions. However, the separation of 

variables of the problem geometry should be obtaiened by different methods. The size 

of the scattering object is greater than the size of the used wave; namely, under the 

high frequency conditionsthe high frequency asymptotic techniques are suitable for 

analysis. The High Frequency (HF) asymptotic techniques can be categorized into two 

simple groups: (1) ray based techniques and (2) current based techniques. GO, GTD 

and Unfirom theory of diffraction (UTD) can be taken as the instances for ray based 

techniques. The theory of PO, the physical theory of diffraction (PTD) and the 

Modified Theory of Physical Optics (MTPO) are the instances for current based 

techniques. The high frequency asymptotic condition is satisfied when the 

multiplication of k  is greater than 1, ie 1k where k is the wave number and 𝜌 is 

the distance between the observation point and the orgin. This study is based on 

evaluation of PO scattering integral to a large extent. Later on evaluated field 

expressions will be analysed numerically for different parameters. 
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The time factor  jwtexp  is assumed and suppressed throughout the thesis where w is 

the angular frequency. 

 

2.2 Physical Optics (PO)  

McDonald introduced Physical Optics (PO) in 1912 [18]. It is a current based 

technique which depends upon the integration of the induced surface current density 

that is described on the illuminated side of the scattering object. Since 1950s, PO has 

been widely utilized in a number of areas as a tool to estimate scattering by military 

vehicles such as tanks, spacecraft, airplanes, missiles, ships, weapons and in the design 

of microwave antennas. PO is a significant approach to locate the scattered fields. 

However, it has a problem to find exact edge diffracted fields. The reason of the 

problem depends on the shadowed part of the object. In this part of the object, as the 

surface current density of the shadowed part of the object equalts to zero, the wedge 

diffraction problem cannot precisely be solved by the PO approach.  

As for the solutions to this prpoblem in PO, Ufimtsev put forward a new way in the 

physical theory of diffraction (PTD) by proposing the addition of a second current 

component, which is called as the non-uniform or fringe current in order to obtain the 

correct diffracted field expressions [19]. Similarly, James also proposed a correction 

factor multiplied by the PO diffraction field instead of summing [20]. Nevertheless, 

some exact coefficients are needed for such problems. In conclusion, these alternative 

ways could not be the exact cure of PO. Umul put forward a modified theory of 

physical optics (MTPO) fort his problem as well [21]. Due to this method it is not 

required to know a certain solution to obtain scattered fields. In this thesis, transmitted 
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and diffracted fields are obtained by using the physical optics and the geometrical 

theory of diffraction methods, respectively.  

 

 

Figure 1 Reflection geometry at point of conducting surface 

 

In the Figure 1 n


 is the unit normal vector, 0 is the angle of incidence and   is the 

arbitrary angle of reflection.
POJ


 is the PO current densty. The difference between 

PMC and Perfectly electric conductor (PEC) is that the polorization of the incident 

field is electric (PEC) and magnetic (PMC) surface. The main idea in PO Method relys 

on obtaining the scattered fields by integrating the induced current on the diffracted 

surface. The total electric field obtained in the analysis of an electromagnetic problem 

sit
EEE


                                                                                                           (2.1) 

is equal to the sum of the incident electric field iE


and the scattered electric field sE


 

as a result of the integration with the object.  The ultimate aim here is to find the 

unknown scattered electric field. The scattering integral gives the scattered electric 

field. The kernel of the scattered field is equal to multiplication of the induced current 

on the surface with the Green Function. The induced current on a conducting surface 

in PO context, if the surface is PC,  
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St

E

PO
HxnJ |


                                                                                                         (2.2)                                                   

while obtaining under the boundary conditions, if the surface is PMC, 

St

M

PO
ExnJ |


                                                                                                       (2.3) 

It is obtained from the surface boundary conditions. Here, the unit shows the surface 

perpendicular vector, and the lower indit t shows the sum of the fields coming from 

the surface and reflected from the surface. Since the reflected wave according to the 

PO is in the same form with the incident wave and the expressions of 
t

E


and
t

H


. 

it
EE


2                                                                                                                 (2.4) 

and 

it
HH


2                                                                                                               (2.5)                                                

It can be given as
it

HH


2 . In this case, PO currents for PEC and PMC surfaces 

Si

E

PO HxnJ |2



                                                                                                         

(2.6) 

and it can be given as  

Si

M

PO ExnJ |2


 .                                                                                                      (2.7) 

2.3 Physical Theory of diffraction  

In order to investigate antennas and scattering problems, a high frequency of 

asymmetric technique that relates to the physical theory of diffraction (PTD) is used. 

The main focus of this theory is the diffraction of acoustic and electromagnetic waves 

by perfectly reflecting objects in a homogenous lossless area. The diffracted field is 

viewed as the radiation caused by scattering currents induced on objects [19]. The 

ultimate aim is the separation of surface sources into uniform and nonuniform 

components [19]. 

The scattered fields in non-uniform currents can be for the sum of fields and currents 

as 
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POTNU
EEE


                                                                                               (2.8) 

and 

 

POTNU
JJJ


 .                                                                                                    (2.9) 

 

However, in this method, definite field expressions
T

E


 and definite flow expressions

T
J


 need to be known. However, it is an effective method in the analysis of diffraction 

fields for solution known problems. 

 

2.4 Modified Theory of Physical Optics  

By directly evaluating the scattering problem without the need for a correction term or 

exact solution, we obtain the correct corner diffraction areas. MTPO is based on three 

main actions. One of them is to define the scattering angle as a function to the 

scattering surface. The second is to define variable unit vector )( vn


 instead of the 

classical vector definition. The feature of this vector is that it divides the angle between 

the incoming and scattered beam into 2 equal angles. The last one is to evaluate the 

opening on the left side of the graph together with its scattering surface. 

 
Figure 2 Definition of scattering angle and variable unit vector 

 

Accordingly, the scattering integral is expressed as follows, t


 

 





S

MTPO dsJJ
jw

E '
4

0





                                                                                       (2.10) 
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surface current which is induced on S1 can be defined as 

 

StvMTPO HnJ |


                                                                                                   (2.11) 

 

The variable unit normal vector vn


 can be defined as 

 

ntnv


)sin()cos(                                                                                (2.12) 

 

Where the angle   is written as 

 

22





                                                                                                         (2.13) 
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CHAPTER 3 

SCATTERING FROM A PMC PARABOLIC REFLECTOR 

 

 

 

3.1 Geometry of the Problem  

On a cylindrical reflector plane, we will examine the reflection and scattering of 

electromagnetic waves from a planar source with edge diffraction. The incident wave 

is considered as a homogenous wave and solely a solution can be obtained. A solution 

can be achieved for inhomogenous waves by writing complex angle instead of 
'  

according to analytical continuation in the obtained solution. 

 

The surface of the reflector is considred as PMC surface. PMC indicates total magnetic 

field on the tangential plane, is equals to zero.  

 

                    Figure 3 The Geometry of the PMC cylinder  
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The geometry of the cylindrical reflector is shown in Figure 4 and the reflector is lying 

between the values of 0 to 0 and the radius of a. Here the cylendrical coordiantes 

are represented as ( z,, ). This figure has a several parameters. 
'  is the diameter of 

the cylendrical reflector and 
' is the incident angle, p is the observation point.   is 

the arbitrary angle of reflection, respectively. The cylindrical coordinate parameters 

and  2  define the position of the observation point (P) relative to the starting point 

at incident wave. R means the ray path that is a distance between P and the cylndrical 

antenna. Incident and reflection angles are   ,' , respectively.  

 

 

Figure 4 The geometry of reflected field 

 

The new geometry of the problem with the related quantity is given in Figure 4. 
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3.2 Scattring Integral 

 

The PMC cylinder is illuminated by the plane wave of  

 cos

0

jk

zi eEeE 


                                                                                             (3.1) 

where 0E  is the complex amplitude and the incident wave is z polarized. The induced 

electrical surface current can be defined as  

st

M

PO ExnJ |


                                                                                                        (3.2) 

Since the reflected wave, according to PO, is in the same form as the incident wave 

 ir EE


 , unit vector is equal to n


2 .The induced electrical surface current can be 

written as  

si

M

PO ExnJ |2


                                                                                                      (3.3) 

where n


 is the unit normal vector and equal to e


. Thus, the Equation (3.3) is rewritten 

as  

'cos2 



jkaM

PO eeJ 


                                                                                                    (3.4) 

Magnetic field component using Maxwell-Faraday equation induced surface current 

can be obtained. The electric vector potential can ben defined as 

'0

'4
ds

R

e
JF

S

jkR
M

PO








                                                                                       (3.5) 

where
0

  is the free space permittivity and R is the three-dimensional ray-path equals 

to     2
1

2''22 cos2 zzaa   . The scattered magnetic field, taking into account the 

HF condition is given as  

FjH


                                                                                                      (3.6) 

and by using Eq(3.5). Scattering integral takes the form as 
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'
4 '

0





S

jkR

M

POs
ds

R

e
J

j
H





                                                                                    (3.7) 

according to Maxwell Faraday equation E


 can be determined as 

Hx
j

E



0

1


                                                                                                      (3.8) 

Thus, after the application of Maxwell-Faraday to the Eq(3.7) scattering integral for 

electric field is obtanined as  

'
4

1

'

 






 


S

M

POs ds
R

jkRe
JxE



                                                                                 

(3.9) 

Then, by inserting Eq(3.4) in to the Eq(3.9), the ultimate scattering integral takes the 

form as 

''cos0

0
' '

'

2









 ddz
R

e
exe

aE
E

z

jkR
jka

 






















                                                (3.10) 

The geometry is symmetrical with respect to 
'z  so Green's function is reduced to the 

2D frame. The 2D Green’s function is defined as 

 1

)2(

0

'

'
kRH

j
dz

R

e

z

jkR 








                                                                           (3.11)  

Where 1R is equal to   2
1

'22 cos2   aa . Thus, the scattering integral to rewritten 

as 

    '
2 0

'

'

1

2

0

cos0 





 dkRHexe
j

aE
E jka

 

 





                                                      (3.12) 

 

Then, Debby asymptotic form of he Hankel function can be expressed as  

  
1

4
1

2

0

1

2 kR

e
ekRH

jkR
j






                                                                           (3.13) 

when 1k  and j  is equal to 2
j

e


 so we added Eq(3.12) in Eq(3.11) and then 

rewritten as Eq(3.11) is equal to 
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'

1

cos40 0

0
'

1
'

2












d
kR

e
exee

aE
E

jkR
jkaj

 























                                                        (3.14) 

 
where 1R  is the ray path is equal to 

 

  2
1

'22 cos2   aaR                                                           (3.15) 

The rotational process is made according to the coordinates of the observation point 

and this asypmtotic function can be expressed as  
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where it is easy to note that the result comes only from the third column of determinant 

operation, as a result it can be obtained as 
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where


1  can be neglected because of 1k . As a result, Eq(3.14) can be obtained 

as 
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and j is equal to 2
j

e . If j is replaced by 2
j

e , E


 is obtained as 
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3.3 Asymptotic Evaluation of the Scattering Integral 

 

  3.3.1 Stationary Phase Method 

 

The scattering integral in Eq(3.19) will be asymptotically evaluated utilizing the 

stationary phase (SP) and edge point methods. SP evaluation GO fields. First of all, 

SP method will be presented. The general form of an integral is defined as  

   




0

0

' ''





  defI jkg                                                                              (3.20) 

 

where
' is the integral variables,  'f  and  'g , indicate the integral amplitude 

function and the phase function of the integral, respectively. 0  and 0 , are the 

upper and lower limits of the integral. As a result,  'f and  'g  equal to 

 

    1

'' cos Rag                                                                                         (3.21) 
 

and  
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11

'
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kRR

a
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
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                                                        (3.22) 

 

The value that makes the first derivative of the phase function zero is the point at 

which the phase is constant. The value of   in the stational phase point is S . 

According to this, Eq(3.20) can be rewritten as 
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where the ray path is shown “ 1R ” symbol as below  

 

  2
1

'22

1 cos2   aaR                                                                       (3.24) 

 

the first derivative of 1R according to 
'  can be written as 
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    











 '
2

1
'22

'

1 sin2cos2
2

1



aaa

R                                     (3.25) 

 

the last version of 1R  is obtained as 
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If Eq(3.26) is written in Eq(3.21), the first derivative of the phase function is obtained 

as below 

 

   sincosg '' aa                                                                                       (3.27) 

 
then, the second derivative of the phase function is calculated  
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
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
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 aag      is obtained                                                    (3.28) 

 

As to the application of the method, it begins with the definition of the phase function 

as it relys on the expansion of Taylor series first three terms. The stationary phase point 

can be shown as S . An evaluation of the stationary phase point of the integral can be 

 s , ss    and ss    by equating Eq(3.27) to zero.  

 

Figure 5 Reflection Geometry,   is the reflected field 
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By using the geometry given in Figure 5, the derivative of   by 
'  according to sine 

rule can be found. The sine rule can be written as 

   
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 sinsin '
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a
                                                                               (3.29) 

 

then 
'



d

d
 can be rewritten as 

 

    sinsin ' a                                                               (3.30) 
 

If the first derivative of   by 
'  in both sides of the above equation is obtained,  
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The simplified version of this equation can be given as  
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If Eq(3.32) is written in Eq(3.28), the second derivative of the phase can be redefined 

as 
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As a result, we know that the values of  sf  ,  sg   and  sg '''  . After we rewrite these 

values in Eq(3.23), the new stationary phase method is as fallows. 

 

   
























S

S

SS

Rajk

SS

S

j

R

a
aak

e
kRR

a

eI

SS












22

cos

4

cos
coscos

1cos

2                                              (3.34) 

 

Later, in order to find the part of the transmitted field according to the geometric optics 

(GO) 
ss     is used, whereas 

ss   is utilized in order to find the reflected 

fields. Now, let us evaluate the transmitted field that is shown in Figure 6. Writing 



 

19 

 

s  instead of s  in Eq(3.34) to reevaluate the equation the following can be 

obtained.  
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If we want to simplify the above equation, the new version can be written as 
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The value of Eq(3.36) equals to the integral value in Eq(3.19). As a result, if we 

reevluate Eq(3.19), the equation below can be obtained. 
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After some simplification processes,  

S

S

R

a



  cos  can be equal to Scos . Then 

Eq(3.37) can be rewritten as 
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Figure 6 The geometry for transmitted field 

 

 

Next, the reflected field is evaluated (Figure 7). Writing s instead of s  in Eq(3.34) 

to reevaluate the equation the following can be obtained.  
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The value of Eq(3.39) equals to the integral value in Eq(3.19). As a result, if we 

reevluate Eq(3.19), the equation below can be obtained. 
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After some simplifications and then again  

S

S

R

a   cos  can be equal to Scos . As a 

result, it can be rewritten as 
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Figure 7 Stationary phase geometry of the reflected field  

 

 

3.3.2 Edge Diffracted Waves 

 

Here the edge point technique is utilized in order to evaluate the nonuniform edge 

diffracted fileds for the related geometry. This method is used in limiting the integral, 

one edge of which is a limited zone. When applied in the scattered integral, it gives us 

the definition of the reflected fields by an object, one edge of which is limited. 
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Figure 8 Edge diffraciton geometry of the cylndric reflector  

 

The edge diffraction geometry of the cylndric reflector is shown in Figure 8. 0  is the 

edge boundry angle of the reflector because the reflector is situated between the angles 

of  00 , . As a result of the edge point technique evaluation for general equation, it 

is possible to evaluate the edge diffracted fields. The edge diffraciton will be defined 

by Ed.  Firstly, By utilizing Eq(3.17) and Eq(3.32),  Eq(3.17)  can be written for edge 

diffracted  
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where  0

'  f  and  0
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and Eq(3.42) can be rewritten as 
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and j is equal to 2
j

e .The value of Eq(3.44) equals to the integral value in Eq(3.19). 

As a result, if we reevluate Eq(3.19), the equation below can be obtained. 
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where  

SR

a 0cos    can be equal to Scos  and then which can be simplified as 
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Secondly, edge diffracted point can be evaluated with  0

'  f  and  0

'  g

angle point and Eq(3.44) can be rewritten as 
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and j is equal to 2
j

e .The value of Eq(3.47) equals to the integral value in Eq(3.19). 

As a result, if we reevluate Eq(3.19), the equation below can be obtained. 
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where  

SR

a 0cos    can be equal to Scos  and then which can be simplified as 
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Finaly, Total edge diffraction is equal to 21 dddt EEE  , so 𝐸𝑑𝑡 it can be written as 
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CHAPTER 4  

NUMERIC ANALYSIS 

 

 

As to the numeric analysis, scattering process for inhomogenous and homegenous 

waves by the cylindrical reflector is scrutinized for reflection, transmission and the 

nonuniform diffraction. The distance between the observation point and the origin will 

be taken as 6λ that is constant for all plots and λ is the wavelength. Radius of the 

cylinder a will be taken as 2λ for all plots. The incident wave variation regarding the 

angle of observation according to the complex angle b between the 0 and the

180/3 is shown in Fig. 9. It is clear that when the value of the complex angle is zero, 

with a perfect symmetry the incident field has an amplitude value. As long as the 

complex angle value increases, the perpendical field in the direction of the propagation 

attenuates. The amplitude of the incident field having the complex angle values 

increases at 
270 . 
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Figure 9 Incident wave for various complex angle values 

 

 

In Figure 10 the plot indicates the different values of inhomogenous wave lenght. As 

long as the inhomogenous waves increase, the scattered area attenuates perpendically 

in the direction of the propagation. Therefore, the perfect symmetry disappears 

between 
0  and 180/3 . As the complex angle value increases, the scattered area 

attenuates perpendically in the direction of the propagation and increases in the 

opposite direction. 

 

Figure 10 Total wave for different values of complex angles 
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Figure 11 shows the incident field, the scattered field, and their total variation 

according to the observation point. When various   values are employed, Fig. 12 

shows the scattered fields in the luminous areas between 
90 and

270 .In the shadow 

region we cannot observe such a kind of amplitude variation for the real life. However, 

the evaluation of the scattering integral yields such a kind of nonactual fields. When 

we add the incident wave to the evaluated scattered integral, the actual field variation 

can be observed.   

 

 

 

 

 

 

In Figure 13 it is shown that as the complex angle is constant and the   angle of the 

sylindirical reflector value increases from 
6

 to 
3

   the total scattered field effect 

increases, too. 

 

Figure 12 Total scattered fields for             

different values of 0  

 

Figure 11 Total, incident and 

scattered fields        
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Figure 13 Total wave for different values of 0  

 

The complex angle value of   is shown in Fig. 14, whereas this value is 2  as is 

shown in Fig. 15. Both figures show the incident fields, reflected fields that are 

perpendical in the direction of propogation and total scattering fields attenuate between 

90 and
270 . 

 

 
 

Figure 14 Scattered fields for      Figure 15  Scattered fields for 2  
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CHAPTER 5   

CONCLUSION  

 

 

It is widely known homogenous and inhomogenous wave have different characterstics 

in that homogeneous waves have spatially dependent amplitudes and the real phase 

functions, while inhomogeneous waves possess complex phase functions. In some of 

the related studies like the one by Deniz inhomogeneous wave fields are described to 

have generally been exposed to perpendicular attenuation toward the direction of 

propagation [1]. In this study the fields scattered from the cylindric reflectors that has 

a PMC surface boundary conditions and are illuminated with inhomogenous waves 

have been analyzed. The reason why this topic has been the lack of such studies in the 

field of inhomogeneous wave although techniques for analyzing propagation and 

diffraction of ordinary high-frequency fields are well developed.  

 

Inhomogeneous wave fields in lossless media are known to exist on the dark side of 

caustics that delimite a region illuminated by geometric optical rays. This is a case 

usually on the optically thinner side of dielectric interfaces illuminated from the 

optically denser side by totally reflected fields [2].  
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In this thesis the scattering process of homogenous and inhomogenous waves from a 

cylindrical reflector with a perfect magnetic conductor surface is scrutinized by PO 

method. The stationary phase method was used to evaluate the geometric optical fields 

scattered from the cylindrical reflector, whereas the edge point method was used to 

evaluate the edge diffractions. The kernel of the scattered integral was obtained by the 

evaluation of PO current on Perfectly Magnetic Conduct surface under the suitable 

boundary conditions. With various complex angle and reflector angle values, the 

incident, the scattered, and the total scattered fields were analyzed. The numerical 

findings indicate that as the complex value increases, the field amplitudes scattered 

from the reflector, as is expected, attenuate perpendically in the direction of 

propogation.  
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APPENDIX A 

MATLAB CODES 

 

 

Physical Optics Total Scattered Field 

 

lambda=0.1; 

k=2.*pi./lambda; 

a=2.*lambda; 

rho=6.*lambda; 

fi=0:0.01:2.*pi; 

fi0=pi./4; 

fib=2.*pi./180; 

fic=fi+j.*fib; 

ei=exp(-j.*k.*rho.*cos(fic)); 

 N=1000; 

sum=0; 

asinir=0; 

usinir=fi0; 

delta=(usinir-asinir)./N; 

for i=0:N 

    fii=asinir+(i.*delta);
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    R=sqrt((rho.^2)+(a.^2)-2.*rho.*a.*cos(fic-fii)); 

    Epo=((rho-a.*cos(fic-fii))./R).* 

    exp(-j.*k.*a.*cos(fii)).*(exp(-j.*k.*R)./sqrt(k.*R)); 

    sum=sum+Epo; 

end 

f2=sum.*delta; 

sum1=0; 

asinir1=2.*pi-fi0; 

usinir1=2.*pi; 

delta1=(usinir1-asinir1)./N; 

for i=0:N 

    fii1=asinir1+(i.*delta1); 

    R1=sqrt((rho.^2)+(a.^2)-2.*rho.*a.*cos(fic-fii1)); 

    Epo1=((rho-a.*cos(fic-fii1))./R1).*exp(j.*k.*a.*cos(fii1)).*(exp(-   

j.*k.*R1)./sqrt(k.*R1)); 

    sum1=sum1+Epo1; 

end 

f3=sum1.*delta1;  

Es=((exp(j.*pi./4).*k.*a)./sqrt(2.*pi)).*(f2+f3); 

Et=Es+ei; 

polar(fi, abs(Et)); 

title('|E|') 

hold on 
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