

SPATIAL METHODS FOR DIRECTION OF ARRIVAL ESTIMATION AND

HARDWARE IMPLEMENTATION

GAMZE TAŞYÜREK

MAY 2020

SPATIAL METHODS FOR DIRECTION OF ARRIVAL ESTIMATION

AND

HARDWARE IMPLEMENTATION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

GAMZE TAŞYÜREK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

ELECTRONIC AND COMMUNICATION ENGINEERING

DEPARTMENT

MAY 2020

iv

ABSTRACT

SPATIAL METHODS FOR DIRECTION OF ARRIVAL ESTIMATION AND

HARDWARE IMPLEMENTATION

TAŞYÜREK, Gamze

M.Sc., Department of Electronic and Communication Engineering

Supervisor: Assoc. Prof. Dr. Orhan GAZİ

May 2020, 102 pages

In this thesis, spatial methods for direction of arrival estimation and it hardware

implementation are discussed. Estimation of the direction of arrival (DOA) of signals

are widely used in different fields such as radar, sonar, acoustics, astronomy, and

communications technologies. Spatial spectrum focuses on researching the spatial

characteristics of the signal and the direction of the source. It displays signal

propagation across all directions to the receiver. Therefore, if the spatial range of the

signal is detected, then DOA can be found. This technology is very essential in signal

processing, and it has expanded rapidly in recent years in particular finding the DOA

of multiple signal sources.

In this context, many algorithms have been used and have made great

accomplishments over the last few years. In this thesis, firstly, the Capon beamforming

and conventional beamforming based on ULA arrangement are simulated in

MATLAB. The effects of the number of sensors, the distance between sensors, the

number of samples, and the effect of SNR value were examined. The high number of

sensors, high SNR values and the high number of samples increased the resolution and

accuracy, while the distance between the sensors was chosen more

v

than half of the wavelength, which led to the prediction of false angles. So it is

observed that it would be best to keep the spacing at half of the wavelength. After

MATLAB simulations, conventional beamforming is implemented in VHDL which is

a hardware description language. For the VHDL implementation, signed fixed point

numbers are used. The DOA estimation is implemented in VHDL for ULA. According

to the simulation results, the VHDL algorithm achieved the angle values with a small

margin of error.

Keywords: DOA Estimation, Spatial Spectrum Methods, Beamforming, Array Signal

Processing, VHDL, FPGA, Fixed Point Numbers, Hardware Implementation

vi

ÖZ

SİNYALLERİN GELİŞ AÇILARININ MEKASAL YÖNTEMLERLE

TAHMİN EDİLMESİ VE DONANIM UYGULAMALARININ YAPILMASI

TAŞYÜREK, Gamze

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı

Tez Yöneticisi: Doç. Dr. Orhan GAZİ

Mayıs 2020, 102 sayfa

Bu tezde varış tahmin yönü için mekânsal yöntemler ve donanım uygulamaları

çalışılmıştır. Sinyallerin varış yönünün tahmini, radar, sonar, akustik, astronomi ve

iletişim teknolojileri gibi farklı alanlarda yaygın olarak kullanılmaktadır. Mekânsal

spektrum, sinyalin mekânsal özelliklerini ve sinyal kaynağının yönünü araştırmaya

odaklanır. Alıcıya tüm yönlerden gelen sinyal yayılımını gösterir. Bu nedenle, sinyalin

mekânsal aralığı tespit edilirse, varış tahmin yönü bulunabilir. Bu teknoloji sinyal

işlemede çok önemlidir ve son yıllarda özellikle çok sayıda sinyal kaynağının varış

tahmin yönünü bulmak için hızla genişlemiştir.

Bu bağlamda, birçok algoritma kullanılmış ve son birkaç yılda büyük başarılar elde

etmiştir. Bu çalışmada, ilk olarak, düzgün doğrusal dizilerin yerleşimi kullanılarak

Capon hüzme şekillendirme ve geleneksel hüzme şekillendirme teknikleri MATLAB

ortamında benzetilmiştir. Sensör sayısının, sensörler arasındaki mesafenin, örnekleme

sayısının ve SNR değerinin etkisi incelenmiştir. Yüksek sensör sayısı, yüksek SNR

değerleri ve yüksek örnekleme sayısı çözünürlüğü ve doğruluğu arttırırken, sensörler

arasındaki mesafe dalga boyunun yarısından fazlası

vii

seçildiğinde, yanlış açıların tahminine yol açtı. Bu nedenle, sensörler arasındaki

mesafeyi dalga boyunun yarısında tutmanın en iyi olduğu gözlemlenmiştir. MATLAB

benzetimlerinden sonra bir donanım tanımlama dili olan VHDL'de geleneksel hüzme

şekillendirme yöntemi gerçekleştirilmiştir. Gerçekleşirim esnasında sayıların

gösterimi için 'signed fixed-point' gösterim formatı kullanılmıştır. Gerçekleştirim için

VIVADO platformu kullanılmıştır. VIVADO benzetim sonuçlarına göre, VHDL ile

yazılan donanım gerçekleştirimi programları küçük bir hata payı ile açı geliş

değerlerini hesaplamıştır.

Anahtar Kelimeler: Varış Tahmin Yönü Kestirimi, Uzamsal Spektrum Yöntemleri,

Hüzme Şekillendirme, Dizilim Sinyal İşleme, VHDL programlama, FPGA, Fixed

Point Sayılar, DonanımUygulamaları

viii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisor, Assoc. Prof. Dr.

Orhan GAZİ, for his help, valuable supervision and useful advice for my research,

without him, which much of this work would not have been possible.

I wish to thank the examining committee for their kindness during the presentation of

this thesis.

I would like to thank TÜBİTAK İLTAREN, which offers the opportunity to benefit

from all kinds of opportunities by supporting my thesis project.

I would like to present my gratitude to my colleagues.

Finally, I would like to express my deep gratitude to my family for their endless and

continuous encourage and support throughout these years. They always stood beside

me all the way. All acquirements, which I have achieved until now, have been possible

under favor of their reliance, guidance, limitless and endless support.

ix

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM ... iii

ABSTRACT .. iv

ÖZ…… ... vi

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS ... xvi

INTRODUCTION ... 1

1.1. Background and significance of the study ... 1

1.2. Problem Statement ... 2

1.3. Objectives ... 2

1.4. Scope of the Work .. 2

1.5. Organization of Thesis .. 3

THEORETICAL BACKGROUND ON DOA ESTIMATION 5

2.1. Introduction ... 5

2.2. Historical development of antenna arrays ... 5

2.3. Structural analysis of spatial spectrum estimation system 6

2.4. Overview of the common methods for development of DOA estimation 8

2.5. Parameters affecting DOA estimation .. 10

2.5.1. Number of array elements .. 10

2.5.2. Number of snapshots .. 12

2.5.3. SNR .. 12

2.5.4. Element spacing ... 13

METHODOLOGY ... 16

3.1. Introduction to System Model ... 16

3.2. Assumptions .. 16

x

3.2.1. Point Source Assumption ... 16

3.2.2. Far Field Assumption ... 17

3.2.3. Narrowband Signal Assumption .. 17

3.2.4. Correlation of Sources.. 17

3.3. Signal Model ... 18

3.4. Algorithms .. 25

3.4.1. Non-Subspace Algorithms ... 26

SIMULATION RESULTS AND DISCUSSION .. 32

4.1. Introduction ... 32

4.2. Experiment 1: Basic simulations of conventional beamforming and Capon

beamforming .. 32

4.3. Experiment 2: Relationship between DOA and the number of sensors 34

4.4. Experiment 3: Relationship between DOA and the number of snapshots 36

4.5. Experiment 4: Relationship between DOA and the element spacing 38

4.6. Experiment 5: Relationship between DOA and SNR 40

VHDL IMPLEMENTATION of CONVENTIONAL BEAMFORMING 42

5.1 Introduction to VHDL Implementation ... 42

5.2. VHDL Implementation of Uniform Linear Array Algorithm 46

5.2.1. VHDL Implementation of Sinusoidal Wave .. 47

5.2.2. VHDL Generation of Direction Matrix A .. 49

5.2.3. VHDL Generation of Output Matrix Y .. 50

5.3. VHDL Implementation of Beamforming Algorithm 54

5.3.1. VHDL Generation of Complex Conjugate Transpose of Matrix Y 55

5.3.2. VHDL Generation of Sample Covariance Matrix 𝐑 59

5.3.3. VHDL Implementation of Finding Arrival Angle 69

CONCLUSION .. 73

REFERENCES ... 75

APPENDICIES .. 81

APPENDIX A: MATLAB codes for Conventional Beamforming........................ 82

APPENDIX B: VHDL codes for Conventinal Beamforming................................ 85

xi

LIST OF TABLES

Table 1 Comparison Between Beamforming Techniques For Doa Estimation[1].... 25

Table 2 Complex Number Representation ... 44

Table 3 One Period Of Sine Wave With 64 Samples .. 48

Table 4 Complex A Matrix Values .. 49

Table 5 Complex Matrix Y Values Through Column1 To Column4 50

Table 6 Complex Matrix Y Values, From Column-5 To Column-8 51

Table 7 Complex Matrix Y Values, From Column-9 To Column-12 51

Table 8 Complex Y Matrix Values, From Column-13 To Column-16 52

Table 9 Complex Y Transpose Matrix Values Column1 To Column4 56

Table 10 Complex Y Transpose Matrix Values Column5 To Column8 57

Table 11 Covariance Matrix R Values, From Column-1 To Column-4 61

Table 12 Covariance Matrix R Values, From Column-5 To Column-8 61

Table 13 Sample Covariance Matrix 𝑹 Values Column1 To Column4 65

Table 14 Sample Covariance Matrix 𝑹 Values, From Column-5 To Column-8 66

Table 15 Diagonal Of Phi Matrix .. 70

xii

LIST OF FIGURES

Figure 1 The System Structure For Doa Spatial Spectrum Estimation 7

Figure 2 The Array Factor For 4 And 8 Element. Spacing Between Elements Is 0.5λ

[51] ... 11

Figure 3 The Array Factor For 16 And 32 Element. Spacing Between Elements Is

0.5λ [51] ... 12

Figure 4 The Array Factors For Arrays With Element Spacing Of 0.25λ And 0.5λ

[51] ... 14

Figure 5 The Array Factors For Arrays With Element Spacing Of 1λ And 2λ [51] . 15

Figure 6 A Plane Wave Incident On A Uniform Linear Array Of M Uniformly

Spaced Sensors ... 23

Figure 7 Tapped Delay Line Structure Spatial Filter .. 27

Figure 8 Conventional Beamformer .. 28

Figure 9 Adaptive Beamformer.. 30

Figure 10 Conventional Beamforming With Three Signal Sources 33

Figure 11 Capon Beamforming With Three Signal Sources..................................... 33

Figure 12 Conventional Beamforming With Different Number Of Sensors 35

Figure 13 Capon Beamforming With Different Number Of Sensors 35

Figure 14 Conventional Beamforming With Different Number Of Snapshots 37

Figure 15 Capon Beamforming With Different Number Of Snapshots 37

Figure 16 Conventional Beamforming With Different Sensor Element Spacing 39

Figure 17 Capon Beamforming With Different Sensor Element Spacing 39

Figure 18 Conventional Beamforming With Different SNR Values. 41

Figure 19 Capon Beamforming With Different SNR Values 41

Figure 20 Vhdl Design Flow For Simulation Level .. 42

Figure 21 Binary Notation Of A Positive Number ... 43

Figure 22 Binary Notation Of A Negative Number .. 43

Figure 23 Fixed Point Notation .. 43

xiii

Figure 24 Vhdl Syntax Of A Basic Definition Of Complex Number 44

Figure 25 Syntax Rule For Vhdl Array Definition ... 45

Figure 26 Ula Algorithm In Matlab ... 46

Figure 27 Sine Look Up Table (Lut) Generation With Matlab 47

Figure 28 Sine Look Up Table (Lut) Samples ... 47

Figure 29 Vivado Simulation Of Sine Wave .. 48

Figure 30 Vivado Simulation Of Complex A Matrix ... 49

Figure 31 Vivado Generation Of 0th Row Of Y Matrix ... 52

Figure 32 Vivado Generation Of 1th Row Of Y Matrix .. 53

Figure 33 Vivado Generation Of 7th Row Of Y Matrix .. 54

Figure 34 Beamforming Algorithm In Matlab .. 55

Figure 35 Transpose Function In Vhdl ... 56

Figure 36 Vivado Generation Of 0th And 1th Row Of Y' Matrix 58

Figure 37 Vivado Generation Of 14th And 15th Row Of Y' Matrix 59

Figure 38 Vivado Generation Of 0th And 1th Row Of R Matrix 62

Figure 39 Vivado Generation Of 2th And 3th Row Of R Matrix 63

Figure 40 Vivado Generation Of 4th And 5th Row Of R Matrix 64

Figure 41 Vivado Generation Of 6th And 7th Row Of R Matrix 65

Figure 42 Vivado Generation Of 0th And 1th Row Of R Matrix 66

Figure 43 Vivado Generation Of 2th And 3th Row Of R Matrix 67

Figure 44 Vivado Generation Of 4th And 5th Row Of R Matrix 68

Figure 45 Vivado Generation Of 6th And7th Row Of R Matrix 69

Figure 46 Vivado Generated Diagonal Matrix, From [0,0] To [15,15] 71

Figure 47 Vivado Generated Diagonal Matrix, From [15,15] To [31,31] 72

xiv

LIST OF SYMBOLS

[.]∗ Complex conjugate transpose

[.]−1 Matrix inversion

[.]𝑇 Transpose

𝜋 Mathematical constant, ratio of a circle’s circumference to its diameter

∈ Set membership operator

𝑒[.] Exponential function

Σ Summation operator

| . | Absolute value

𝐸{ . } Expectation operator

a(𝜃) Steering vector as a function of incident angle

𝑨 Steering matrix

𝑨𝑭 Array Factor

𝛽𝑠 Bandwidth of the signal

𝑐 Speed of light

𝑑 Element spacing

𝑓 Frequency

𝑓𝑠 Sampling frequency

𝑓𝑐 Carrier frequency

𝑘 Wave number

𝐾 Number of signal sources

𝑀 Number of sensor arrays

𝑒𝑘(𝑡) Noise at kth element

𝑁 Number of elements in an array

𝑟 Radial distance from origin

𝑅 Correlation matrix

𝑅𝑛 Noise correlation matrix

𝑠𝑘(𝑡) 𝑘𝑡ℎ signal

xv

𝑠(𝑡) Baseband signal

𝑡 Time variable

 𝑥(𝑡) All the signals induced on all elements

ℎ̅𝑘(𝑡) Impulse response of sensor

𝑦̅𝑘(𝑡) Output of sensor

𝜎2 Noise variance

𝜔𝑠 Angular spatial frequency

𝜔𝑐 Angular carrier frequency

λ Wavelength

𝜏𝑘 Propagation delay to kth antenna with respect to first

xvi

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter

FPGA Field Programmable Gate Array

DFT Discrete Fourier Transform

DOA Direction of Arrival

DOAE Direction of Arrival Estimation

DTFT Discrete Time Fourier Transform

ESPRIT Estimation of Signal Parameters via Rotational Invariance Technique

FFT Fast Fourier Transform

LUT Look Up Table

MUSIC Multiple Signal Classification

MSB Most Significant Bit

MVDR Minimum Variance Distortionless Response

NLA Non-Uniform Linear Array

SNR Signal to Noise Ratio

ULA Uniform Linear Array

VHDL Very High –Speed Integrated Circuit Hardware Description Language

1

CHAPTER 1

INTRODUCTION

1.1. Background and significance of the study

Direction of arrival estimation is used to estimate the angle at which an acoustic or

electromagnetic wave arrives to an array of sensor or antennas [1].

Over the past decades, DOA estimation has been an important research topic in signal

processing. Practically, it has been applied in the field of sonar [2], radar [3],

navigation, radio astronomy, wireless communications [4, 5], tracking of different

objects internet, broadcasting, wireless sensor networks [6] and imaging [7]. Because

of its flexible and convenient features, DOAE has contributed a lot in these fields.

Array processing and DOA are not very different subjects from each other, they should

be considered together, and DOA should be supported using array antennas instead of

single antenna in order to achieve high resolution and better performance. This array

structure over a single antenna allows spatial samplings of received signal. There are

many different super resolution algorithms for finding arrival angle. Spectral

estimation, beamforming, Capon, Bartlett, Min-norm, ESPRIT, MUSIC, Root-

MUSIC, Maximum Likelihood are some examples of DOA algorithms [8, 9].

Every method has some advantages and weaknesses. The most suitable methods

should be selected for the desired purpose. For example, Capon algorithm need inverse

matrix calculation [10]. MUSIC algorithm needs a large number of calculations while

searching the spectral angle [11]. Conventional beamforming is inefficient when

multiple signal sources are used [12]. Geometry of the array structure also affects the

resolution and applicability of the methods. Based on last updates and experiments,

non-uniform linear array has some advantages over linear uniform array [13, 14]. In

addition, circular or rectangular array forms increases dimensionality of DOA.

2

Although more than one-dimensional array structures increase the resolution, they

need large computations [15].

Having meaningful theoretical results does not mean the suitability of algorithm for

practical implementations.

DOA is an important research topic that keeps its popularity for the up to date studies

in signal processing field.

1.2. Problem Statement

The problem is considered as estimating the angular location of K signal sources using

a sensor array consisting of M sensors that are equally spaced with distance d, which

is assumed a half of the wavelength. The source signals are assumed uncorrelated and

narrowband. In addition, white Gaussian noise located in the far field region with

regard to physical size of the antennas is also uncorrelated that can be explained by

statistical independency between each array noise. [16] The direction of arrivals of

more than one source located at θ1, θ2…, θ𝑘 can be found by determining the peaks

of spatial spectrum.

1.3. Objectives

The main objective of this research is the implementation of beamforming and

direction of arrival (DOA) estimation measurement using uniform linear array (ULA).

It is shown in [17] that the evaluations of techniques for implementation are based on

the factors that affect the resolution and accuracy of the DOA estimation and these

factors depend on the number of signal sources, number of array elements, number of

snapshots, element spacing and signal to noise ratio [18].

Determining the desired signal location can be used in order to set up measurement

platforms, which contributes high robustness to the system [19].

1.4. Scope of the Work

The scope of this research work is involves the formulation of the mathematical model

of the direction of arrival estimation and simulation of uniform linear array,

conventional beamforming, and Capon estimation in MATLAB platform. After

3

MATLAB modelling and having obtained the simulation results, the conventional

beamforming is implemented in VHDL using Vivado Design Suite. VHDL is used to

describe the structural and behavioral characteristics of digital logic circuits, it allows

the system to be modelled and simulated before translating the design into real

hardware by the gates, and wires [20]. In addition, VHDL allows the use of not only

sequential statements but also concurrent statements that can be explained by

programming blocks simultaneously that makes the design faster. The testbenches,

which are commonly called collection of simulation models, is written in order to get

information about verification of functionality of the design and simulated by Vivado

Simulator [21].

1.5. Organization of Thesis

The structure of the thesis is as follows:

 Chapter-2 presents the theoretical background of antenna arrays, performance

of uniform linear array antenna structure with some spatial spectrum estimation

system. This chapter also includes basic principles of beamforming and factors

affecting DOA estimation.

 Chapter-3 includes the methods used in this thesis study. The mathematical

model of DOA estimation for ULA, and description of beamforming concept

are explained.

 Chapter-4 describes simulation and discussion of the results, obtained using

MATLAB, the beamforming and direction arrival estimation by varying input

parameters such as number of signal sources, number of snapshots, signal to

noise ratio and number of array elements. All simulations are performed in

Matlab2017b platform.

 Chapter-5 describes VHDL implementation of conventional beamforming

and the simulation results. All simulations are performed in Vivado Simulator

on Windows operating system. Resolution and accuracy performance of the

design is discussed.

4

 Chapter-6 summarizes the overall study in details and conclusion,

recommendation and discussions are highlighted.

5

CHAPTER 2

THEORETICAL BACKGROUND ON DOA ESTIMATION

2.1. Introduction

Array processing is an important research area, which deals with the processing of the

signals received from an antenna array and extracting information about signal

parameters [22].

The goal of array signal processing is not only to predict the values of parameters by

using available temporal and spatial information but also to alleviate the effects of

noise and interference. A sensor array is considered as a group of sensors conveyed in

a certain geometry pattern. In contrast to traditional single sensor, an array provides

some advantages such that it increases the antenna gain in the direction of the signal

sources and it suppresses the gain in the directions of interferences and noise [22]. The

ability of dealing with interference and strengthening signal gain results in high signal-

to-noise ratio (SNR). Detection of direction and distance of impinging signal sources

is another advantage that explains why array signal processing theory can be

considered as an important research field. DOA estimation can be considered as one

of the most important research topics of the array processing. In this section, antenna

arrays, spatial spectrum, some common methods for DOA and the factor affecting

DOA are discussed.

2.2. Historical development of antenna arrays

An antenna array is a geometric configuration of a series of two or more

antenna components used to transmit of receive electromagnetic waves [23]. These

antennas are regularly spaced to get unique amplitude and phase values. The advances

in electronics, antenna theory, signal processing and information theory improved the

ability of wireless communication systems [24].

6

In 1940, for military applications, the concept of an antenna array was introduced

[25].

This technology was significant in wireless communications because it improved the

antenna reception and transmission characteristics used in these structures. The array

also helped the antenna system to be electronically guided to transmit or receive data

mainly from a specific direction without moving the structure mechanically.

As the signal processing area evolves, arrays can be used to receive energy from a

desired direction while rejecting information or destroying energy in

undesirable directions.

As a result, the arrays could be used to minimize unintended interference such as

jamming. Radiation from other sources not intended for the system is the main source

of the unintended interference [26].

In addition, the developments in signal processing led to the idea of adaptive antenna

arrays.

Depending on the operating environment; these arrays adjust their radiation or recept

ion pattern [27]. Although there has been a great deal of development and work on

signal processing issues, physical geometry has not received sufficient attention. This

situation can be explained due to the mathematical complexity of optimizing location

of the elements for different situations. Optimization of array geometry is expected to

support the continuous development performance of desired systems [28].

2.3. Structural analysis of spatial spectrum estimation system

Spatial spectrum estimation is a specific estimation technology to obtain space

parameters of a signal by using space arrays [29]. The spatial spectrum can be

expressed in terms of three dimensions, which refer the expansion of the temporal

spectrum. The entire spectrum should include three parts, which are incident signal

space, spatial array receiver and estimation of parameters. The fundamental

assumptions for propagation model and medium channel depend on the variations in

each of these three parts [30]. The space can be splitted into three suitable spaces which

can be listed as target stage, observation stage, and estimation stage, respectively.

In target stage, parameters of multiple signal sources and complex environment are

available. In this stage, it is observed that some of the spatial filtering techniques are

7

used to estimate the indefinite parameters of the signals which occurs due to the

complex environment.

Figure 1 The system structure for DOA spatial spectrum estimation

Observation stage, which follows the target stage, receives the signal radiations from

target space. Due to the existence of complex environment in target stage, the received

data may include not only some signal features but also some complex space

environment features. Elevation angle, azimuth angle, distance and polarization can

be examples of signal features while miscellaneous waves, noise and interference can

be examples of complex space environment features. Furthermore, the collected data

may include some distortion due to some space array element characteristics such as

mutual coupling effects and inconsistent frequency bands.

The observation stage, which follows the target stage, receives signal radiations from

the target space. According to the complexity of the environment of the target stage,

the signal received contains some characteristics such as the distance, the azimuth

angle, the elevation angle, the polarization, etc. Complex space environment

characteristics include the miscellaneous waves, the interference, noise, etc. This stage

can be considered as multidimensional, since it is supposed that the system receives

data from more than one channel. However, only one channel is usually used in time

domain processing.

8

Final stage is the estimation stage where the estimation of spatial spectrum by applying

array correction and spatial filtering techniques in order to extract signal parameters

from complex environment is performed. There is no doubt that estimation stage can

be considered as a reconstruction of the target stage. Mutual coupling of arrays,

complexity of environment, different channels can affect the precision of

reconstruction.

According to all information discussed so far, the energy distribution of signals from

all spatial directions can be expressed as spatial spectrum. If the spatial spectrum of

signals is obtained, the arrival path of the signals can also be identified. Therefore,

DOA estimation is also known as spatial spectrum estimation [31].

2.4. Overview of the common methods for development of DOA estimation

Direction of arrival estimation is an important research field in signal processing. At

the beginning, linear spectrum estimation, which mainly involves periodogram method

based on Fourier Transform, is used to find arrival angle. However, due to the effect

of the Rayleigh fading [32], it is not possible to obtain high-resolution performance,

so it can not achieve satisfactory performance. Then, the statistical analysis of

estimation of the maximum likelihood spectrum with a good accuracy and robust

character took attention of researchers. However, this estimation method needs high-

dimensional parameter space that means large amounts of computation to be done.

Therefore, it is not practical [33, 35].

Estimation of maximum entropy method was considered by Burg in 1967. This method

consists of some models, which are AR (Autoregressive model, MA (Moving Average

Model), ARMA (Auto-Regressive and Moving Average Model). The common

property of these methods is having high resolution. Nevertheless, a great amount of

calculation is needed [34-35].

Depending on the eigenvalue decomposition, some spectrum estimations, which are

Estimation Signal Parameters via Rotational Invariance Technique (ESPRIT) and

Multiple Signal Classification (MUSIC) algorithm, were introduced in 1980’s [36-37].

MUSIC was derived from the maximum entropy method based on one-dimensional

implementation of it. In addition, it resembles the maximum likelihood method in

terms of some features [38-39].

9

In spite of the fact that, MUSIC has better results and preferred by many researchers,

it involves heavy computations.

ESPRIT and its improved versions VIA-ESPRIT, TLS-ESPRIT and GEESE were

considered in [40]. The most powerful features of these algorithms are not only having

high resolution but also avoiding heavy computations while searching the spectrum.

Hence, DOA estimation can be faster in terms of speed. However, as a weakness,

ESPRIT algorithm and its derivations need some special array structures in order to

find DOA angle, so its applications are rarely seen [40].

Time-domain characteristics of the signals should be considered while processing in

spatial domain. Signals can be sampled simultaneously in time domain and spatial

domain when sufficient information about signals is available. In order to compensate

the insufficient information about spatial domain, two-dimensional array structures

should be used to avoid the limitations of array structures and enhance the arithmetic

capability while handling the noise.

In real time applications, the existence of colored should be taken into account as well

as thermal noise. Higher order cumulant techniques are used in signal processing for

DOA estimation in white noise, Gaussian or non-Gaussian spatial colored noise [41].

In array signal processing, when the multiple signals are received by an antenna array,

the signal sources may not be fully known, and the transmission channel may be

unknown and may vary in time.

For the transmission channel, this unknown feature causes a limitation for high

resolution of DOA. Therefore, researchers introduced the concept of blind DOA

prediction, which can estimate the properties of the channel under unknown conditions

and has wide application possibilities [42].

Discrimination of adaptive blind signaling was studied by Herault–Jutten in 1991 [43].

Since then researchers have recommended many different algorithms. All these

algorithms can be applied for DOA estimation. Non-stationary signals, whose

characteristics are restricted by variation of time and duration, include many natural

and synthetic signals, such as biomedical signals, sound, sonar and radar signals.

Taking into account of the non-stationary and nonlinear properties of the actual

system, DOA using artificial neural networks is a research field of recent years [44].

10

In miscellaneous DOA estimation methods based on spatial spectrum estimation, the

MUSIC method has a higher stability, better resolution, an acceptable amount of

calculation, and array implementations structure. Therefore, MUSIC method is

preferred in experimental studies.

2.5. Parameters affecting DOA estimation

Accuracy and resolution of DOA estimation are affected from a number of factors,

which depend not only on arriving signal source but also on the actual application

environment [45]. Some influential factors are mentioned theoretically in this section

and different simulation experiments are considered to observe how accuracy of DOA

is affected.

2.5.1. Number of array elements

As mentioned before, array antenna includes two or more sensors used for sending

and/or capturing electromagnetic waves. In comparison to the traditional signal

orientation antenna, the signals from antennas are combined together and processed to

get better performance that can be explained by making an increment of total gain,

improvement of the spatial resolution, reducing the interference from a specific

direction, and steering the system at the direction of interest [46].

At this point, the total radiation pattern which is the multiplication of the pattern of a

single element and array factor should be considered. Array factor is a complex

valued function of far-field radiation pattern, obtained for an array of N isotropic

radiators located at coordinates 𝑟𝑛⃗⃗ ⃗, and it is calculated as [23]

𝐴𝐹(𝑟̂) = ∑ 𝑎𝑛𝑒
𝑗𝑘𝑟.̂𝑟𝑛⃗⃗⃗⃗ 𝑁

𝑛=1

where

an are the complex-valued excitation coefficients, r̂ and is the direction unit vector.

The 𝐴𝐹 written in the transmitting mode, 𝑒𝑗𝜔𝑡, whereas in receiving mode,

corresponding expression for 𝐴𝐹 includes a negative sign appearing in the exponential

factors, 𝑒−𝑗𝜔𝑡 [47] [48] where it is shown that array factor depends on position, phase

and amplitude of every individual element in the array structure while physical

https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvRmFyLWZpZWxk
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvUmFkaWF0aW9uX3BhdHRlcm4
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvQ29vcmRpbmF0ZXM
https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvVW5pdF92ZWN0b3I

11

dimensions and electromagnetic characteristics of the radiating element the depend on

element pattern [49]. As the number of array elements increase, the number of side

lobes increase as well, however, side lobes smaller peak levels which mean that

directionality is improved, and interference is reduced. Besides, beams are narrower

and gain of the antenna array is better due to the spatial diversity [49].

As a conclusion, if the remaining array parameters are kept same, the greater number

of array elements means the better estimation performance [50].

Figure 2 The array factor for 4 and 8 element. Spacing between elements is 0.5𝜆

[51]

12

Figure 3 The array factor for 16 and 32 element. Spacing between elements is 0.5𝜆

[51]

Figure 2 and Figure 3 illustrate the impact of number of elements on array factor [51].

In Figure 3, it is seen clearly that array factor gets more side-lobes by increasing the

number of elements. However, the side-lobe levels are lower compared to Figure 2.

Furthermore, number of nulls is increased, and beams are narrower that they can

handle with the interference more easily and this improves directionality.

2.5.2. Number of snapshots

Number of snapshots should be considered in time and frequency domains. Number

of samples refers to the number of snapshots in time domain whereas the behavior of

Discrete Fourier Transform (DFT) of time frames contains information about the

number of snapshots in frequency domain [52]. Frequency-domain analysis shows

how the signal energy is distributed over a range of frequencies. If frequency domain

includes many components, frequency ranges can be analyzed. As a result, accuracy

of DOA can be increased when remaining parameters are kept the same [53].

2.5.3. SNR

SNR is defined as the ratio of signal power to noise power. It is often expressed in

decibels and it measures the difference between desired signal power and noise power.

13

Any signal processing system is affected by noise; whose strength directly influences

the system performance. If the noise power increases gradually while signal power

remains the same, low SNR is achieved, algorithms will fail to have angular resolution

due to the lack of performance [54].

2.5.4. Element spacing

Element spacing, along with the number of array elements, is another factor that affects

accuracy of DOA. In order to achieve high spatial discrimination, the aperture of the

antenna is arranged to be large in terms of wavelength. As a result, the gain is

increased. The relationship between antenna main lobe beamwidth and its physical

shape is inversely proportional [46].

If the aperture is decreased, the beamwidth of the main lobe becomes sufficiently wide.

Consequently, it becomes too difficult to separate the signals if multiple signals

sources fall in the wide main lobe. When spacing is increased, gain of sidelobes will

be close to the gain of main lobe. In this case, they are called grating lobes that repeat

themselves periodically [48]. There will be an unknown case at the receiver side, since

the coming signals may belong to the direction of the grating lobe or direction of the

main beam lobe. Also, they may have the same response. In transmission side, the

transmitted power can be wasted for the sake of grating lobes since the receiver is on

the direction of main beam. Furthermore, this wasted transmitted power can affect

other users in terms of strong interference. Therefore, grating lobes should be avoided

by reducing element spacing to prevent this ambiguity. However, making elements

closer to each other increases their mutual coupling effects. In order to occupy the

same aperture, to keep its properties, more number of elements should be used to

compensate reduced element spacing [55].

Since using more elements may lead to a higher cost, there should be a tradeoff to

choose the element spacing [56-57].

If grating lobes exist, it can be explained in terms of spatial aliasing, which resembles

a temporal aliasing. Sampling is used to convert continuous time signal into a discrete

time signal using an analog to digital converter (ADC). If the signal is sampled at a

rate lower than NYQUIST sampling rate, aliasing exists. As a result, two signals

having different frequency intervals could refer to the same discrete signal. Likewise,

14

the signals received by antennas are sampled spatially in phased arrays. The sampling

operation will not be densely enough when the antennas are not far enough from each

other. The signals coming from different directions will share the identical steering

vector, and it causes an ambiguity in terms of DOAs of the sources and this is called

as spatial aliasing [58]. When the spacing is chosen less than half of the wavelength,

the performance of beamforming with regard to resolution does not promote.

Consequently, the element spacing is generally chosen to be half of the wavelength in

order to keep grating lobes away from the main beam lobe and to maximize the

aperture. The element spacing is measured considering the wavelength, which depends

on frequency. In this thesis, narrowband systems are considered.

Figure 4 The array factors for arrays with element spacing of 0.25𝜆 and 0.5𝜆 [51]

15

Figure 5 The array factors for arrays with element spacing of 1𝜆 and 2𝜆 [51]

The Figures 4 and 5 are plotted using the formulas given in [51].

Figures 4 and 5 show the effect of the element spacing and the existence of the grating

lobes. In both figures, the arrays have the same aperture, which is equal to 4𝜆 , but they

have different element spacing [51].

In Figure 3, element spacing is takes as 0.25𝜆 or 0.5𝜆, and there are no grating lobes,

while in Figure 4 element spacing is takes as 1𝜆 or 2𝜆, and there are 2 grating lobes

for 1𝜆 spacing, and 4 grating lobes for 2𝜆 spacing.

16

CHAPTER 3

METHODOLOGY

3.1. Introduction to System Model

In this chapter, mathematical modeling of the communication system is performed

before introducing any type of DOA estimation algorithms. The model is applicable

throughout the discussion, and the same notations are used to describe all algorithms.

3.2. Assumptions

There are some important assumptions to be considered for the model. Firstly, a point

source is supposed to generate the emitting signal. Second assumption is related to far

field region. The signal sources are assumed to be far away from the sensor array so

that waves on the array behave like planar waves. Third, a narrowband signal

hypothesis, which depends on signal bandwidth, is assumed. The fourth assumption is

that sources are not correlated with each other. Lastly, noise existing in the sensor is

temporally and spatially uncorrelated.

3.2.1. Point Source Assumption

Estimating the DOA of a wave starting from a point source is the most analyzed DOA

estimation scenario [59]. This assumption refers that the size of the source is small

compared to the distance between source and the antennas receiving the signal. The

opening angle is zero. Consequently; the signal source corresponding with the

direction of the array is identified uniquely.

17

3.2.2. Far Field Assumption

According to previous assumption, a point source produces waves that propagate

spherically around itself, however, when the antenna array is located at a large distance

away from the source, the waves impinging upon sensors happens to be the plane

waves [60].

Plane waves produce only constant phase difference between sequential sensor

elements. It is assumed that every element that belongs to the same lattice has an

omnidirectional and equal response. In addition, locations of the array elements are

known perfectly in order to make appropriate delay calculations. There is no

magnitude variation between the received signals, since spacing between array

elements is small enough. Furthermore, the medium channel is lossless, phase is

steady, and the propagation speed is uniform. All the receiving signals can be

considered as individual plane waves, since the array has finite number of signals [16].

If sources are located in near field, our assumption are not applicable. Depending on

the location of the sources, sensors have extra phases. The performance of the

algorithms suffers from these unknown phases. It is too difficult to model the system

using near field assumption. Hence, it is logical to choose far field assumption [16].

3.2.3. Narrowband Signal Assumption

The narrowband signal hypothesis, used in array signal processing, assumes that

the time-bandwidth product is “small,” i.e., [61]

𝛽𝑠 𝜏 ≪ 1

where 𝛽𝑠 and 𝜏 refer to the bandwidth of the transmitted signal, and the propagation

delay of wavefront respectively. According to above expression, bandwidth of the

signal is less than the reciprocal of the wave propagation delay. T narrowband

assumption assures that all array elements can capture a signal concurrently.

3.2.4. Correlation of Sources

The existence of coherent sources is another major problem for DOA estimation

algorithms. Coherent sources appear due to multipath effects, cluttering and enemy

jamming process [62]. In almost all real-time applications these effects are seen. In

18

order to handle the coherency of sources, different spatial smoothing techniques [63,

64, 65] are used. Throughout this thesis, correlation case, multipath effects and

jamming are not considered. Thus, all sources are assumed to be uncorrelated.

3.2.5. Noise Assumption

Information observed in sensor elements come into existence with signal and noise

components. Generally, signal component consists of both the source of interest and

other unwanted sources like reflections. In addition, noise can be formed as

environmental noise and thermal noise in all electronic components. Noise is assumed

to be spatially and temporally stable and there is no correlation between signal

components and noise components [16]. Noise has a zero-mean value with a variance

𝜎2, i.e., white Gaussian noise. In addition, noise samples are statistically independent

[66], i.e.,

𝐸{𝑒𝑘(𝑡)𝑒𝑖(𝑡)} = 𝛿𝑘,𝑖(𝑡)

where 𝑒𝑘(𝑡) is the noise sample at 𝑘𝑡ℎ sensor at time t [16].

3.3. Signal Model

All notations used to describe the system model is summarized in this chapter with

respect to the purpose of discussion and these notations are developed in accordance

with the work of Stoica in order to avoid the literature conflicts in DOA estimation

algorithms [16].

First, establishing an array model for a single source case is considered. Generic array

model of multiple sources is achieved by applying superposition principle.

Let us consider a single waveform 𝑥(𝑡) acting on an array. The reference point should

be chosen from either a sensor in the array or any other location that is far enough to

the array in order satisfy the planar wave assumption.

All signals captured by the array are real time-continuous signals, hence, 𝑡 is a

continuous variable.

𝜏𝑘 stands for the time needed for the plane wave to travel from reference point to the

𝑘𝑡ℎ sensor where 𝑘 is ranges from 1 to number of sensors 𝑚.

19

Impulse response of a sensor is denoted by ℎ̅𝑘(𝑡), and the additive noise which can be

either thermal noise or environmental noise is expressed by 𝑒̅𝑘(𝑡), the output signal

of the 𝑘𝑡ℎ sensor can be written as,

𝑦̅𝑘(𝑡) = ℎ̅𝑘(𝑡) ∗ 𝑥(𝑡 − 𝜏𝑘) + 𝑒̅𝑘(𝑡) (3.1)

where '*' refers to the convolution operation. The impulse response ℎ̅𝑘(𝑡) and array

geometry are known quantities whereas 𝑥(𝑡) and 𝜏𝑘 are unknown parameters. When

the value of 𝜏𝑘 is estimated, angle of arrival of the sources can be predicted as well.

Equation (3.1) can be made simpler and more useful by applying the narrowband

assumption. It makes more sense to apply this assumption in frequency domain.

Fourier transforms of 𝑦̅𝑘(𝑡) , ℎ̅𝑘(𝑡), 𝑥(𝑡) and 𝑒̅𝑘(𝑡) are denoted by 𝑌̅𝑘(𝜔), 𝐻̅𝑘(𝜔) ,

𝑋(𝜔) and 𝐸̅𝑘(𝜔), respectively. According to these notations and properties of Fourier

transform, Equation (3.2) can be expressed in frequency domain as,

𝑌̅𝑘(𝜔) = 𝐻̅𝑘(𝜔)𝑋(𝜔)𝑒−𝑗𝜔𝜏𝑘 + 𝐸̅𝑘(𝜔) (3.2)

The spectrum of a signal whose characteristic is bandpass with a carrier frequency 𝜔𝑐

can be fully defined by the spectrum of the corresponding lowpass signal.

Let s(𝑡) indicate the baseband signal related to 𝑥(𝑡), and 𝑆(𝜔) represents the FT of

s(𝑡). The process of obtaining 𝑥(𝑡) from s(𝑡) is called as modulation while the reverse

is called demodulation. In the following equations, some relevant information about

modulation and demodulation process will be given in order to get better

understanding, although it is not strictly related to the source-location problem.

The physical signal 𝑥(𝑡) has real values. Therefore, the spectrum function is even, and

it is symmetric about (𝜔 = 0) . On the other hand, the demodulated signal s(𝑡) may

have complex values. Since the transmitted signal is obtained by modulating the real

valued signals, baseband spectrum will be symmetric about 𝜔 = 𝜔𝑐. Since the

propagation medium does not often provide symmetry property, the received signal

with a corresponding baseband spectrum is not even. This means that demodulated

signal includes complex values.

20

When 𝑠(𝑡) is multiplied by 𝑒𝑗𝜔𝑐𝑡, considering the shifting property of Fourier

transform, 𝑆(𝜔) moves to the right, as long as the value of 𝜔𝑐 is greater than zero as

illustrated in

𝑆(𝜔) = ∫ 𝑠(𝑡)𝑒−𝑗𝜔𝑡
+∞

−∞

𝑑𝑡 (3.3)

∫ 𝑠(𝑡)𝑒𝑗𝜔𝑐𝑡𝑒−𝑗𝜔𝑡
+∞

−∞

𝑑𝑡 = ∫ 𝑠(𝑡)𝑒−𝑗(𝜔−𝜔𝑐)𝑡
+∞

−∞

𝑑𝑡 = 𝑆(𝜔 − 𝜔𝑐) (3.4)

The formula given in (3.4) is called complex modulation. As described previously, the

modulated signal has real values which means an even spectrum. Therefore, the shift

of 𝑆(𝜔) to the right as described in (3.4) must accompany to a left shift by 𝜔𝑐.

Thus, we can write that

𝑋(𝜔) = 𝑆(𝜔 − 𝜔𝑐) + 𝑆∗(−(𝜔 + 𝜔𝑐)) (3.5)

Demodulation of (3.5) can be performed multiplying 𝑥(𝑡) with 𝑒−𝑗𝜔𝑐𝑡, which yields

𝑆(𝜔) + 𝑆∗(−𝜔 − 2𝜔𝑐) (3.6)

and passing the resulting signal through a low-pass filter.

It can be clearly seen that, 𝑋(𝜔) includes not only the baseband component of 𝑆(𝜔)

but also bandpass component of 𝑆∗(−𝜔 − 𝜔𝑐). When 𝑋(𝜔) given by (3.5) is inserted

into (3.2), the output of the sensor is obtained in frequency domain as

𝑌̅𝑘(𝜔) = 𝐻̅𝑘(𝜔)[𝑆(𝜔 − 𝜔𝑐) + 𝑆∗(−𝜔 − 𝜔𝑐)]𝑒
−𝑗𝜔𝜏𝑘 + 𝐸̅𝑘(𝜔) (3.7)

Demodulation of 𝑦̅𝑘 is performed using

 𝑦̃𝑘(𝑡) = 𝑦̅𝑘(𝑡)𝑒

−𝑗𝜔𝑐𝑡 (3.8)

Fourier Transform of 𝑦̃𝑘(𝑡) can be expressed as

21

𝑌̃𝑘(𝜔) = 𝐻̅𝑘(𝜔 + 𝜔𝑐)[𝑆(𝜔) + 𝑆∗(−𝜔 − 2𝜔𝑐)]𝑒
−𝑗(𝜔+𝜔𝑐)𝜏𝑘 + 𝐸̅𝑘(𝜔 + 𝜔𝑐) (3.9)

𝑌̃𝑘(𝜔) is low-pass filtered to exclude higher frequency term 𝑆∗(−𝜔 − 2𝜔𝑐).

Result of the filtering process is given in (3.10)

 𝑌𝑘(𝜔) = 𝐻𝑘(𝜔 + 𝜔𝑐)𝑆(𝜔)𝑒−𝑗(𝜔+𝜔𝑐)𝜏𝑘 + 𝐸𝑘(𝜔 + 𝜔𝑐) (3.10)

where 𝐸𝑘(𝜔 + 𝜔𝑐) and 𝐻𝑘(𝜔 + 𝜔𝑐) are low-pass components of 𝐸̅𝑘(𝜔 + 𝜔𝑐) and

𝐻̅𝑘(𝜔 + 𝜔𝑐) respectively.

As previously discussed in Section 3.2.3, as |𝜔| increases, |𝑆(𝜔)| decreases quickly.

This assumption is valid if we have [67]

𝐵𝑊 𝑥 ∆𝑇𝑚𝑎𝑥 ≪ 1 (3.11)

∆𝑇𝑚𝑎𝑥 ≜ 𝑚𝑎𝑥
𝑛,𝑚=0,..𝑁−1

{∆𝑇𝑛𝑚} (3.12)

where 𝐵𝑊 refers to the bandwith of s(𝑡) and ∆𝑇𝑛𝑚 denotes the time duration for the

incoming signal to travel between from 𝑛𝑡ℎ to 𝑚𝑡ℎ sensor.

Equation (3.10) can be written as

 𝑌𝑘(𝜔) = 𝐻𝑘(𝜔𝑐)𝑆(𝜔)𝑒−𝑗𝜔𝑐𝜏𝑘 + 𝐸𝑘(𝜔+𝜔𝑐) (3.13)

assuming the flatness of frequency response of sensor array around 𝜔𝑐, i.e.,

𝐻𝑘(𝜔𝑐) = 𝐻𝑘(𝜔 + 𝜔𝑐) (3.14)

The time domain expression for (3.13) is found by taking Inverse Fourier Transform

and the result is written as,

𝑦𝑘(𝑡) = 𝐻𝑘(𝜔𝑐)𝑒
−𝑗𝜔𝑐𝜏𝑘 + 𝑠(𝑡) 𝑒𝑘(𝑡) (3.15)

We define the array transfer vector or direction vector, 𝐚, as in

22

𝑎(𝜃) = [𝐻1(𝜔𝑐)𝑒
−𝑗𝜔𝑐𝜏1 ⋯ 𝐻𝑚(𝜔𝑐)𝑒

−𝑗𝜔𝑐𝜏𝑚]Τ (3.16)

Since array structures and transfer characteristic of the sensors are assumed to be

known, 𝜏1, … , 𝜏𝑚 which are the functions of 𝜃 carry information about the angle of

arrival which is the major parameter of interest in this thesis. Furthermore, due to the

fact that all sensors have omnidirectional characteristic, 𝐻𝑘(𝜔𝑐) is not affected from

𝜃.

By making use of equation (3.16), equation (3.15) can be written as,

𝑦(𝜃) = 𝑎(𝜃)𝑠(𝑡) + 𝑒(𝑡) (3.17)

where

y(𝜃) = [𝑦1(𝑡) ⋯ 𝑦𝑚(𝑡)]Τ (3.18)

𝑒(𝜃) = [𝑒1(𝑡) ⋯ 𝑒𝑚(𝑡)]Τ (3.19)

refers to the output vector and noise vector, respectively.

Choosing the first sensor as a reference point, equation (3.16) can be written as

a(𝜃) = [1 𝑒−𝑗𝜔𝑐𝜏1 ⋯ 𝑒−𝑗𝜔𝑐𝜏𝑚−1]
Τ (3.20)

Equation (3.20) and (3.18) can be modified for multiple sources by applying

superposition principle since all sensors are uniform. The steering matrix 𝚨 for

multiple sources is defined as

𝚨 = [a(𝜃1), … , a(𝜃𝑛)] (3.21)

And the received signal can be written using the steering matrix as

y(𝑡) = [a(𝜃1), … , a(𝜃𝑛)] [
𝑠1(𝑡)

⋮
𝑠𝑛(𝑡)

] + e(𝑡) ≜ 𝚨𝑠(𝑡) + e(𝑡) (3.22)

where 𝜃𝑘 represents DOA angle of 𝑘𝑡ℎ source, and 𝑆𝑘(𝑡) represents signal of 𝑘𝑡ℎ

source.

23

Geometry of array, circular, triangular, NLA, ULA, etc., form of the incoming wave,

planar, spherical, circular, etc., and angle of DOA of sources affect 𝜏𝑘.

Figure 6 A plane wave incident on a uniform linear array of M uniformly spaced

sensors

Figure 6 illustrates a plane wave received by a uniform linear array of 𝑀 uniformly

spaced sensors. From Figure 6, under the plane wave assumption and the choosing

first sensor as the reference point, 𝜏𝑘 can be calculated as,

𝜏𝑘 = (𝑘 − 1)
𝑑𝑠𝑖𝑛(θ)

𝑐
, θ ∈ [−90 , 90] (3.23)

where 𝑐 refers to the propagation velocity, for example the speed of light, and 𝑑 refers

to the distance between sensors.

Inserting (3.23) into (3.20), we obtain

a(𝜃) = [1 𝑒−𝑗𝜔𝑐𝑑𝑠𝑖𝑛θ 𝑐 ⁄ ⋯ 𝑒−𝑗(𝑚−1)𝜔𝑐𝑑𝑠𝑖𝑛θ 𝑐 ⁄]
Τ (3.24)

Wavelength of the signal, denoted by λ, is the distance traveled by the wave in one

period and it is calculated as

λ = 𝑐 𝑓𝑐 ⁄ 𝑓𝑐 = 𝜔𝑐 2𝜋⁄ (3.25)

24

The spatial frequency 𝜔𝑠 can be written as,

𝑓𝑠 = 𝑓𝑐
𝑑𝑠𝑖𝑛(θ)

𝑐
=

𝑑𝑠𝑖𝑛(θ)

λ
 (3.26)

𝜔𝑠 = 2𝜋𝑓𝑠 = 𝜔𝑐

𝑑𝑠𝑖𝑛(θ)

𝑐
 (3.27)

The direction vector can be redefined as,

a(𝜃) = [1 𝑒−𝑗𝜔𝑠 ⋯ 𝑒−𝑗(𝑚−1)𝜔𝑠]
Τ (3.28)

In order to prevent overlapping in spectral domain, the sampling frequency should be

chosen to satisfy

|𝜔𝑠| ≪ 𝜋 (3.29)

If equation (3.29) is satisfied, then there is no spatial aliasing, and based on this

expression the following equivalent equations can be derived

|𝜔𝑐

𝑑𝑠𝑖𝑛(θ)

𝑐
| ≤ 𝜋 (3.30)

|2𝜋𝑓
𝑑𝑠𝑖𝑛(θ)

𝑐
| ≤ 𝜋 (3.31)

|
𝑑𝑠𝑖𝑛(θ)

λ
| ≤

1

2
 (3.32)

𝑑|𝑠𝑖𝑛(θ)| ≤
λ

2
(3.33)

𝑑 ≤
λ

2
 , θ ∈ [−90 , 90] (3.34)

Expression (3.34) explains that half of the signal wavelength should be greater than d,

which can be called spatial sampling period. The expression in (3.34) can be

considered as spatial NYQUIST sampling theorem.

25

3.4. Algorithms

In this section, beamforming algorithms are introduced. Different DOA algorithms are

compared in Table 1 where advantages and disadvantages of the techniques,

mentioned in survey of DOA [1] are illustrated.

Table 1 Comparison between beamforming techniques for DOA estimation[1].

Technique Merits Demerits

Diagonal Loading

Beamformer

Robust against finite sample

errors

No reliable way to choose the

diagonal loading factor, which

directly affects its performance.

Eigen-Space Based

Performance

Excellent robustness against

arbitrary steering vector errors

Degrade severely if the subspace

dimension L is uncertain or

known imprecisely.

LCMV Linear Constraint

Minimum Variance

Improved robustness Strong degradation of the output

SINR

MVDR Minimum Variance

Distortionless Response

Gives distortionless performance

in the Direction of Interest

Unable to distinguish between

two closely spaced plane waves

Root MVDR Better Performance Lesser threshold compared to

MVDR

MUSIC Multiple Signal

Classification Algorithm

High level of orthogonality

between signals. Higher

resolution & accuracy

Gives the pseudo spectrum only.

Root MUSIC Less computational time, higher

resolution

Limited to linear antennas,

equispaced.

ESPRIT Estimation of

Signal Parameters via

Rotational Invariance

Technique

No need of searching the maxima

in pseudo spectrum. Less

sensitive to noise

 More prone to errors.

There are different types of algorithms improved throughout the years. However, not

all the algorithms are primary subject of this thesis. Table 1 gives an insight of common

types of algorithms.

26

Algorithms have superiority to each other in some aspects while they have deficiencies

to each other in some other aspects such as robustness, accuracy, computational

complexity and noise sensitivity.

3.4.1. Non-Subspace Algorithms

The vector of arrays 𝑎(𝜃) is assumed to be known, and this model describes the array

as a spatial sampling device. Array structure can be expressed using tapped delay line

implementation of a spatial FIR filter, which is defined as

yF(t) = ∑ ℎk𝑢(t − k)

𝑚−1

𝑘=0

≜ ℎ∗𝑦(𝑡) (3.35)

where ℎk are filter weights, and 𝑢(t) is the input of the filter. Filter coefficients can

be written in vector form as

ℎ = [ℎ0 ℎ1 ⋯ ℎ𝑚−1]
∗ (3.36)

and the received signal can be expressed in vector form as

𝑦(𝑡) = [𝑢(𝑡) 𝑢(𝑡 − 1) ⋯ 𝑢(𝑡 − 𝑚 + 1)]T (3.37)

and using {𝑦𝑘(𝑡)}
𝑚

𝑘=1
 spatial samples, spatial filtering is performed using

𝑦𝐹(𝑡) = ℎ∗𝑦(𝑡) (3.38)

Using the notations described previously, 𝑦(𝑡) can be rewritten as

𝑦(𝑡) = 𝑎(𝜃)𝑠(𝑡) (3.39)

where using (3.38), we obtain

𝑦𝐹(𝑡) = [ℎ∗ 𝑎(𝜃)]𝑠(𝑡) (3.40)

which implies that the tap values, {h} k=1
m , of the spatial filter can be adjusted to

improve or attenuate the signals received from an angle θ. The equation (3.40) is

basic for DOA methods described in this section. In Figure 7, the tapped delay line

implementation of FIR filter is described [16].

27

Figure 7 Tapped Delay Line Structure Spatial Filter

The power of the output signal in equation (3.38) can be calculated using

Ε{|𝑦𝐹(𝑡)|
2} = 𝐡∗𝐑𝐡 (3.41)

where

𝐑 = Ε{𝑦(𝑡) 𝑦∗(𝑡)} (3.42)

According to power equation (3.41), h*Rh should have peak. Non-adaptive

conventional beamforming known as Bartlett beamforming, and adaptive Capon

beamforming which tries to calculate the peak value of (3.41) will be introduced in the

next subsections.

3.4.1.1. Beamforming Techniques

Beamforming is used in conjunction with a series of antennas / sensors to receive /

transmit signals from a specific spatial direction in the existence of noise and

interference Therefore, it can be considered as a spatial filtering [1, 67]. It is a classic

but regularly evolving field with tremendous practical applications. Over the last

decade, interest in beam shaping running by applications in wireless communications

increased, and numerous techniques are proposed.

A receiver beamformer is commonly used to estimate the signal from a particular

direction in the presence of noise and blocking signals. In a receiver beamformer,

28

output of the sensors are combined using spatial filter coefficients, i.e., using weight

vector. Hence, signals from a desired direction are combined, whereas signals coming

from other directions are attenuated.

The most common beamforming techniques include conventional and adaptive

beamformers.

For conventional beamformers, the weight vector for a given DOA can be pre-

calculated independently of the received data. Therefore, they are called data

independent beamformers, and they provide a fixed response for all signal and

interference scenarios.

Adaptive beamformers are not data independent, and weight vectors are a function of

incoming data [68]. Much better resolution and better interference resistance is

observed for adaptive beamformers than independent beamformers.

Conventional (Bartlett) Beamforming

A conventional non-adaptive beamformers consist of delay, sum units employing

weighting vectors. Because of the geometry of sensors, the time delay between each

sensor is retrieved and the output of the sensors are summed.

In Figure 8, the structure of conventional beamformer is shown.

Figure 8 Conventional Beamformer

This method is also known as Bartlett beamforming [12]. The power spectrum based

on this method is computed as follows. According to previous subsection, filter h must

29

satisfy two conditions. First condition is that it should pass the signals with a given 𝜃,

and second condition is that it should attenuate the remaining signals arriving at angles

different than 𝜃.

In the view of (3.40), the first condition for the filter can be written

as

𝐡 ∗ 𝑎(𝜃) = 1 (3.43)

By using the identical sensors, normalized transfer vector a(𝜃) can be written as

𝐚∗(𝜃)𝐚(𝜃) = 𝑚 (3.44)

Considering second condition, accepting 𝑦(𝑡) in (3.41) is spatially white, we can write

Ε{𝒚(𝑡) 𝒚∗(𝑡)} = 𝐑 = 𝐈 (3.45)

The power of the filtered signal calculated as

Ε{|𝑦𝐹(𝑡)|
2} = 𝐡∗𝐑𝐡 = 𝐡∗𝐡 (3.46)

All these expressions illustrate that the spatially white signal in sensor output has the

same power for all directions of θ. It is also required that 𝐡 minimizes the power in

(3.46), which leads to the expression

min
h

𝐡 ∗ 𝐡 subject to 𝐡 ∗ 𝑎(𝜃) = 1 (3.47)

The optimum filter coefficients can be calculated as

𝐡 =
𝐚(𝜃)

𝐚∗(𝜃)𝐚(𝜃)
 (3.48)

When (3.48) is inserted into (3.46), we obtain

Ε{|𝑦𝐹(𝑡)|
2} =

𝐚∗(𝜃)𝐑𝐚(𝜃)

m2
 (3.49)

However, theoretical covariance matrix R can be only estimated using the finite data

as

30

𝐑̂ =
1

N
∑ 𝒚(𝑛) 𝒚∗(𝑛)

𝑵

𝒏=𝟏

 (3.50)

where N represents the number of snapshots. The beamformer DOA estimates are the

positions of the highest peaks of

𝐚∗(𝜃)𝐑𝐚(𝜃) (3.51)

The main weakness of conventional beamforming can be explained that all freedom

degrees are used in the array in order to form a beam in required direction. If multiple

sources occur, this method has a limitation to keep an acceptable level of main

beamwidth lobe and side lobe. As a result, a low resolution is observed.

Adaptive Beamformer

Adaptive beamformers are data dependent which makes adaptive beamformers to

optimize a series of weights vectors. In Figure 9, the structure of adaptive beamformer

is shown.

.

Figure 9 Adaptive Beamformer

Capon beamforming is one of the adaptive beamforming techniques. The brief

mathematical explanation will be given in next subsection.

31

3.4.1.2. Capon Beamformer

Capon method is an adaptive beamforming technique that is developed by Capon [10]

in order to reduce the negative aspects of conventional beamforming. As previously

discussed, conventional beamforming has deficiency if multiple signal sources are

used. Spatial spectrum estimation contains not only signal source power from desired

direction but also power coming from other directions. Capon method overcomes the

low-resolution problem associated with the Bartlett method.

Nevertheless, Capon method also has a weakness that occurs when the direction of

other signals is close to the direction of incident signals. In this situation, Capon

method will make some errors.

The constraint optimization of Capon beamforming method resembles the

conventional beamforming. However, a data dependent model is found in Capon in

terms of 𝐡 while conventinal beamforming is data independent. The partial filter

design of Capon is performed using

𝑚𝑖𝑛
ℎ

𝐡 ∗ 𝐑𝐡 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐡 ∗ 𝑎(𝜃) = 1 (3.52)

Thus, incoming signal coming directly from θ is passed by Capon filter, while other

signals from different directions are attenuated. However, conventional beamforming

only attenuates any other directions even though there is no signal source available.

The solution of (3.52) is found as

𝐡 =
𝐑−𝟏𝐚(𝜃)

𝐚∗(𝜃)𝐑−𝟏𝐚(𝜃)
(3.53)

When it is inserted into the power of the filtered signal, the output power can be

calculated as

Ε{|𝑦𝐹(𝑛)|2} =
1

𝐚∗(𝜃)𝐑−𝟏𝐚(𝜃)
(3.54)

Using finite sample data theorem, Capon DOA estimation is achieved using the peaks

of

1

𝐚∗(𝜃)𝐑−𝟏𝐚(𝜃)
(3.55)

32

CHAPTER 4

SIMULATION RESULTS AND DISCUSSION

4.1. Introduction

Numerical simulations are given in this chapter to investigate uniform linear array

performance analysis. The source signals are all narrowband signals. In addition, the

angle of arrival belongs to the interval [−
𝜋

2
 , +

𝜋

2
]. The signals are also uncorrelated

with each other and background noise which is assumed to be white Gaussian complex

noise with zero mean. Employing different values of variables, the number of

snapshots (𝑁), number of array elements (𝑀), signal to noise ratio (𝑆𝑁𝑅), and spacing

between sensor elements (d), in MATLAB simulations, it is possible to demonstrate

the differences between conventional and Capon beamforming techniques with ULA.

These simulations are performed considering

i. The effects of various number of sensors on DOA estimation.

ii. The effects of various number of snapshots on DOA estimation.

iii. The effects of elements spacing between sensors on DOA estimation.

iv. The effects of various level of SNR on DOA estimation.

4.2. Experiment 1: Basic simulations of conventional beamforming and Capon

beamforming

The first simulation illustrates how the angles of three signals are detected by the

conventional beamforming and Capon beamforming algorithms.

The signal sources are selected as three uncorrelated narrowband signals. The incident

angles are 15°, 40° and 65° respectively. The background noise has the characteristics

33

of white Gaussian noise. The SNR value is 10dB. The array element number, 𝑀, is 20,

carrier frequency, 𝑓𝑐, is equal to 1Mhz. The speed of light, 𝑐, is 3.00 × 108 m/s. In

addition, depending on the 𝑐 and 𝑓𝑐, the wavelength, λ, of the signal can be calculated

as 300 meters. The distance between two sensors is equal to half of the wavelength.

Number of snapshots is 200. According to given numeric parameters the simulation

results are shown in Figure 10 and Figure 11.

Figure 10 Conventional beamforming with three signal sources

Figure 11 Capon beamforming with three signal sources

34

4.3. Experiment 2: Relationship between DOA and the number of sensors

In this experiment, the effect of element number 𝑀 is measured via simulations. All

other parameters are kept same except the number of sensors. Two uncorrelated

narrowband signals are used as signal sources. The incident angles are 0° and 40°

respectively. The background noise has the characteristics of white Gaussian noise.

The SNR value is 10dB. The sensor numbers represented with 𝑀1, 𝑀2, 𝑀3 and they

are chosen as 5, 16, and 32 respectively. Carrier frequency, 𝑓𝑐 is equal to 1MHz. The

speed of light, 𝑐, is 3.00 × 108 m/s. The wavelength, λ of the signal is equal to 300

meters. The distance between two sensors is equal to half of the wavelength. Number

of snapshots is 200. According to given numeric parameters, the simulation results are

illustrated in Figure 12 and Figure 13.

In Figure 12 and Figure 13, the black dashed line corresponds to the sensor number 5,

the blue dash-dotted line corresponds to the sensor number 16, and the red solid line

corresponds to the sensor number 32. When other parameters are kept same, increasing

the number of sensors make the beamwidth narrower, and as a result, improvement in

the directivity of the antenna, and improvement in the discrimination of spatial signals

is observed. If it is desired to obtain more accurate estimations, more sensors should

be used. However, using more sensors causes more data to be processed and needs a

large amount of computation. In practice, the number of sensors should be selected

properly as needed, in order to avoid wasting of resources and low operating speed.

35

Figure 12 Conventional beamforming with different number of sensors

Figure 13 Capon beamforming with different number of sensors

36

4.4. Experiment 3: Relationship between DOA and the number of snapshots

In this experiment, the effect of snapshots 𝑁 is measured via simulations. All other

parameters are kept the same except for the number of snapshots. Two uncorrelated

narrowband signals are used as signal sources. The incident angles are 0° and 40°

respectively. The background noise has the characteristics of white Gaussian noise.

The SNR value is 10dB. The number of snapshots is indicated by 𝑁1, 𝑁2, 𝑁3, and they

are chosen as 25, 50, and 250, respectively. Carrier frequency, 𝑓𝑐 is equal to 1 MHz.

The speed of light, 𝑐 is 3.00 × 108 m/s. In addition, the wavelength, λ of the signal is

equal to 300 meters. Element number is 20. The distance between two sensors is equal

to half of the wavelength. According to the given numeric parameters, the simulation

results are depicted in Figures 14 and 15.

In from Figure 14 and Figure 15, the black dashed line is the simulation result when

the number of snapshots is 25, the blue dash-dotted line is the simulation result when

the number of snapshots is 50, and the red solid line is the simulation result when

number of snapshots is 250.

 When other parameters are kept same, it is seen that increasing the number of

snapshots make the beamwidth narrower. As a result, improvement in the directivity

of the antenna, and improvements in the discrimination of spatial signals are observed.

Accuracy of Capon beamforming is increased; however, it does not affect the accuracy

of conventional beamforming so much. If it is desired to obtain more accurate

estimations, number of samples should be increased. However, using more samples

causes more data to be processed, and processing latency increased. In practice, the

37

number of samples should be selected properly According to NYQUIST criterion in

order to save resources and to obtain high operating speed.

Figure 14 Conventional beamforming with different number of snapshots

Figure 15 Capon beamforming with different number of snapshots

38

4.5. Experiment 4: Relationship between DOA and the element spacing

In this experiment, the effect of element spacing is measured. All other parameters are

kept same except for the element spacing. Two uncorrelated narrowband signals are

used as signal sources. The incident angles are 0° and 40° respectively. The

background noise has the characteristics of white Gaussian noise. The SNR value is

10dB. The spacing between array sensors are represented by 𝑑1, 𝑑2, 𝑑3, and they are

chosen as 0.1𝜆, 0.5𝜆, and 1𝜆 respectively. Carrier frequency, 𝑓𝑐 is equal to 1𝑀𝐻𝑧. The

speed of light,𝑐 is 3.00 × 108 m/s. In addition, the wavelength, λ of the signal is equal

to 300 meters. Number of elements is 20. Number of snapshots is 250. According to

given numeric parameters, the simulation results are shown in Figure 16 and 17.

In Figures 16 and 17, the black dashed line corresponds to the element spacing0.1𝜆,

the blue dash-dotted line corresponds to the element spacing0.5𝜆, and the red solid line

corresponds to the element spacing1𝜆.

When other parameters are kept the same, and when the array element spacing is not

greater than half of the wavelength, it is seen that the beamwidth becomes narrower.

As a result, improvement in the directivity of the antenna, and improvements in the

discrimination of spatial signals are observed. When the spacing is chosen larger than

half of the wavelength, the estimated spectrum has false peaks. The estimation

accuracy is lost.

39

Figure 16 Conventional beamforming with different sensor element spacing

Figure 17 Capon beamforming with different sensor element spacing

40

4.6. Experiment 5: Relationship between DOA and SNR

In this experiment, the effect of SNR is measured. All other parameters are kept the

same except for SNR values. Two uncorrelated narrowband signals are used as signal

sources. The incident angles are 0° and 40° respectively. The background noise has

the characteristics of white Gaussian noise. SNR values are represented by SNR 1,

SNR 2, SNR 3 and they are chosen as -10dB, 0dB, and 10dB, respectively. Carrier

frequency, 𝑓𝑐 is equal to 1MHz. The speed of light, 𝑐 is 3.00 × 108 m/s. The wavelength

λ of the signal is equal to 300 meters. Number of elements is 20. The distance between

two sensors is equal to half of the wavelength. Number of snapshots is 250. According

to given numeric parameters, the simulation results are shown in Figures 18 and 19.

In Figures 18 and 19, the black dashed line corresponds to the SNR -10dB, the blue

dash-dotted line corresponds to the SNR 0dB, and the red solid line corresponds to the

SNR 10dB.

When other parameters are kept the same, it is seen that increasing SNR level results

in narrower beamwidth. As a result, improvement in the directivity of the antenna, and

improvements in the discrimination of spatial signals are observed. The resolutions of

Capon and Conventional beamforming algorithms improve. The performance of

Capon and Conventional beamforming algorithm drops sharply at low SNR values.

41

Figure 18 Conventional beamforming with different SNR values.

Figure 19 Capon beamforming with different SNR values

42

CHAPTER 5

 VHDL IMPLEMENTATION of CONVENTIONAL BEAMFORMING

5.1 Introduction to VHDL Implementation

In this chapter, VHDL implementation of conventional beamforming is performed.

First, theoretical formulas are implemented in MATLAB. Afterwards; MATLAB

codes are converted to VHDL. In Figure 20, the design flow of VHDL programming

on simulation level is shown. First, the requirements are analyzed which means that

the inputs and outputs should be determined before writing any algorithm. According

to minimum and maximum values of the required parameters, the intervals should be

selected carefully in order to cover all values. After writing VHDL code, necessary

libraries that include signed and unsigned arithmetic functions for vectors, logical

operators and conversion functions should be compiled [70-71].

Figure 20 VHDL Design Flow for Simulation Level

43

In the next step, accuracy of the hardware model should be verified.

A test bench is used for functional simulation [70]. A test bench is an another VHDL

file used to supply inputs for the design and display the outputs. In this thesis, several

test benches are used to test the codes step by step. Furthermore, all calculations and

mathematical operations in VHDL codes are written using fixed point numbers which

are included in fixed point package. In VHDL, in order to represent decimal numbers,

fixed-point representation is used. Fixed-point numbers have decimal points. The

integer 23 can be represented using 8 bits as in Figure 21.

Figure 21 Binary Notation of a Positive Number

If the binary representation of a negative number is required, signed approach is used

by taking two’s complement form of the number where Most Significant Bit (MSB)

defines the sign bit [71]. Figure 22 shows the binary representation of -23.

Figure 22 Binary Notation of a Negative Number

In 'fixed-point' notation, the position of decimal point is indicated, the rest is the same

as in Figure 21 and 22. The fixed-point representation of −2.875 is shown in Figure

23.

Figure 23 Fixed Point Notation

44

In Chapter 3 we use complex numbers which are combinations of real number and

imaginary numbers.

The imaginary number which is known as “i” or “j” is the square root of −1.

The algebraic representation of complex numbers is shown in Table 2. If real part has

no component, it is called purely imaginary, if imaginary part has no component it is

called purely real.

Table 2 Complex Number Representation

However, in VHDL imaginary number “i” is not known directly. A complex number

should be defined by using type record definition

Figure 24 VHDL syntax of a basic definition of complex number

In Figure 24, the definition of complex numbers using fixed-point notation is given.

In Figure 24, the constants nh and nl specify the bit number of integer part and

fractional part. Defining bit numbers in this way enables the writing of generic codes.

Besides, “re” and “im” indicate the real and imaginary parts. The syntax for signed

fixed-point type is defined by “sfixed”. Complex numbers are defined such that they

include signed fixed re and im parts.

For matrices or tables multidimensional arrays can be used. An array consists of a

series of values which are all of the same type. Every item's location in an array is

specified by a scalar value, named its index [71]. In order to construct an array, we

45

need to define array data type first. The syntax to define an array is shown in Figure

25.

Figure 25 Syntax Rule for VHDL Array Definition

 Only one range is used for single-dimensional arrays. The range is labeled by

“range_start” and “range_end” data words. “type_name” can be selected any

logical word for data type name. “element_type” shows the type of each element in

the array.

In order to declare a matrix, multidimensional arrays can be. In this thesis, two

dimensional arrays are used. A 2D array is defined in Figure 25. According to figure,

there are two ranges which are labeled by “range1_start”, “range1_end” and

“range2_start”, “range2_end”.

Every element of defined arrays is a complex number which is defined in Figure 22.

The difference “range1_start-range1_end” defines the row size of the matrix. The

row elements are indexed from 0 up to 7. The difference “range2_start-range2_end”

defines the column size of the matrix. The column elements are indexed from 0 up to

15. VHDL codes are written in this thesis using signed fixed-point numbers, and

complex numbers and complex matrices with different sizes are introduced in user

defined package. VHDL definitions for matrix data types are available in Appendix B.

46

5.2. VHDL Implementation of Uniform Linear Array Algorithm

We first explain the implementation of uniform linear array in VHDL. According to

expression (3.22) given in Chapter 3 we have

y(𝑡) = [a(𝜃1), … , a(𝜃𝑛)] [
𝑠1(𝑡)

⋮
𝑠𝑛(𝑡)

] + e(𝑡) ≜ 𝚨𝑠(𝑡) + e(𝑡) (3.22)

y(𝑡) is generated in Matlab.

The code box given in Figure 26 shows the generation of 𝑦(𝑡) in MATLAB.

Figure 26 ULA algorithm in MATLAB

The code takes the inputs which are θ, 𝑃, 𝑁, noise variance (𝑠𝑖𝑔2), ,𝑑 and produces

data matrix 𝑌 with a size of 𝑚𝑥𝑁.

𝜃 represents the arrival angles of the sources in degrees. 𝑃 is an identity matrix which

is [
1 0
0 1

] with size of number of sources. 𝑁 represents the number of samples while

𝑚 shows the number of sensors, and 𝑑 represents the spacing between these sensors.

While implementing the VHDL code, number of sources is chosen as 2, noise variance

equals to one, and number of sensors equals to 8, sensor spacing between two sensors

is 0.5λ. Arrival angles of these two sources 𝜃1 and 𝜃2 are equal to 0° and 25°

respectively.

47

5.2.1. VHDL Implementation of Sinusoidal Wave

In Figure 27, the time vector 𝑡 shows the sampling instants. 𝑁𝑠, represents the number

of samples taken from sine wave per-second. For sampling period 1, the time vector

can be represented as [0,
1

𝑁𝑆
,

2

𝑁𝑆
, . . ,

𝑁𝑆−1

𝑁𝑆
] where 𝑁𝑠 equals to 64. It is sufficient to

generate one period of the sine for the range [0,2𝜋], since it is a periodic function.

Figure 27 Sine Look Up Table (LUT) generation with MATLAB

Figure 28 Sine Look Up Table (LUT) Samples

The amplitude of the sine wave is not quantized that means the amplitude samples

have a range from -1 to 1. The real signed values are used. A simple MATLAB code

for the generation of sinusoidal wave with 64 samples is shown in Figure 27. In Figure

28, the X axis is used for the samples and Y axis is used for the amplitudes. MATLAB

generated sine values are shown in Table-3

48

Table 3 One period of Sine wave with 64 samples

Figure 29 Vivado Simulation of Sine wave

The values that is given in Table 2 is used while writing the VHDL code for the

generation of sine wave. VIVADO generated sine wave is depicted in Figure 29. An

artificial clock is used to for plotting the samples of sine wave in Vivado simulator.

The clock period is chosen as 10ns which means 100𝑀ℎ𝑧 operating frequency. In

Figure 29, the time difference between blue cursors is to 0.64𝜇𝑠. This time value

indicates that output samples are read for every clock cycle, and for 64 samples, 64

clock periods are needed.

49

5.2.2. VHDL Generation of Direction Matrix A

Table 4 shows the values of matrix A which denotes steering or direction matrix for

multiple sources as declared in expression (3.21). The dimension of complex matrix

A is 8 × 2 where row size depends on the number of sensors and column size depends

on number of sources.

Table 4 Complex A Matrix Values

Figure 30 Vivado Simulation of Complex A matrix

The Vivado generation of A matrix is shown in Figure 30 where name of the signals,

the values and digital waveform style are depicted.

50

The same artificial clock and the same clock period that is already mentioned in sine

wave demonstration is used, and green horizontal lines show the values.

Every row and column of matrix has real (.re) and imaginary (.im) parts. The re and

im parts of 0th row and 1st column, and 1st row and 1st column in the Figure 30 are

shown in more details for better illustration. The remaining rows and columns are

expressed in this way as well. It should be observed that the expected values and

simulation results are mostly consistent. Integer parts are represented with 4 bits.

However, some values may have small variations due to fractional part that is

represented by 12 bits. If bit number is increased, precision will be better. However,

using more bits makes mathematical operations complicated in hardware

implementation.

5.2.3. VHDL Generation of Output Matrix Y

The next step is generation of Y matrix which contains the output values of the ULA

sensors with 16 samples as depicted in Figure 26.

Matrix Y has random values because it includes the values from the noise source and

the signal source. The source samples are generated by normally distributed random

variable, and it is packed as 2-by-8 complex matrix. In addition, the noise source

samples are produced by normally distributed random variable, and it is packed as 8-

by-16 complex matrix. As a result, the size of complex matrix is 8x16 where row size

indicates the number of sensors, and column size shows the number of samples.

Table 5 Complex Matrix Y Values Through Column1 to Column4

51

Because of the large dimension of Y, the values shown in four different tables. Table

5 shows the columns 1 to 4, Table 6 displays the columns 5 to 8, Table 7 displays the

columns 9 to 12, and Table 8 displays the columns 13 to 16, respectively.

Table 6 Complex Matrix Y Values, from Column-5 to Column-8

Table 7 Complex Matrix Y Values, from Column-9 to Column-12

While constructing integer and fractional numbers of Y matrix in VHDL, the syntax

of complex number in Figure 24 is used.

The same artificial clock, i.e., the same clock period, is used and green horizontal lines

show indicate the values. Since the illustration of simulation results needs a large-size

figure, not every value is shown. The values of 0th row, 1th row and 7th row are given

in Figures 31, 32, and 33, respectively.

Every row and column of matrix has real (.re) and imaginer (.im) parts. The re and im

parts of the first 3 columns of the 0th row are shown in more detail in Figure 31. The

52

remaining rows and columns have the same parts as well. Integer parts are represented

with 4 bits while fractional parts are represented by 12 bits.

Table 8 Complex Y Matrix Values, from Column-13 to Column-16

Figure 31 Vivado Generation of 0th row of Y matrix

53

Figure 32 Vivado Generation of 1th row of Y matrix

54

Figure 33 Vivado Generation of 7th row of Y matrix

5.3. VHDL Implementation of Beamforming Algorithm

In this section, VHDL implementation of conventional beamforming, known as

Bartlett beamforming, is explained. According to expression (3.50) and (3.51) that is

given in Chapter 3, we have

𝐑̂ =
1

N
∑ 𝒚(𝑛) 𝒚∗(𝑛)𝑵

𝒏=𝟏 (3.50)

𝐚∗(𝜃)𝐑𝐚(𝜃) (3.51)

In Figure 34, MATLAB implementation of beamforming algorithm is given.

55

Figure 34 Beamforming algorithm in MATLAB

It is seen from Figure 34 that in order to calculate sample covariance matrix, first we

need to calculate the complex conjugate transpose of Y matrix.

5.3.1. VHDL Generation of Complex Conjugate Transpose of Matrix Y

The complex conjugate transpose of a matrix is obtained by interchanging the row and

column index for each element. The operation also negates the imaginary part of any

complex numbers [72].

The complex Y matrix is generated in previous subsection. By using these values

complex conjugate transpose of Y matrix will be calculated. Figure 35 shows the

transpose calculation in VHDL.

In transpose function implementation, rows and columns of 𝐘𝟖𝐱𝟏𝟔 matrix are

interchanged and the resulting matrix 𝐘′𝟏𝟔𝐱𝟖 is returned. The matrices contain complex

numbers. The function takes 𝐘𝟖𝐱𝟏𝟔 matrix as input and returns 𝐘′𝟏𝟔𝐱𝟖 as output.

56

Figure 35 Transpose function in VHDL

Due to the large dimensions of complex matrix 𝐘′𝟏𝟔𝐱𝟖, the values are shown in two

different tables. Table 9 shows from column 1 to column 4, Table 10 shows column 5

to column 8, respectively.

Table 9 Complex Y Transpose Matrix Values Column1 to Column4

57

Table 10 Complex Y Transpose Matrix Values Column5 to Column8

58

Figure 36 Vivado Generation of 0th and 1th row of 𝑌′ matrix

In VHDL coding, while constructing integer and fractional bit numbers of 𝐘′𝟏𝟔𝐱𝟖

matrix, the syntax of complex number in Figure 24 is used. Integer parts are

represented with 4 bits, fractional part that is represented by 12 bits.

The same artificial clock, i.e., the same clock period is used. The values of first two

rows which are 0th row and 1th row are depicted in Figure 36. The last two rows which

are 14th row and 15th row are illustrated in Figure 37.

Every row and column of the matrix has real (.re) and imaginary (.im) parts. The re

and im parts of some values are shown in more details for demonstration in Figure 36.

The remaining rows and columns have also re and im parts.

59

Figure 37 Vivado Generation of 14th and 15th row of 𝑌′ matrix

5.3.2. VHDL Generation of Sample Covariance Matrix 𝐑̂

After calculating the Y matrix and its complex conjugate transpose, we multiply

these two matrices to get a sample covariance matrix in (3.50)

𝐑̂ =
1

N
∑ 𝒚(𝑛) 𝒚∗(𝑛)

𝑵

𝒏=𝟏

 (3.50)

Multiplication of matrices can be achieved using row-to-column wise multiplication

and addition. It means that the row elements of the first matrix are multiplied by the

column elements of the second matrix and added. The important point is that the

column size of the first matrix and the row size of the second matrix must be equal to

each other. In this case, the product matrix has the same number of rows as the first

matrix and the same number of columns as the second matrix.

If it is known that the dimension of Y matrix is 8x16, and dimension of its complex

conjugate transpose is 16x8, the dimension of sample covariance matrix will be 8x8.

60

In VHDL, first, a complex matrix multiplication function is written, and next

covariance matrix is calculated. Subsequently, sample covariance matrix is obtained

by dividing the covariance matrix by the number of samples, which is set to 16.

The elements of product matrix is represented with signed fixed-point complex

numbers.

After the multiplication and addition, the bit numbers of the product matrix should be

rearranged again.

The maximum value of multiplication should be determined, and the number of bits

should be determined again.

The values resulting from the product matrix should be prevented from overflow,

losing the sign bit or expressing them with an insufficient number of bits may result in

inaccurate calculations.

The following expressions show the complex matrix multiplication operation

∑ 𝑥𝑖𝑦𝑖
𝑁
𝑖=1 (5.1)

𝑃𝑟𝑒𝑎𝑙 = 𝑥𝑟𝑒𝑎𝑙 𝑦𝑟𝑒𝑎𝑙 − 𝑥𝑖𝑚𝑎𝑔 𝑦𝑖𝑚𝑎𝑔 (5.2)

𝑃𝑖𝑚𝑎𝑔 = 𝑥𝑟𝑒𝑎𝑙 𝑦𝑖𝑚𝑎𝑔 + 𝑥𝑖𝑚𝑎𝑔 𝑦𝑟𝑒𝑎𝑙 (5.3)

𝑆𝑟𝑒𝑎𝑙 = 𝑥𝑟𝑒𝑎𝑙 + 𝑦𝑟𝑒𝑎𝑙 (5.4)

𝑆𝑖𝑚𝑎𝑔 = 𝑥𝑖𝑚𝑎𝑔 + 𝑦𝑖𝑚𝑎𝑔 (5.5)

where 𝑥𝑖 and 𝑦𝑖 represent the complex numbers that consists real and imaginary parts.

N shows the length of sequences. Their product is represented by 𝑃𝑟𝑒𝑎𝑙 and 𝑃𝑖𝑚𝑎𝑔 and

their summation is represented with 𝑆𝑟𝑒𝑎𝑙 and 𝑆𝑖𝑚𝑎𝑔 [71]

61

Table 11 Covariance Matrix R Values, from Column-1 to Column-4

Because of the large dimensions of covariance matrix R, the values are shown in two

different tables. Table 11 shows the values from column-1 to column-4, Table 12

shows the values from column-5 to column-8, respectively.

Table 12 Covariance Matrix R Values, from Column-5 to Column-8

Since the result is an 8x8 matrix, it was not possible to show its values with a single

figure. The Vivado generated covariance matrix is shown by 4 figures, each containing

the values of 2 rows.

Figure 38 shows 0th and 1th row, Figure 39 shows 2th and 3th row, Figure 40 shows 4th

and 5th row, Figure 41 shows 6th and 7th row, respectively.

62

Figure 38 Vivado Generation of 0th and 1th row of 𝑅 matrix

63

Figure 39 Vivado Generation of 2th and 3th row of 𝑅 matrix

64

Figure 40 Vivado Generation of 4th and 5th row of 𝑅 matrix

65

Figure 41 Vivado Generation of 6th and 7th row of 𝑅 matrix

At the remaining step, the sample covariance matrix 𝐑̂ is obtained by dividing the

covariance matrix by the number of samples. Since the number of samples is 16, and

it can be represented as 24. The elements of the covariance matrix are shifted to the

right 4 times; such a shifting result in division by 16. Afterwards, by using resize

function, integer and fractional parts can be re-adjusted by using a sufficient number

of bits.

Table 13 Sample Covariance Matrix 𝑹̂ Values Column1 to Column4

66

Table 13 and Table 14 shows the values of 𝐑̂ in terms of columns 1 to columns 4 and

columns 5 to columns 8, respectively.

Table 14 Sample Covariance Matrix 𝑹̂ Values, from Column-5 to Column-8

Figure 42 Vivado Generation of 0th and 1th row of 𝑹̂ matrix

67

Since the result is an 8x8 matrix again, it was not possible to show its values in a single

figure. The Vivado generated 𝐑̂ matrix is shown in 4 figures, each containing the

values of 2 rows.

Figure 42 shows 0th and 1th row, Figure 43 shows 2th and 3th row, Figure 44 shows 4th

and 5th row, Figure 45 shows 6th and 7th row, respectively.

When the values in Table 11 and Table 12 are divided by 16, the expected values are

obtained in Table 13 and Table 14. Vivado generations satisfy desired accuracy.

For example, the real value of 0th row and 0th column in Figure 38 is 78.833 and the

real value of 0th row and 0th column in Figure 42 is 4.9252.

Likewise, the real value of 1th row and 0th column in Figure 38 is 38.830078, and the

real value of 1th row and 0th column in Figure 42 is 2.426879.

The generated values with the ideal values are compared in this way.

Figure 43 Vivado Generation of 2th and 3th row of 𝑹̂ matrix

68

Figure 44 Vivado Generation of 4th and 5th row of 𝑹̂ matrix

69

Figure 45 Vivado Generation of 6th and7th row of 𝑹̂ matrix

5.3.3. VHDL Implementation of Finding Arrival Angle

To find the arrival angle, we need to implement the expression

𝐚∗(𝜃)𝐑𝐚(𝜃) (3.51)

The θ values fall into the interval [
−𝜋

2
,
+𝜋

2
]. According to Figure 34, 𝑳 expresses the

number of samples on [
−𝜋

2
,
+𝜋

2
] to search for the angle of the sources. 𝐚 indicates the

normalized transfer or direction vector, 𝐚∗ is the complex conjugate transpose of 𝐚.

𝝈 is the spatial spectral estimation at 𝐿 equally spaced angles, briefly, it expresses

the DOA estimation.

The dimension of 𝐚 matrix depends on 𝑳 and the number of sensors 𝒎. According to

given numerical parameters, 𝐚 matrix has 32 rows and 8 columns. As a result,

dimension of 𝐚∗ matrix will be 32x8. The dimension of 𝐑̂ matrix is 8x8.

70

First, 𝐑𝐚(𝜃) matrix is calculated, and next 𝐚∗𝐑𝐚(𝜃) is evaluated according to the

matrix multiplication rules.

The resulting matrix 𝝈 is obtained by taking the real part of the 𝐚∗𝐑𝐚(𝜃) matrix and

the dimension of 𝝈 matrix will be 32x32. The diagonal of this matrix shows the angle

values. In other words, the angles between [−90°] and [+90°] are mapped equally

into a matrix with a dimension of 32x32. For instance, [−90°] is mapped into the first

row and first column of diagonal matrix and [+90°] is mapped into the last row and

last column of diagonal matrix. Moreover, 0° will be located in the midpoint of the

diagonal matrix.

In order to find incident angles, the maximum of two indices of the diagonal matrix

should be determined since there are two signal sources.

The index values found are used in the expressions (5.6) and (5.7)

(
180°

𝐿
) ∗ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑖𝑛𝑑𝑒𝑥1

−90° (5.6)

 (
180°

𝐿
) ∗ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑖𝑛𝑑𝑒𝑥2

−90° (5.7)

Table 15 Diagonal of Phi Matrix

Diagonal of Phi Matrix

İndex Value İndex Value

0 8.6911 16 99.5999

1 8.6471 17 60.1665

2 8.5576 18 14.1836

3 8.4707 19 44.7324

4 8.2379 20 87.6518

5 7.4780 21 74.9434

6 6.3298 22 34.8041

7 6.5671 23 12.1458

8 9.7548 24 10.9700

9 11.9795 25 15.2155

10 7.7584 26 15.8611

11 4.7779 27 13.5346

12 10.7480 28 11.0632

13 9.5240 29 9.6008

14 11.2083 30 8.9679

15 57.8416 31 8.7441

71

According to the Table 15, the first maximum index is 16 and second maximum index

is 20. In addition, Vivado generated diagonal matrix with expected index values is

shown in Figure 46 and Figure 47.

Using these indexes in (5.6) and (5.7), we obtain the results

(
180°

32
) ∗ 16 −90° = 0°

(
180°

32
) ∗ 20−90° = 22.50°

Thus, DOA estimation of the two sources is achieved. The incident angles of the

sources were 0° and 25.0° . There is a 2.50° difference for second source. If the 𝐿 value

is increased, more accurate angle degrees can be obtained. However, using a larger 𝐿

value, increases the computations and complex matrix multiplications in VHDL.

Figure 46 Vivado Generated Diagonal Matrix, from [0,0] to [15,15]

72

Figure 47 Vivado Generated Diagonal Matrix, from [15,15] to [31,31]

73

CHAPTER 6

CONCLUSION

Direction of arrival (DOA) estimation is used to predict the angle at which an acoustic

or electromagnetic wave arriving to sensor arrays. DOA estimation is used in different

engineering fields such as sonar, radar, navigation, radio astronomy, wireless

communications, tracking of different objects. The important issue in DOA is to use

an antenna array, which is used to receive signals in order to extract information about

signal parameters. In this thesis, the theoretical study of conventional beamforming

and Capon beamforming is researched and VHDL implementation of uniform linear

array for DOA estimation is performed.

In this thesis, first, the background of DOA estimation, historical developments of

antenna arrays, structural analysis of spatial spectrum estimation, mathematical model

of DOA and the parameters affecting accuracy of DOA estimation were inspected.

Afterwards, conventional beamforming and Capon beamforming was implemented in

MATLAB. From the simulation results it is seen that beamforming methods gets

higher resolutions when the number of array elements or the number of snapshots and

SNR level increase. However, increasing the element spacing between the sensors

beyond half of the wavelength causes false peaks in the spectrum. The false angle

values from other directions were observed. In addition, Capon beamforming has

better accuracy and narrower beamwidth in all circumstances when compared to the

conventional beamforming.

Using the numerical values calculated using MATLAB, conventional beamforming

algorithm is implemented in VHD which is a hardware language used to describe the

structural and behavioral characteristics of digital logic circuits. In addition, it allows

the system to be modelled and simulated by the gates, and wires. It makes possible to

use concurrent statements in order to programming blocks simultaneously.

74

Subsequently, it makes the design faster, which is one of the reasons why we used it

in this thesis. In order to make simulations of VHDL codes, different testbenches are

used to get information about functionality of the design by comparing output

responses with the expected output values. Parameters used in VHDL implementation

are as follows. 𝜃 represents the arrival angles of the sources in degrees. 𝑁 represents

the number of samples while 𝑚 shows the number of sensors and 𝑑 represents the

spacing between these sensors. L shows the number of samples. The used parameter

values are as follows. Number of sources is equal to 2, number of sensors is equal to

8, sensor spacing between two sensors is 0.5λ. Arrival angles of two sources 𝜃1 and

𝜃2 are equal to 0° and 25° respectively. L is equal to 32.

Conventional beamforming is implemented in VHDL using these values and

expressions available Chapter 3.

In our implementations, first, sine wave that includes the angle values is generated.

Secondly, direction matrix 𝑨 is implemented. Then Y, which is the output of uniform

linear array sensors, was obtained. In order to obtain sample covariance matrix 𝐑̂ ,

complex conjugate transpose of Y matrix was obtained. Matrix multiplication of two

matrices was performed and normalized according to the number of samples.

Afterwards; normalized direction matrix 𝐚 and a.* was implemented. Finally, matrix

containing theta values was created and two angle values were obtained. The exact

value of the first angle was obtained, however, the second value was obtained with 2.5

degree error. In order to find more accurate results, L value can be increased to search

angles using more steps.

75

REFERENCES

[1] Krishnaveni, V., Kesavamurthy, T. and Aparna, B. (2013). “Beamforming for

Direction of Arrival (DOA) Estimation A Survey”, International Journal of

Computer Applications. vol.61, pp.4-11.

[2] Blabut, R. E., Millerm, W. and Wilcox, C. H. (1991).“Radar and Sonar, Part

I”, SpringerVerlag, New York.

[3] Richards, M. A.(2005). “Fundamentals of Radar Signal Processing”, McGraw-

Hill.

[4] Saunders, S.R. (2007). “Antennas and Propagation for Wireless Communication

Systems” (2nd ed.), John Wiley Sons.

[5] Boccuzzi, J. (2007). “Signal Processing for Wireless Communications”,

McGraw-Hill.

[6] Raghavendra, C.S., Sivalingam, K. M. and Znati, T.(2004).“Wireless Sensor

Networks”, Springer Science.

[7] Naidu, P. S.(2009).“Sensor Array Signal Processing”(2nd ed.), CRC Press.

[8] Wang, H.Y. (1990). “Modern Spectrum Estimation”, Dongnan University Press.

[9] Mondal, D. (2013). “Studies of Different Direction of Arrival (DOA) Estimation

Algorithm for Smart Antenna in Wireless Communication”, The International

Journal of Electronics & Communication Technology (IJECT).vol.4, pp. 47-51.

[10] Capon, J.(1987). “High-resolution frequency-wavenumber spectrum analysis”,

Pmc. IEEE. vol. 57, pp.1408-1418.

[11] Dhering, N. A. and Bansode, B. N. (2013). “Performance evaluation of

direction of arrival estimation using MUSIC and ESPRIT algorithms for mobile

communication system”, International Journal of Advanced Research in

Computer Science and Software Engineering. vol.3, pp.1453-1462.

[12] Bartlett, M. S.(1950).“Periodogram analysis and continuous spectra”,

Biometrika. vol.37, pp.1-16.

76

[13] Zhang, X. and Zheng, B. (2000).“Communication Signal Processing”, National

Defence Industry Press.

[14] Zhang, X.(2000).“Modern Signal Processing”, Tsinghua Press.

.

[15] Ziskind, I.(1988).“Maximum Likelihood Localization of Multiple Sources by

Alternating Projection”, IEEE Trans on ASSP. vol.36 pp.1558-1560.

[16] Stoica, P. and Moses, R. L. (2005). “Spectral analysis of signals”, Upper Saddle

River, N.J: Pearson, Prentice Hall.

[17] Chen, Z., Gokeda, G. and Yu,Y.(2010).“Introduction to Direction-of-Arrival

Estimation”, Boston: Artech House.

[18] Tang, H. (2014). “DOA estimation based on MUSIC algorithm”,(Bachelor thesis

Linneuniversitetet Kalmar, Vaxjo, Sweden).

[19] Khmou, Y., Safi, S. and Frikel, M. (2014).“Comparative study between several

direction of arrival estimation methods”, J. of Telecommun. and Inform.

Technol. vol.1, pp.41–48.

[20] Gazi, O. (2019). “A tutorial introduction to VHDL programming”, Springer.

[21] “Vivado Simulator”, Xilinx Company, [Online]. Available:

https://www.xilinx.com/products/design-

tools/vivado/simulator.html#waveform. [Accessed 02 March 2020].

[22] Haykin, S., Reilly, J. P., and Vertaschitsch, E. (1992). “ Some Aspects of Array

Signal Processing”, IEEE Proc. vol.139, pp.1-26.

[23] Balanis, C. A. (2005). “Antenna Theory: Analysis and Design” (3rd ed.), New

York: Wiley.

[24] Bondyopadhyay, P. K. (2000). “The first application of array antenna”, IEEE

International Conference on Phased Array Systems and Technology. pp.29–32.

[25] Alvarez, L. W. (1987). “Alvarez: Adventures of a Physicist”, Basic Books :New

York.

[26] Yuanxun, W., Yongxi, Q. and Tatsuo, I. (2002). “A novel smart antennas system

implementation for broadband wireless communications”, IEEE Transactions

on Antennas and Propagation. vol.50, pp.600-606.

[27] Hafeth, H.(2004). “An overview of adaptive antenna systems”, Postgraduate

Course in Radio Communications, Finland: Helsinki University of Techonology.

https://www.xilinx.com/products/design-tools/vivado/simulator.html#waveform
https://www.xilinx.com/products/design-tools/vivado/simulator.html#waveform
https://archive.org/details/isbn_0465001165
https://en.wikipedia.org/wiki/Basic_Books

77

[28] Keerthi, K. A. (2015).“Adaptive beamforming smart antenna for wireless

communication system”, International Research Journal of Engineering and

Technology (IRJET). vol.2, pp.2038-2043.

[29] Stoica, P. and Randolph, M.(1997). “Basic definitions and the spectral

estimation problem, lecture notes” , Columbus, Ohio: Prentice Hall.

[30] Nikolova, N. (2014). “Linear array theory, lecture notes”, McMaster

University, Hamitton, Ontario, Canada

[31] Banuprakash, R., Ganapathy, H., Sowmya, M. and Swetha, M. (2016).

“Evaluation of MUSIC algorithm for DOA estimation in smart antenna”,

International Advanced Research Journal in Science, Engineering and

Technology (IARJSET). vol.3, pp.185 – 188.

[32] Naidu, P. (2009). “Sensor Array Signal Processing”, Boca Raton: CRC Press

[33] Stoica, P. (1990). “Maximum Likelihood Method for Direction of Arrival

Estimation”, IEEE Trans on ASSP. vol.38, pp.1132-1143.

[34] Miller, M. I., and Fuhrmann, D. R. (1990). “Maximum-likelihood narrow-band

direction finding and EM algorithms”, IEEE Transactions on Acoustics, Speech,

and Signal Processing. vol.38, pp.1560–1577.

[35] Ziskind, I. and Wax M., (1988). “Maximum Likelihood Localization of Multiple

Sources by Alternating Projection”, IEEE Trans on ASSP. vol.36, pp.1553-

1560.

[36] DeGroat, R.D. (1993). “The Constrained MUSIC Problem”, IEEE Trans on SP.

vol.41, pp.1145-1149.

[37] Richard, F. (1990). “Analysis of Min-norm and MUSIC with Arbitrary Array

Geometry”, IEEE Trans on AES. vol.26, pp.976-985.

[38] Stoica P. and Nehorai A., (1989)."MUSIC, maximum likelihood, and Cramer-

Rao bound", IEEE Transactions on Acoustics, Speech, and Signal Processing.

vol.37, pp. 720-741.

[39] Lee, H. B. and Zoltowski, M. D. (1990). “Resolution Threshold Beamspace

MUSIC for Two Closely Spaced Emitters”, IEEE Trans on ASSP. vol.38 pp.723-

738.

[40] Gavish, M. and Weiss, A.J., (1993). “Performance Analysis of the VIA ESPRIT

Algorithm”, IEE-Proc-F. vol.140, pp.123-128.

78

[41] Shan, T. J. and Wax M., (1985). “Adaptive beamforming for Coherent Signals

and Inference”, IEEE Trans on ASSP. vol. 33, pp.527-536.

[42] Zhang, X.F., Chen, C., Li J.F., and Xu D.Z. (2014). “Blind DOA and

Polarization Estimation for Polarization-sensitive Array using Dimension

Reduction MUSIC”, Multidimensional Systems and Signal Processing. vol.25,

pp.67-82.

[43] Comon, P. et. al.(1991).“Blind separation of sources, Part II: Problem

statement”, Signal Process. vol.24, pp.11–20.

[44] Kim, Y. and Ling, H., (2011). “Direction of Arrival Estimation of Humans with

a Small Sensor Array using an Artificial Neural Network”, EMW Publishing,

Progress in Electromagnetics Research B. vol. 27. pp. 127-49.

[45] Yang, L.N. (2007). “Study of Factors Affecting Accuracy of DOA”, Modern

Radar. vol. 29, pp.70-73.

[46] Zooghby, A.E.(2005). “Smart antenna engineering”, Artech House, Norwood,

MA, first ed.

[47] IEEE Standard for definitions of terms for antennas". IEEE Std. 2014.

[48] Antenna-theory [Online]. Available: http://www.antenna-theory.com/

[Accessed 24 December 2019].

[49] Liberti,J. C., and Rappaport, T.S. (1999).“Smart antennas for wireless

communications: IS-95 and third generation CDMA applications”, Prentice

Hall, Upper Saddle River, NJ, first ed.

[50] Ouargui, I. E., Safi, S. and Frikel, M. (2018). “Minimum Array Elements for

Resolution of Several Direction of Arrival Estimation Methods in Various Noise-

Level Environments”, Journal of Telecommunications and Information

Technology. pp.87-94.

[51] Thelabbookpages: microphonearraybeamforming: [Online]. Available:

http://www.labbookpages.co.uk/audio/beamforming.html[Accessed 24

December 2019].

[52] Proakis, J.G. and Manolakis, D. G.(1996). “Digital Signal Processing.

Principles, Algorithms, and Applications”, Prentice Hall.

[53] Peter, G., Angeliki, X. and Christoph, M. (2015). “Multiple and single

snapshots compressive beamforming”, The Journal of Acoustical Society of

America. pp.1-12.

79

[54] Yu, C.H. and Li, J.L. (2012). “A White Noise Filtering Method for DOA

Estimation of Coherent Signals in Low SNR”, Signal Processing. vol.28, pp.957-

962.

[55] Drabowitch, S. (et al.) (1998). “ Modern antennas”(1st ed.), Chapmanand Hall,

Boundary Row, London.

[56] Fourikis, N.(2000). “Advanced array systems, applications and RF

Technologies” (1st ed.). London: Academic Press.

[57] Manolakis, D. G., Ingle, V.K. and Kogon, S.M. (2005). “ Statistical and adaptive

signal processing: spectral estimation, signal modeling, adaptive filtering and

array processing” (1st ed.), Norwood, MA: Artech House.

[58] Liu, W. and Weiss, S. (2010). “ Wideband beamforming concepts and

techniques”(1st ed.). Hoboken, NJ: John Wiley and Sons.

[59] Godara, L. C. (2001). “Handbook of Antennas in Wireless Communications”,

Boca Raton, FL: CRC Press.

[60] Kumaresan, R. and Tufts, D. W. (1983). “Estimating the angles of arrival of

multiple plane waves”, IEEE Trans. Aerosp. Electron. Syst. vol.19, pp.134-139.

[61] Theodoridis, S. and Chellappa, R. (2013). “Academic Press Library in Signal

Processing, Volume 3: Array and Statistical Signal Processing” (1st ed.),

Orlando, FL: Academic Press Inc.

[62] Shan, T. J., Wax, M. and Kailath, T. (1985). “On spatial smoothing for direction-

of-arrival estimation of coherent signals”, Acoustics, Speech and Signal

Processing IEEE Transactions. vol.33, pp.806-811.

[63] Li, J. (1992). “Improved angular resolution for spatial smoothing techniques”,

Signal Processing, IEEE Transactions. vol.40, pp.3078-3081.

[64] Choi, Y.H. (2002).“Subspace-based coherent source localization with

forward/backward covariance matrices”, Radar, Sonar and Navigation, IEE

Proceedings, vol.149, pp.145-151.

[65] Piper, J. E. (2011). “Beamforming narrowband and broadband signals”, Naval

Surface Warfare Center (NSWC).

[66] Okkonen. J. (2013). “Uniform linear adaptive antenna array beamforming

implementation with a wireless open-access research platform”, (Bachelor

thesis University of Oulu, Department of Computer Science and Engineering).

[67] Van Trees, H. (2002). “Optimum Array Processing”. New York: Wiley.

80

[68] Van Veen, B. and Buckley, K. (1988). “Beamforming: A Versatile Approach to

Spatial Filtering”, IEEE ASSP magazine. vol.5, pp.4-24.

[69] Featherstone, W., Strangeways, H.J., Zatman, M.A., and Mewes, H. (1997). “

A Novel Method to Improvement the Performance of Capon’s minimum Variance

Estimator”, London UK. IEE. vol.1, pp.322-325.

[70] Wilson, P. (2015). “Design Recipes for FPGAs: Using Verilog and VHDL”.

Newnes.

[71] Bishop, D. (2020). “Floating point package user's guide”.

[72] Mathworks [Online] Available:

https://www.mathworks.com/help/matlab/ref/ctranspose.html [Accessed 24

April 2020].

https://www.mathworks.com/help/matlab/ref/ctranspose.html

81

APPENDICIES

82

APPENDIX A: MATLAB codes for Conventional Beamforming

A.1 Matlab code for Main Program

% Specifying required data:

% Signals arriving at 0 and 25 degree DOA estimation

% P: Covariance matrix of two signal sources.

% theta : the value of incident angles,

%N: number of samples ,

%m: number of sensors,

%d : sensor spacing ,

%sig2: noise variance

% L: the number of samples on [-pi/2,pi/2] to search for the sources.

P = eye(2);

theta = 25; N=16; m=8; d=0.5; sig2=1 ;L=32;

% Preparing the empty arrays

y = zeros(m, N, 50);

phi1 = zeros(50, L);

%% Data Processing

% Because of the noise component in generation of the ULA data

% take fifty iterations of ULA data generation and average the final results.

for i=1:50,

 y(:,:,i) = uladata([0, theta] ,P,N,sig2,m,d);

 phi1(i,:) = beamform(y(:,:,i), L,d);

end

% calculate the average spectrum corresponding to each set of ULA data and plot it.

phi1avg(1:L) = mean(phi1(:,1:L));

figure(1)

plot(linspace(-90,90,L),20*log10(phi1avg))

ylabel('dB')

title('Averaged Spatial Spectrum: Beamforming method');

xlabel('n')

83

A2. Matlab code for Conventinal Beamforming

function phi=beamform(Y,L,d)

% The Beamforming method for direction of arrival estimation%

% phi=beamform(Y,L,d);

% Y <- the ULA data

% L <- the number of samples on [-pi/2,pi/2] to search for the sources

% d <- sensor spacing in wavelengths

% phi -> the spatial spectral estimate at L equally spaced angles

% in [-90,90] degrees

[m,N]=size(Y);

% compute the sample covariance matrix

R=Y*Y'/N;

phi=zeros(L,1);

for i = 1 : L,

 a=exp(-2*pi*j*d*sin(-pi/2 + pi*(i-1)/L)*[0:m-1].');

 phi(i)=real(a'*R*a);

end

84

A3. Matlab code for Uniform Linear Array generetaion

function Y=uladata(theta,P,N,sig2,m,d)

%Generates N snapshots of ULA sensor data

% theta: arrival angles of the m sources in degrees

% P: the covariance matrix of the source signals

% N: number of snapshots to generate

% sig2: noise variance

% m: number of sensors

% d: sensor spacing in wavelengths

% A: direction matrix

% Y : m x N data matrix Y = [y(1)…,y(N)]

% generate the A matrix

j=sqrt(-1);

A=exp(-2*pi*j*d*[0:m-1].'*sin([theta(:).']*pi/180));

% generate the source signals

n=max(size(P));

s=(sqrtm(P)')*randn(n,N);

% generate the noise component

e=sqrt(sig2/2)*(randn(m,N)+j*randn(m,N));

% generate the ULA data

Y=A*s+e;

85

APPENDIX B: VHDL codes for Conventinal Beamforming

B.1: VHDL Implementation of Sine Wave

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

library ieee_proposed;

use ieee_proposed.fixed_pkg.all;

entity sineGeneration is

 port(

 clk_100Mhz : in std_logic;

 dac_sin_out : out std_logic_vector(15 downto 0)

);

end sineGeneration;

architecture Behavioral of sineGeneration is

 --Integer part

 constant na: integer := -15;

 --Fraction part

 constant nh: integer := 0;

 --Fixed point vector for 64 samples

 type s_fixed_vector is array (0 to 63) of sfixed(nh downto na);

 signal sine_vector: s_fixed_vector;

 --Counter for 64 samples

 signal sin_count: natural range 0 to 63 := 0;

begin

sine_vector<=(to_sfixed(0,nh,na),to_sfixed(0.0980,nh,na),to_sfixed(0.1951,nh,na),to

_sfixed(0.2903,nh,na),to_sfixed(0.3827,nh,na),to_sfixed(0.4714,nh,na),

to_sfixed(0.5556,nh,na),to_sfixed(0.6344,nh,na),to_sfixed(0.7071,nh,na),to_sfixed(0

.7730,nh,na),to_sfixed(0.8315,nh,na),to_sfixed(0.8819,nh,na),to_sfixed(0.9239,nh,na

),to_sfixed(0.9569 ,nh,na),to_sfixed(0.9808 ,nh,na),to_sfixed(0.9952 ,nh,na),

to_sfixed(1.0000,nh,na),to_sfixed(0.9952,nh,na),to_sfixed(0.9808,nh,na),to_sfixed(0

.9569 ,nh,na),to_sfixed(0.9239 ,nh,na),to_sfixed(0.8819,nh,na), to_sfixed(0.8315

,nh,na),to_sfixed(0.7730,nh,na),to_sfixed(0.7071,nh,na),to_sfixed(0.6344

,nh,na),to_sfixed(0.5556 ,nh,na),to_sfixed(0.4714,nh,na), to_sfixed(0.3827,nh,na),

to_sfixed(0.2903,nh,na),to_sfixed(0.1951,nh,na),to_sfixed(0.0980,nh,na),to_sfixed(0

.0000 ,nh,na),to_sfixed(-0.0980,nh,na), to_sfixed(-0.1951 ,nh,na),to_sfixed(-0.2903

,nh,na),to_sfixed(-0.3827,nh,na),to_sfixed(-0.4714 ,nh,na),to_sfixed(-0.5556

,nh,na),to_sfixed(-0.6344 ,nh,na),to_sfixed(-0.7071 ,nh,na),

86

to_sfixed(0.7730,nh,na), to_sfixed(0.8315,nh,na),to_sfixed(0.8819,nh,na),to_sfixed(-

0.9239,nh,na),to_sfixed(-0.9569 ,nh,na),to_sfixed(-0.9808 ,nh,na), to_sfixed(-0.9952

,nh,na),to_sfixed(-1.0000 ,nh,na),to_sfixed(-0.9952 ,nh,na),to_sfixed(-0.9808,nh,na),

to_sfixed(-0.9569 ,nh,na), to_sfixed(-0.9239,nh,na), to_sfixed(-

0.8819,nh,na),to_sfixed(-0.8315 ,nh,na),to_sfixed(-0.7730 ,nh,na),to_sfixed(-

0.7071,nh,na), to_sfixed(-0.6344 ,nh,na),to_sfixed(-0.5556 ,nh,na), to_sfixed(-

0.4714,nh,na),to_sfixed(-0.3827 ,nh,na),to_sfixed(-0.2903 ,nh,na),to_sfixed(-0.1951

,nh,na), to_sfixed(-0.0980 ,nh,na));

 --This process is used in order to generate one period of wave by taking one value at

each clock.

 sin_out_process: process (clk_100Mhz)

 begin

 if (clk_100Mhz'event and clk_100Mhz ='1') then

 dac_sin_out <= std_logic_vector(sine_vector(sin_count));

 if (sin_count=63) then

 sin_count <= 0;

 else

 sin_count <= sin_count +1;

 end if;

 end if;

 end process;

end Behavioral;

87

B.2: VHDL Implementation of Direction Matrix A

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

library ieee_proposed;

use ieee_proposed.fixed_pkg.all;

use work.matrix_package.all;

-- This VHDL code generates direction matrix A[8x2]

-- 8: number of sensors

-- 2: number of signals

entity direction_matrix_A is

Port (

clk: in std_logic;

complex_matrix_A: out re_im_matrix_8x2);

end direction_matrix_A;

architecture Behavioral of direction_matrix_A is

signal complex_matrix_A_temp: re_im_matrix_8x2;

type MatrixData is array (0 to 2*num_rows_A*num_cols_A-1) of real;

signal A_elements: MatrixData := (1.000, 0.000, 1.000, 0.000, 1.000, 0.000, 1.000,

0.000, 1.000, 0.000, 1.000, 0.000, 1.000, 0.000, 1.000, 0.000, 1.000, 0.000, 0.241 , -

0.971 , -0.884 , -0.467 , -0.666, 0.746, 0.563, 0.826, 0.938 , -0.348 , -0.112 , -0.994 ,

-0.991 , -0.131);

signal i,j: integer :=0;

begin

--FOR LOOP for real and imaginar part generation of A matrix

FY1:for i in 0 to num_rows_A-1 generate

begin

FY2:for j in 0 to num_cols_A-1 generate

begin

complex_matrix_A_temp(i,j).re <= to_sfixed(A_elements(2*(i+num_rows_A*j))

,nh, na);

complex_matrix_A_temp(i,j).im<=to_sfixed(A_elements(2*(i+num_rows_A*j)+1) ,

nh, na);

end generate;

end generate;

complex_matrix_A <= complex_matrix_A_temp;

end Behavioral;

88

B.3: VHDL Implementation of Matrix Y and Complex Conjugate Transpose

Matrix of Y

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use ieee.std_logic_arith.all;

library ieee_proposed;

use ieee_proposed.fixed_pkg.all;

use work.matrix_package.all;

-- This VHDL code generates output matrix Y[8x16] and Y.’[16x8]

-- 8: number of sensors

-- 16: number of samples

entity matrixGeneration is

 Port (

 clk: in std_logic;

 complex_matrix_Y: out re_im_matrix_8x16;

 complex_matrix_Y_tr: out re_im_matrix_16x8

);

end matrixGeneration;

architecture Behavioral of matrixGeneration is

signal complex_matrix_Y_temp: re_im_matrix_8x16;

type MatrixData is array (0 to 2*num_rows*num_cols-1) of real;

signal Y_elements: MatrixData := (-1.137 , -0.301, 0.471, 1.981, 2.714, 0.709, 2.060

, -2.632, 0.498 , -2.026 , -0.036, 0.994, 0.715, 1.563, 2.665 , -0.581 , -3.481 , -0.443,

0.316, 2.068, 1.254, 0.208, 0.423 , -0.764 , -1.302 , -2.063 , -2.862, 1.957, 0.179, 1.173,

1.511, 0.395, 3.422 , -1.076, 2.033 , -1.348 , -1.507 , -0.822, 0.758, 0.926, 0.517, 1.378,

1.648 , -0.087, 1.040 , -1.120, 0.695, 0.464 , -0.263, 0.565, 1.099, 0.154 , -0.276, 0.437,

0.280, 0.239, 0.431 , -0.756 , -0.005, 0.562, 0.632 , -0.394, 0.300 , -0.418 , -2.460,

0.125 , -3.623 , -0.782 , -1.686 , -0.365 , -3.301, 0.854 , -2.086, 1.220 , -1.543 , -0.342

, -2.471 , -0.346 , -3.702 , -0.244 , -4.842, 0.162 , -2.839, 2.562, 0.904, 0.648 , -1.256

, -1.535 , -2.944 , -1.491 , -4.149, 0.872 , -2.098, 3.528 , -0.640 , -0.128 , -1.069 , -

0.521 , -0.210 , -0.317 , -0.121, 1.087, 0.848 , -0.094 , -1.036 , -0.840 , -0.876, 0.965,

0.424, 1.072, 0.381, 0.329, 0.885, 0.080, 0.822 , -0.346 , -1.485 , -0.244, 0.693, 2.476,

2.507 , -0.266, 1.725 , -1.547, 0.112 , -1.479, 0.043 , -0.861 , -0.566 , -0.307, 2.019,

0.552, 2.134, 0.168, 1.875 , -0.133 , -0.151 , -0.296, 0.436, 0.772, 0.540, 1.944, 1.323,

0.955, 0.147 , -0.907 , -0.252 , -1.744 , -0.282, 0.591, 0.234 , -1.223 , -0.695, 0.130,

0.973 , -0.010, 0.355, 1.475, 0.844 , -0.062, 1.553 , -0.359, 1.305 , -0.354 , -0.697 , -

0.077 , -0.253, 0.449, 0.812, 0.013, 1.406 , -1.051, 1.564 , -0.309, 0.089 , -1.020, 1.658

, -0.730, 1.202, 1.069, 1.845 , -0.235, 1.076 , -0.198, 0.359, 0.527 , -0.273 , -0.166,

1.023, 0.859, 1.608 , -0.227, 0.654, 0.716 , -0.287 , -0.533 , -1.256 , -0.622 , -1.594,

89

0.139, 0.072, 0.095, 0.670 , -0.542 , -0.228 , -1.311 , -1.191 , -0.421 , -2.196, 0.695 , -

2.168, 0.279 , -0.395, 1.044 , -1.567 , -0.752 , -1.132, 0.271 , -3.108 , -0.194 , -1.695,

0.626 , -1.807, 0.752 , -1.229 , -0.293 , -0.943, 0.061 , -2.478, 1.595 , -1.954, 0.387 ,

-2.505 , -0.622 , -1.345, 0.592 , -0.188, 0.126 , -1.122, 0.549, 2.049, 1.001, 1.233 , -

1.936 , -0.825, 0.342, 0.380, 1.647, 0.582, 0.716, 2.495, 0.948, 0.533 , -0.711, 0.987 ,

-0.983);

signal i,j: integer :=0;

begin

 FY1:for i in 0 to num_rows-1 generate

 begin

 FY2:for j in 0 to num_cols-1 generate

 begin

 complex_matrix_Y_temp(i,j).re <= to_sfixed(Y_elements(2*(i+num_rows*j)) ,

nh, na);

 complex_matrix_Y_temp(i,j).im <= to_sfixed(Y_elements(2*(i+num_rows*j)+1)

, nh, na);

 end generate;

 end generate;

 complex_matrix_Y <= complex_matrix_Y_temp;

 complex_matrix_Y_tr <= transpose8x16(complex_matrix_Y_temp);

end Behavioral;

90

B.4: VHDL Implementation of Sample Covariance Matrix R

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

library ieee_proposed;

use ieee_proposed.fixed_pkg.all;

use work.matrix_package.all;

-- This VHDL code generates sample covariance matrix R[8x8]

-- Multiplication of Y[8x16] and Y.’[16x8] returns as [8x8] square matrix

-- 8: number of sensors

-- 16: number of samples

entity CovmatrixGeneration is

 Port (

 clk: in std_logic;

 covariance_matrix: out re_im_matrix_8x8

);

end CovmatrixGeneration;

architecture Behavioral of CovmatrixGeneration is

signal complexMatrix_Y: re_im_matrix_8x16;

signal complexMatrix_Y_tr: re_im_matrix_16x8;

 component matrixGeneration

 port (

 clk: in std_logic;

 complex_matrix_Y: out re_im_matrix_8x16;

 complex_matrix_Y_tr: out re_im_matrix_16x8);

 end component;

begin

 Matrix_PM: matrixGeneration

 PORT MAP

 (clk=>clk,

 complex_matrix_Y => complexMatrix_Y,

 complex_matrix_Y_tr => complexMatrix_Y_tr);

 mult_process: process (clk) is

 begin

 if(clk'event and clk='1') then

 covariance_matrix <= matrix_mult_8x8(complexMatrix_Y,complexMatrix_Y_tr);

 end if;

 end process mult_process;

end Behavioral;

91

B.5: VHDL Implementation of Product Matrix of R.a

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

library ieee_proposed;

use ieee_proposed.fixed_pkg.all;

use work.matrix_package.all;

-- This VHDL code generates product matrix of sample covariance matrix R[8x8] --

and a[8x32]

-- Multiplication of R[8x8] and a[8x32] and returns as [8x32] matrix

-- 8: number of sensors

-- 32: L: the number of samples on [-pi/2,pi/2] to search for the sources

entity R_a_matrix is

 Port (

 clk: in std_logic;

 matrix_R_a: out re_im_matrix_8x32

);

end R_a_matrix;

architecture Behavioral of R_a_matrix is

signal covarianceMatrix: re_im_matrix_8x8;

signal matrix_a_tr: re_im_matrix_32x8;

signal matrix_a: re_im_matrix_8x32;

 component CovmatrixGeneration

 port (

 clk: in std_logic;

 covariance_matrix: out re_im_matrix_8x8);

 end component;

component a_matrix is

 Port (

 clk: in std_logic;

 o_matrix_a: out re_im_matrix_8x32;

 o_matrix_a_tr: out re_im_matrix_32x8

);

end component;

begin

 covMatrix_PM: CovmatrixGeneration

 PORT MAP (clk =>clk,

 covariance_matrix =>covarianceMatrix);

92

 a_matrix_PM: a_matrix

 PORT MAP (clk=>clk,

 o_matrix_a =>matrix_a,

 o_matrix_a_tr => matrix_a_tr);

 mult_process: process (clk) is

 begin

 if(clk'event and clk='1') then

 matrix_R_a <= matrix_mult_8x32(covarianceMatrix, matrix_a);

 end if;

 end process mult_process;

end Behavioral;

93

B.6 : VHDL Implementation of Phi (a’.R.a) Matrix

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use ieee.std_logic_arith.all;

library ieee_proposed;

use ieee_proposed.fixed_pkg.all;

use work.matrix_package.all;

-- This VHDL code generates phi matrix by multiplying a.’ matrix and product

--matrix R.a

-- Multiplication of a.’[32x8] and R.a[8x32] returns as [32x32] square matrix

-- 8: number of sensors

-- 32: L: the number of samples on [-pi/2,pi/2] to search for the sources

--after multiplication it finds main diagonal of the square matrix phi

entity phi_matrix is

 Port (

 clk: in std_logic;

 o_phi_matrix: out re_im_matrix_32x32

);

end phi_matrix;

architecture Behavioral of phi_matrix is

signal matrix_Ra: re_im_matrix_8x32_final;

signal matrix_a_tr: re_im_matrix_32x8;

signal matrix_a: re_im_matrix_8x32;

signal o_phi_vector: vect_32;

component a_matrix is

 Port (

 clk: in std_logic;

 o_matrix_a: out re_im_matrix_8x32;

 o_matrix_a_tr: out re_im_matrix_32x8);

end component;

component R_a_matrix is

 Port (

 clk: in std_logic;

 matrix_R_a: out re_im_matrix_8x32_final);

end component;

94

begin

 R_a_matrix_PM: R_a_matrix

 PORT MAP (clk =>clk,

 matrix_R_a =>matrix_Ra);

 a_matrix_PM: a_matrix

 PORT MAP (clk =>clk,

 o_matrix_a =>matrix_a,

 o_matrix_a_tr => matrix_a_tr);

 mult_process: process (clk) is

 begin

 if(clk'event and clk='1') then

 o_phi_matrix <= matrix_mult_32x32(matrix_a_tr,matrix_Ra);

 o_phi_vector <= diag(o_phi_matrix);

 end if;

 end process mult_process;

end Behavioral;

95

B.7 VHDL Implementation of Matrix Package

library ieee;

use ieee.std_logic_1164.ALL;

use ieee.numeric_std.ALL;

library ieee_proposed;

use ieee_proposed.fixed_pkg.all;

package matrix_package is

----CONSTANTS----

constant na: integer := -8; -- fraction part Y and Y.’

constant nh: integer := 4; --integer part Y and Y.’

constant na_m: integer := -12; -- fraction part R

constant nh_m: integer := 10; -- integer part R

constant na_s: integer := -16; -- fraction part Y and Y’ matrix summation

constant nh_sum: integer := 25;

constant na_a2: integer := -20;

constant nh_a2: integer := 16;

constant nh_a3: integer := 23;

constant nh_phi2: integer := 16;

constant num_cols: integer := 16;

constant num_rows: integer := 8;

constant num_cols_a: integer := 32;

constant num_rows_a: integer := 8;

----TYPE DECLERATIONS----

type complex is record

re: sfixed(nh downto na);

im: sfixed(nh downto na);

end record complex;

type complex_m is record

re: sfixed(nh_m downto na_m);

im: sfixed(nh_m downto na_m);

end record complex_m;

type complex_s is record

re: sfixed(nh_s downto na_s);

im: sfixed(nh_s downto na_s);

end record complex_s;

type complex_sum is record

re: sfixed(nh_sum downto na_sum);

im: sfixed(nh_sum downto na_sum);

end record complex_sum;

96

type complex_a2 is record

re: sfixed(nh_a2 downto na_a2);

im: sfixed(nh_a2 downto na_a2);

end record complex_a2;

type complex_a3 is record

re: sfixed(nh_a3 downto na_a2);

im: sfixed(nh_a3 downto na_a2);

end record complex_a3;

type complex_phi2 is record

re: sfixed(nh_phi2 downto na_a2);

im: sfixed(nh_phi2 downto na_a2);

end record complex_phi2;

type complex_phi3 is record

re: sfixed(nh_phi3 downto na_a2);

im: sfixed(nh_phi3 downto na_a2);

end record complex_phi3;

type re_im_matrix_8x16 is array (0 to num_rows - 1, 0 to num_cols -1) of complex;

type re_im_matrix_16x8 is array (0 to num_cols -1, 0 to num_rows -1) of complex;

type re_im_matrix_8x8 is array (0 to num_cols_mult -1, 0 to num_rows_mult -1) of

complex_m;

type re_im_matrix_8x8_temp is array (0 to num_cols_mult -1, 0 to num_rows_mult

-1) of complex_sum;

type re_im_matrix_8x128 is array (0 to num_cols_mult -1, 0 to 127) of complex_s;

type re_im_matrix_8x32 is array (0 to num_rows_a - 1, 0 to num_cols_a -1) of

complex;

type re_im_matrix_32x8 is array (0 to num_cols_a -1, 0 to num_rows_a -1) of

complex;

type re_im_matrix_8x64 is array (0 to num_rows_a -1, 0 to 63) of complex_a2;

type re_im_matrix_8x256 is array (0 to num_rows_a -1, 0 to 255) of complex_a2;

type re_im_matrix_8x32_temp is array (0 to num_rows_a -1, 0 to num_cols_a -1) of

complex_a3;

type re_im_matrix_8x32_final is array (0 to num_rows_a -1, 0 to num_cols_a -1) of

complex_m;

type re_im_matrix_32x32 is array (0 to num_cols_phi -1, 0 to num_rows_phi -1) of

complex_m;

type re_im_matrix_32x256 is array (0 to num_cols_a -1, 0 to 255) of complex_phi2;

type re_im_matrix_32x32_temp is array (0 to num_cols_phi -1, 0 to num_rows_phi -

1) of complex_phi3;

--diagonal matrix

type vect_32 is array (0 to num_cols_phi - 1) of sfixed(nh_m downto na_m);

97

---FUNCTIONS--

function transpose8x32(cplx8_32: re_im_matrix_8x32) return re_im_matrix_32x8;

function transpose8x16(cplx8_16: re_im_matrix_8x16) return re_im_matrix_16x8;

function matrix_mult_8x8(cplx8_16: re_im_matrix_8x16; cplx16_8:

re_im_matrix_16x8) return re_im_matrix_8x8;

function matrix_mult_8x32(cplx8_8: re_im_matrix_8x8; cplx8_32:

re_im_matrix_8x32) return re_im_matrix_8x32_final;

function matrix_mult_32x32(cplx32_8: re_im_matrix_32x8; cplx8_32:

re_im_matrix_8x32_final) return re_im_matrix_32x32;

function diag(cplx32_32: re_im_matrix_32x32) return vect_32;

end matrix_package;

---PACKAGE BODY

package body matrix_package is

--TRANSPOSE 8x16

function transpose8x16(cplx8_16: re_im_matrix_8x16) return re_im_matrix_16x8 is

variable i,j: integer :=0;

variable ret: re_im_matrix_16x8;

begin

for i in 0 to num_rows -1 loop

for j in 0 to num_cols -1 loop

ret (j,i).re := cplx8_16(i,j).re;

ret (j,i).im := to_sfixed(-to_real(cplx8_16(i,j).im) , nh, na);

end loop;

end loop;

return ret;

end function;

----TRANSPOSE 8x32---

function transpose8x32(cplx8_32: re_im_matrix_8x32) return re_im_matrix_32x8 is

variable i,j: integer :=0;

variable ret_32: re_im_matrix_32x8;

98

begin

for i in 0 to num_rows_a -1 loop

for j in 0 to num_cols_a -1 loop

ret_32(j,i).re := cplx8_32(i,j).re;

ret_32(j,i).im := to_sfixed(-to_real(cplx8_32(i,j).im) , nh, na);

end loop;

end loop;

return ret_32;

end function;

----8x8 MATRIX MULTIPLICATION---

function matrix_mult_8x8(cplx8_16: re_im_matrix_8x16; cplx16_8:

re_im_matrix_16x8) return re_im_matrix_8x8 is

variable i,j,k: integer :=0;

variable mult: re_im_matrix_8x8;

variable mult_temp: re_im_matrix_8x128;

variable mult_temp_1: re_im_matrix_8x8_temp;

begin

for i in 0 to 7 loop

for j in 0 to 7 loop

for k in 0 to 15 loop

mult_temp (i, j * 16 +k).re := cplx8_16(i,k).re * cplx16_8(k,j).re - cplx8_16(i,k).im

* cplx16_8(k,j).im;

mult_temp (i, j * 16 +k).im := cplx8_16(i,k).re * cplx16_8(k,j).im +

cplx8_16(i,k).im * cplx16_8(k,j).re;

end loop;

end loop;

end loop;

for i in 0 to 7 loop

 for j in 0 to 7 loop

mult_temp_1(i,j).re := mult_temp(i, 16 * j + 0).re +mult_temp(i, 16 * j + 1).re +

mult_temp(i, 16 * j + 2).re +mult_temp(i, 16 * j + 3).re +

mult_temp(i, 16 * j + 4).re +mult_temp(i, 16 * j + 5).re + mult_temp(i, 16 * j + 6).re

+mult_temp(i, 16 * j + 7).re +

mult_temp(i, 16 * j + 8).re +mult_temp(i, 16 * j + 9).re + mult_temp(i, 16 * j +

10).re +mult_temp(i, 16 * j + 11).re +

mult_temp(i, 16 * j + 12).re +mult_temp(i, 16 * j + 13).re + mult_temp(i, 16 * j +

14).re +mult_temp(i, 16 * j + 15).re;

mult_temp_1(i,j).im := mult_temp(i, 16 * j + 0).im +mult_temp(i, 16 * j + 1).im +

mult_temp(i, 16 * j + 2).im +mult_temp(i, 16 * j + 3).im +

mult_temp(i, 16 * j + 4).im +mult_temp(i, 16 * j + 5).im + mult_temp(i, 16 * j +

6).im +mult_temp(i, 16 * j + 7).im +

99

mult_temp(i, 16 * j + 8).im +mult_temp(i, 16 * j + 9).im + mult_temp(i, 16 * j +

10).im +mult_temp(i, 16 * j + 11).im +

mult_temp(i, 16 * j + 12).im +mult_temp(i, 16 * j + 13).im + mult_temp(i, 16 * j +

14).im +mult_temp(i, 16 * j + 15).im;

end loop;

end loop;

--DIVIDE BY 16

for i in 0 to 7 loop --num_rows1 -1

for j in 0 to 7 loop --num_col2 -1

mult(i,j).re := resize((mult_temp_1(i,j).re sra 4) , nh_m,na_m);

mult(i,j).im := resize((mult_temp_1(i,j).im sra 4) , nh_m,na_m);

end loop;

end loop;

return mult;

end function;

--8x32 MATRIX MULTIPLICATION

function matrix_mult_8x32(cplx8_8: re_im_matrix_8x8; cplx8_32:

re_im_matrix_8x32) return re_im_matrix_8x32_final is

variable i,j,k: integer :=0;

variable mult: re_im_matrix_8x32_final;

variable mult_temp: re_im_matrix_8x256;

variable mult_temp_1: re_im_matrix_8x32_temp;

begin

for i in 0 to 7 loop

for j in 0 to 31 loop

for k in 0 to 7 loop

mult_temp (i, j * 8 +k).re := cplx8_8(i,k).re * cplx8_32(k,j).re - cplx8_8(i,k).im *

cplx8_32(k,j).im;

mult_temp (i, j * 8 +k).im := cplx8_8(i,k).re * cplx8_32(k,j).im + cplx8_8(i,k).im *

cplx8_32(k,j).re;

end loop;

end loop;

end loop;

for i in 0 to 7 loop

for j in 0 to 31 loop

mult_temp_1(i,j).re := mult_temp(i, 8 * j + 0).re +mult_temp(i, 8 * j + 1).re +

mult_temp(i, 8 * j + 2).re +mult_temp(i, 8 * j + 3).re +

100

mult_temp(i, 8 * j + 4).re +mult_temp(i, 8 * j + 5).re + mult_temp(i, 8 * j + 6).re

+mult_temp(i, 8 * j + 7).re;

mult_temp_1(i,j).im := mult_temp(i, 8 * j + 0).im +mult_temp(i, 8 * j + 1).im +

mult_temp(i, 8 * j + 2).im +mult_temp(i, 8 * j + 3).im +

mult_temp(i, 8 * j + 4).im +mult_temp(i, 8 * j + 5).im + mult_temp(i, 8 * j + 6).im

+mult_temp(i, 8 * j + 7).im;

end loop;

end loop;

--RESIZING

for i in 0 to 7 loop --num_rows1 -1

for j in 0 to 31 loop --num_col2 -1

mult(i,j).re := resize(mult_temp_1(i,j).re, nh_m,na_m);

mult(i,j).im := resize(mult_temp_1(i,j).im, nh_m,na_m);

end loop;

end loop;

return mult;

end function;

--32x32 MATRIX MULTIPLICATION

function matrix_mult_32x32(cplx32_8: re_im_matrix_32x8; cplx8_32:

re_im_matrix_8x32_final) return re_im_matrix_32x32 is

variable i,j,k: integer :=0;

variable mult: re_im_matrix_32x32;

variable mult_temp: re_im_matrix_32x256;

variable mult_temp_1: re_im_matrix_32x32_temp;

begin

for i in 0 to 31 loop

for j in 0 to 31 loop

for k in 0 to 7 loop

mult_temp (i, j * 8 +k).re := cplx32_8(i,k).re * cplx8_32(k,j).re - cplx32_8(i,k).im

* cplx8_32(k,j).im;

end loop;

end loop;

end loop;

for i in 0 to 31 loop

for j in 0 to 31 loop

mult_temp_1(i,j).re := mult_temp(i, 8 * j + 0).re +mult_temp(i, 8 * j + 1).re +

mult_temp(i, 8 * j + 2).re +mult_temp(i, 8 * j + 3).re +

mult_temp(i, 8 * j + 4).re +mult_temp(i, 8 * j + 5).re + mult_temp(i, 8 * j + 6).re

+mult_temp(i, 8 * j + 7).re;

end loop;

101

end loop;

-- RESIZING

for i in 0 to 31 loop

for j in 0 to 31 loop

mult(i,j).re := resize(mult_temp_1(i,j).re, nh_m,na_m);

end loop;

end loop;

return mult;

end function;

--DIAGONAL MATRIX---

function diag(cplx32_32: re_im_matrix_32x32) return vect_32 is

variable i,j: integer :=0;

variable diag_vector: vect_32;

begin

for i in 0 to 31 loop

diag_vector(i) := cplx32_32(i,i).re;

end loop;

return diag_vector;

end function;

end matrix_package;

102

B.8: VHDL Testbench of Phi (a’.R.a) Matrix

--This is the final TESTBENCH is written to see DOA estimation results.

--There is a artificial clock which period is 10 ns.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

library ieee_proposed;

use ieee_proposed.fixed_pkg.all;

use work.matrix_package.all;

entity phi_matrix_tb is end phi_matrix_tb;

architecture TestBench of phi_matrix_tb is

 component phi_matrix is

 Port (

 clk: in std_logic;

 o_phi_matrix: out re_im_matrix_32x3);

end component;

 --This matrix includes angle values.

 signal matrix_phi_o: re_im_matrix_32x32;

 signal clk: STD_LOGIC;

 constant clock_period: time := 10 ns;

begin

uut: phi_matrix port map (clk, matrix_phi_o);

--This process shows the duration of simulation

stimulus: process

begin

wait for 500 ns;

report "sim end" severity failure;

end process;

--This process is used to create artificial clock pulse

clk_process: process

begin

 clk <= '0';

 wait for clock_period/2;

 clk <= '1';

 wait for clock_period/2;

end process;

end TestBench;

	99d18a375d7ec55992eb95db06092624a0c0f9b69616e3b8d6145bcb0a1520dc.pdf
	5145495dffe7db49ad0000e9ff1720ac801631919cb8d7a8fef8a0158eceb184.pdf

	99d18a375d7ec55992eb95db06092624a0c0f9b69616e3b8d6145bcb0a1520dc.pdf
	5145495dffe7db49ad0000e9ff1720ac801631919cb8d7a8fef8a0158eceb184.pdf
	5145495dffe7db49ad0000e9ff1720ac801631919cb8d7a8fef8a0158eceb184.pdf

