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ABSTRACT

EVALUATION OF GRAPH EMBEDDING BASED REASONING

OVER KNOWLEDGE BASES

BAYRAK, Betül

M.Sc., Computer Engineering Department

Supervisor: Asst. Prof Dr. Roya CHOUPANI

Co-Supervisor: Prof Dr. Erdoğan DOĞDU

AUGUST 2020, 47 pages.

Knowledge graphs (KG) include large amounts of structured data in many different

domains. Knowledge or information is captured by entities and relationships among

them in KG .

One of the open problems in the knowledge graphs area is “link prediction”, that is

predicting new relationships or links among entities, given the existing entities and links

in KG . A recent approach in graph-based learning problems is “graph embedding”,

in which graphs are represented as low-dimensional vectors. It is easier to make link

predictions using these vector representations using this method. We also use graph

embedding for graph representations. A sub-problem of link prediction in KG is link

prediction in the presence of literal values, and specifically numeric values, on the

receiving end of links. This creates a difficult situation as the numeric literal values

take arbitrary values. There are several studies in this area, but they are all complex

approaches.
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In this study, we propose a novel approach for link prediction in the presence of

numerical values. We cluster the numerical values in graphs to enhance the prediction

rates. We evaluated our method on Freebase knowledge graph, which includes entities,

relations, and numeric literals. Test results show that a considerable increase in link

prediction rate can be achieved in comparison to the other work.

Keywords: Link Prediction, Knowledge Graph Completion, Knowledge Graph

Embedding, LP with Numeric Literals.
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ÖZ

BİLGİ TABANLARI ÜZERİNDE BİLGİ ÇİZGESİ GÖMME

MUHAKEMESİ.

BAYRAK, Betül

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Danışman: Dr. Öğr. Üyesi Roya CHOUPANI

Ortak Danışman: Prof Dr. Erdoğan DOĞDU

AĞUSTOS 2020, 47 sayfa.

Bilgi çizgeleri, bir çok alanda, büyük miktarda yapılı veri içerir. Bilgi çizgelerinde

bilgiler, varlıklar ve varlıklar arasındaki ilişkiler aracılığıyla tutulur.

Bilgi çizgeleri alanında geliştirilmeye açık problemlerden biri de “bağlantı tah-

mini”dir. Bağlantı tahmini bilgi çizgelerinde varlıklar arasındaki var olmayan yeni

ilişkileri tahmin etme işidir. Çizge tabanlı öğrenme problemlerindeki yeni bir yaklaşım

“çizge gömme”dir. Çizge gömme, çizgelerin düşük boyutlu vektörler olarak temsil

edilmesidir. Bu sayede, bu vektör gösterimleri kullanarak bağlantı tahminleri yapmak

daha kolaydır. Bilgi çizgelerindeki bağlantı tahmininin bir alt problemi, bağlantıların

alıcı ucundaki sabit değerlerin ve özellikle sayısal değerlerin varlığında bağlantı tah-

minidir. Bu, rastgele değerler alan sayısal değişmez değerler nedeniyle daha zor bir

sorundur. Bu alanda birkaç çalışma var, ancak hepsi karmaşık yaklaşımlardır.

Bu çalışmada, sayısal değerlerin varlığında bağlantı tahmini için yeni bir yaklaşım

öneriyoruz. Tahmin doğruluk oranlarını artırmak için sayısal değerleri kümelendiriy-
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oruz. Önerdiğimiz yöntemi, varlıkları, ilişkileri ve sayısal sabitleri içeren FreeBase bilgi

çizgeleri üzerinde değerlendirdik. Test sonuçları, diğer çalışmalara kıyasla bağlantı

tahmin oranında önemli bir artış sağlanabileceğini göstermektedir.

Anahtar Kelimeler: Bağlantı Tahmini, Bilgi Çizgesi Tamamlama, Bilgi Çizgesi

Sayısallaştırma, Nümerik Değerlerle Link Tahmini.
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ÖZ vi

ACKNOWLEDGEMENT viii

TABLE OF CONTENTS x

LIST OF FIGURES xi

LIST OF TABLES xii

LIST OF ABBREVIATIONS xiii

1 INTRODUCTION 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Knowledge Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Applications of Knowledge Graph Usage . . . . . . . . . . . . . 4

1.1.3 Knowledge Graph Embedding . . . . . . . . . . . . . . . . . . . 5

1.1.4 Link Prediction on Knowledge Graphs . . . . . . . . . . . . . . 6

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 LITERATURE 12

2.1 Knowledge Graph Link Prediction . . . . . . . . . . . . . . . . . . . . . 12

2.2 Knowledge Graph Link Prediction Using Literal Values . . . . . . . . . 17

3 LINK PREDICTION WITH CLUSTERED LITERALS 19

3.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Models Compared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 TransE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 DistMult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 ComplEx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.4 HolE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ix



3.2.5 ConvE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.6 ConvKB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 EVALUATION 26

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.2 MRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.3 MR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.4 HIT@N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 CONCLUSIONS AND FUTURE WORK 32

REFERENCES 33

A NOMENCLATURE 39

B DATA SET DESCRIPTION 41

C DETAILED EXPERIMENTS ON TRANSE MODEL 44

x



LIST OF FIGURES

1.1 Screen Shot of Google Search for ’Vietnam’ Keyword. Right Side Struc-

tured Box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Screen Shot of Google Search for ’Asia’ Keyword. Right Side Structured

Box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 A Sub-graph To Show Triple Structure on KGs. . . . . . . . . . . . . . 3

1.4 A Sub-graph To Show Link Prediction on KGs. . . . . . . . . . . . . . 6

1.5 A Sub-graph To Show Link Prediction Results on KGs. . . . . . . . . . 7

1.6 A Sub-graph To Show Instances For URL And Numerical (lu and ln)

Literals in KGs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 A Sub-graph To Show Numerical Literals in KGs. . . . . . . . . . . . . 9

3.1 The approach of the state-of-the-art studies on knowledge graph link

prediction using literal values. . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 A Sub-graph To Show Perception Problems For KG LP with Literals. . 21

3.3 Our approach: Knowledge Graph Link Prediction Using Clustered Lit-

eral Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

xi



LIST OF TABLES

1.1 Triple Instances From a Sub-graph To Show Triple Structure on KGs . 3

3.1 Triple Instances To Show Perception Problems For KG LP with Literals 21

3.2 Compared Models’ LP Results Comparison Table . . . . . . . . . . . . 23

4.1 Datasets Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Result Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.1 Nomenclature Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

B.1 (e, r, e) Triples From Dataset . . . . . . . . . . . . . . . . . . . . . . . . 41

B.2 (e, r, ln) Triples From Dataset . . . . . . . . . . . . . . . . . . . . . . . 42

B.3 (e, r, ln) Triples From Dataset After Clustering Process . . . . . . . . . 43

C.1 Detailed Experiment Result Table For TransE Model . . . . . . . . . . 47

xii



LIST OF ABBREVIATIONS

KG: Knowledge Graph

KGE: Knowledge Graph Embedding

LP: Link Prediction

MRR: Mean Reciprocal Rank

MR: Mean Rank

NN: Neural Network

CNN: Convolutional Neural Network

RNN: Recurrent Neural Network

FB: FreeBase

WN: WordNet

URI: Uniform Resource Identifier

BCE: Binary Cross Entropy

NLL: Negative Log-Likelihood

BIC: Bayesian Information Criterion

PoE: Peoduct of Expert

Q&A Question Answer

xiii



CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Knowledge Graphs

With the spread of digitalization, the amount of data produced in daily life and

business life has increased considerably.As it has become challenging to manage this

data, many different concepts have been added to our lives. One of these concepts is

structured data usage.

There are many advantages to expressing data as structured. Unstructured data

requires more processing and is also more challenging to handle than structured. For

instance, searching on unstructured data is quite costly compared to structured data.

As an example, one of the most popular knowledge graphs usage areas in our lives

is Google searches. As shown in Figure − 1.1 and Figure − 1.2, when we searched a

word like country, object, person, Google shows a box on the right side of the search

result screen. In that box, there are lots of useful information about the searched item.

For example, Figure − 1.1 is the result of the ’Vietnam’ keyword search information

box. When we look at this information box, we can easily understand that the word

represents a country in Asia and we can see its flag, location on the world map, short

description, capital city, dialing code, population, currency, and more. We can learn

the same information in the text sources, but as can be seen, when structured data are

used, it is easier to perceive, understand, and evaluate.

Knowledge graphs generally consist of a large amount of structured data. With the

increasing importance of structured data, knowledge graphs are getting more popular

in recent years. Commonly, knowledge graphs incorporate real-world information as a

structured format (e.g., (Hanoi, capital city of, V ietnam))[37]. In the literature, this
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Figure 1.1: Screen Shot of Google Search for ’Vietnam’ Keyword. Right Side Structured
Box.

Figure 1.2: Screen Shot of Google Search for ’Asia’ Keyword. Right Side Structured
Box.
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structured format is known as triple.

Knowledge graphs keep the information as triples. As we sampled above, these

triples consist of 3 elements (i.e., (head, relation, tail)). We will use h for the head, r

for the relation, y for the tail from here on (i.e., (h, r, t)).

Figure 1.3: A Sub-graph To Show Triple Structure on KGs.

Table 1.1: Triple Instances From a Sub-graph To Show Triple Structure on KGs

Head Relation Tail

1 Hanoi capital city of Vietnam

2 Vietnam is a Country

3 Vietnam located in Asia

4 Asia is a Continent

5 Beijing capital city of China

6 China is a Country

7 China located in Asia

In Figure − 1.3, we created a sample part of the knowledge graph. In this sub-

graph, several relations are illustrated. Certain information can be observed in this

sub-graph, like Hanoi is the capital city of Vietnam, Asia is a continent, and China is

located in Asia. We listed all triples from the sub-graph in Figure − 1.3 and showed
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in Table − 1.1. In the Table − 1.1, triples are showed in (h, r, t) format. As shown in

the Table− 1.1, there are 7 triples in the sub-graph which is located in Figure− 1.3.

There are lots of knowledge graphs with different sizes, purposes, and features. Here

are the some of the popular knowledge graphs: Freebase[3], DBpedia[19], YAGO[44],

NELL[6], WordNet[25], Google Knowledge Graph[41], KnowledgeVault[9], Microsoft

Satori[34], and Facebook Graph Search[43].

1.1.2 Applications of Knowledge Graph Usage

Because of increasing the importance of structured data, knowledge graphs are

getting more popular in recent years. Thus, applications of the knowledge graphs are

spread to different domains, and our interactions with knowledge graph applications in

our professional and daily life increase. Some of the popular applications of knowledge

graphs as follows:

• Knowledge graphs include a large amount of structured data. While knowledge

graphs are large and structured, they are also quite incomplete. This means

knowledge graphs are open to knowledge extraction. Link prediction means pre-

dicting relations between the existing head and tail elements (i.e., r in (h, r, t)).

• Entity classification: Entity classification is a type of giving category to an entity,

e.g., Vietnam is a country. In short, entity classification is the prediction of

entities’ ’is a’ relation.

• Question answering systems: Question answering systems got popular in recent

years. These systems take questions as input, process as query, and predict

relevant answers. Some of the most popular applications are Alexa, Siri, and

Cortana.

• Item recommendation: Item recommendation systems which are based on knowl-

edge graphs can recommend products for sale, movie, music, event, and rate.

Knowledge graph applications, which we mentioned above, are present in many

aspects of our life. Some of the usage areas of this; web (especially search engine)[10],

finance[21], medicine[23], social media[12], academy[52], and daily life[33].
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1.1.3 Knowledge Graph Embedding

We made a mention of knowledge graphs and its applications, above. TThere is a

vast number of different applications and domains for the applications of the aforemen-

tioned knowledge graphs , but as main and common points of these applications, we

need to know how knowledge graph’s triples are processed. As we mentioned before,

knowledge graphs consist of (h, r, t) triples, but to apply something on these triples,

like measuring distances between two triples, we need to process these triples.For the

processing task, triples must be represented as vectors or combinations of vectors. In

the literature, this vectorization process is known as embedding process. Moreover,

the embedding process can be explained as projecting triples into a low-dimensional

vector space.

Usually, embeddings are elements that are represented as vectors of numerical val-

ues. According to elements and types of the task between elements, embeddings are

created automatically [37].

For example in this study, if the data is a knowledge graph, elements are entities

and relations and embeddings are used to represent entities and relationships. In this

way, the graph structure and the semantic are captured by the embeddings.

There are lots of vectorization (i.e., embedding) techniques proposed for different

reasons for knowledge graph link prediction tasks. Embedding techniques have different

usage areas, geometries, and structures.

Rossi et al., split KH LP techniques into three different branches as tensor decom-

position models, geometric models, deep learning models[37].

• Tensor decomposition models: In this approach, triples are represented as ma-

trices. ComplEx[47], DistMult[54], and TuckER[2] models are the most popular

instances of this concept.

• Geometric models: In this approach, the assessments of relations between triples

over geometry. RotatE[45], and TransE[4] models are the most popular instances

of this concept.

• Deep learning based models: In this approach, deep neural networks with different
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structures for different concepts are used. ConvE[8], and ConvKB[26] models are

the most popular instances of this concept.

1.1.4 Link Prediction on Knowledge Graphs

As mentioned before, link prediction merely predicts unknown r elements with

known h and t elements in (h, r, t) triple format. For example, it is possible to (jeremy,

father of, alice) and (donald, brother of, jeremy) triples to exist in the knowledge graph

and (donald, uncle of, alice) triple to not exist, although it is true. Moreover, it is the

most common application area of knowledge graphs, because of its incompleteness.

Figure 1.4: A Sub-graph To Show Link Prediction on KGs.
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In Figure − 1.3, it is shown that Vietnam and China are countries in Asia. Is

there any possibility about Vietnam and China’s neighbourhood? neighbouring coun-

tries? (Look at Figure − 1.4)? This is only a small example to illustrate the main

process.Usually, a lot of different criteria and relations are taken into consideration

while predicting new link unlike the example above. In the link prediction process,

these types of possibilities are examined. Thus, new links are created, and information

extraction is completed. This can be observed in the example results in Figure− 1.5.

Figure 1.5: A Sub-graph To Show Link Prediction Results on KGs.

Link prediction is crucial for almost all applications because it can be used as an

independent application for knowledge extraction and as a pre-process task for other

applications to enhance their results to dense the training knowledge graph.

There are lots of knowledge graph embedding model for link prediction models

like TransE[4], ComplEx[47], ConvKB[26], TransR[20], DistMult[54], Rescal[28], Ro-

tatE[45], TuckER[2], and ConvE[8].

1.2 Problem Statement

Knowledge graphs consist of 3 different elements; entities, relations, and literals.

Literals can be an image, video, numerical value, URI. For instance, (vikings,
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number of seasons, 6) is a (e, r, ln) type of triple, and (vikings, imdb link, https :

//www.imdb.com/title/tt2306299) is a (e, r, lu) type of triple (see Figure− 1.6).

Figure 1.6: A Sub-graph To Show Instances For URL And Numerical (lu and ln)
Literals in KGs.

The majority of studies that work on link prediction on knowledge graphs, use

only entities and relations, i.e., (e, r, e); this decreases the data variety. Decreasing the

data variety narrows the field of applications, and because of the closeness of the data

distribution, it negatively affects the created embeddings’ quality. Respectively, with

low-quality embeddings, results of the processes get worse. Using multi-modal data in

the applications [11, 17, 32, 51], make some positive differences, but these applications

are quite costly.

For instance, we have illustrated a sub-graph which includes countries and infor-

mation about it in Figure− 1.3. However, in Figure− 1.7, there is extra information

like dialling code and population of the countries. It can be noted , thatthe differ-

ences between the figures, using literals on knowledge graph applications enhance the

substantiality of the applications.

In our study, we proposed a novel approach that uses not only entities and relations

but also numerical triples, i.e., (e, r, ln). This approach does not need an external

embedding process for numerical literals, and it clusters numerical literals considering

8



Figure 1.7: A Sub-graph To Show Numerical Literals in KGs.
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their relation types, which is used in triples and processes them as entities. We worked

on a part of the freebase knowledge graph, which includes entities, relations, and

numerical literals, i.e. (e, r, e), (e, r, ln).

1.3 Thesis Contribution

In this study, we have several contributions and enhancements. We declared our

main contributions below.

• Our approach is quite simple when it is compared to former similar studies.

• Supports semantic perception owing to uses relation types based clustering method.

• Compatible with almost all knowledge graph link prediction models and applica-

ble to knowledge graphs.

• Prevents distance based similarity approach for numerical literal values, unlike

some models which consider numeric values as text.

• Captures a part of unit based differences and similarities.

1.4 Thesis Structure

This thesis contains five chapters. The chapters cover all researches that we have

conducted to propose a knowledge graph link prediction approach which uses clustered

numerical literal values, and all the results obtained are examined as described below.

In Chapter-II, you can find a detailed literature review for knowledge graph link

prediction and knowledge graph link prediction using literal values.

In Chapter-III, the proposed approach is presented first, and also the points for

the problem solving are explained as well as which are the problematic points in the

state-of-the-art studies. We have also mentioned our clustering algorithm which we

have customized to our triple clustering. Moreover, the compared models with their

distinct features and compared results are futher described.

Chapter-IV includes all the aspects of experiments and evaluation. The dataset,

experiments details, parameters, evaluation metrics, and results are thoroughly de-

scribed.

10



In the end, Chapter-V gives a summary of the study and mentions several future

work ideas.
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CHAPTER 2

LITERATURE

2.1 Knowledge Graph Link Prediction

To make predictions on the existence of relations, there are two types of approaches,

internal and external methods [30]. Internal methods do not need any additional in-

formation, except what knowledge graph has. External methods need additional infor-

mation such as other knowledge graphs. Some of the studies which used the internal

approach, use a rule-based approach (rule mining) [16, 15]. As a newer approach, some

studies, train a tensor neural network to make predictions [18, 42], and also mapping

to lower dimensional space [16] is one of the internal methods. The external methods

can use internal ones or different ones like distance-based methods [13, 36], but there is

a difference, a corpus or a knowledge graph is used as an additional information source

[30].

In the study[47] which proposed is the ComplEx model in 2016, they tried to main-

tain consistency in increasing and decreasing time and memory costs for every scale

knowledge graph and also consider not only symmetric relations but also antisymmet-

ric relations. ComplEx model is a bi-linear matrix decomposition method. The model

uses dot product, thus, time and space complexity are linear for the scoring func-

tion. This employs scalability, unlike former methods that have used this approach

between normal embeddings that occurred real numbers[54, 28, 27, 4], this method

uses the approach between the complex embeddings (i.e., occurred complex numbers).

The ComplEx method is an improved version of the DistMult[54] method via com-

plex embeddings mentioned before. Trouillon et al. compared ComplEx, DistMult[54],

and other similar methods scoring function, time and space complexity, and also link

prediction results at WN18 and FB15K knowledge graphs, and it shows that the Com-

12



plEx method made positive differences with this approach. They showed the model

performed well both on real-world datasets and artificial datasets. Furthermore, as a

result, creating embedding vectors as complex numbers keeps more useful information

and provides profiting of features.

Yang et al. proposed one of the basic but foremost approaches in knowledge graph

embedding models named DistMult[54]. The DistMult model is a bi-linear matrix

decomposition method. In the DistMult model, entities and relations are represented

as vectors, and while making a prediction about them, the model uses element-wise

multiplication. Nevertheless, in representation, no matter the entity located in the

head or tail, the vector of the entity will be the same for both. In this way, the model

performs poorly without 1-to-1 relations. The performance of the proposed model is

shown and compared it with TransE[4] on FreeBase.

The TransE model is a translation based geometric knowledge graph embedding

model. The model is quite simple and swallow, so it is easy to train and low cost

for the link prediction process. Because of the model frugality, the model can easily

apply for large scale datasets as shown in the original study and performs well on all

relation types (e.g., 1-to-1, 1-to-N). The performance of the proposed model is shown

and compared with Rescal[28], linear, and bi-linear models on FreeBase and WordNet.

The effectiveness of the model is quite profitable when we consider scalability, costs,

and performance.

The Holographic embeddings model (i.e., HolE)[27] is a geometrical and non-

bilinear[37] model. The model uses a circular correlation between entity embeddings

to achieve processes. Nickel et al. advocated in the study that the model can capture

rich interactions, but the model is quite simple when compared with up-to-date models.

This model performs well on large and small scale datasets, as shown in the study. The

performance of the HolE model is described and compared with TransR[20], TransE[4],

and Rescal[28] on three different datasets (i.e., FreeBase, WordNet, Countries). Free-

base and WordNet datasets are large and well-known datasets,while Countries dataset

is small real-world dataset. Because of the model’s simplicity, the cost is quite low.

Thus, the model has advantages of scalability and efficiency.
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The ConvE model is one of the simplest multi-layered convolutional neural network-

based knowledge graph embedding models[8]. The model has a convolution layer, a

projection layer for embeddings, and another layer to multiply embedding vectors and

get scores. Through using a convolutional model, capturing inverse relations is more

obvious but more costly compared to other weak models. Nevertheless, this model is a

low-cost model as opposed to complex models. The success of the proposed model has

been proven while comparing their results with DistMult and ComplEx on Freebase,

WordNet, and YAGO datasets.

The ConvKB model[26] is a convolutional neural network-based knowledge graph

embedding model. Triples are represented as matrices that have a vector for each

element of the triple. The matrix feeds the convolutional layer, which has filters to

compose future maps. After the filters, future maps are gathered into a vector to

symbolize the triple. As a scoring function, the dot product approach is used. The

model performs well to capture relations and is tested on large datasets in the original

study[26], but the link prediction process is quite high-cost because of the model com-

plexity. In the study, the ConvKB model achieves better link prediction performance

than previous state-of-the-art embedding models on two different datasets WordNet

and FreeBase.

ProjE[40], one of the most basic methods, the authors not only worked on relation

prediction but also entity prediction. In the ProjE method, embeddings are created

via a 2-layered neural network (combination and projection), and these embeddings

are presented as vectors. This method accepts graph completion as a ranking problem

because when rankings are sorted, the closest values come up and no need to calculate

another thing(do not use thing /makes the sentence informal) . To calculate rankings,

pointwise, listwise, and weighted listwise methods are used. They are created to score

and loss functions for each. In former methods like TransE [4], TransH [50], TransR

[20], the same loss functions are used , so the study shows improving loss function that

makes differences in results. They used DBpedia and SemMedDB knowledge graphs

for showing their method’s performance and compare it with others.

Sun et al. [45], who have also cunducted studies on link prediction, consider dif-
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ferent relationship features similarly the approach at some former studies like TransE

[4], TransX [5], DistMult [54], ComplEx [47]. The features are symmetry, antisymme-

try, inversion, composition. This model is a geometrical model. None of the previous

studies, which used a similar approach, does not consider all of these features. For

instance, the DistMult method only considers the symmetry feature. However, the Ro-

tatE method, which is developed in this study, considers all of the mentioned features.

To consider these features, basic mathematical lemmas are adapted to the embedding

process, and ranking function is created according to it. To improve the results of the

method, a novel negative sampling technique is used. The technique is an improved

version of a former study [24]. Results are shown on FB15k and WN18 knowledge

graphs and compared with methods that use similar approaches to the ones mentioned

before[4, 47].

Shi and Weninger[39], improve an open-world knowledge graph completion method

known as ConMask, which is description-based. This method consists of two steps.

The first one is content masking to reduce noisy text and also extract convenient parts,

the second one is adding convenient parts to the knowledge graph via a trained fully

convolutional neural network. They split to create the ConMask model into three steps,

relation dependent selection of convenient words, creating a target entity from the text,

choosing an entity using all features, respectively. To make relation-dependent content

masking (relation dependent selection of convenient words), first, it assigns closeness

weights to words and then calculates similarity score between entities using entity

descriptions. In target fusion operation, 3 layered fully convolutional neural network

is used, as a result, it returns k-dim embedding. In the end, a list-wise ranking loss

function is used [40] to find the closest entities from the knowledge graph. To show the

performance of the method, they use FreeBase and DBPedia knowledge graphs and get

some higher results from TransE [4] and TransR [20] methods.

The Tensor Factorization for Knowledge Graph Completion study [2] looks at

knowledge graph link prediction techniques divided into two main areas, linear tech-

niques [28, 54, 47, 14] and non-linear techniques [1, 8]. The main difference between

non-linear and linear methods is scoring functions; in non-linear model approaches,
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scoring functions is a deep neural network, and also in linear models, it is a type

of tensor factorization. Based on this approach, they improve a linear model named

TuckER. It is a new knowledge graph link prediction technique. This method is in-

spired by Tucker’s study [48], the Tucker decomposition method distributes a tensor to

matrices and another core tensor, and it is generally used for basic tasks like machine

learning and data mining. But in this study, the method is combined with knowledge

graph embedding for link prediction. The result of this innovative approach, unlike for-

mer approaches, is that all knowledge does not have to keep in only embeddings, some

of the knowledge is stored in core-tensor. They compare their method with state of

the art methods via scoring functions, space complexity, and results on some standard

knowledge graphs (i.e., WN18, FB15k). The TuckER method shows its performance

on multi-task learning on relations and gives more successful results than state of the

art methods.

The ELPKG method [22] combines path-based and vector-based embedding meth-

ods, using a probabilistic method to remove knowledge abruptness, and predicts rela-

tions. The ELPKG method does not need any additional data from outside; it learns

from the knowledge graph, which it is trying to complete. They show their result by

comparing state-of-the-art methods (i.e., Rescal, TransE, HolE, PRA) on YAGO and

NELL knowledge graphs.

Zhang et al. developed a neural network based few-shot model [55], named FSRL,

for knowledge graph completion. The model is a unified form of former neural net-

work based methods. They inspired a study [53] that used one-shot learning method

for a similar process and used few-shot learning approach, which does not need a huge

amount of training data for learning processes [35]. FSLR method’s steps are as follow-

ing, firstly neighbour encoder takes few-shot reference set as input after that results go

to aggregation network for aggregation. At last, from aggregated results, the matching

network creates a matching score. As a result, it chooses the top-ranked result. They

showed the performance of the proposed model and compare it with several different

models[28, 4, 47, 54] on WikiData[49] and NELL[6] datasets.
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2.2 Knowledge Graph Link Prediction Using Literal Values

In the MKBE study [32], unlike most prior studies, literals are not ignored, differ-

ent types of data are considered like image, text description, numeric. They did not

develop a new knowledge graph embedding technique, but rather created an innovative

approach via using existing methods (i.e., DistMult [54], ConvE [8]) with enriched data

with literals and processing different data types with neural network-based techniques

(i.e., RNN, CNN) to include embedding process. To create embedding, there are no

change ranking functions of DistMult and ConvE. Pezeshkpour et al. worked on multi-

modal knowledge graph completion and applied it to two specific types, the first one is

link prediction on multi-modal knowledge graph (relation prediction), and the second

one is generating multi-modal missing data (entity prediction). For the evaluation of

both two applications, they used MovieLens and YAGO knowledge graphs to show and

compare step by step, pure model, numeric added model, textual description added

model and image added model.

Garcia-Duran and Niepert discovered that including different entity types to em-

bedding process is used to to make knowledge graph more fertile [11], in contrast to

prior studies that used only latent entities. Moreover, to achieve and show that they

use three different entity types - latent, numeric, and combined relations. The product

of experts model is used for this process. To show the results, they used FB15k and

WN18 knowledge graphs and compared results with the former to develop methods

step by step.

One of the different approaches in knowledge graph embedding for link prediction

is the study conducted by Kristiadi et al. [17]. The study developed a simple method

for including literals into embedding methods, named as LiteralE, to make more suc-

cessful link predictions from embeddings. The first step of the process is to divide

link prediction methods into two [29], graph feature methods, and latent graph feature

methods, and then worked on improving the second type of methods. Latent graph

feature methods [8, 47, 9, 11, 46] generally learn entity and relation embeddings and

measure closeness or likeliness via score functions or other probabilistic methods. It

is considered as a ranking problem. However, some of these methods [11, 46] either
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do not reckon on literals while creating embeddings or add literals externally. The

study, unlike others, considers literals while creating embeddings, and the latent fea-

ture method is applied to basic existent methods like DistMult [54], ComplEx [47], and

ConvE [8]. Furthermore, to show and compare results, they used FreeBase and YAGO

knowledge graphs. They compared latent graph feature methods do not reckon with

literals, latent graph feature methods reckon with literals, and combined with LiteralE

methods(unclear sentence). As a result, combining LiteralE method with other embed-

ding methods (considering literals while embedding) that are mentioned before, makes

positive differences, especially for the link prediction tasks.

The TransEA model [51] is one of the studies which incorporate literal elements

for the knowledge graph embedding process. The model arose from the TransE [4]

model. As we mentioned before TransE model is a translation based embedding model.

Wu et al. combined the attribute-based embedding model (for numerical literals)

with TransE. In the study, they showed the results for the model, on YAGO [44] and

FreeBase [3] comparing with TransE for the link prediction process. However, this

approach can only be applied to the TransE model, so it is quite hard to compare it

with other models.
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CHAPTER 3

LINK PREDICTION WITH CLUSTERED LITERALS

3.1 Our Approach

Usually, knowledge graphs are composed of different elements: entities, relations,

and literals. However, almost all knowledge graph embedding methods and applications

presume it as consisting of only entities and relations, as mentioned before like in

Figure− 1.1. In other words, they use only (e, r, e) triples, but in knowledge graphs,

there are also (e, r, l) triples like in Figure−1.7. Different types of literals can be present

in knowledge graphs. Overpassing the literal data prevents the use of a considerable

part of the knowledge graph. Eventually, considering literal data means enriching

training data, and this leads to more effective results in knowledge graph embedding

applications (e.g., Q&A, link prediction).

We will look at problems on KG LP models which uses numerical literals because

the approach which is proposed in this study is about using numerical literals on KG

LP models.

In the section below, references are made to weak points of the state-of-the-art

studies including a proposal on how to solve this issues.

• All of the similar studies mentioned above, which use literals, first create em-

beddings of (e, r, e) triples by using traditional knowledge graph embedding tech-

niques, after that, create embeddings of literals (i.e. (e, r, l) triples) by using

different techniques like neural networks. In the end, all embeddings are gath-

ered. You can see this approach with general processes in Figure − 3.1. The

mentioned approach, which is used in previous studies, is a high-cost approach

for time and space complexity. Because of that, in our approach, we gathered two

embedding processes into one process. In this way, we contribute to the efficiency
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Figure 3.1: The approach of the state-of-the-art studies on knowledge graph link pre-
diction using literal values.

of the approach by decreasing complexity.

• Despite the support of the state-of-the-art studies for numerical literals, all of

the embedding methods discussed fail to interpret the semantics behind data

types of literals and units. For an instance, as we can see in the Figure −

3.2, ‘1999€ ’ and ‘the year 1999’ could be considered the same because type

semantics are discarded. And also, we summarize the same situations between

Table − 3.1’s triples 5, 6, 7, and triples 8, 9. Nevertheless, in our approach,

during the clustering process, clusters are created according to the relation types.

Consequently, there is no perception problem in different units.

• None of the state-of-the-art models apply normalization for literal values; hence

the semantic similarity between two literal values can not be caught. For example,

as we can see in Table− 3.1, there are several triples about two different aspects

. Triple 1 and 2 mean the length of the Insect775 is 200 mm and triple 3 and

4 mean diameter of Circle231 is 2 cm. 200 mm and 2 cm is the same length,

but models perceived them as different values, so, the similarity between 200 mm

and 2 cm is not captured. In our approach, because of the clustering process is

according to distinct relation types, most part of this problem is solved. It is

possible that there are exceptions to the case.

• The TransEA[51] study can only be used on TransE[4] model. In our approach, we
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used triples that included numerical literals and categorized the numerical literals

before the embedding process (see F igure−3.3), and every created category used

the current knowledge graph model’s embedding method. Thus, we obtained that

it can be applied for all datasets and knowledge graph embedding applications.

• Instead of processing numerical literals, if we directly add numerical literals, like

some models which consider numeric values as text, the model perceives like 199

is closer than 400 to 399, semantically causing wrong results.

Table 3.1: Triple Instances To Show Perception Problems For KG LP with Literals

Head Relation Tail

1 Insect775 length 200

2 Insect775 unit mm

3 Circle231 diameter 2

4 Circle231 unit cm

5 Computer price 1999

6 Computer currency Euro

7 Computer is a Product

8 XYZ established at 1999

9 XYZ is a Brand

Figure 3.2: A Sub-graph To Show Perception Problems For KG LP with Literals.

We mentioned novel points of our approach to see general flow and main points of
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the approach in this study which you can see at Figure− 3.3. Now we will look at the

main processes in our approach.

One of the main processes is the clustering process. The clustering process is

categorizing literal values. In the categorization process, similarly with KBLRN[11],

which used PoE, this study used X-Means[31]. X-Means is an extended version of

K-Means, cultivating clusters by repeatedly striving subclass and keeping the best

splits, until a criterion. So, unlike K-means, the number of the clusters is determined

automatically according to the distribution of the data in X-means algorithm.

In this study, we adapted X-means depending on the relation types, and we used

BIC (Bayesian information criterion) as criteria. The number of the clusters determined

up to the distribution of the data by the X-means algorithm is not a distinct value.

Thus, we prevented the numerical values in different units being perceived as the same

and obtained a more low-cost process.

One of the other main processes is the knowledge graph embedding process. Under

favour of our approach’s compatibility with all knowledge graph embedding models,

as we mentioned before, we applied six traditional models to our approach. There is

a short explanation about why we used these traditional knowledge graph embedding

models in Chapter − 3.2.

Figure 3.3: Our approach: Knowledge Graph Link Prediction Using Clustered Literal
Values.

Finally, to sum up briefly the approach details, our approach:

• Supports semantic perception.

• Compatible with almost all knowledge graph embedding models.
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• Compatible with almost all knowledge graphs.

• Prevents distance based similarity approach for numerical literal values.

• Uses relation types based clustering method.

• Captures unit based differences and similarities.

3.2 Models Compared

In our study, we used six different models to apply our approach. We wanted to

show our approach can be applied to different types and different complexity models.

So, we chose models with several architecture types. Some of the models are developed

on the other one, which uses the same architecture; we chose some of them because we

wanted to show and prove our approach’s stability and consistency.

In Table−3.2, we gave this model’s link prediction results and showed that different

models perform differently. We use MRR (Main Reciprocal Rank) and HIT@10 (Hits

at first 10 predictions) metrics to show performances. Detailed explanations of the

metrics can found in Section− 4.3. Also, we used the dataset at Section− 4.2 and the

same experimental setup with Section− 4.1

Table 3.2: Compared Models’ LP Results Comparison Table

MODEL MRR HIT@10

ComplEx 0.30 0.47

DistMult 0.28 0.45

TransE 0.23 0.34

HolE 0.25 0.39

ConvE 0.22 0.31

ConvKB 0.20 0.42

The common and the distinct points, scoring functions, and important sides of the

models are explained below:
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3.2.1 TransE

TransE model is a translation based simple model. It is based on distance mea-

suring. In the scoring function, the similarity between embeddings is calculated, using

distances of the embedding vectors. (See Equation− 3.1)

ftranse = −||h + r − t|| (3.1)

3.2.2 DistMult

The DistMult model is a bi-linear matrix decomposition method. It uses the tri-

linear dot product for the scoring function and element-wise multiplication and in

representation, therefore regardless of the entity located in the head or tail, the vector

of the entity will be the same for both. (See Equation− 3.2)

fdistmult = 〈h, r, t〉 (3.2)

3.2.3 ComplEx

ComplEx model is a bi-linear matrix decomposition method. The model was devel-

oped by extending DistMult model with the Hermitian dot product [38]. (See Equation−

3.3)

fcomplex = Re(〈h, r, t〉) (3.3)

3.2.4 HolE

HolE is a geometrical and non-bilinear [37] model. Moreover, the model uses a

circular correlation between entity embeddings as a scoring function. (See Equation−

3.4)

⊗ implies the circular correlation function.

fhole = 〈h, r ⊗ t〉 (3.4)
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3.2.5 ConvE

The ConvE model is one of the simplest multi-layered convolutional neural network

based knowledge graph embedding models. The model has a convolution layer, a

projection layer for embeddings, and another layer to multiply embedding vectors and

get scores. The scoring function of the model is given in the Equation− 3.5.

g implies a non-linear activation function, ∗ implies the linear convolution operator,

vec denotes a 2D reshaping of vector and also . donates dot product. Ω implies a set

of filters for the convolutional model.

fconve = g(vec(g(concat(h, r) ∗ Ω))W ).t (3.5)

3.2.6 ConvKB

The ConvKB model is a convolutional neural network based knowledge graph em-

bedding model. Triples are represented as matrices that have a vector for each element

of the triple. The matrix feeds the convolutional layer, which has filters to compose

future maps. After that filters, future maps are gathered into a vector to symbolize

the triple. And after, the dot product approach is used. The scoring function of the

model is given in the Equation− 3.6.

g donates a non-linear activation function, ∗ implies the linear convolution operator

and . donates dot product. Ω implies a set of filters for the convolutional model and

concat is used to imply concatenation operator.

fconvkb = concat(g([h, r, t] ∗ Ω)).w (3.6)

In the end, every model, which mentioned above, has a different performance. In

Table− 3.2, we showed the models performances on the first part of the dataset (look

at Section − 4.2) and it is shown that ComplEx model is the best performing model

on our data and environment. And DistMult, HolE, TransE, ConvE, ConvKB models

perform respectively.
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CHAPTER 4

EVALUATION

4.1 Experimental Setup

We tried to stabilize all parameters and factors to ensure the reliability of the

comparisons. The parameters used in this study and their explanations as follows:

(Some of the parameters are obliged to change up to used model)

• batches count: 100

• epochs: 400

• k: 200

• eta: 20

• optimizer: ’adam’

• optimizer params: ’lr’:1e-4

• loss: ’multiclass nll’

• regularizer: ’LP’

• regularizer params: ’p’:3, ’lambda’:1e-5

As an exception, for ConvE model, we used ’bce’ loss function instead of ’multiclass nll’.

batches count is the number of batches, splitting the number of training set for each

loop. epochs imply the iterations of the training loop, and k implies the dimension of

the embedding space. eta is the number of negative triples which created artificially for

each positive triple and optimizer implies the optimizer for minimizing the loss func-

tion. loss is the type of loss function for training and regularizer is the regularization

strategy to use with the loss function.
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For the implementation part, we used Python’s AmpliGraph[7] library. It is a open

source Python library that implements several knowledge graph link prediction models.

4.2 Dataset

In this study, we used a part of FreeBase[3] knowledge graph. The dataset consists

of two different parts which are mentioned as FB and N in Table-4.1.

The first part of the dataset which we mentioned as FB in the Table-4.1, includes

324340 triples which is in (e, r, e) format with 1003 relations and 13882 entities. We

used this part to show the existent knowledge graph link prediction models performance

and to compare our approach.

The second part of the dataset which we mentioned as N in the Table-4.1 which is

in (e, r, ln) format. We concatenated both FB and N and used which includes 327534

triples with 1011 relations, 13882 entities and 3194 numerical literals to show models

performance with numeric literals and our approach performance.

Table 4.1: Datasets Details

KG Triple |R| |E| Numeric

FB 324340 1003 13882 -

FB + N 327534 1011 13882 3194

4.3 Evaluation Metrics

Almost all of the state-of-the-art studies use ranking based evaluation metrics. The

most common ones are MRR (i.e., mean reciprocal rank), MR (i.e., mean rank),

and HIT@N. We use the most commonly used evaluation metrics ,which we mentioned

before, to evaluate our experiments.

As shown in the Section− 4.3.1, for each prediction, a ranking list is created. All

of the evaluation metrics that we used are calculated using these list indices.

We explained the calculations of the metrics below. Q implies the set of test triples.
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4.3.1 Ranking

In the testing process, for each triple, a list of predicted triples are created on the

trained model. The rank of the triple corresponds to the index of the correct triple in

the list.

rank(s,p,o) function returns the ranking of the (s,p,o) triple and a ranking.

4.3.2 MRR

Mean reciprocal rank is the harmonic mean of ranking values.

MRR =
1

|Q|

|Q|∑
i=1

1

rank(s,p,o)i
(4.1)

The higher value is represents a better result for MRR metric.

4.3.3 MR

Mean rank value is the average rank value of all triples (i.e., arithmetic mean).

MR =
1

|Q|

|Q|∑
i=1

rank(s,p,o)i (4.2)

The lower value is represents a better result for MR metric.

4.3.4 HIT@N

The ratio of triples that have top-N ranking to all other test triples.

Hits@N =
1

|Q|

|Q|∑
i=1


1 if(rank(s,p,o)i ≤ N)

0 otherwise

(4.3)

In literature, commonly, 1, 3, 5, and 10 is used for the N value. The higher value is

represents a better result for the HIT@N metric.
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4.4 Experimental Results

To show our approach performance, pros and cons, we conducted the experiments

on six different typed conventional knowledge graph embedding models, namely Com-

plEx[47], DistMult[54], TransE[4], HolE[27], ConvE[8], and ConvKB[26]. You can find

features of these methods in Chapter-II. For each model, we conducted three experi-

ments,

• In Experiment−1, the train and test sets consist of only (e, r, e) triples. It shows

the model’s performance.

• In Experiment − 2, the train and test sets consist of both (e, r, e) and (e, r, ln)

triples. The main aim of this experiment is to show the performance of the model

(e, r, ln) triples are directly added to (e, r, e) triples.

• In Experiment − 3, the train and test sets consist of both (e, r, e) and (e, r, ln)

triples such as in Experiment− 2. The main aim of this experiment is to show

the performance of the model with our approach, (e, r, ln) triples are not directly

added to (e, r, e) triples. Before the training process, ln elements of the triples

are clustered via considering the type of the r elements.

Our main aim in these experiments is to show change on link prediction results

between when we used only (e, r, e) triples, directly added (e, r, ln) triples, and clustered

added (e, r, ln) triples. We summarized all of the experimental results in Table 4.2,

In Table 4.2, we used Exp−1, Exp−2, and Exp−3 respectively for Experiment−1,

Experiment− 2, and Experiment− 1. We showed the results on models for explained

experiments above. To compare the results of experiments, we showed five different

evaluation metrics in the table.

We need to mention some details about the experiments; we split the dataset into

train and test sets randomly. %67 for the train set and %33 for the test set. However,

the splitting process is not entirely random; the test set must include every entity and

relation type in the train set. We tried to stabilize all parameters and other factors

like hardware to take more consistent results and ensure the truth on comparisons;

we kept them as steady as possible. The parameters which were used in this study
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and their explanations as follows; the number of epochs (iterations) for training is 400,

batch count for every training epoch is 100, embedding space dimension is 200, the

number of created negative samples for each positive sample is 20, to minimize loss

function ’adam’ optimizer is used, for loss function ’multiclass nll’ is used. However, as

an exception, the ConvE model is not compatible with the ’multiclass nll’ loss function,

so ’bce’ loss function is used for the ConvE model.

In experiments results can differ up to dataset, dataset split ratio, hardware, en-

vironment, parameters, and also other reasons. In our experiments, as we mentioned

above, we tried the all of them stable to make reasonable comparisons on results.

Generally, the comparisons on knowledge graph link prediction, are made with

MRR and hits@10 metrics, because these metrics are more distinctive and consistent

compared to others. We preferred to evaluate the results of this study with these two

metrics from now on.

For all models, there is a considerable difference between Experiment − 1 and

Experiment−2, and also between Experiment−2 and Experiment−3. The difference

between Experiment−1 and Experiment−2 is more substantial than Experiment−

2 and Experiment − 3; this is because, when we add different types of data, the

distribution of the data changed but, in Experiment−3, after added clustering numeric

literals we prevented wrong semantic perceives so it improved Experiment−2’s results.

The amount of the added data is quite small, but its effect of enhancement on

results is enormous. As we mentioned above, adding different types of data changes

the distribution of embeddings, this changed not only the numerical triples embeddings

but also the regular triples embeddings.

While the differences in some models’ results are relatively big, other are signifi-

cantly small, for instance, the difference between the TransE model’s Experiment− 1

and Experiment−3 is around 0.30, but the difference between HolE model’s Experiment−

1 and Experiment − 3 is around 0.05 on MRR metric with the same datasets. The

reason for this is the embedding model’s procedures and geometries; when triples em-

bedding, triples affect each other up to model geometry.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

We proposed a new approach to use numerical literals in link prediction models on

knowledge graphs. Our approach can be applied to all knowledge graph embedding

models and does not have high cost like state-of-the-art studies. As shown in the

experiments, changing data distribution affects the embedding process and its effects

are clearly shown in the results. Increasing the data variety of knowledge graphs causes

both improved results because of data distribution and increased process’s domain

area on the knowledge graph. However, it also results in higher time and memory

complexities. For further studies, while improving and adapting this approach, we are

planning to add other literal data types (e.g., image, URI) with lower costs as opposed

to existing methods.
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[36] Giuseppe Rizzo and Raphaël Troncy. “Nerd: evaluating named entity recognition

tools in the web of data”. In: Workshop on Web Scale Knowledge Extraction

(WEKEX’11). Vol. 21. 2011.

[37] Andrea Rossi et al. “Knowledge Graph Embedding for Link Prediction: A Com-

parative Analysis”. In: arXiv preprint arXiv:2002.00819 (2020).

[38] Helmut H Schaefer. “Locally Convex Topological Vector Spaces”. In: Topological

Vector Spaces. Springer, 1971, pp. 36–72.

[39] Baoxu Shi and Tim Weninger. “Open-world knowledge graph completion”. In:

Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[40] Baoxu Shi and Tim Weninger. “ProjE: Embedding projection for knowledge

graph completion”. In: Thirty-First AAAI Conference on Artificial Intelligence.

2017.

[41] Amit Singhal. “Introducing the knowledge graph: things, not strings”. In: Official

google blog 5 (2012).

36



[42] Richard Socher et al. “Reasoning with neural tensor networks for knowledge

base completion”. In: Advances in neural information processing systems. 2013,

pp. 926–934.

[43] Tom Stocky and Lars Rasmussen. “Introducing Graph Search Beta”. In: Re-

trieved February 12 (2013), p. 2013.

[44] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. “Yago: a core of

semantic knowledge”. In: Proceedings of the 16th international conference on

World Wide Web. 2007, pp. 697–706.

[45] Zhiqing Sun et al. “Rotate: Knowledge graph embedding by relational rotation

in complex space”. In: arXiv preprint arXiv:1902.10197 (2019).

[46] Yi Tay et al. “Multi-task neural network for non-discrete attribute prediction in

knowledge graphs”. In: Proceedings of the 2017 ACM on Conference on Infor-

mation and Knowledge Management. 2017, pp. 1029–1038.
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APPENDIX A

NOMENCLATURE

Table A.1: Nomenclature Table.

h head element of triple

r relation element of triple

t tail element of triple

e entity

l a literal

ln a numerical literal

lu an url literal

li an image literal

lv a video literal

ftranse transe scoring function

fdistmult distmult scoring function

fcomplex complex scoring function

fhole hole scoring function

fconve conve scoring function

fconvkb convkb scoring function

Re real axis

⊗ circular correlation
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Ω a set of filters for the convolutional model

g non-linear activation function

∗ linear convolution operator

vec a 2D reshaping of vector

concat conctenation operator

R set of relations

|R| number of relations

E set of entities

|E| number of entities

k dimension of the embedding space

eta number of negatives triples for each positive triple
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APPENDIX B

DATA SET DESCRIPTION

Table B.1: (e, r, e) Triples From Dataset

head relation tail

/m/027z0pl /film/producer/film /m/080nwsb

/m/04htfd /organization/organization/leadership./
organization/leadership/role

/m/0dq 5

/m/020xn5 /film/film job/films with this crew job./film/
film crew gig/film

/m/04n52p6

/m/0kzy0 /people/person/profession /m/0gbbt

/m/01pgzn /base/popstar/celebrity/shops at./base/
popstar/shopping choice/company

/m/0r0m6

/m/02jqjm /music/musical group/member./music/
group membership/role

/m/018vs

/m/0170 p /film/film/country /m/09c7w0

/m/03176f /film/film/distributors./film/
film film distributor relationship/distributor

/m/086k8

/m/0gffmn8 /film/film/starring./film/performance/actor /m/015lhm

/m/05gml8 /base/popstar/celebrity/friendship./base
/popstar/friendship/participant

/m/03m8lq

/m/07kb5 /user/alexander/philosophy/philosopher/
interests

/m/02jcc

/m/09byk /people/person/languages /m/04306rv

/m/07 dn /business/employer/employees./business/
employment tenure/title

/m/060c4

/m/043djx /government/legislative session/members./
government/government position held/
district represented

/m/05fkf

/m/018vs /music/instrument/instrumentalists /m/0274ck

/m/012cj0 /people/person/nationality /m/09c7w0
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Table B.2: (e, r, ln) Triples From Dataset

head relation tail

/m/072kp /tv/tv program/number of seasons 9.0

/m/0358x /tv/tv program/number of seasons 49.0

/m/01yb1y /tv/tv program/number of seasons 14.0

/m/02rzdcp /tv/tv program/number of episodes 92.0

/m/016tvq /tv/tv program/number of episodes 202.0

/m/02py9yf /tv/tv program/number of episodes 91.0

/m/0199wf /film/film/initial release date 1978

/m/045r 9 /film/film/initial release date 1985

/m/0b76kw1 /film/film/initial release date 2010

/m/02qjv1p /tv/tv program/air date of final episode 2010

/m/025ljp /tv/tv program/air date of final episode 2009

/m/04hs7d /tv/tv program/air date of final episode 2004

/m/0266s9 /tv/tv program/air date of final episode 2010

/m/0d68qy /tv/tv program/air date of final episode 2013

/m/01q y0 /tv/tv program/air date of final episode 2006

/m/04x4gj /tv/tv program/air date of first episode 1985

/m/02qkq0 /tv/tv program/air date of first episode 1986

/m/01hvv0 /tv/tv program/air date of first episode 2001

/m/0ddd0gc /tv/tv program/episode running time 65.0

/m/017dbx /tv/tv program/episode running time 30.0

/m/0gxsh4 /tv/tv program/episode running time 60.0
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Table B.3: (e, r, ln) Triples From Dataset After Clustering Process

head relation tail

/m/05h95s /tv/tv program/air date of first episode cluster5

/m/06qwh /tv/tv program/air date of first episode cluster6

/m/06r4f /tv/tv program/episode running time cluster13

/m/027tbrc /tv/tv program/episode running time cluster11

/m/02skyy /tv/tv program/episode running time cluster11

/m/06f0k /tv/tv program/episode running time cluster14

/m/0sxgv /film/film/initial release date cluster8

/m/0gy4k /film/film/initial release date cluster8

/m/01vksx /film/film/initial release date cluster8

/m/0gj50 /tv/tv program/number of episodes cluster15

/m/02648p /tv/tv program/number of episodes cluster17

/m/01s81 /tv/tv program/number of episodes cluster15

/m/0q9jk /tv/tv program/number of seasons cluster0

/m/0524b41 /tv/tv program/number of seasons cluster3

/m/06mr2s /tv/tv program/number of seasons cluster1

/m/0524b41 /tv/tv program/number of seasons cluster1

/m/02py9yf /tv/tv program/air date of final episode cluster21

/m/06qwh /tv/tv program/air date of final episode cluster22

/m/01s81 /tv/tv series season/number of episodes cluster15
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APPENDIX C

DETAILED EXPERIMENTS ON TRANSE MODEL

We conducted several experiments to show results more detailed. In Table − C.1,

we showed our results on the TransE model. The experiments and their explanations

are as follows.

• In Experiment− A, results of only (e, r, e) triples are trained.

• In Experiment − B, results of (e, r, e) triples and (e, r, ln) triples are trained

together without clustering.

– In Experiment−B1, results of only (e, r, e) triples in Experiment−B

– In Experiment−B2, results of only (e, r, ln) triples in Experiment−B

• In Experiment − C, results of (e, r, e) triples and (e, r, n) triples are trained

together with clustering.

– In Experiment− C1, results of only (e, r, e) triples in Experiment− C

– In Experiment− C2, results of only (e, r, ln) triples in Experiment− C

• In Experiment−D, results of only (e, r, ln) triples are trained without clustering.

• In Experiment− E, results of only (e, r, ln) triples are trained with clustering.

As we mentioned in Section − 4.4, results can differ up to dataset, dataset split

ratio, hardware, environment, and parameters. The experiments in Table − C.1, uses

the same dataset with Table − 4.2, but the split ratio of the dataset is %80 - %20

for train and test sets respectively. Furthermore, our environment and hardware are

different from previous experiments. Nevertheless, we used the same parameters for

the TransE model. In this way, we got different results for the same experiments on

TransE.
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As we did in Section − 4.4, again, we preferred to evaluate the results of these

experiments with the MRR metric from now on because this metric is more distinctive

and consistent for these experiment results compared to others.

The variations in Experiment−A, Experiment−B, and Experiment−C are simi-

lar to the previous experiments Experiment−1, Experiment−2, Experiment−3. Nev-

ertheless, the main aim of experiments in Table−C.1 is to show the differences between

results for (e, r, e) triples and results for (e, r, ln) and numerical triples how effects the

distribution and results in each experiment. Moreover, we conducted Experiment−D

and Experiment − E to show the link prediction results of (e, r, ln) triples without

(e, r, e) triples.

In Experiment− B, MRR value is 0.58 for whole dataset, also in B1, MRR value

is the same, but in B2, MRR value is 0.14. As you can see, the data which we used

for Experiment − A and Experiment − B1 are the same, but results are changed,

although new added data’s results are lower respectively. This proved that, changing

the distribution of the data affects the embeddings. Also, with the results of the

Experiment − D, we showed the numerical triples also effected from non-numerical

triples. When we trained numerical triples with non-numerical ones (i.e., Experiment−

B2) and numerical triples without non-numerical ones (i.e., Experiment−D), we got

different results, like consequently 0.14 and 0.06 for the MRR value.

In Experiment−C, MRR value is 0.60 for the whole dataset, also in C1, MRR value

is the same, but in C2, MRR value is 0.49. As you can see, the data which we used for

Experiment−A, Experiment−B1, and Experiment−C1 are the same, but results

are changed although new added and processed data’s results are lower respectively

(i.e., 0.49). This proved that again, changing the distribution of the data affects the

embeddings, and also the difference between Experiment−B2 and Experiment−C2

has shown that our approach achieved its mission and gave a considerable increase in

numerical triples results. Also, with the results of the Experiment − E, we showed

the numerical triples are also effected by non-numerical triples. When we trained clus-

tered numerical triples with non-numerical ones (i.e., Experiment−C2) and clustered

numerical triples without non-numerical ones (i.e., Experiment−E), we got different
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results, like consequently 0.49 and 0.37 for the MRR value.

Finally, the amount of the added data is quite small, but its effect of enhancement

on results is enormous. As we mentioned above, adding different types of data changes

the distribution of embeddings, this changed not only because of the numerical triples

embeddings but also changed the regular triples embeddings. As a result, our approach

enhanced these situations and decreased the difference between non-numerical and

numerical triples results by increasing the non-numerical results.
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