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1 Introduction and preliminaries
The metric fixed point theory, which has wide common application potential in distinct
quantitative sciences, develops itself in parallel with the developments in applied areas
[8, 14–16]. One of the examples of this trend was given by Echenique [12] who considered
metric fixed point theory in the framework of graphs. Later, Espinola and Kirk [13] applied
some well-known fixed point results and techniques to the graph theory. On the other
hand, in 2008, Jachymski [17] proposed a new contraction, the concept graph contraction,
in order to generalize the distinguished Banach contraction principle.

In this paper, we shall consider generalized Geraghty multi-valued mappings in the con-
text of complete metric spaces endowed with a graph. After investigating the existence and
uniqueness of a fixed point for such mappings, we shall consider a fractional integral equa-
tion [1–7, 9, 10, 18–21, 23–25, 27] and we solve this equation via our obtained results.

Throughout the paper, we presume that all considered sets and subsets are non-empty.
The pair (M, d) denotes a metric space and (M∗, d) represent complete metric space. Let �

be the diagonal of M × M. Assume that Γ is a directed graph with vertex set V (Γ ) which
is coincided with M and edge set E(Γ ) which contains �. Suppose there is not any parallel
edges in G. We shall say that g : M → M is a Banach G-contraction if:

(i) (x, y) ∈ E(Γ ) implies (g(x), g(y)) ∈ E(Γ ), for all x, y ∈ M,
(ii) ∃0 < α < 1 such that, for x, y ∈ M,

(x, y) ∈ E(Γ ) ⇒ d
(
g(x), g(y)

) ≤ αd(x, y).
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Assume that (M, d) be a metric space and Pb,cl(M) be the family of bounded and closed
sets in M. For x ∈ M and M1, M2 ∈ Pb,cl(M),

D(x, M1) = inf
a∈M1

d(x, a),

D(M1, M2) = sup
a∈M1

D(M1, M2).

Define H : Pb,cl(M) × Pb,cl(M) → [0,∞) with

H(M1, M2) = max
{

sup
x∈M1

d(x, M2), sup
y∈M2

d(y, M2)
}

,

for M1, M2 ∈ Pb,cl(M). H is the famous Hausdorff metric.

Lemma 1.1 ([11]) Let (M, d) be a metric space. For M1, M2 ∈ Pb,cl(M) and x, y ∈ M, the
following relations hold:

(1) D(x, M2) ≤ d(x, b), b ∈ M2,
(2) D(x, M2) ≤ H(M1, M2),
(3) D(x, M1) ≤ d(x, y) + D(y, M1),
(4) for all ω ∈ M1, there exists some ϕ ∈ M2 such that d(ω,ϕ) ≤ qH(M1, M2), where

q > 1.

Definition 1.2 ([28]) For a set M, let Γ = (V (Γ ), E(Γ )) be a graph with V (Γ ) = M. Then:
(i) a mapping T : M → Pb,cl(M) is said to be graph preserving if it preserves the edges,

i.e.,

if (x, y) ∈ E(Γ ), then (u, v) ∈ E(Γ ) for all u ∈ Tx and v ∈ Ty,

(ii) mappings S, T : M → Pb,cl(M) are said to be mixed graph preserving respect to h1,
h2 if the preserve the edges, i.e., for x, y ∈ M, if (h1(x), h2(y)) ∈ E(Γ ), then
(x, τ ) ∈ E(Γ ) for all x ∈ Tx and τ ∈ Sy and

if
(
h2(x), h1(y)

) ∈ E(Γ ), then (b, r) ∈ E(Γ ) for all b ∈ Sx and r ∈ Ty.

Consider the class

Ψ :=
{
ψ : [0,∞) → [0,∞), increasing, continuous, and ψ(ct) ≤ cψ(t),

for all c > 1, with ψ(0) = 0
}

.

Let F denote the family of all functions β : [0,∞) → [0, 1).

2 Main results
We shall start this section by introducing the notion of the generalized Geraghty-type
G-multi-valued mapping.

Definition 2.1 On a metric space (M, d), let Γ = (V (Γ ), E(Γ )) be a graph with vertex
set V (Γ ) = M and the set E(Γ ) of its edges such that E(Γ ) ⊇ �. For h1, h2 : M → M and
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S, T : M → Pb,cl(M); S, T are called a generalized h1, h2-Geraghty-type G-multi-valued
mapping provided that

(i) S, T are mixed graph preserving respect to h1, h2;
(ii) for x, y ∈ M with (h1(x), h2(y)) ∈ E(Γ ), there exists L ≥ 0 such that, for

P
(
h1(x), h2(y)

)
= max

{
d
(
h1(x), h2(y)

)
, D

(
h1(x), Tx

)
, D

(
h2(y), Sy

)
,

D(h1(x), Tx) + D(h2(y), Sy)
2

}
and (1)

Q
(
h1(x), h2(y)

)
= min

{
D

(
h1(x), Sy

)
, D

(
h2(y), Tx

)}
, (2)

we have

ψ
(
H(Sx, Ty)

) ≤ γ
(
ψ

(
P
(
h1(x), h2(y)

)))
ψ

(
P
(
h1(x), h2(y)

))

+ Lφ
(
Q

(
h1(x), h2(y)

))
, (3)

and if (h2(x), h1(y)) ∈ E(Γ ) then

ψ
(
H(Sx, Ty)

) ≤ γ
(
ψ

(
P
(
h2(x), h1(y)

)))
ψ

(
P
(
h2(x), h1(y)

))

+ Lφ
(
Q

(
h2(x), h1(y)

))
, (4)

where γ ∈F and ψ ,φ ∈ ψ .

Theorem 2.2 Let (M, d) be a complete metric space endowed with a graph Γ = (V (Γ ),
E(Γ )), h1, h2 : M → M are surjective and S, T : M → Pb,cl(M) generalized h1, h2-Geraghty-
type G-multi-valued mapping in (M, d). Suppose

(i) ∃ x0 ∈ M such that (h1(x0), u) ∈ E(Γ ) for some u ∈ Tx0,
(ii) if (h1(x), h2(y)) ∈ E(Γ ), then (e, f ) ∈ E(Γ ) for all e ∈ Tx and f ∈ Sy and if

(h2(x), h1(y)) ∈ E(Γ ), then (w, r) ∈ E(Γ ) for all w ∈ Sx and r ∈ Ty,
(iii) for {xn}n∈N in M, if xn → x and (xn, xn+1) ∈ E(Γ ) for n ∈N, then there is a

subsequence {xnk }nk∈N such that (xnk , x) ∈ E(Γ ) for nk ∈N.
Then there exist u, v ∈ M such that h1(u) ∈ Tu or h2(v) ∈ Sv.

Proof Regarding that h2 is surjective, one can find x1 ∈ M such that h2(x1) ∈ Tx0 and
(h1(x0), h2(x1)) ∈ E(Γ ). Let q = 1√

γ (ψ(d(h1(x0),h2(x1))))
. Then q > 1, so

0 < D
(
h2(x1), Sx1

) ≤ H(Tx0, Sx1) < qH(Tx0, Sx1).

By Lemma 1.1 and (ii), h1 is surjective, which implies that there exists x2 ∈ M with h1(x2) ∈
Sx1 and (h2(x1), h1(x2)) ∈ E(Γ ), hence

ψ
(
d
(
h2(x1), h1(x2)

))
< ψ

(
qH(Tx0, Sx1)

) ≤ qψ
(
H(Tx0, Sx1)

)

≤ qγ
(
ψ

(
P
(
h1(x0), h2(x1)

)))
ψ

(
P
(
h1(x0), h2(x1)

))

+ qLφ
(
Q

(
h1(x0), h2(x1)

))
, (5)
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where

P
(
h1(x0), h2(x1)

)
= max

{
d
(
h1(x0), h2(x1)

)
, D

(
h1(x0), Tx0

)
, D

(
h2(x1), Sx1

)
,

D(h1(x0), Tx0) + D(h2(x1), Sx1)
2

}

= max
{

d
(
h1(x0), h2(x1)

)
, d

(
h2(x1), h1(x2)

)}
(6)

and

Q
(
h1(x0), h2(x1)

)
= min

{
D

(
h1(x0), Sx0

)
, D

(
h2(x1), Tx0

)}

≤ min
{

d
(
h1(x0), h2(x1)

)
, d

(
h2(x1), h2(x1)

)}
= 0. (7)

If we have

max
{

d
(
h1(x0), h2(x1)

)
, d

(
h2(x1), h1(x2)

)}
= d

(
h2(x1), h1(x2)

)
,

then by (5) we get

ψ
(
d
(
h2(x1), h1(x2)

))
< ψ

(
qH(Tx0, Sx1)

) ≤ qψ
(
H(Tx0, Sx1)

)

≤ qγ
(
ψ

(
P
(
h1(x0), h2(x1)

)))
ψ

(
P
(
h1(x0), h2(x1)

))

+ qLφ
(
Q

(
h1(x0), h2(x1)

))

= qγ
(
ψ

(
d
(
h2(x1), h1(x2)

)))
ψ

(
d
(
h2(x1), h1(x2)

))

=
√

γ
(
ψ

(
d
(
h2(x1), h1(x2)

)))
ψ

(
d
(
h2(x1), h1(x2)

))

< ψ
(
d
(
h2(x1), h1(x2)

))
,

a contradiction.
Hence, we obtain max{d(h1(x0), h2(x1)), d(h2(x1), h1(x2))} = d(h1(x0), h2(x1)) and so by (5)

ψ
(
d
(
h2(x1), h1(x2)

)) ≤
√

γ
(
ψ

(
d
(
h1(x0), h2(x1)

)))
ψ

(
d
(
h1(x0), h2(x1)

))
. (8)

Keeping ψ ∈ ψ , in mind together with
√

γ (ψ(d(h1(x0), h2(x1)))) < 1, we get

ψ

(
1

√
γ (ψ(d(h1(x0), h2(x1))))

d
(
h2(x1), h1(x2)

)
)

≤ 1
√

γ (ψ(d(h1(x0), h2(x1))))
ψ

(
d
(
h2(x1), h1(x2)

))

< ψ
(
d
(
h1(x0), h2(x1)

))
. (9)

Since ψ is increasing, we have

d
(
h2(x1), h1(x2)

) ≤
√

γ
(
ψ

(
d
(
h1(x0), h2(x1)

)))
d
(
h1(x0), h2(x1)

)
.
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Recall that h1(x2) ∈ Sx1 and h2(x1) ∈ Tx0. Choose

q1 =
√

γ (ψ(d(h1(x0), h2(x1))))ψ(d(h1(x0), h2(x1)))
ψ(d(h2(x1), h1(x2)))

.

By (8), we have q1 > 1. If h1(x2) ∈ Tx2, then x2 forms a coincidence point for h1 and T . We
presume that h1(x2) /∈ Tx2. We get

0 < ψ
(
d
(
h1(x2), Tx2

)) ≤ ψ
(
H(Sx1, Tx2)

)
< q1ψ

(
H(Sx1, Tx2)

)
.

Hence, there exists h2(x3) ∈ Tx2 such that (h1(x2), h2(x3)) ∈ E(Γ ) and

ψ
(
d
(
h1(x2), h2(x3)

))
< q1ψ

(
H(Sx1, Tx2)

)

≤ q1γ
(
ψ

(
P
(
h1(x1), h2(x2)

)))
ψ

(
P
(
h1(x1), h2(x2)

))

+ q1Lφ
(
Q

(
h1(x1), h2(x2)

))
.

Similarly, P(h1(x1), h2(x2)) ≤ d(h1(x1), h2(x2)) and Q(h1(x1), h2(x2)) = 0. By (8) and a prop-
erty of (γ ), we have

ψ
(
d
(
h1(x2), h2(x3)

))

≤
√

γ
(
ψ

(
d
(
h1(x1), h2(x2)

)))
ψ

(
d
(
h1(x1), h2(x2)

))

≤
√

γ
(
ψ

(
d
(
h1(x1), h2(x2)

)))√
γ
(
ψ

(
d
(
h1(x0), h2(x1)

)))
ψ

(
d
(
h1(x0), h2(x1)

))
. (10)

By (8) and
√

γ (ψ(d(h1(x0), h2(x1)))) < 1, we have

ψ
(
d
(
h1(x1), h2(x2)

)) ≤ ψ
(
d
(
h1(x0), h2(x1)

))
.

The function γ is increasing, by (10), we obtain

ψ
(
d
(
h1(x2), h2(x3)

)) ≤ (√
γ
(
ψ

(
d
(
h1(x0), h2(x1)

))))2
ψ

(
d
(
h1(x0), h2(x1)

))
. (11)

Again, by (9),

d
(
h1(x2), h2(x3)

) ≤ (√
γ
(
ψ

(
d
(
h1(x0), h2(x1)

))))2d
(
h1(x0), h2(x1)

)

manifestly, h1(x2) �= h2(x3). Take

q2 =
(
√

γ (ψ(d(h1(x0), h2(x1)))))2ψ(d(h1(x0), h2(x1)))
ψ(d(h1(x2), h2(x3)))

.

Then q2 > 1. If h2(x3) ∈ Sx3, then x3 is a coincidence point of h2 and S. Assume that h2(x3) /∈
Sx3. Then

0 < ψ
(
d
(
h2(x3), Sx3

)) ≤ ψ
(
H(Tx2, Sx3)

)
< q2ψ

(
H(Tx2, Sx3)

)
.
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Thus there exists h1(x4) ∈ Sx3 such that (h2(x3), h1(x4)) ∈ E(Γ ) and

ψ
(
d
(
h2(x3), h1(x4)

))
< q2ψ

(
H(Tx2, Sx3)

)

≤ q2γ
(
ψ

(
P
(
h1(x2), h2(x3)

)))
ψ

(
P
(
h1(x2), h2(x3)

))

+ q2Lφ
(
Q

(
h1(x2), h2(x3)

))
. (12)

Similarly, P(h1(x2), h2(x3)) ≤ d(h1(x2), h2(x3)) and Q(h1(x2), h2(x3)) = 0.
So, by (12),

ψ
(
d
(
h2(x3), h1(x4)

))

≤
√

γ
(
ψ

(
d
(
h1(x2), h2(x3)

)))
ψ

(
d
(
h1(x2), h2(x3)

))

≤
√

γ
(
ψ

(
d
(
h1(x2), h2(x3)

)))(√
γ
(
ψ

(
d
(
h1(x0), h2(x1)

))))2

× ψ
(
d
(
h1(x0), h2(x1)

))
. (13)

By (11) and
√

γ (ψ(d(h1(x0), h2(x1))))
2

< 1, we have

ψ
(
d
(
h1(x2), h2(x3)

)) ≤ ψ
(
d
(
h1(x0), h2(x1)

))
.

Again, γ is increasing, so using (13),

d
(
h2(x3), h1(x4)

) ≤ (√
γ
(
ψ

(
d
(
h1(x0), h2(x1)

))))3d
(
h1(x0), h2(x1)

)
.

It is clear that h2(x3) �= h1(x2). Put

q3 =
(
√

γ (ψ(d(h1(x0), h2(x1)))))3ψ(d(h1(x0), h2(x1)))
ψ(d(h1(x2), h2(x3)))

.

Then q3 > 1. Continuing this process, we construct a sequence {h(xn)} in M such that

h1(x2n) ∈ Sx2n–1, h2(x2n–1) ∈ T(x2n–2)
(
h1(x2n–2), h1(x2n–1)

)
,
(
h1(x2n–1), h1(x2n)

) ∈ E(Γ ).

Define the sequence {h(xn)} as follows:

h(xn) =

⎧
⎨

⎩
h1(xn), n is even,

h2(xn), n is odd.

Let t =
√

γ (ψ(d(h1(x0), h2(x1)))), then 0 < t < 1. We have

d
(
h(xn), h(xn+1)

) ≤ tnd
(
h1(x0), h2(x1)

)
.

Since 0 < t < 1, we have

∞∑

n=0

(
d
(
h(xn), h(xn+1)

)) ≤ d
(
h1(x0), h2(x1)

) ∞∑

n=0

tn < ∞.
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Thus, the sequence {h(xn)} is Cauchy in (M, d). Since M is complete, the sequence h(xn)
converge to point w for some w ∈ M. Let u, v ∈ M with h1(u) = w = h2(v). By (iii), there
exists {h(xnk )} such that (h(xnk ), h1(u)) ∈ E(Γ ) for any n ∈ N. We assert that h1(u) ∈ Tu or
h2(v) ∈ Sv.

Let A = {nk|nk is even} and B = {nk|nk is odd}. Then obviously A ∪ B is infinite and so
at least A or B must be infinite. In the case that A is infinite, for each h2(xnk +1), nk ∈ A,
we have

D
(
h2(v), S(v)

) ≤ d
(
h2(v), h2(xnk +1)

)
+ D

(
h2(xnk +1), S(v)

)

≤ d
(
h2(v), h2(xnk +1)

)
+ H

(
T(xnk ), S(v)

)

≤ d
(
h2(v), h2(xnk +1)

)
+ γ

(
ψ

(
P
(
h1(xnk ), h2(v)

)))
ψ

(
P
(
h1(xnk ), h2(v)

))

+ Lφ
(
Q

(
h1(xnk ), h2(v)

))

= d
(
h2(v), h2(xnk +1)

)
+ γ

(
ψ

(
d
(
h1(xnk ), h1(v)

)))
ψ

(
d
(
h1(xnk ), h2(v)

))
,

where

P
(
h1(xnk ), h2(v)

)
= max

{
d
(
h1(xnk ), h2(v)

)
, D

(
h1(xnk ), Txnk

)
, D

(
h2(v), Sv

)
,

D(h1(xnk ), Txnk ) + D(h2(v), Sv)
2

}
and (14)

Q
(
h1(xnk ), h2(v)

)
= min

{
D

(
h1(xnk ), Sv

)
, D

(
h2(v), Txnk

)}
.

With n → ∞, we get Q(h1(xnk ), h2(v)) = 0 and with regard to (14) we obtain

ψ
(
D

(
h2(v), S(v)

)) ≤ γ
(
ψ

(
h2(v), S(v)

))
ψ

(
D

(
h2(v), S(v)

))
< ψ

(
D

(
h2(v), S(v)

))
,

which is a contradiction, unless D(h2(v), S(v)) = 0. Since Tv is closed, thus h2(v) ∈ S(v).
Similarly, we can prove that h1(v) ∈ T(v) when B is infinite. This completes the proof. We
notice also that if both A, B are infinite, then h1(v) ∈ T(v) and h2(v) ∈ S(v). �

Example 2.3 Let M = [0, 1] and d be the standard metric on M. Let Γ = (V (Γ ), E(Γ )) be
a directed graph with V (Γ ) = M and

E(Γ ) =
{

(x, x),
(

0,
1
4

)
,
(

1
4

, 0
)

,
(

0,
1

16

)
,
(

1
16

, 0
)

,
(

1
4

,
1

16

)
,
(

1
16

,
1
4

)
: x ∈ M

}
.

Let T : M → Pb,cl(M) be defined by

Tx =

⎧
⎪⎪⎨

⎪⎪⎩

{ 1
4 } if x = 1,

{0, 1
4 } if x ∈ (0, 1) – { 1

4 , 1
2 },

{ 1
16 } if x ∈ {0, 1

4 , 1
2 },

Sx =

⎧
⎨

⎩
{ 1

16 } if x = 0, 1
16 , 1

4 , 1,

{0, 1
16 } if x ∈ (0, 1) – { 1

16 , 1
4 }.
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Let h1, h2 : M → M be defined by h1(x) = x2, h2(x) = x. Consider ψ(t) = t and γ (t) = t+1
t+2 .

Then it is evident that S, T are mixed Geraghty-type G-multi-valued respect to h1,
h2. Note that (i), (ii) and (iii) of Theorem 2.2 hold. Besides, if (h(x), h(y)) ∈ E(Γ ), then
H(Th(x), Th(y)) = 0. Hence, for all x, y ∈ M we have (h(x), h(y)) ∈ E(Γ ), ergo

ψ
(
H(Sx, Ty)

) ≤ γ
(
ψ

(
d
(
h1(x), h2(y)

)))
ψ

(
d
(
h1(x), h2(y)

))
,

for x, y ∈ M with (h1(x), h2(y)) ∈ E(Γ ).
If x, y ∈ M with (h2(x), h1(y)) ∈ E(Γ ), then

ψ
(
H(Sx, Ty)

) ≤ γ
(
ψ

(
d
(
h2(x), h1(y)

)))
ψ

(
d
(
h2(x), h1(y)

))
.

By Theorem 2.2, there exist u, v ∈ M such that h1(u) ∈ Tu or h2(v) ∈ Sv. In this example,
u = 1

4 or u = 1
16 .

If in Theorem 2.2, we set h1 = h2 = h, then we get the following corollary.

Corollary 2.4 Let (M, d) be a complete metric space with the directed graph Γ , h : M → M
is surjective map and S, T : M → Pb,cl(M) be h-graph preserving with

ψ
(
H(Sx, Ty)

) ≤ γ
(
ψ

(
d
(
h(x), h(y)

)))
ψ

(
d
(
h(x), h(y)

))
,

for all x, y ∈ M with (h(x), h(y)) ∈ E(Γ ). Suppose
(i) there exists x0 ∈ M such that (h(x0), u) ∈ E(Γ ) for some u ∈ Tx0;

(ii) for any sequence {xn}n∈N in M, if xn → x and (xn, xn+1) ∈ E(Γ ) for n ∈N, then there is
a subsequence {xnk }nk∈N such that (xnk , x) ∈ E(Γ ) for nk ∈N.

Then there exist u, v ∈ M such that h(u) ∈ Tu or h(v) ∈ Sv.

Definition 2.5 Let (M, d) be a metric space endowed with a partial order ≤. For each
M1, M2 ∈ M, M1 � M2 if ω1 ≤ ω2 for any ω1 ∈ M1, ω2 ∈ M2, h : M → M a surjective map,
and T : M → Pb,cl(M). T is said to be h-increasing if for any x, y ∈ M, h(x) ≤ h(y) implies
Tx � Ty.

Theorem 2.6 Let (M, d) be a complete metric space with partially order ≤, h : M → M be
a surjective map and T : M → Pb,cl(M) be a multi-valued mapping. Suppose that

(i) T is h-increasing;
(ii) there exist x0 ∈ M and u ∈ Tx0 such that h(x0) ≤ u;

(iii) for each sequence xk such that h(xk) ≤ h(xk+1), k ∈N and h(xk) converges to h(x) for
some x ∈ M, then h(xk) ≤ h(x);

(iv) for x, y ∈ M with h(x) ≤ h(y), we have

ψ
(
H(Tx, Ty)

) ≤ γ
(
ψ

(
d
(
h(x), h(y)

)))
ψ

(
d
(
h(x), h(y)

))
,

where γ ∈F and ψ ,φ ∈ ψ .
Then there is u ∈ M so that h(u) ∈ Tu. In addition, if h is injective, then there is a unique
u ∈ M such that h(u) ∈ Tu.
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Proof Let Γ = (V (Γ ), E(Γ )), be a graph with V (Γ ) = M and

E(Γ ) =
{

(x, y)|x ≤ y
}

,

let (h(x), h(y)) ∈ E(Γ ), then h(x) ≤ h(y) and by (i), Tx � Ty. For each u ∈ Tx, v ∈ Ty, we have
u ≤ v, thus (u, v) ∈ E(Γ ). That is, T is h-graph preserving. By (ii), there exist x0 ∈ M and
u ∈ Tx0 such that h(x0) ≤ u. So (h(x), u) ∈ E(Γ ) and hence the property (i) in Corollary 2.4
is satisfied. Moreover, we obtain the property (ii) of Corollary 2.4 from the assumption
(iii). Set S = T , then the S, T are h-graph preserving mappings and fulfill

ψ
(
H(Tx, Ty)

) ≤ γ
(
ψ

(
d
(
h(x), h(y)

)))
ψ

(
P
(
h(x), h(y)

))
,

for all x, y ∈ M with (h(x), h(y)) ∈ E(Γ ). By Corollary 2.4 we get h(u) ∈ Tu for some u ∈ M.
Now, in addition, we suppose that h is injective. Let u, v ∈ M be such that h(u) ∈ Tu and

h(v) ∈ Tv. Suppose, on the contrary, that h(u) �= h(v). We assume, without loss of generality,
that h(u) < h(v). Since h(u) ∈ Tu and h(v) ∈ Tv, it yields D(h(u), Tu) = D(h(v), Tv) and hence

ψ
(
d
(
h(u), h(v)

)) ≤ ψ
(
H(Tu, Tv)

) ≤ γ
(
ψ

(
d
(
h(u), h(v)

)))
ψ

(
d
(
h(u), h(v)

))
,

< ψ
(
d
(
h(u), h(v)

))
.

This leads to a contradiction. Thus h(u) = h(v). Since h is injective, we have u = v. �

Corollary 2.7 Let (M, d) be a complete metric space endowed with a graph Γ = (V (Γ ),
E(Γ )), S, T : M → M be generalized mappings such that

ψ
(
d(Sx, Ty)

) ≤ γ
(
ψ

(
d(x, y)

))
ψ

(
d(x, y)

)
, (15)

mapping in (M, d). Suppose that
(i) ∃x0 ∈ M such that (x0, u) ∈ E(Γ ) for some u ∈ Tx0,

(ii) if (x, y) ∈ E(Γ ), then (e, f ) ∈ E(Γ ) for all e ∈ Tx and f ∈ Sy and if (x, y) ∈ E(Γ ), then
(w, r) ∈ E(Γ ) for all w ∈ Sx and r ∈ Ty,

(iii) for {xn}n∈N in M, if xn → x and (xn, xn+1) ∈ E(Γ ) for n ∈N, then there is a
subsequence {xnk }nk∈N such that (xnk , x) ∈ E(Γ ) for nk ∈N.

Then there exist u, v ∈ M such that u ∈ Tu or v ∈ Sv.

3 Application
In this section, we apply our theorem for a solution of the following integral system:

⎧
⎨

⎩
x(t) =

∫ b
a K(t, s)f (t, s, x(s), y(s)) ds + h(t),

y(t) =
∫ b

a K(t, s)f (t, s, y(s), x(s)) ds + h(t), t ∈ [a, b],
(16)

where X := C([a, b],R) with ‖x‖∞ = supt∈[a,b] |x(t)|, for x ∈ C([a, b],R).
Let G be a graph, defined by V (Γ ) = X, and

E(Γ ) =
{

(x, y) ∈ X × X : x(t) ≤ y(t) or y(t) ≤ x(t) for t ∈ [a, b]
}

.
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Let d be the metric induced by the norm. It follows that (X, d) is a complete metric space
endowed with a directed graph Γ . Define mappings S, T : X → X by

⎧
⎨

⎩
Sx(t) =

∫ b
a K(t, s)f (t, s, x(s), y(s)) ds + h(t),

Ty(t) =
∫ b

a K(t, s)f (t, s, y(s), x(s)) ds + h(t),

where x, y ∈ C([a, b],R).

Theorem 3.1 Consider Eq. (16) and suppose that
1. f : [a, b] × [a, b] ×R×R →R is continuous function and there exists M > 0 such that

maxt∈[a,b]
∫ b

a K(t, s) ds < M.
2.

∣
∣f

(
t, s, y(s), x(s)

)
– f

(
t, s, x(s), y(s)

)∣∣ ≤ 1
α

|y(s) – x(s)|2
1 + |y(s) – x(s)| .

3. There exists a function x0 ∈ X such that

x0(t) ≤
∫ b

a
K(t, s)f

(
t, s, x0(s), Tx0(s)

)
ds + h(t), t ∈ [a, b].

4. The inequality x(s) ≤ y(s) implies Tx(s) ≤ Sy(s) and Sx(s) ≤ Ty(s).
5. For {xn}n∈N in M, if xn → x and xn(t) ≤ xn+1(t) for n ∈N, then there is a subsequence

{xnk }nk∈N such that xnk (t) ≤ x(t) for nk ∈N, t ∈ [a, b].
Then there exist u, v ∈ X such that u(t) =

∫ b
a K(t, s)f (t, s, u(s), v(s)) ds + h(t) or v(t) =

∫ b
a K(t, s)f (t, s, v(s), u(s)) ds + h(t).

Proof Let x, y ∈ X, using (2), we get

∣∣Sx(t) – Ty(t)
∣∣ =

∣∣∣
∣

∫ b

a
K(t, s)f

(
t, s, x(s), y(s)

)
ds –

∫ b

a
K(t, s)f

(
t, s, y(s), x(s)

)
ds

∣∣∣
∣

≤ sup
t∈[a,b]

∣∣f
(
t, s, x(s), y(s)

)
– f

(
t, s, y(s), x(s)

)∣∣M

≤ 1
M

|x(s) – y(s)|2
1 + |x(s) – y(s)|M =

|x(s) – y(s)|2
1 + |x(s) – y(s)|

= γ
(∣∣x(s) – y(s)

∣
∣)

∣
∣x(s) – y(s)

∣
∣,

where γ (t) = t
t+1 . With setting ψ(t) = t, the condition 15 in Corollary 2.7 holds. With con-

sidering (3) and (4) from assumption of theorem and by definition of the graph Γ we
deduce the conditions (i) and (ii) of in Corollary 2.7 hold. Also by the condition (5) from
assumption of theorem, the condition (iii) of Corollary 2.7 holds. As a result, we have

u(t) =
∫ b

a
K(t, s)f

(
t, s, u(s), v(s)

)
ds + h(t), or

v(t) =
∫ b

a
K(t, s)f

(
t, s, v(s), u(s)

)
ds + h(t). �

Now we use the results of our findings to solve fractional differential equations.
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Definition 3.2 ([22, 26]) The Riemann–Liouville fractional integral of order α > 0 of a
continuous function f : (0, +∞) → (–∞, +∞) is given by

Iα
0+ f (ς ) =

1
Γ (α)

∫ ς

0
(ς – η)α–1f (η) dη,

provided the right-hand side is pointwise defined on (0, +∞).

Definition 3.3 ([22, 26]) The Riemann–Liouville fractional derivative of order α > 0 of a
continuous function f : (0, +∞) → (–∞, +∞) is given by

Dα
0+ f (ς ) =

1
Γ (n – α)

(
d
dt

)n ∫ ς

0
(ς – η)n–α–1f (η) dη,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right-
hand side is pointwise defined on (0, +∞).

In this paper we discuss the local existence and uniqueness of positive solutions for the
following coupled system of fractional boundary value problem subject to integral bound-
ary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+ u(ς ) + f (ς , u(ς ), v(ς )) = 0,

Dα
0+ v(ς ) + f (ς , v(ς ), u(ς )) = 0, 0 < ς < 1,

u(0) = 0, u(1) =
∫ 1

0 φ(ς )u(ς ) dς ,

v(0) = 0, v(1) =
∫ 1

0 ψ(ς )v(ς ) dς ,

(17)

where 1 < α ≤ 2, φ,ψ ∈ L1[0, 1] are nonnegative and f ∈ C([0, 1] × [0,∞), [0,∞)) and D
is the standard Riemann–Liouville fractional derivative. The functions φ(ς ), ψ(ς ) satisfy
the following conditions:

(Q) φ,ψ : [0, 1] → [0, +∞) with φ,ψ ∈ L1[0, 1]

and

σ1 :=
∫ 1

0
φ(ς )ςα–1 dς ;

σ2 :=
∫ 1

0
ςα–1(1 – ς )φ(ς ) dς , ς ∈ (0, 1).

Lemma 3.4 ([29]) If
∫ 1

0 φ(ς )ςα–1 dς �= 1, then for any σ ∈ C[0, 1], the unique solution of
the following boundary value problem:

⎧
⎨

⎩
Dα

0+ u(ς ) + σ (ς ) = 0, 0 < ς < 1,

u(0) = 0, u(1) =
∫ 1

0 φ(ς )u(ς ) dς ,

is given by

u(ς ) =
∫ 1

0
G1α(ς ,η)σ (η) dη,
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where

Gα(ς ,η) = G1α(ς ,η) + G2α(ς ,η),

G1α(ς ,η) =
1

Γ (α)

⎧
⎨

⎩
ςα–1(1 – η)α–1 – (η – ς )α–1,

ςα–1(1 – η)α–1,
(18)

G2α(ς ,η) =
ςα–1

1 –
∫ 1

0 φ(ς )ςα–1 dς

∫ 1

0
φ(ς )G1α(ς ,η) dς .

Then Gα(ς ,η) is a Green’s function.

Lemma 3.5 ([29]) Let α ∈ (1, 2]. Assume that (Q) holds. Then the functions G1α(ς ,η) have
the following property:

(α – 1)σ2η(1 – η)α–1ςα–1

(1 – σ1)Γ (α)
≤ Gα ≤ (1 – η)α–1ςα–1

Γ (α)(1 – σ1)
.

Lemma 3.6 ([29]) Assume that (Q) holds and f (y, x, y) continuous, then (u, v) ∈ X × X is a
solution of the system (17) if and only if it is a solution of the integral equations

⎧
⎨

⎩
u(y) =

∫ 1
0 Gα(y, x)f (x, u(x), v(x)) dx,

v(y) =
∫ 1

0 Gα(y, x)f (x, v(x), u(x)) dx.

Define mappings S, T : X → X by

⎧
⎨

⎩
Su(y) =

∫ 1
0 Gα(y, x)f (x, u(x), v(x)) dx,

Tv(y) =
∫ 1

0 Gα(y, x)f (x, v(x), u(x)) dx.

Theorem 3.7 Consider Eq. (17) and suppose that
1. f : [0, 1] × [0,∞) × [0,∞) →R is continuous function such that

∣
∣f

(
t, s, y(s), x(s)

)
– f

(
t, s, x(s), y(s)

)∣∣ ≤ (1 – s)α–1ςα–1

Γ (α)
|y(s) – x(s)|2

1 + |y(s) – x(s)| .

2. There exists a function x0 ∈ X such that

x0(t) ≤
∫ b

a
K(t, s)f

(
t, s, x0(s), Tx0(s)

)
ds, t ∈ [a, b].

3. The inequality x(s) ≤ y(s) implies Tx(s) ≤ Sy(s) and Sx(s) ≤ Ty(s).
4. For {xn}n∈N in M, if xn → x and xn(t) ≤ xn+1(t) for n ∈N, then there is a subsequence

{xnk }nk∈N such that xnk (t) ≤ x(t) for nk ∈N, t ∈ [a, b].
Then there exist u, v ∈ X such that

u(t) =
∫ b

a
Gα(t, s)f

(
t, s, u(s), v(s)

)
ds or

v(t) =
∫ b

a
Gα(t, s)f

(
t, s, v(s), u(s)

)
ds.
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Proof Let x, y ∈ X, using (2), we get

∣
∣Sx(t) – Ty(t)

∣
∣ =

∣∣
∣∣

∫ b

a
Gα(t, s)f

(
t, s, x(s), y(s)

)
ds –

∫ b

a
Gα(t, s)f

(
t, s, y(s), x(s)

)
ds

∣∣
∣∣

≤ sup
t∈[a,b]

∣∣f
(
t, s, x(s), y(s)

)
– f

(
t, s, y(s), x(s)

)∣∣ Γ (α)
(1 – s)α–1ςα–1

≤ (1 – s)α–1ςα–1

Γ (α)
|x(s) – y(s)|2

1 + |x(s) – y(s)|
Γ (α)

(1 – s)α–1ςα–1 =
|x(s) – y(s)|2

1 + |x(s) – y(s)|
= γ

(∣∣x(s) – y(s)
∣∣)∣∣x(s) – y(s)

∣∣,

where γ (t) = t
t+1 . With setting ψ(t) = t, the condition (15) in Corollary 2.7 holds. With

considering (3) and (4) from the assumption of the theorem and by definition of the graph
Γ we deduce the conditions (i) and (ii) in Corollary (2.7) hold. Also by the condition (5)
from assumption of theorem, the condition (iii) of Corollary 2.7 holds. As a result, we have

u(t) =
∫ b

a
Gα(t, s)f

(
t, s, u(s), v(s)

)
ds or

v(t) =
∫ b

a
Gα(t, s)f

(
t, s, v(s), u(s)

)
ds. �
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