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In this article, we present a new subdivision scheme by using an interpolatory subdivision scheme and an approximating
subdivision scheme. (e construction of the subdivision scheme is based on translation of points of the 4-point interpolatory
subdivision scheme to the new position according to three displacement vectors containing two shape parameters. We first study
the characteristics of the new subdivision scheme analytically and then present numerical experiments to justify these analytical
characteristics geometrically. We also extend the new derived scheme into its bivariate/tensor product version. (is bivariate
scheme is applicable on quadrilateral meshes to produce smooth limiting surfaces up to C3 continuity.

1. Introduction

CAGD is considered as an emerging research field of compu-
tationalmathematics, which has been fast growing in the last two
decades due to a vast range of applications in a number of
scientific fields and in real life. It has been extended into new
directions owing to several generalizations and applications.(e
field is concerned with modeling and designing of different
complex objects with the help of elegant mathematical algo-
rithms. In CAGD, subdivision schemes have become one of the
most important, efficient, and emerging modeling tools for
designing and modeling of objects. It defines a smooth curve
after applying a sequence of successive refinements. (e sub-
division schemes are main approaches used to create a curve
from an initial control polygon or a surface from an initial

control mesh by subdividing them according to the refining
rules. (ese refining rules take the initial control polygon or
mesh to produce a sequence of finer polygons or meshes
converging to a smooth limiting curve or surface.

Subdivision schemes are classified into interpolatory sub-
division schemes and approximating subdivision schemes.
Interpolatory subdivision schemes produce the limit curves that
pass through all the initial points, whereas the approximating
subdivision schemes generate the limit curves that do not pass
through the initial control points. (e combined subdivision
schemes produce the limit curves that may or may not pass
through the initial control points. So, their construction has
become a new and important trend in CAGD.Different variants
of a method to construct the ternary combined subdivision
schemes from ternary approximating subdivision schemes have
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been discussed in [1–3]. Hameed and Mustafa [4] discussed a
recursive process for constructing the family of combined binary
subdivision schemes. Han and Jia [5] analyzed the approxi-
mation and smoothness properties of fundamental and refinable
functions that arise from interpolatory subdivision schemes in
multidimensional spaces. (e push-back operators have been
used by [6–9] for the construction of new subdivision schemes.
In this article, we give a new method to construct a Modified
Combined Ternary Subdivision Scheme (MCTSS). We start
from two schemes, one of which is interpolatory with good
approximation order and the other one is approximating with
good continuity. Hence the MCTSS gives good approximation
order and continuity. (e motivation for the construction of a
new combined subdivision scheme with shape parameters is
explained in the following.

1.1. Motivation. We construct a new subdivision scheme
with shape parameters by using interpolatory and approx-
imating subdivision schemes so that shape parameters allow
the limit curves to move outside the interpolatory curve,
inside the approximating curve, or in between the inter-
polatory and approximating curves. (is can be seen in
Figure 1. In this figure, red bullets are the initial control
points. Blue and green lines show the curves generated by
schemes (10) and (11), respectively. (ese schemes are also
the special cases of the MCTSS. Black lines show the curves
generated by the MCTSS for (α, β) � (0.15, 0.3),
(α, β) � (− 0.15, − 0.3), (α, β) � (− 0.5, − 1), and
(α, β) � (− 1.5, − 3) from outside to inside, respectively.

(e remainder of this article is organized as follows. In
Section 2, we present basic notations and results. In Section
3, the framework for the construction of MCTSS is pre-
sented. In Section 4, we study the properties of the MCTSS
analytically. Comparison with existing schemes is given in
Section 5. We give numerical examples of the MCTSS in
Section 6. In Section 7, we extend the MCTSS into one of its
bivariate versions. Conclusions are given in Section 8.

2. Basic Notations and Results

A univariate linear ternary subdivision scheme Sa is based on
repeated application of the refinement rules, which are used
to map a polygon Pk � Pk

i􏼈 􏼉i∈Z ∈ l(Z) to a refined polygon
Pk+1 � Pk+1

i􏼈 􏼉i∈Z ∈ l(Z). (e general compact form of these
refinement rules is defined as

p
k+1
3i+ξ � 􏽘

j∈Z
a3j+ξp

k
i+j, ξ � 0, 1, 2, (1)

where l(Z) denotes the space of scaler-valued sequences.
(e sequence a � aj􏽮 􏽯

j∈Z is called the refinement mask. (e
polynomial that uses this mask as coefficient is called the
Laurent polynomial. (erefore, the Laurent polynomial
corresponding to subdivision scheme (1) is

a(z) � 􏽘
j∈Z

a3jz
3j

+ 􏽘
j∈Z

a3j+1z
3j+1

+ 􏽘
j∈Z

a3j+2z
3j+2

.
(2)

(e necessary condition for the convergence of a ternary
subdivision scheme is

􏽘
j∈Z

a3j � 1, 􏽘
j∈Z

a3j+1 � 1, 􏽘
j∈Z

a3j+2 � 1, (3)

which is equivalent to the following relation:

a(1) � 3 and a e
(2πi/3)j

􏼐 􏼑 � 0, where, j � 1, 2& i �
���
− 1

√
,

(4)

and (4) is also called the basic sum rule of the ternary
subdivision scheme (1).

Definition 1 (see [2]). A combined ternary subdivision
scheme is characterized by a parameter-dependent Laurent
polynomial a(z), z ∈ C\ 0{ }, which satisfies the odd-symmetry
property a(z) � a(z− 1) for all choices of the shape parameters
and the interpolation property 􏽐

2
j�0 a(e(2πi/3)jz) � 3 only for

some special choices of the shape parameters.

Theorem 1 (see [10]). A convergent subdivision scheme Sa

corresponding to the Laurent polynomial,

a(z) �
1 + z + z2

3z2
􏼠 􏼡

n

b(z), (5)

is Cn-continuous if and only if the subdivision scheme Sb

corresponding to the Laurent polynomial b(z) is convergent.

Theorem 2 (see [10]). İe scheme Sa corresponding to the
Laurent polynomial a(z) converges, if and only if the scheme
Sb corresponding to the Laurent polynomial b(z) is con-
tractive, and the scheme Sb is contractive, if ‖bℓ‖∞ < 1, for
some ℓ > 0, with

b
ℓ����
����∞ � max 􏽘

i∈Z
b
ℓ
k− 3ℓi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌: 0≤ k< 3ℓ
⎧⎨

⎩

⎫⎬

⎭, (6)

where bℓi is the mask of the scheme Sℓb with Laurent polynomial
bℓ(z) � b(z)b(z3), . . . , b(z3ℓ− 1).

Let ρd be the space of polynomials of degree d and
p ∈ ρd. A subdivision operator Sa is said to generate poly-
nomials of degree d if Sa(p) � g, where g ∈ ρd. A subdi-
vision operator is said to reproduce polynomials of degree d

if Sa(p) � p.

Theorem 3 (see [11]). A convergent ternary subdivision
scheme generates polynomials of degree d if and only if it
satisfies the following condition:

a
(t)

e
(2πi/3)j

􏼐 􏼑 � 0, where, t � 0, 1, . . . , d and j � 1, 2,

(7)

where a(t) denotes the t-th derivative of a(z) with respect to z.

Theorem 4 (see [11]). A convergent subdivision scheme
reproduces polynomials of degree d if and only if it generates
polynomials of degree d and satisfies the following condition:
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a
(t)

(1) � 3􏽙
t− 1

l�0
(τ − l), where τ �

a′(1)

3
, t � 0, 1, 2, . . . , d.

(8)

Convexity is an important shape property. (e appli-
cations of convexity are in the following:

(i) Designing of telecommunication system
(ii) Nonlinear programming
(iii) Engineering optimization theory
(iv) Approximation theory, and many other fields

In order to analyze this property for our subdivision scheme,
we use the following notations and results.

Definition 2 (see [12]). (e mask/coefficient of an n-th
degree polynomial a(z) � 􏽐

n
i�0 aiz

i is said to be bell-shaped
if it satisfies

Supp(a) � [0, n],

ai > 0, i ∈ [0, n],

ai � an− i, i ∈ [0, n],

ai < ai+1, i ∈ 0,
n − 1
2

􏼔 􏼕,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where a � a0, a1, . . . , an􏼈 􏼉 is the set of masks/coefficients.
A subdivision scheme is said to be monotonicity-pre-

serving if it preserves the monotonicity of the starting se-
quence. (at is, at any refinement/subdivision step k> 0, the
difference sequence ΔPk is positive/negative whenever the
difference sequence ΔP0 is positive/negative, respectively.
We use the following result of [12] to analyze this property
for our subdivision scheme.

Theorem 5 (see [12]). Any ternary subdivision scheme as-
sociated with a bell-shaped mask (9) satisfying the basic sum
rule (4) is monotonicity-preserving.

A subdivision scheme preserves convexity if it preserves
the convexity of the starting sequence. (at is, at any re-
finement step k> 0, the difference sequence Δ2Pk is positive/
negative whenever the difference sequence Δ2P0 is positive/
negative, respectively. We use the following result of [12] to
analyze convexity-preserving property for our subdivision
scheme.

Theorem 6 (see [12]). Any ternary subdivision scheme as-
sociated with a bell-shaped mask (9) such that its Laurent
polynomial a(z) has a factor (1 + z + z2)2 is convexity-
preserving.

3. Framework for the Construction of
the MCTSS

We construct a new combined approximating and inter-
polating subdivision scheme with two shape parameters.(e
method that we adopt for the construction of the new
subdivision scheme is described here. Here, we provide the
subdivision rules of MCTSS in a vector approach. For this,
firstly we take the ternary 4-point interpolating subdivision
scheme presented in [13]:

P
k+1
3i

P
k+1
3i+1

P
k+1
3i+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
1
81

0 81 0 0

− 5 60 30 − 4

− 4 30 60 − 5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P
k
i− 1

P
k
i

P
k
i+1

P
k
i+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

Now, we take the following ternary 4-point approxi-
mating B-spline scheme of degree 4:
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Figure 1: Curves produced by the MCTSS for different values of shape parameters.
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Q
k+1
3i

Q
k+1
3i+1

Q
k+1
3i+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

1
81

15 51 15 0

5 45 30 1

1 30 45 5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P
k
i− 1

P
k
i

P
k
i+1

P
k
i+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

Now differences between the points of (11) and the
points of (10) give three displacement vectors, which are
defined as follows:

D
k+1
3i

D
k+1
3i+1

D
k+1
3i+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

1
81

− 15 30 − 15 0

− 10 15 0 − 5

− 5 0 15 − 10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P
k
i− 1

P
k
i

P
k
i+1

P
k
i+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

Now we obtain a new combined ternary subdivision
scheme with two shape parameters by moving the points
P

k+1
3i , Pk+1

3i+1, and P
k+1
3i+2 of (10) to the new position according to

the displacement vectors αDk+1
3i , (β − α)Dk+1

3i+1, and
(β − α)Dk+1

3i+2, respectively, where α and β are the shape
parameters. (e shape parameters are chosen in such a way
that the interpolating and approximating behaviors of the
new subdivision scheme depend on the shape parameter α,
while β is used only for providing tension in the curves.
Mathematically,

P
k+1
3i

P
k+1
3i+1

P
k+1
3i+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

P
k+1
3i

P
k+1
3i+1

P
k+1
3i+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

α 0 0

0 (β − α) 0

0 0 (β − α)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D
k+1
3i

D
k+1
3i+1

D
k+1
3i+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(13)

Hence, we get the following combined subdivision
scheme with two shape parameters:

P
k+1
3i

P
k+1
3i+1

P
k+1
3i+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
1
81

− 15α 81 + 30α − 15α 0

− 5 − 10(β − α) 60 + 15(β − α) 30 − 4 − 5(β − α)

− 4 − 5(β − α) 30 60 + 15(β − α) − 5 − 10(β − α)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P
k
i− 1

P
k
i

P
k
i+1

P
k
i+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

Hence, the mask of scheme (14) is

aα,β �
1
81

− 15α 81 + 30α − 15α 0

− 5 − 10(β − α) 60 + 15(β − α) 30 − 4 − 5(β − α)

− 4 − 5(β − α) 30 60 + 15(β − α) β − α(β − α)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (15)

and, equivalently,
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aα,β �

c− 3,α,β c0,α,β c3,α,β 0

c− 4,α,β c− 1,α,β c2,α,β c5,α,β

c− 5,α,β c− 2,α,β c1,α,β c4,α,β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (16)

where

c− 5,α,β �
1
81

− 4 − 5(β − α)􏼈 􏼉,

c− 4,α,β �
1
81

− 5 − 10(β − α)􏼈 􏼉,

c− 3,α,β �
− 15α
81

,

c− 2,α,β �
30
81

,

c− 1,α,β �
1
81

60 + 15(β − α)􏼈 􏼉,

c− 1,α,β
1
81

(81 + 30α){ },

c1,α,β �
1
81

60 + 15(β − α)􏼈 􏼉,

c2,α,β �
30
81

,

c3,α,β �
− 15α
81

,

c4,α,β �
1
81

− 5 − 10(β − α)􏼈 􏼉,

c5,α,β �
1
81

− 4 − 5(β − α)􏼈 􏼉.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

(e Laurent polynomial corresponding to scheme (14) is

aα,β(z) � 􏽘
5

i�− 5
ci,α,βz

i
, (18)

where ci,α,β : i � − 5, . . . , 5 are defined in (17).

Remark 1. Saα,β
is the subdivision scheme, corresponding to

the Laurent polynomial aα,β(z). We obtain several sub-
schemes from scheme (14) for special choices of shape
parameters. (at is, Sa0,β

, Saα,0
, Saα,2α

, and Sa(β/2),β
denote the

subdivision schemes obtained from scheme (14) for
(α, β) � (0, β), (α, β) � (α, 0), (α, β) � (α, 2α), and
(α, β) � ((β/2), β), respectively.

Remark 2. For (α, β) � (0, 0), the scheme Saα,β
approaches

the interpolatory scheme defined in (10), whereas, for
(α, β) � (− 1, − 2), this scheme approaches the approximat-
ing scheme defined in (11).

4. Properties of the MCTSS

In this section, we analyze the behavior of the MCTSS. A
detailed analysis of the scheme is presented here by dis-
cussing the important features of the scheme such as con-
tinuity, degree of polynomial generation, and degree of
polynomial reproduction. We use the Laurent polynomial
method to check the continuity of the MCTSS for different
values of shape parameters. We also show that the MCTSS
has a bell-shaped mask for the specific ranges of parameters.
Moreover, we show that the MCTSS preserves monotonicity
and convexity for the specific ranges of shape parameters.

4.1. Smoothness Analysis. In this part of the paper, we
discuss the level of continuity to which the MCTSS can
produce smooth limiting curves or 2D models. It is well
known that a continuous subdivision scheme must be
convergent. So, we derive the following lemma.

Lemma 1. �e ternary subdivision scheme, which is defined
in (14), satisfies the necessary conditions for the convergence.

Proof 1. (e Laurent polynomial of scheme (14), which is
defined in (17) and (18), can be written as

aα,β(z) �
1
81

− 4 − 5(β − α)􏼈 􏼉z
− 5

+
1
81

− 5 − 10(β − α)􏼈 􏼉z
− 4

−
15α
81

z
− 3

+
30
81

z
− 2

+
1
81

× 60 + 15(β − α)􏼈 􏼉z
− 1

+
1
81

(81 + 30α){ } +
1
81

60 + 15(β − α)􏼈 􏼉z +
30
81

z
2
−

15α
81

z
3

+
1
81

− 5 − 10(β − α)􏼈 􏼉z
4

+
1
81

− 4 − 5(β − α)􏼈 􏼉z
5
.

(19)

By factorizing (19), we get
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aα,β(z) �
z

− 5

81
1 + z + z

2
􏼐 􏼑

2
(5α − 5β − 4)z

0
+(3)z

1
+(− 30α + 15β + 6)z

2
+(50α − 20β + 17)z

3
+(− 30α + 15β + 6)z

4
+(3)z

5
􏽨

+(5α − 5β − 4)z
6
􏽩.

(20)

(e necessary conditions for the convergence of sub-
division scheme (14) are

aα,β(1) � 3 and aα,β e
(2πi/3)j

􏼐 􏼑 � 0, where j � 1, 2. (21)

From (20), we can easily calculate aα,β(1) � (243
/81) � 3.

Now, to show that aα,β(e(2πi/3)j) � 0 for j � 1, 2, it is
sufficient to show that

1 + z + z
2

􏼐 􏼑
2

� 0, for z � e
(2πi/3)

􏼐 􏼑 and z � e
(4πi/3)

􏼐 􏼑.

(22)

Since e(2πi/3) � − 12 + i2
�
3

√
� (e(4πi/3))2 and

(e(2πi/3))2 � − (1/2) − (i/2)
�
3

√
� e(4πi/3), the result in (22) is

proved. Hence, the necessary conditions for the convergence
of scheme (14) are satisfied. (is completes the proof. □

Theorem 7. �e scheme Sa0,β
is C0-continuous for the

parametric interval − (16/5)< β< (5/2) and it is C1-contin-
uous for the parametric interval − (1/5)< β< (6/5).

Proof 2. (e Laurent polynomial corresponding to the
scheme Sa0,β

is given by

a0,β(z) � −
z

− 5

81
1 + z + z

2
􏼐 􏼑

2
(4 + 5β) +(− 3)z +(− 6 − 15β)z

2
+(− 17 + 20β)z

3
+(− 6 − 15β)z

4
+(− 3)z

5
+(4 + 5β)z

6
􏽨 􏽩.

(23)

Now, we check the C0-continuity of the scheme Sa0,β
. For

this, we write (23) as

a0,β(z) �
1 + z + z2

3z2
􏼠 􏼡

0

b0(z), (24)

where

b0(z) � −
z

− 5

81
1 + z + z

2
􏼐 􏼑

2
(4 + 5β) +(− 3)z +(− 6 − 15β)z

2
+(− 17 + 20β)z

3
+(− 6 − 15β)z

4
+(− 3)z

5
+(4 + 5β)z

6
􏽨 􏽩, (25)

which can also be written as

b0(z) � 1 + z + z
2

􏼐 􏼑c0(z), (26)

where

c0(z) � z
− 5

−
4
81

−
5β
81

􏼠 􏼡z
0

+ −
5β
81

−
1
81

􏼠 􏼡z
1

+
5
81

+
10β
81

􏼠 􏼡z
2

+
26
81

−
5β
81

􏼠 􏼡z
3

+
29
81

+
10β
81

􏼠 􏼡z
4

+
26
81

−
5β
81

􏼠 􏼡z
5

+
5
81

+
10β
81

􏼠 􏼡z
6

􏼢

+ −
1
81

−
5β
81

􏼠 􏼡z
7

+ −
4
81

−
5β
81

􏼠 􏼡z
8
􏼣,

(27)
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and, for C0-continuity of the scheme Sa0,β
corresponding to

Laurent polynomial a0,β(z), we have to show that the
scheme Sb0

is convergent. For this purpose, we develop a
difference scheme Sc0

corresponding to the Laurent

polynomial c0(z). Now, we have to show that the scheme Sc0
is contractive. For this, we use(eorem 2 to calculate ‖c0‖∞;
that is,

c0
����

����∞ � max −
4
81

−
5β
81

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
26
81

−
5β
81

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

5
81

+
10β
81

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, −

5β
81

−
1
81

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
29
81

+
10β
81

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ −

1
81

−
5β
81

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,
5
81

+
10β
81

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
26
81

−
5β
81

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ −

4
81

−
5β
81

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩,

(28)

and, from above, we can easily calculate that ‖c0‖∞< 1 for
− (16/5)< β< (5/2).

It follows that scheme Sc0
is contractive, Sb0

is convergent,
and Sa0,β

is C0-continuous. So, the scheme Sa0,β
is C0-con-

tinuous for − (16/5)< β< (5/2). Now we find C1-continuity
of the scheme Sa0,β

. From (23), we get

a0,β(z) �
1 + z + z2

3z2
􏼠 􏼡

1

b1(z), (29)

where

b1(z) � −
z

− 3

27
1 + z + z

2
􏼐 􏼑

1
(4 + 5β) +(− 3)z +(− 6 − 15β)z

2
+(− 17 + 20β)z

3
+(− 6 − 15β)z

4
+(− 3)z

5
+(4 + 5β)z

6
􏽨 􏽩, (30)

which can be written as

b1(z) � 1 + z + z
2

􏼐 􏼑c1(z), (31)

where

c1(z) � z
− 3

−
4
27

−
5β
27

􏼠 􏼡z +
2
9

+
5β
9

􏼠 􏼡z
2

+
17
27

−
20β
27

􏼠 􏼡z
3

+
2
9

+
5β
9

􏼠 􏼡z
4

+
1
9

􏼒 􏼓z
5

+ −
4
27

−
5β
27

􏼠 􏼡z
6

􏼢 􏼣. (32)

To find C1-continuity of the scheme Sa0,β
, we have to

show that the scheme corresponding to the Laurent poly-
nomial (32) is contractive. To check the contractiveness of

the scheme Sc1
, we use(eorem 2 and calculate the following

expression:

c1
����

����∞ � max −
4
27

−
5β
27

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
17
27

−
20β
27

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ −

4
27

−
5β
27

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,
3
27

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

6
27

+
15β
27

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,
6
27

+
15β
27

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

3
27

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩. (33)

It is easy to calculate that ‖c1‖∞< 1 for
− (1/5)< β< (6/5) and − 2< β< (6/5). (e common interval
for which ‖c1‖∞< 1 is − (1/5)< β< (6/5).

Hence, the scheme Sa0,β
is C1-continuous for

− (1/5)< β< (6/5). (is completes the proof.
To increase the range of continuity for the shape pa-

rameter β, we apply (eorem 2 for ℓ � 2 and derive the
following result. □

Corollary 1. �e scheme Sa0,β
produces C0-continuous curves

for the parametric interval (43/25) − (3
����
1961

√

/25)< β< (17/5), and it produces C1-continuous curves for
the parametric interval (41/5) − (3

���
205

√
/5)< β< (6/5).

Remark 3. (e subdivision scheme Sa0,β
is an interpolatory

subdivision scheme. (is scheme is a special case of scheme
(14). In other words, MCTSS (14) is interpolatory for α � 0
and ∀β.

(e proofs of the rest of the theorems are similar to the
proof of (eorem 7.

Theorem 8. �e scheme Saα,0
is C0-continuous for the

parametric interval − (49/25)< α< (32/25). Moreover, it is
C1-continuous for the parametric interval
− (3/5)< α< (1/20).

Remark 4. To increase the range of continuity for the shape
parameter α, we apply(eorem 2 for ℓ � 2 and get the result
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that the scheme Saα,0
generates C0-continuous curves for the

parametric interval (3/25) − (
����
3034

√
/25)< α< − (5/11)+

(9
���
115

√
/55). It also generates C1-continuous curves for the

parametric interval − (3/5)< α< − (11/17) + (3
���
491

√
/85).

Theorem 9. �e scheme Saα,2α
is C0-continuous for the

parametric interval − (53/10)< α< (5/2). Moreover, it is
C1-continuous for the parametric interval
− (13/5)< α< (1/10) and C2-continuous for the parametric
interval − 2< α< − (1/5). Furthermore, it is C3-continuous
for the parametric interval − (7/5)< α< − (4/5).

Remark 5. To increase the range of continuity for the shape
parameter α, we apply (eorem 2 for ℓ � 2 and seek the
result that the scheme Saα,2α

generates C0-continuous curves
for the parametric interval − (7/5) − (3

��
91

√
/5)<

α< − (23/10) + (3
���
373

√
/10). Moreover, it generates

C1-continuous curves for the parametric interval − (7/5) −

(3
��
10

√
/5)< α< − (7/5) + (3

��
10

√
/5) and C2-continuous

curves for the parametric interval − 2< α< − (1/5). Fur-
thermore, it generates C3-continuous curves for the para-
metric interval − (7/5)< α< − (4/5).

Theorem 10. �e scheme Sa(β/2),β
is C0-continuous for the

parametric interval − (53/5)< β< 5. Also it is C1-continuous
for the parametric interval − (26/5)< β< (1/5), C2-contin-
uous for the parametric interval − 4< β< − (2/5), and
C3-continuous for the parametric interval − (14/5)<
β< − (8/5).

Remark 6. In order to increase the range of continuity for
the shape parameter β, we apply(eorem 2 for ℓ � 2 and get
the result that the scheme Sa(β/2),β

generates C0-continuous
curves for the parametric interval
− (14/5) − (6

��
91

√
/5)< β< − (23/5) + (3

���
373

√
/5). More-

over it generates C1-continuous curves for the parametric
interval − (14/5) − (6

��
10

√
/5)< β< − (14/5) + (6

��
10

√
/5),

C2-continuous curves for the parametric interval
− 4< β< − (2/5), and C3-continuous curves for the para-
metric interval − (14/5)< β< − (8/5).

4.2. Order of MCTSS for Generating and Reproducing
Polynomials. Polynomial generation and polynomial re-
production are the important properties of the subdivision
schemes. In this section, we discuss the order/degree of
polynomial generation and degree of polynomial repro-
duction of the scheme defined in (14). Generation is the
highest degree of polynomials that are generated by the
scheme. Any subdivision scheme that reproduces poly-
nomials of degree d also generates polynomials of degree
d. By [14], if a subdivision scheme reproduces polynomials
of degree d, then it is said to have an approximation order
d + 1. In the next part of paper, we check the capacity of
the MCTSS (14) for generating and reproducing
polynomials.

Theorem 11. �e scheme associated with the Laurent
polynomial a0,β(z) generally generates polynomials of degree
1 and for β � 0 it generates polynomials of degree 3.

Proof 3. We have

a
(0)

e
(2πi/3)

􏼐 􏼑 � 0,

a
(0)

e
(4πi/3)

􏼐 􏼑 � 0,

a
(1)

e
(2πi/3)

􏼐 􏼑 � 0,

a
(1)

e
(4πi/3)

􏼐 􏼑 � 0,

(34)

a
(2)

e
(2πi/3)

􏼐 􏼑 �
5
6
β(1 + i

�
3

√
)
2
,

a
(2)

e
(4πi/3)

􏼐 􏼑 �
5
6
β(− 1 + i

�
3

√
)
2
,

a
(3)

e
(2πi/3)

􏼐 􏼑 � − 10β,

a
(3)

e
(4πi/3)

􏼐 􏼑 � − 10β,

a
(4)

e
(2πi/3)

􏼐 􏼑 �
− 20
3

(1 + i
�
3

√
)(3 + 8β),

a
(4)

e
(4πi/3)

􏼐 􏼑 �
20
3

(− 1 + i
�
3

√
)(3 + 8β).

(35)

It is easy to see that the first four relations in (34) return
zero when β � 0. (is completes our proof by(eorem 3. □

Theorem 12. �e scheme associated with the Laurent
polynomial a0,β(z) generally reproduces polynomials of de-
gree 1 and for specific value of β (i.e., β � 0) it reproduces
polynomials of degree 3.

Proof 4. By ([11], Corollary 1), an interpolatory subdivision
scheme that generates polynomials up to degree d also re-
produces polynomials up to degree d. (us, the result is
proved. □

Remark 7. In a similar way, by using (eorems 3 and 4, the
following results can be proved:

(i) (e scheme Saα,0
generally generates polynomials of

degree 1 and for α � 0, it generates polynomials of
degree 3

(ii) (e scheme Saα,0
generally reproduces polynomials

of degree 1 and for α � 0, it reproduces polynomials
of degree 3.

(iii) (e scheme associated with the Laurent polynomial
aα,2α(z) generally generates polynomials of degree
3.

(iv) (e scheme associated with the Laurent polynomial
aα,2α(z) generally reproduces polynomials of degree 1
and for α � 0, it reproduces polynomials of degree 3.

(v) (e scheme associated with the Laurent polynomial
a(β/2),β(z) generally generates polynomials of degree
3.
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(vi) (e scheme associated with the Laurent polynomial
a(β/2),β(z) generally reproduces polynomials of
degree 1. For β � 0, it reproduces polynomials of
degree 3.

4.3. Shape Preservation ofMCTSS. Here, we check the range
of shape parameter for which MCTSS (14) preserves
monotonicity and convexity. For this purpose, we use
(eorems 5 and 6.

Lemma 2. �e scheme Saα,2α
associated with the Laurent

polynomial aα,2α(z) has a bell-shaped mask for
− (7/5)< α< − (4/5).

Proof 5. If we put β � 2α in (18), we get the Laurent
polynomial corresponding to the scheme Saα,2α

; that is,

aα,2α(z) �
1
81

(− 4 − 5α)z
− 5

+(− 5 − 10α)z
− 4

+(− 15α)z
− 3

+(30)z
− 2

+(60 + 15α)z
− 1

+(81 + 30α)z
0

+(60 + 15α)z
1

+(30)z
2

􏽨

+(− 15α)z
3

+(− 5 − 10α)z
4

+(− 4 − 5α)z
5
􏽩

� 􏽘
5

i�− 5
ci,α,2αz

i
.

(36)

It is easy to see from (36) that Supp(aa,2a) � [− 5, 5].
Also, from (36), ci,α,2α > 0: i � − 5, . . . , 5 for special interval of
α, which is calculated as

c− 5,α,2α > 0, for α<
4
5
,

c− 4,α,2α > 0, for α<
1
2
,

c− 3,α,2α > 0, for α< 0,

c− 2,α,2α > 0, for α> − 4,

c− 1,α,2α > 0, for α> − 4,

c0,α,2α > 0, for α> −
27
10

,

c1,α,2α > 0, for α> − 4

c2,α,2α > 0, for α< 0,

c3,α,2α > 0, for α< 0,

c4,α,2α > 0, for α< −
1
2
and c5,α,2α > 0, for α< −

4
5
.

(37)

Hence, the interval for which ci,α,2α > 0: i � − 5, . . . , 5 is
− 27
10
< α<

− 4
5

. (38)

We also see that c− 5,α,2α � c5,α,2α, c− 4,α,2α � c4,α,2α,

c− 3,α,2α � c3,α,2α, c− 2,α,2α\\ � c2,α,2α, c− 1,α,2α � c1,α,2α, and
c0,α,2α � c0,α,2α.

Now, we have to prove that ci,α,2α < ci+1,α,2α for
i ∈ [− 5, − 1]. It is also observed that

c− 5,α,2α < c− 4,α,2α, for α< −
1
5
,

c− 4,α,2α < c− 3,α,2α, for α< 1,

c− 3,α,2α < c− 2,α,2α, for α< − 2,

c− 2,α,2α < c− 1,α,2α, for α> − 2 and c− 1,α,2α < c0,α,2α, for α> −
7
5
.

(39)

So, the interval of α for which ci,α,2α < ci+1,α,2α is
− 7
5
< α<

− 1
5

. (40)

Now, by combining the two intervals given in (38) and
(40), we get a common interval; that is, (− 7/5)< α< (− 4/5).

Hence, the interval of α for which scheme Saα,2α
has a bell-

shaped mask is (− 7/5)< α< (− 4/5). (is completes the
proof. □

Remark 8. Similarly, the following results can be proved:

(i) (e scheme Sa(β/2),β
associated with the Laurent

polynomial a(β/2),β(z) has a bell-shaped mask for
the interval − (14/5)< β< − (8/5)

(ii) (e scheme Saα,0
corresponding to the Laurent

polynomial aα,0 does not contain bell-shaped mask
for all α

(iii) (e scheme Sa0,β
corresponding to the Laurent

polynomial a0,β does not contain bell-shaped mask
for all β

Theorem 13. �e scheme Saα,2α
associated with the Laurent

polynomial aα,2α(z) preserves monotonicity for
− (7/5)< α< − (4/5).

Mathematical Problems in Engineering 9



Proof 6. Since by Lemma 1, the MCTSS satisfies the basic
sum rule and by Lemma 2, it has a bell-shaped mask for
− (7/5)< α< − (4/5), and by (eorem 5, it preserves the
monotonicity for − (7/5)< α< − (4/5). □

Theorem 14. �e scheme Saα,2α
associated with the Laurent

polynomial aα,2α(z) preserves convexity for
− (7/5)< α< − (4/5).

Proof 7. By (20), the MCTSS has a factor (1 + z + z2)2 and
by Lemma 2, it has a bell-shaped mask for
− (7/5)< α< − (4/5). So, by (eorem 6, it preserves the
convexity for − (7/5)< α< − (4/5). □

Remark 9. (e scheme Sa(β/2),β
associated with the Laurent

polynomial aβ/2,β(z) preserves monotonicity and convexity
for − (14/5)< β< − (8/5).

Remark 10. (e support of the MCTSS is [− 2.5, 2.5], which
is calculated by ([3], (eorem 1).

5. Comparison with Existing Schemes

Here we give comparison of the MCTSS with the existing
ternary schemes that produce limiting curves up to C3

smoothness and summarize the results in Table 1. (is table
shows that MCTSS keeps detailed features better than
existing schemes. In this table, G-D and R-D denote the
degree of polynomials generation and the degree of poly-
nomial reproduction of the ternary subdivision schemes,
respectively. Moreover, scheme of [12] is a special case of the
MCTSS for (α, β) � (− 1, − 2).

6. Numerical Experiments by MCTSS

Here, we show the behavior of theMCTSS (14) by presenting
different models and show how it controls the shape of
limiting curves. We develop the initial polygons by using
functional and nonfunctional initial data. We also compare
the results of the MCTSS (14) at different values of shape
parameters. In the figures of these experiments, red solid
circles and red lines represent initial points and initial
polygons, respectively.

Experiment 1. In this experiment, we draw the initial control
model by using initial control points (12, 10), (14, 7),
(14, 5), (19, 5), (19, 7), (15, 13), (20, 14), (25, 13), (25, 11),
(22, 7), (22, 5), (27, 5), (29, 11), (32, 13), (35, 9), (35, 5),
(40, 5), (40, 7), (37, 12), (40, 16), (44, 7), (47, 5), (49, 7),
(47, 9), (47, 12), (50, 16), (50, 21), (45, 26), (36, 26),
(33, 25), (30, 26), (26, 27), (14, 27), (10, 25), (5, 15),
(10, 21), (10, 16), (6, 13), (6, 9), (7, 8), (7, 5), (12, 5), and
(12, 10). Figure 2(a) shows initial control model, and
Figures 2(b)–2(d) show the models generated by the MCTSS
(14) for (α, β) � (− 1.8, − 3.6), (α, β) � (− 0.25, − 0.5), and
(α, β) � (0.24, 0.48), respectively.

Experiment 2. In this experiment, we draw the initial control
model by using the initial control points (1, − 3), (5, − 4),

(4, − 3), (9, 1), (7, 2), (8, 5), (5, 4), (5, 5), (3, 4), (4, 9), (2, 7),
(0, 10), (− 2, 7), (− 4, 8), (− 3, 3), (− 5, 6), (− 5, 4), (− 8, 5),
(− 7, 2), (− 9, 1), (− 4, − 3), (− 5, − 4), (0, − 3), (2, − 7), (2, − 6),
and (1, − 3). Figure 3(a) shows initial control model, and
Figures 3(b)–3(d) show models generated by the MCTSS
(14) for (α, β) � (− 1.4, − 2.8), (α, β) � (− 0.25, − 0.5) and
(α, β) � (0.24, 0.48), respectively.

Experiment 3. In this experiment, we draw the initial
control model by using the initial control points (12, 1),
(18, 1), (23, 5), (26, 8), (28, 11), (28, 15), (26, 18), (23, 20),
(20, 22), (18, 22), (16, 20), (16, 22), (17, 28), (15, 28),
(14, 22), (14, 20), (12, 22), (10, 22), (7, 20), (4, 18), (1, 15),
(1, 11), (4, 8), (7, 5), and (12, 1). Figure 4(a) shows the
initial control model, and Figures 4(b)–4(d) show the
models generated by the MCTSS for
(α, β) � (− 1.4, − 2.8), (α, β) � (− 0.25, − 0.5) and
(α, β) � (0.24, 0.48), respectively.

Experiment 4. Here, we take the monotone data from the
monotonic function f1(x) �

��
x

√
and show that MCTSS (14)

preserves monotonicity for (α, β) � (− 1, − 2). (e graphical
results obtained by MCTSS (14) are shown in Figure 5(b),
while monotone data are shown in Figure 5(a).

Experiment 5. Here, we show the convexity preservation of
scheme (14) graphically. We take the convex data from the
convex function f2(x) � ex + 6 and show that scheme (14)
preserves convexity for (α, β) � (− (6/5), (− 12/5)).
Figure 6(b) shows the graphical results obtained by the
MCTSS (14) and Figure 6(a) shows the convex data.

Experiment 6. Here, to show the generation and repro-
duction degree of scheme (14), we take the data from the
linear polynomial function f3(x) � x + 2, quadratic poly-
nomial function f4(x) � x2 − 2x + 8, and cubic polynomial
function f5(x) � x3 − 4x, respectively. (en, we show that,
for (α, β) � (0, 0), scheme (14) generates polynomials of
degree 3 and also reproduces polynomials of degree 3.
Figures 7(a)–7(c) show the graphical results obtained by the
MCTSS (14).

7. Tensor Product Version of the MCTSS

In this section, we extend the MCTSS into its tensor product
version. (e tensor product scheme is designed for quad-
rilateral meshes. Since this scheme is the tensor product
version of the MCTSS, it consists of nine refinement rules.
One rule is for vertex, four rules are for edges, and four rules
are for faces. Hence, at each subdivision step, the bivariate
MCTSS splits each mesh into 9 meshes. (e outer lawyer or
boundary of the mesh which consists of different faces
enclosed by edges constitutes the surface. Nine rules of the
bivariate subdivision scheme are used for fitting the surface
by initial quadrilateral mesh. (e bivariate MCTSS, the
construction of which is explained in Appendix A, is given
by
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Table 1: Comparison of the MCTSS with existing ternary C3 schemes.

Scheme Parameters Type Support G-D R-D Mask type
Scheme [15] 0 Approximating [− 2.75, 2.75] 1 3 Bell-shaped
Scheme [12] 0 Approximating [− 2.5, 2.5] 3 1 Bell-shaped
Scheme [2] 3 Combined [− 2.5, 2.5] Up to 3 1 Not bell-shaped
MCTSS 2 Combined [− 2.5, 2.5] Up to 3 Up to 3 Bell-shaped
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Figure 2: Black lines represent models generated by the MCTSS after four subdivision steps.
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Figure 3: Black lines represent models generated by the MCTSS after four subdivision steps.
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Figure 4: Black lines (b–d) represent models generated by the MCTSS after four subdivision steps.
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(a) (b)

Figure 5: Black solid line represents curve fitted by our subdivision scheme.

(a) (b)

Figure 6: Black solid line represents curve fitted by our subdivision scheme.

(a) (b) (c)

Figure 7: Black solid lines represent curves fitted by our subdivision scheme. (a–c)(e curves fitted by the MCTSS when initial data is taken
from linear, quadratic, and cubic functions, respectively.
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Figure 8: Meshes and surface produced by the MCTSS (41) with (α, β) � (− (3/2), − 3) after one, two, and four subdivision levels,
respectively.
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(41)

where

Am+2,n+2: m � − 1..1; n � − 1..1,

Bm+2,n+2 ≔ m � − 1..2; n

Cm+2,n+2: m � − 1..2; n � − 1..1,

Dm+2,n+2: m � − 1..1; n � − 1..2,

Em+2,n+2: m � − 1..2; n � − 1..2,

Fm+2,n+2: m � − 1..2; n � − 1..2,

Gm+2,n+2: m � − 1..1; n � − 1..2,

Hm+2,n+2: m � − 1..2; n � − 1..2,

Im+2,n+2: m � − 1..2; n � − 1..2,

(42)

are defined in (A.1)–(A.15) of Appendix A, respectively.
Figures 8–10 show the surfaces produced by the bivariate

MCTSS at different values of the shape parameters α and β.
In these figures, red bullets and red lines represent the initial
points and initial meshes, respectively.

8. Conclusion

In this paper, we have introduced a newmethod to construct
a combined ternary subdivision scheme with two shape
parameters. We have analyzed the properties of the MCTSS
for different ranges of shape parameters. We have also
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Figure 9: Meshes and surface produced by the MCTSS (41) with (α, β) � (− (1/2), − 1) after one, two, and four subdivision levels,
respectively.
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Figure 10: Meshes and surface produced by the bivariate MCTSS (41) with (α, β) � ((1/4), (1/2)) after one, two, and four subdivision levels,
respectively.
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showed that the MCTSS produces smooth 2D and 3D
models at specific choices of shape parameters. Moreover,
we have shown that the graphical results of the MCTSS
verify the analytical results of the scheme. Furthermore, we
have derived the bivariate subdivision scheme with nine
refinement rules. (is scheme is used to produce smooth
surface when all the initial meshes are quadrilateral.

Appendix

A. Construction of the Bivariate MCTSS

(eLaurent polynomial of three refinement rules Pk+1
3i , Pk+1

3i+1,
and Pk+1

3i+2 of the MCTSS can be written as

aα,β,3i(z) � 􏽘
1

j�− 1
c3j,α,βz

3j
,

aα,β,3i+1(z) � 􏽘
1

j�− 2
c3j+2,α,βz

3j+2
,

aα,β,3i+2(z) � 􏽘
1

j�− 2
c3j+1,α,βz

3j+1
,

(A.1)

where

aα,β(z) � aα,β,3i(z) + aα,β,3i+1(z) + aα,β,3i+2(z). (A.2)

We get the Laurent polynomial of 9 refinement rules of
tensor product version of MCTSS by

aα,β,3i+m1 ,3j+m2
z1, z2( 􏼁 � aα,β,3i+m1

z1( 􏼁 × aα,β,3j+m2
z2( 􏼁,

(A.3)

where (m1, m2) � (0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1),

(0, 2), (1, 2), (2, 2).
Hence, for (m1, m2) � (0, 0), we get

aα,β,3i,3j z1, z2( 􏼁 � A1,1z
− 3
1 z

− 3
2 + A1,2z

− 3
1 z

0
2 + A1,3z

− 3
1 z

3
2

+ A2,1z
0
1z

− 3
2 + A2,2z

0
1z

0
2 + A2,3z

0
1z

3
2

+ A3,1z
3
1z

− 3
2 + A3,2z

3
1z

0
2 + A3,3z

3
1z

3
2,

(A.4)

where

A1,1 � c− 3,α,βc− 3,α,β,

A1,2 � c− 3,α,βc0,α,β,

A1,3 � c− 3,α,βc3,α,β,

A2,1 � c0,α,βc− 3,α,β,

A2,2 � c0,α,βc0,α,β,

A2,3 � c0,α,βc3,α,β,

A3,1 � c3,α,βc− 3,α,β,

A3,2 � c3,α,βc0,α,β,

A3,3 � c3,α,βc3,α,β.

(A.5)

Now, for (m1, m2) � (1, 0), we get

aα,β,3i+1,3j z1, z2( 􏼁 � B1,1z
− 4
1 z

− 3
2 + B1,2z

− 4
1 z

0
2 + B1,3z

− 4
1 z

3
2

+ B2,1z
− 1
1 z

− 3
2 + B2,2z

− 1
1 z

0
2 + B2,3z

− 1
1 z

3
2

+ B3,1z
2
1z

− 3
2 + B3,2z

2
1z

0
2 + B3,3z

2
1z

3
2

+ B4,1z
5
1z

− 3
2 + B4,2z

5
1z

0
2 + B4,3z

5
1z

3
2,

(A.6)
where

B1,1 � c− 4,α,βc− 3,α,β,

B1,2 � c− 4,α,βc0,α,β,

B1,3 � c− 4,α,βc3,α,β,

B2,1 � c− 1,α,βc− 3,α,β,

B2,2 � c− 1,α,βc0,α,β,

B2,3 � c− 1,α,βc3,α,β,

B3,1 � c2,α,βc− 3,α,β,

B3,2 � c2,α,βc0,α,β,

B3,3 � c2,α,βc3,α,β,

B4,1 � c5,α,βc− 3,α,β,

B4,2 � c5,α,βc0,α,β,

B4,3 � c5,α,βc3,α,β.

(A.7)

Now, for (m1, m2) � (2, 0), we get

aα,β,3i+2,3j z1, z2( 􏼁 � C1,1z
− 5
1 z

− 3
2 + C1,2z

− 5
1 z

0
2 + C1,3z

− 5
1 z

3
2

+ C2,1z
− 2
1 z

− 3
2 + C2,2z

− 2
1 z

0
2 + C2,3z

− 2
1 z

3
2
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1
1z

− 3
2 + C3,2z

1
1z

0
2 + C3,3z

1
1z

3
2

+ C4,1z
4
1z

− 3
2 + C4,2z

4
1z

0
2 + C4,3z

4
1z

3
2,

(A.8)

where

C1,1 � c− 5,α,βc− 3,α,β,

C1,2 � c− 5,α,βc0,α,β,

C1,3 � c− 5,α,βc3,α,β,

C2,1 � c− 2,α,βc− 3,α,β,

C2,2 � c− 2,α,βc0,α,β,

C2,3 � c− 2,α,βc3,α,β,

C3,1 � c1,α,βc− 3,α,β,

C3,2 � c1,α,βc0,α,β,

C3,3 � c1,α,βc3,α,β,

C4,1 � c4,α,βc− 3,α,β,

C4,2 � c4,α,βc0,α,β,

C4,3 � c4,α,βc3,α,β.

(A.9)
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Similarly, for (m1, m2) � (0, 1), we get

aα,β,3i,3j+1 z1, z2( 􏼁 � D1,1z
− 3
1 z

− 4
2 + D1,2z

− 3
1 z

− 1
2 + D1,3z
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1 z
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2
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1 z
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2
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3
1z

− 1
2 + D3,3z

3
1z

2
2 + D3,4z

3
1z

5
2,

(A.10)

where

D1,1 � c− 3,α,βc− 4,α,β,

D1,2 � c− 3,α,βc− 1,α,β,

D1,3 � c− 3,α,βc2,α,β,

D1,4 � c− 3,α,βc5,α,β,

D2,1 � c0,α,βc− 4,α,β,

D2,2 � c0,α,βc− 1,α,β,

D2,3 � c0,α,βc2,α,β,

D2,4 � c0,α,βc5,α,β,

D3,1 � c3,α,βc− 4,α,β,

D3,2 � c3,α,βc− 4,α,β,

D3,3 � c3,α,βc− 1,α,β,

D3,4 � c3,α,βc2,α,β.

(A.11)

Again, for (m1, m2) � (1, 1), we get
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(A.12)

where

E1,1 � c− 4,α,βc− 4,α,β,

E1,2 � c− 4,α,βc− 1,α,β,

E1,3 � c− 4,α,βc2,α,β,

E1,4 � c− 4,α,βc5,α,β,

E2,1 � c− 1,α,βc− 4,α,β,

E2,2 � c− 1,α,βc− 1,α,β,

E2,3 � c− 1,α,βc2,α,β,

E2,4 � c− 1,α,βc5,α,β,

E3,1 � c2,α,βc− 4,α,β,

E3,2 � c3,α,βc− 1,α,β,

E3,3 � c2,α,βc2,α,β,

E3,4 � c2,α,βc5,α,β,

E4,1 � c5,α,βc− 4,α,β,

E4,2 � c5,α,βc− 1,α,β,

E4,3 � c5,α,βc2,α,β,

E4,4 � c5,α,βc5,α,β.

(A.13)

Now, for (m1, m2) � (2, 1), we get

aα,β,3i+2,3j+1 z1, z2( 􏼁 � F1,1z
− 5
1 z

− 4
2 + F1,2z

− 5
1 z

− 1
2 + F1,3z

− 5
1 z

2
2 + F2,1z

− 5
1 z

5
2 + F2,2z

− 2
1 z

− 4
2 + F2,3z

− 2
1 z

− 1
2 + F3,1z

− 2
1 z

2
2 + F3,2z

− 2
1 z

5
2

+ F3,3z
1
1z

− 4
2 + F4,1z

1
1z

− 1
2

+ F4,2z
1
1z

2
2 + F4,3z

1
1z

5
2 + F3,3z

4
1z

− 4
2 + F5,1z

4
1z

− 1
2 + F5,2z

4
1z

2
2 + F5,3z

4
1z

5
2,

(A.14)
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where

F1,1 � c− 5,α,βc− 4,α,β,

F1,2 � c− 5,α,βc− 1,α,β,

F1,3 � c− 5,α,βc2,α,β,

F1,4 � c− 5,α,βc5,α,β,

F2,1 � c− 2,α,βc− 4,α,β,

F2,2 � c− 2,α,βc− 1,α,β,

F2,3 � c− 2,α,βc2,α,β,

F2,4 � c− 2,α,βc5,α,β,

F3,1 � c1,α,βc− 4,α,β,

F3,2 � c1,α,βc− 1,α,β,

F3,3 � c1,α,βc2,α,β,

F3,4 � c1,α,βc5,α,β,

F4,1 � c4,α,βc− 4,α,β,

F4,2 � c4,α,βc− 1,α,β,

F4,3 � c4,α,βc2,α,β,

F4,4 � c4,α,βc5,α,β.

(A.15)

Furthermore, for (m1, m2) � (0, 2), we get

aα,β,3i,3j+2 z1, z2( 􏼁 � G1,1z
− 3
1 z

− 5
2 + G1,2z

− 3
1 z

− 2
2 + G1,3z

− 3
1 z

1
2

+ G1,4z
− 3
1 z

4
2 + G2,1z

0
1z

− 5
2 + G2,2z

0
1z

− 2
2

+ G2,3z
0
1z

1
2 + G2,4z

0
1z

4
2

+ G3,1z
3
1z

− 5
2 + G3,2z

3
1z

− 2
2 + G3,3z

3
1z

1
2

+ G3,4z
3
1z

4
2,

(A.16)

where

G1,1 � c− 3,α,βc− 4,α,β,

G1,2 � c− 3,α,βc− 1,α,β,

G1,3 � c− 3,α,βc2,α,β,

G1,4 � c− 3,α,βc5,α,β,

G2,1 � c0,α,βc− 4,α,β,

G2,2 � c0,α,βc− 1,α,β,

G2,3 � c0,α,βc2,α,β,

G2,4 � c0,α,βc5,α,β,

G3,1 � c3,α,βc− 4,α,β,

G3,2 � c3,α,βc− 4,α,β,

G3,3 � c3,α,βc− 1,α,β,

G3,4 � c3,α,βc2,α,β.

(A.17)

Now, for (m1, m2) � (1, 2), we get

aα,β,3i+1,3j+2 z1, z2( 􏼁 � H1,1z
− 4
1 z

− 5
2 + H1,2z

− 4
1 z

− 2
2 + H1,3z

− 4
1 z

1
2

+ H1,4z
− 4
1 z

4
2 + H2,1z

− 1
1 z

− 5
2

+ H2,2z
− 1
1 z

− 2
2 + H2,3z

− 1
1 z

1
2 + H2,4z

− 1
1 z

4
2

+ H3,1z
3
2z

− 5
2 + H3,2z

2
1z

− 2
2 + H3,3z

2
1z

1
2

+ H3,4z
2
1z

4
2 + H4,1z

3
2z

− 5
5 + H4,2z

5
1z

− 2
2

+ H4,3z
5
1z

1
2 + H4,4z

5
1z

4
2,

(A.18)

where

H1,1 � c− 4,α,βc− 5,α,β,

H1,2 � c− 4,α,βc− 2,α,β,

H1,3 � c− 4,α,βc1,α,β,

H1,4 � c− 4,α,βc4,α,β,

H2,1 � c− 1,α,βc− 5,α,β,

H2,2 � c− 2,α,βc− 1,α,β,

H2,3 � c1,α,βc2,α,β,

H2,4 � c− 1,α,βc4,α,β,

H3,1 � c2,α,βc− 5,α,β,

H3,2 � c3,α,βc− 2,α,β,

H3,3 � c2,α,βc1,α,β,

H3,4 � c2,α,βc4,α,β,

H4,1 � c5,α,βc− 5,α,β,

H4,2 � c5,α,βc− 2,α,β,

H4,3 � c5,α,βc1,α,β,

H4,4 � c5,α,βc4,α,β.

(A.19)

Finally, for (m1, m2) � (2, 2), we get

aα,β,3i+2,3j+2 z1, z2( 􏼁 � I1,1z
− 5
1 z

− 5
2 + I1,2z

− 5
1 z

− 2
2 + I1,3z

− 5
1 z

1
2

+ I1,4z
− 5
1 z

4
2 + I2,1z

− 2
1 z

− 5
2

+ I2,2z
− 2
1 z

− 2
2 + I2,3z

− 2
1 z

1
2 + I2,4z

− 2
1 z

4
2

+ I3,1z
1
2z

− 5
2 + I3,2z

1
1z

− 2
2 + I3,3z

1
1z

1
2

+ I3,4z
1
1z

4
2 + I4,1z

4
2z

− 5
5 + I4,2z

4
1z

− 2
2

+ I4,3z
4
1z

1
2 + I4,4z

4
1z

4
2,

(A.20)

where
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I1,1 � c− 5,α,βc− 5,α,β,

I1,2 � c− 5,α,βc− 2,α,β,

I1,3 � c− 5,α,βc1,α,β,

I1,4 � c− 5,α,βc4,α,β,

I2,1 � c− 2,α,βc− 5,α,β,

I2,2 � c− 2,α,βc− 1,α,β,

I2,3 � c− 2,α,βc2,α,β,

I2,4 � c− 2,α,βc4,α,β,

I3,1 � c1,α,βc− 5,α,β,

I3,2 � c1,α,βc− 2,α,β,

I3,3 � c1,α,βc1,α,β,

I3,4 � c1,α,βc4,α,β,

I4,1 � c4,α,βc− 5,α,β,

I4,2 � c4,α,βc− 2,α,β,

I4,3 � c4,α,βc1,α,β,

I4,4 � c4,α,βc4,α,β.

(A.21)

ci,α,β: i � − 5, . . . , 5 used in (A.1)–(A 15) are defined by
(17). Hence, the Laurent polynomial of the bivariate MCTSS
is

aα,β z1, z2( 􏼁 � 􏽘
2

m1�0
􏽘

2

m2�0
aα,β,3i+m1 ,3j+m2

z1, z2( 􏼁. (A.22)
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