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Abstract: In this article, we propose a numerical method that is completely based on the operational
matrices of fractional integral and derivative operators of fractional Legendre function vectors
(FLFVs). The proposed method is independent of the choice of the suitable collocation points and
expansion of the residual function as a series of orthogonal polynomials as required for Spectral
collocation and Spectral tau methods. Consequently, the high efficient numerical results are obtained
as compared to the other methods in the literature. The other novel aspect of our article is the
development of the new integral and derivative operational matrices in Riemann-Liouville and Caputo
senses respectively. The proposed method is computer-oriented and has the ability to reduce the
fractional differential equations (FDEs) into a system of Sylvester types matrix equations that can
be solved using MATLAB builtin function lyap(.). As an application of the proposed method, we solve
multi-order FDEs with initial conditions. The numerical results obtained otherwise in the literature are
also improved in our work.
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1. Introduction

Fractional calculus (FC) is a study of derivatives and integration of arbitrary order. At the initial
phases of its development, it was considered an abstract mathematical idea with nearly no applications.
But, now the situation is entirely different with FC and is considered to be the most useful and important
topic among the scientific community. The various important phenomena of science and engineering
have been well described with the use of fractional derivatives, including, partial bed-load transport,
diffusion model, dynamics of earthquakes, viscoelastic systems, biological systems, chaos, and wave
propagation, (see [1-3,7-10,41,42]) and references therein. The nonlocal property of the fractional
operators makes them more efficient for modeling the various problems of physics, fluid dynamics and
their related disciplines, (see [17,18,43,44]).

Most of the classical (integer order) and FDEs are not possible to solve analytically, therefore,
some reliable numerical methods and semi-analytical methods have been developed to solve them.
Some of them are presented as follows: In [34], the authors extended the study of [45] to solve
numerically the Caputo type tempered fractional integro-differential equations. In [36], the authors
solved the various kind of Riemann problems by developing a mixed-method, namely, the
characteristic Adomian decomposition method (CADM) which is the improved form of ADM.
In [38], the authors constructed the power series solution of the time-fractional Majda-Biello system
by applying the Lie group analysis. For more information on Lie group analysis and its applications,
(see [35]). In [39], the authors investigated the behaviour of cavitation models together with
thermodynamic effects by developing a compressible, two-phase, one-fluid Navier-Stokes solver.
In [40], the authors presented the analytical and computational study of the drift-flux two-phase flow
model. The analytical solution of the model is based on the analytical solution of the Riemann
problem which consists of two different nonlinear algebraic equations in velocity equilibrium and
pressure nonequilibrium between the two-phase systems. The numerical solution is obtained by using
the finite volume methods. In [37], the authors implemented a void ratio transport-equation model in
a one-fluid two-phase compressible software by proposing a various numerical techniques which are
based on a finite volume approach, including, HLLC, Rusanov, VF Roe, Jameson-Schmidt-Turkel and
AUSM. For more detail on transport-equation and its applications, (see [33]). In [43], the authors
proposed the fully discretized finite element approximations to solve the time-fractional diffusion
equations of variable-order.

Orthogonal polynomials coupled with operational matrices of fractional derivatives operators
defined with singular or nonsingular kernels have played a significant role in the development of the
spectral methods. The most commonly used methods are Spectral tau methods, and Spectral
collocation methods. These methods have been successfully used to find the approximate solution of
a large class of multi-order ordinary and partial FDEs. Some of them are presented as follows:
In [13], the authors solved the multi-order (MOFDEs) by combining the technique of operational
matrices with Spectral tau and Spectral collocation methods. In [14], the authors solved the MOFDEs
by using the Chebyshev operational matrix (COM) together with Spectral tau and Spectral collocation
methods. In [15], the authors solved the MOFDEs by reducing them into a system of FDEs, then
combining the COM with Spectral tau and Spectral collocation methods. In [19], the authors derived
the derivative operational matrix in Caputo sense of FLFVs which then applied with Spectral tau
method to solve MOFDE:s. In [20], the authors derived the integral COM in Riemann-Liouville sense
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which then applied with Spectral tau method to solve numerically the MOFDEs. In [22], the author
derived the Jacobi integral operational matrix in Riemann-Liouville sense which then applied with
Spectral tau method to solve MOFDEs. However, these methods have certain numerical difficulties in
applying: in spectral tau methods, the residual function must be expanded as a series of orthogonal
polynomials and then the initial or boundary conditions are applied as constraints; whereas in spectral
collocation methods, the requirement of the choice of the suitable collocation points are necessary and
FDEs must be satisfied exactly at these points.

In this article, we propose a numerical method which is completely based on the fractional
derivative and integral operational matrices of FLFVs. The proposed method is independent of the
choice of the suitable collocation points and expansion of the residual function as a series of
orthogonal polynomials. Consequently, the proposed method produces high efficient numerical results
as compared to the Spectral tau method [13], Bessel collocation method [6], Taylor matrix
method [5], function approximation theory [21], and stochastic technique [4]. The other novel aspect
of our article is the development of new integral and derivative operational matrices in
Riemann-Liouville and Caputo senses respectively. As an applications of the proposed method, we
solve various MOFDEs corresponding to initial conditions. Our approach has ability to reduce the
MOFDE:s into a system of Sylvester types matrix equations which can be solved using MATLAB built
in function lyap(.). The rest of the article is organized as follows:

In Section 2, some preliminaries definitions of FC are recalled. In Section 3, the analytical
expressions and some useful properties of CSLPs are reviewed. Moreover, in the same section some
important properties of FLFVs and its analytical expression are recalled. In Section 4, the new
generalized integral operational matrix and derivative operational matrix of FLFVs in the senses of
Riemann-Liouville and Caputo are derived. In Section 5, based on the results of Section 4, a
numerical method is proposed which is an excellent tool to solve numerically the MOFDEs
corresponding to initial conditions. In Section 6, the validity and the efficiency of the proposed
numerical method is tested by solving various examples and comparing the results with other methods
in the literature. Some concluding remarks and future directions are given in Section 7.

2. Preliminary remarks on FC

Some important definitions and results are recalled in this section which are indispensable to
construct the proposed numerical algorithm.

Definition 1. The (left-hand side) Riemann-Liouville integral of order Q > 0 is given as (see [12]):

1

redu(x) = m

jw@—¢W4M0m,x>0. (2.1)
0

Definition 2. The (left-hand side) Caputo derivative of order Q > 0 is given as (see [12]):

0 L, Q=neN,
cDu(x) = * 2.2)
reJ7UP(x), n-1<Q<n,neN,

where 7 is an integer, x > 0, and u(x) € C"[0, 1].

AIMS Mathematics Volume 6, Issue 8, 8742-8771.
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For the Caputo derivative, we have the following observations:

cD°K =0, K is a constant. (2.3)
0, f eR,, and u <[Q],

D = Tu+l) -0 o o and p< 19l 2.4)
1“(;4+1—Q)xy , for peR,, and u>[QJ.

3. FLFVs and its properties

Many approximate techniques are available in the literature to solve numerically the FDEs but the
most frequent used approach is the approximation of the solutions via series expansion of the type,
S, di*?. Thus the choice of the appropriate orthogonal function of the type ¥(r) = Y2 d;*? is very
important to get the good approximate results.

In recent, the authors in [23] worked on the development of the fractional representation of the
classical Legendre polynomials using the well-known Rodrigues formula. However, it is difficult to
solve FDEs with this proposed fractional extension due to complexity involved in these functions, so
in order to obtain the solution of FDEs, in a much simpler and efficient manner, Kazem and coauthors
generated the orthogonal FLFVs based on the orthogonal CSLPs to find the approximate solutions
of linear and nonlinear FDEs (see [19]). In this section, the definition and some useful properties of
orthogonal CSLPs and its fractional extension are reviewed.

3.1. Classical Shifted Legendre Polynomials (CSLPs)

The following recurrence formulae is used to evaluate the orthogonal Legendre polynomials (LPs)
on the interval of orthogonality [—1, 1] (see [11]):
2j+1 J )
Rj(x) = j-i-—IXRj(X) - ]._i_—le—l(X), Jj=12,---, 3.1
where

Ro(x) =1, Ri(x) = x.

Now by setting, x = 2¢ — 1 in (3.1), the CSLPs on the interval of orthogonality [0, 1] can be expressed
as following, (see [11])
2j+DHRt-1) J

R(t)— ——R;_ i=1,2,--- 2
+1 j(t) ]+1 J l(t)’ J 9 & ) (3 )

R](t) =

where
Ro(H) =1, Ri(t) =2t—1.

The analytical expression of (3.2) is as following

J
Rj(l’) = Zar,jtr,

r=0
where

AIMS Mathematics Volume 6, Issue 8, 8742-8771.
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; I'(d+r+ )
ni= (=D . 33
wi = ) s T S T hTa oy 33)
The orthogonality conditions of CSLPs can be expressed as
! L for j=i,
f RiOR(t) = {71 0= (3.4)
0 0, for j #i.

3.2. Analytical expression and properties of FLFVs

The orthogonal FLFV:s is defined in the following relation by changing the variable, ¢ with z%, Q €
R™ in orthogonal CSLPs defined in (3.2). For our convenience, we use the notation F R?(z) to represent
the FLFVs (R;(z%)).

FR}(z) =

Qj+DRF-1) 4 j o .
FR%(z) - —2—FR" =1,2,--- 3.5
. + 1 J (Z) j+ 1 j—l(Z)’ .] 9~ ’ ( )

where
FR}(z) =1, FR®(z) =27 - 1.

The analytical representation of (3.5) is as following

q=0
where
; I'l+qg+))
o = (=D : 3.6
= R g T+ op G0
The orthogonality conditions of FLFVs can be expressed as
S o ﬁ, for j =1,
FR}(2)FR(2w(2)dz = § 2D (3.7)
0 0, for j # i,

where w(z) = 7! is a weight function.

FLFVs

Figure 1. FLFVs are plotted for Q2 = 1/2 and for various choices of .
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FLFVs

Figure 2. FLFVs are plotted taking n = 4 and for various choices of Q.

3.3. Functions approximation using FLFVs

If u(z) € L*[0, 1], then it can be demonstrated as a series expansion of orthogonal FLFVs, as

[ee)

u@) = ) e;FRY(). (3.8)

J=0

Using (3.7), the coeflicients e; can be determined as

1
ej=Q2j+ l)f u(z)FR?(z)w(z)dz, j=0,1,2,---. (3.9
0

For the practicality, considering the first n + 1-terms of (3.8), we have

u(z) = Y eiFRY(2), (3.10)
= (A",
where
(N = eg,e1,--- e,
and

¥(z) = [FRY(2), FRY(2), FR3(2), - -+ , FRE(D)]". (3.11)

Forn =4,Q = 1/2, we have

1
24z-1
¥(7) = 6z—-6z+1 ,
12 Z-30z+20z7 — 1
90z +7022 =20 vz — 14023 + 1
and for u(z) = 1 + z, we have
W'=(%1100).

2
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Exact Plot —

—— Approximate Plot -

z(t)

Figure 3. Exact and approximated graphs of the function u(z) = 1 + z using FLFVs at

Q=1/2,andn = 4.

T T T T T T T T
Exact Plot /

— Approximate Plot

Figure 4. Exact and approximated graphs of the function u(z) = sin(z) + 1 + z* using FLFVs

atQ=1/2,andn =4..

4. Operational matrices of FLFVs

Operational matrices approach together with Spectral Tau approach is among of the approaches
that has been frequently used to solve numerically the ordinary and partial FDEs (see [13-15, 19—
22,24-26]) and references therein. Under this approach, the numerical solutions are obtained by
reducing the under study FDEs both ordinary and partial to an equivalent system of algebraic equations.

The solution of the algebraic equations leads to the solution of the original FDEs.

In recent, the

authors in [19] extended the study of the generalized derivative operational matrix of CSLPs [13] to the
generalized derivative operational matrix of orthogonal FLFVs in Caputo sense to solve numerically
the multi-order FDEs. In this section, based on the study in [13, 19], we develop the new generalized

integral operational matrix of orthogonal FLFVs in Riemann-Liouville sense.

Lemma 4.1. The Caputo derivative of order 8 > 0 of FLFVs can be expressed as

j
I'gQ+1) _
DPFRS “w>r,
C j (2) = qzz(; (QJ)r(qQ B+ 1)
where a(q = = 0 when gQ € R, and qQ < . For other cases, a(q H= Eq,j)'

AIMS Mathematics
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Proof. For the proof (see [19]).

Lemma 4.2. The Riemann Liouville integral of order a > 0 of FLFVs can be expressed as

., T@Q+1)
@IT(gQ + a + 1)

qQ+a

RLJQFR?(Z) = a

J
q=0
Proof. Using linearity property and Eq (3.5), we have

J
R FR) = ) al,  RLI"Z™
q=0

Now the lemma can be proved easily using ( [27], Eq (22)).

Lemma 4.3. Suppose, Q € R, and a > 0, then

LoraQ _ Z ¢}y FRE(2),
i=0
where
i DTG +r+ 1
oy =QQi+1) Y — CU G+ D) :
’ o I'i—-r+1HTr+1)’Q@+1+r+a

Proof. Using (n + 1) orthogonal FLFVs, we may approximate z°7%, as
Za+qQ ~ Z CE”-)FRIQ(Z).
i=0

Using Eq (3.9), and after doing some lengthy calculations, we have

(=D + 7+ 1)

(4.2)

4.3)

i=0,1,--- ,n.

4.4)

4.5)

=0 0Ri+1 .
€l = Q2 );F(i—r+1)(r(r+1))ZQ(Q+1+r)+a

Now using the Eqgs (4.5) and (4.6), we can obtain the required result.

Lemma 4.4. Suppose, Q € R, and 3 > 0, then

L99F _ Z /., FRE(2),
i=0
where
: —D) TG + 7+ 1
=i+ —— D i+l :
HTI-r+ DA+ 1))Q@G+1+r) -

AIMS Mathematics
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Proof. Using (n + 1) orthogonal FLFVs, we may approximate 77?7, as

P~y ), FRAR). (4.8)

i=0

Using Eq (3.9), and after doing some lengthy calculations, we have

(=D)L + r + 1)

7 =0QQRi+1 . 4.9
o=@+ );F(i—r+1)(r(r+l))2£2(q+1+r)—ﬁ *2)
Now using the Eqs (4.8) and (4.9), we can obtain the required result. O

4.1. The fractional integral and derivative operational matrices of FLFVs

In this section, the generalized operational matrices of fractional integral and fractional derivative
for FLFVs in Riemann Liouville and Caputo senses are studied respectively.

Theorem 4.5. Suppose Y(z) be the orthogonal FLFVs as defined in (3.11), and a > 0 be the order of
the integral consider in Riemann-Liouville sense, then

RLJQ\P(Z) ~ DZH_L,H_I)\P(Z), (410)
where D® is the (n + 1) X (n + 1) operational matrix which can be computed as
joa ., T(@Q+1)
o _ (ORI . .
(n+1lpn+l) — Z (C[Q Ya+1) s J = 0,1, , 1. “4.11)

q=0

Proof. Using (3.11) and linearity of Riemann-Liouville fractional integral, we have

J

W) = ) al, rd (@) (4.12)

q=0

Using lemma (4.2), Eq (4.12) can be expressed as

J
I'gQ+1) o
Ja/\I[ — ’ __Z ,atq . 413

ke (@) 24 YT ra+ )’ (*13)
Now Eq (4.13) and Lemma 4.3 proves the required result. O

Remark 4.6. The operational matrix of integration for CSLPs studied by Khan and Khalil [24] is a
special case of Theorem 4.5 for Q = 1.

Theorem 4.7. Suppose Y(z) be the orthogonal FLFVs as defined in (3.11), and 8 > 0 be the order of
the derivative consider in Caputo sense, then

DY)~ Q\ ) Y@ (4.14)
where QP is the (n + 1) X (n + 1) operational matrix which can be computed as
o Z a2 D g8 wis)
(n+1,n+1) (C[Q _ﬁ+ 1) ’ Q ’ Q ? : .

B
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Proof. Using (3.11) and linearity of Caputo fractional derivative, we have
J
DY) = ) df, ,CD(") (4.16)

q=0

Using lemma (4.1), Eq (4.16) can be expressed as

J
I'gQ+1) _
DPY(z) = e A 4.17
cOP¥() Z;ﬁ s T -G+ 1) (4.17)
=a
Now Eq (4.17) and lemma (4.4) proves the required result. O

Remark 4.8. The operational matrix of derivatives for CSLPs studied by Saadatmandi and Dehghan
[13] is a special case of Theorem 4.7 for ) = 1.

5. Solution of multi-order FDEs

In this section, we are interested in the development of the computational algorithm to solve
numerically the following generalized multi-order FDEs

cD"u(2) = g(z, u(2),c DP'u(z),c DPu(z), ..., cDPu(z)),
u®0)=h,, s=0,1,...,n. (5.1)

wheren—1<a<n 0<pB; <B; <+ <B, <a,and cD* is a Caputo derivative of order « defined in

(2.2).
We are interested to approximate the solution in terms of orthogonal FLFVs, such that

cDu(z) = AT¥(z). (5.2)

Now integrating (5.2) in Riemann-Liouville sense and using the initial conditions u)(0) = h,, s =
0,1,...,n, we have

u(@x) = ATI"WR) + Y h'. (5.3)

s=0

Using Theorem 4.5, Eq (5.3) can also be written as
u(@®) = A'Df, 1, ) P + ) 2 (5.4)
s=0

The terms in };|_ ,z* can also be approximated using FLFVs. So, Eq (5.4) can also be written as

uz) = ATD?

(n+1,n+1)

¥(2) + H'Y(2). (5.5)
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Now using Theorem 4.7 and Eq (5.5), the right hand side terms of Eq (5.1) can be approximated as

cDPou(z) = ATD? 0 YY)+ H' QY Y(2),

(n+1,n+1) (n+1,n+1) (n+1,n+1)

CDB] M(Z) = ATDEZnH,n+l)Q€i+1,n+l)lP(Z) + HTQ€11+1,n+1)lP(Z)’

: : : (5.6)

CZ)Bnu(Z) = ATD&+1,n+1)Q€Z+1,n+l)‘P(Z) + HTQ?IZH,nH)\P(Z)’

and

g(2) = G"¥(2).
Now inserting (5.2) and (5.6) in (5.1), we have

ATT(Z) = ATDEIn+l,n+l) (er(1)+l,n+1) + Q/(;rl+1,n+l) tooot (;;+1,n+1)) ¥(2)
+ HT( (r(z)+1,n+1) + (rl+l,n+1) Tt (2+1,n+1>) ¥(2) + G ¥(2).
After simplification, we have
AT - A"DE,, 0 - H'Q -G, (5.7)

- _ 0 1 . n
where Q = (Q€1+l,n+l) ey T ("+1’”+1))'

Equation (5.7) is a matrix equation of Sylvester type that can be easily solved for the unknown AT
using any computational software. By inserting the values of AT in Eq (5.5), we get the approximate
solution of (5.1).

6. Test Examples

In this section, the applicability of the method is studied by solving various examples and comparing
their analytical solutions with the approximate solutions obtained using our developed computational
numerical algorithm.

Example 1. We consider the following non-homogeneous Bagley-Torvik equation [13, 19, 28]
cDu(2) +c DIu() + u@) = 1 + 2, 6.1)

subject to the following initial conditions

u(0) =1 =u'(0). (6.2)
The exact solution is given as under
@z =1+z (6.3)
Here, we have
31 31
"=1Z,2,0|, H =|%,2,0[, A" =1[0,0,0]. 6.4
G [2’ 2’ ] b 2’ 27 b [ b 9 ] ( )
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and

0 0 0
0 0 0
9.0270 5.4162 -1.2896

0.1667 0.2500  0.0833
—-0.0833 —0.1000 0
0.0167 0 -0.0238

D’ =

.
Il

(6.5)

Using (6.4) and (6.5) in (5.5), we get the exact solution of the problem (6.1)—(6.2).

Remark 6.1. The results of Example 1 at various values of n obtained by using our method are
compared with the results obtained by using the method [4] at n = 10 in Tables 14 and Figure 5. We
observe that at various values of n (the number of terms of FLFVs), the exact solution and the
approximate solution obtained by using our method coincide, (see Table 2 and Figure 5). However,
the results obtained by using the method in [4] yield less accurate results, (see Table 2—4 and Figure
5).

Table 1. Comparison of the approximate solution (AS) for Example 1 obtained by using our
proposed method (PM) with the AS obtained by using the method ( [4], Example 2).

z  Exact Solution ASusingPMatn =2 ASin [4] atn = 10 (number of neurons)

0 1.00 1.00 1.024862
0.1 1.10 1.10 1.121206
0.2 1.20 1.20 1.220821
0.3 1.30 1.30 1.323041
0.4 1.40 1.40 1.426952
0.5 1.50 1.50 1.531330
0.6 1.60 1.60 1.634569
0.7 1.70 1.70 1.734591
0.8 1.80 1.80 1.828738
0.9 1.90 1.90 1.913640
1.0 2.00 2.00 1.985057
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Table 2. Comparison of the Absolute errors for Example 1 obtained by using our proposed
method (PM) at n = 2 (number of terms of FLFVs) with the absolute errors obtained by

using the method ( [4], Example 2) at n = 10 (number of neurons).

z  Absolute error using [4] Absolute error using PM

2.30e — 2 0
0.1 2.69¢ — 2 0
0.2 3.13¢ -2 0
0.3 3.45¢ -2 0
0.4 3.45¢ -2 0
0.5 2.87e -2 0
0.6 1.36e — 2 0
0.7 1.49¢ — 2 0
0.8 2.30e — 2 0
0.9 2.69¢ — 2 0
1.0 3.13¢ -2 0

Table 3. Comparison of the Absolute errors for Example 1 obtained by using our proposed
method (PM) at n = 8 (number of terms of FLFVs) with the absolute errors obtained by

using the method ( [4], Example 2) at n = 10 (number of neurons).

AIMS Mathematics

z  Absolute error using [4] Absolute error using PM

2.30e -2 0
0.1 2.69¢ -2 0
0.2 3.13¢ -2 0
0.3 3.45e -2 0
0.4 3.45e -2 0
0.5 2.87e -2 0
0.6 1.36e -2 0
0.7 1.49¢ -2 0
0.8 2.30e -2 0
0.9 2.69¢ -2 0
1.0 3.13¢ -2 0
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Table 4. Comparison of the Absolute errors for Example 1 obtained by using our proposed
method (PM) at n = 10 (number of terms of FLFVs) with the absolute errors obtained by
using the method ( [4], Example 2) at n = 10 (number of neurons).

<

Absolute error using [4]

Absolute error using PM

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2.30e — 2
2.69¢ — 2
3.13¢ -2
3.45¢ -2
3.45¢ -2
2.87e -2
1.36e — 2
1.49¢ — 2
2.30e — 2
2.69¢ — 2
3.13¢ -2

0

eoNeNeloNeoNeoloBelel el

—— Approximate solution using proposed method
Approximate solution using the method in [4]
O Exact solution

Figure 5. Comparison of the approximate solution of Example 1 obtained using the proposed
method at n = 2 with the approximate solution obtained using the method of [4] at n = 10.

Remark 6.2. In Tables 5 and 6, the results of Example 1 obtained by using our method are compared
with the results obtained by using the methods in [5] and [6]. Our proposed method provides the exact
solution at n = 2 (first three terms of FLFVs). However, the methods in [5] and [6] provide the exact
solution at n = 6 (first seven terms of Taylor series, and first seven terms of Bessel series). This shows
that our proposed method is numerically more efficient.

AIMS Mathematics
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Table 5. Comparison of the approximate solution (AS) for Example 1 obtained by using our
proposed method (PM) with the AS obtained by using the method ( [5], Example 1).

z  Exactsolution ASusingPMatn =2 ASin [5]atn = 6 (number of terms of Taylor series)

1.00 1.00
0.1 1.10 1.10
0.2 1.20 1.20
0.3 1.30 1.30
0.4 1.40 1.40
0.5 1.50 1.50
0.6 1.60 1.60
0.7 1.70 1.70
0.8 1.80 1.80
0.9 1.90 1.90
1.0 2.00 2.00

1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

Table 6. Comparison of the approximate solution (AS) for Example 1 obtained by using our
proposed method (PM) with the AS obtained by using the method ( [6], Example 1).

z  Exactsolution ASusingPMatn =2 ASin [6] atn = 6 (number of terms of Bessel series)

1.00 1.00
0.1 1.10 1.10
0.2 1.20 1.20
0.3 1.30 1.30
0.4 1.40 1.40
0.5 1.50 1.50
0.6 1.60 1.60
0.7 1.70 1.70
0.8 1.80 1.80
0.9 1.90 1.90
1.0 2.00 2.00

1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

Example 2. Consider the following non-homogeneous multi-order fractional problem [21,32]

cD%u(z) = acDPu(z) + b D u(z) + ccDPu(z)
+ dcDPu(z) +G(2), z€[0,1], 0<a <2, (6.6)

subject to the following initial conditions
u(0) =0, u'(0)=0.
The source term is as under

677673

—4z7-7—
CR) =42-7 - —=3

AIMS Mathematics

+4227 - 148 +7 +

(6.7)

151675
5629
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The exact solution corresponding to@ = 2,a =c=-1,b=2,d = 0,6y = 0,6, = 1,5, = % is given
below

uiz) =7 -2

We study the Example 2 by comparing the approximate results obtained using our algorithm with
the approximate results achieved using the methods in [21,32]. We observe that our method produces
better approximate results and higher precision in the approximate solution, see Table 7, Figure 6-9.

The applicability of the numerical algorithm is tested at various scale levels. We observe that with
the increase in scale level, the approximate solution and the exact solution have great resemblance,
see Figure 7. Also, at n = 7, the approximate solution is equal to the exact solution, u(z) = z’ — 2>
of the problem (6.6)—(6.7), see Table (7, Column 7]. We also calculate the amount of the absolute
errors at scale level, n = 4,6,7. we analyze that with the increase in scale level, the amount of the
absolute errors decreases significantly, see Table 7 and Figure 9. It is worth to mention that by taking
few terms of orthogonal FLFVs, the good match is obtained between the approximate solution and the
exact solution. For example compare the results of ( [21], Figures 4-5 and Table 1) and ( [32], Figure
2) with the results of our paper ( Figures 6-8 and Table (7, Column 7).

7 Approximate Solution
——Exact Solution

Figure 6. Graphs of exact solution and approximate solution of Example 2 at Q = 1, = 2
and n = 4.
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Figure 7. Graphs of exact solution and approximate solution of Example 2 at Q = 1, = 2

andn = 5.

Figure 8. Graphs of exact solution and approximate solution of Example 2 at Q = I, = 2

and n = 6.

Table 7. Comparison of absolute error of Example 2 computed using our proposed method

- Approximate Solution B
— Exact Solution

—— Approximate Solution
¥ Exact Solution

(PM) and the absolute error computed with [21] atn = 4,6,7.

z [n=41211 n=4PM[n=6[21] n=6PM | n=7I[21] n=7PM
02 00844 00132 [ 0.0044  0.00003 [2.81025203108243¢-15 0
04| 03501 00105 | 0.0079  0.00035 | 6.63358257213531e-15 0
06| 06734 00349 | 00143  0.00034 | 3.27515792264421e-15 0
08| 1.0234  0.0387 | 0.0214  0.00069 | 4.25770529943748e-14 0
1 | 1.6700  0.0780 | 0.0280  0.00103 | 2.43819897540083e-13 0
AIMS Mathematics Volume 6, Issue 8, 8742-8771.
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Figure 9. Comparison of the error plots of Example 2 with the results of [21] atn = 4,6, 7.

Example 3. Consider the following non-homogeneous multi-order fractional problem [21]

cDuz) = acD?u(z) + beDP'uz) + ccDPu(z)
+ dceDPu(z) +G(2), z€[0,1], 0 <a <2,

(6.8)
subject to the following initial conditions
uw(0) =0, u'(0)=0. (6.9)
The source term is as under
12 6
G(z)=6z+7 — — 2+ o z.
rd)y” 1
The exact solution corresponding to @ = 2,a = ¢ = -1,b = 0,d = 2,6y = 0,5, = % € (0,1), and
B3 = % € (1,2) is given below
u(z) = 2°.
Here for n = 3, we have
G" =[-0.4215 -0.6867 0.0216 0.1984],
H'=[0 0 0 0], (6.10)

AT:[2.9991 3.0000 0.0000 —o.oooo].
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and

0 0 0 0
0} - 1.6796  0.7199 —0.2391 0.1292
—-0.7199 3.0236 1.3844 -0.5039|
| 14398 —0.6645 3.9594  1.9994
[ 0 0 0 0 |
Qi = 0 0 0 0 : 6.11)
10.0786 4.3194 —1.4398 0.7753
—7.1990 30.2358 13.8442 —5.0393
0.1667 02500  0.0833 0 |
D2 |~0:0833 =0.1000 0 0.0167
0.0167 0 —0.0238 0
0 0.0071 0 —0.0111]

Using (6.10) and (6.11) in (5.5), we get the exact solution, u(z) = z* of the problem (6.8) and (6.9).

We study the Example 3 by comparing the approximate results obtained using our algorithm with
the approximate results achieved using the methods in [21]. We observe that our method produces
better approximate results and higher precision in the approximate solution, see Table 8, Figures 10
and 11.

We observe that by increasing the scale level, the absolute error amount decreases significantly, see
Table 8. Also at low scale level, n = 3, the exact solution of the problem, (6.8)—(6.9) is obtained which
shows that our proposed algorithm is more efficient as compared to [21], see Figures 10 and 11 and
Table 8.

09 —— Approximate Solution / -
O Exact Solution A

06~ -

03 o

Figure 10. Graphs of exact solution and approximate solution of Example 3atQ =1,a =2
and n = 3.

AIMS Mathematics Volume 6, Issue 8, 8742-8771.



8761

Table 8. Comparison of absolute error of Example 3 computed using our proposed method
(PM) and the absolute error computed with [21] at n = 2, 3.

z || Exactsolution n=2[21] n=2PM | n=3[21] n=3PM
0.2 0.0080 0.0614 0.0291 [ 2.55004350968591e-16 0
0.4 0.0640 0.1541 0.0885 | 2.77555756156289-16 0
0.6 0.2160 0.3339 0.1239 | 3.33066907387547¢-16 0
0.8 0.5120 0.6488 0.0875 | 4.44089209850063e-16 0
1 1.0000 1.1468 0.0689 | 6.66133814775094e-16 0

Figure 11. Comparison of the error plots of Example 3 with the results of [21] atn = 2, 3.

Example 4. Consider the following fractional problem [19,30]
cD(z) = —u(z) + G(z), z€[0,1], 0<a < 1, (6.12)
subject to the following initial condition
u(0) = 0. (6.13)

The source term is as under

2Z2—a Zl—a

— 2_
fG-a) TC-a ° %

G() =

The exact solution of the problem (6.12)—(6.13) is as under
uiz)=7" -z

We study the Example 4 to investigate the applicability of orthogonal FLFVs at various fractional
values of €, and «, see Figures 12—14. We observe that at various choices of @ = 0.5,0.7,0.9, and
Q= %, %, the approximate results have a great compatibility with the exact solution. Also atn = 2(r+1),
the exact solution of the problem (6.12)—(6.13) can be obtained for Q) = ﬁ > 2, r € N, For instance,
by inserting (6.14) in (5.5), we can obtain the exact solution, u(z) = z> — z of (6.12)—(6.13), see Figure
14.

AIMS Mathematics Volume 6, Issue 8, 8742-8771.
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Figure 12. Graphs of exact solution and approximate solution of Example 4 at Q =
and various values of a.

Figure 13. Graphs of exact solution and approximate solution of Example 4 at Q =
and various values of «.

—— Exact Solution

— — Approximate solution at a=0.9

— Approximate solution at a=0.7
Approximate solution at a=0.5

1
gan = 4,

—Exact Solution
—— Approximate solution at a=0.9
—— Approximate solution at a=0.7

Approximate solution at a=0.5

n=4,

1
2

— Exact Solution
—— Approximate Solution 4

06 07 08 0.9 1

Figure 14. Graphs of exact solution and approximate solution of Example 4 at Q = a =

%,n:4.
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Here forn =4,Q = % da:%,wehave
1
24z-1
Y(z) = 6z—6+z+1 ,

12 2-30z+20z7 — 1

902+ 7022 =20 vz — 14023 + 1]
[ 0.5642  0.5642 0 0 0
0.0266  0.3220  0.2954 0 0 (6.14)
D2 =1 -0.0799 -0.0634 0.2421 0.2257 0 |,
—-0.00249 —0.0849 -0.0713 0.2001 0.1899

| —0.0080 —0.0083 —0.0777 -0.0694 0.1752]

_ 4799786141469366061697537920994
GT — 14934156798733865782131057530655
383446922219048718369771636781 1111693540705723 655651031513913 11’

20868313597467731564262115061310  2245056328819542  3741760548032570 70
[AT:—O.18806 0.1128 0.3761 0.0752 —0.0000].

Example 5. Consider the following fractional problem [19,31]
cDiz)—uz)=1, z€[0,1], 0 <a <1, (6.15)
subject to the following initial condition
u(0) = 0. (6.16)

The exact solution of the problem (6.15)—(6.16) is as under

u(@) = Z F(oz] +1)

We study the Example 5 to investigate the applicability of orthogonal FLFVs at various fractional
values of Q, and «, see Figures 15 and 16. We observe that for various choices of Q = 0.4,0.6,0.8, 1,
and @ = 0.9, there is a good compatibility between the exact solution and the approximate solution.
Also, we get improve approximate results with the increase in scale level, see Figure 16. We also
determine the amount of the absolute error at scale level, n = 10 and for various choices of Q to
investigate the efficiency and accuracy of the proposed algorithm for fractional choices of €2, see Table
9. We also analyze the effect of the fractional parameter, @ by comparing the approximate solution
with the exact solution, see Figure 17.
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2 )
—Exact Solution
sl ~ Approximate solution Q=1 /
—o- Approximate solution Q=0.8 A
- Approximate solution 2=0.6 ==
——Approximate solution Q2=0.4 P

=

=
os|

Figure 15. Graphs of exact solution and approximate solution of Example 5 ata = 0.9,n =3
and various choices of Q.

2
—— Exact Solution
181~ —+ Approximate solution Q=1
—c- Approximate solution 2=0.8
16 g Approximate solution 2=0.6
—&— Approximate solution 2=0.4
14—
12
08—
=
04—
02
L I

Figure 16. Graphs of exact solution and approximate solution of Example 5ata = 0.9,n = 4
and various choices of Q.

=
ar — — Exact Solution =09 bd
# Approximate solution a=0.9 -
sk Exact Solution a=0.7 R "
< Approximate solution a=0.7 -
-~ Exact Solution a=0.5 e
3 + Approximate solution a=0.5 7
- - &
__ 25 -
B o «®
=] -4
21 e = S
o + % —*T
151 e - T
e % -
1~ g -
- - -
L A
T ” w7
= o < -
e T
P
3y L L L L L L L Il Il I
0 01 02 03 04 05 06 07 08 09 1

Figure 17. Graphs of exact solution and approximate solution of Example Satn =7,Q = 1
and various choices of a.
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Table 9. Absolute error of Example 5 at n = 10 and various choices of Q = « .

: [ @=a=37 Q=e=; Q=0a=1
0.2 || 4.273327e-11 5.870078e-07 9.236112e-10
0.4 || 8.335039e-09 2.999352e-05 1.401714e-07
0.6 | 2.455070e-07 3.010034e-04 2.873981e-06
0.8 || 2.731391e-06 1.568348e-03 2.478263e-05

I | 1.782081e-05 5.703710e-03 1.328454e-04

Example 6. Consider the following fractional problem [13]
cDu(z) = —u(z), z€[0,1], 0 <a <2, (6.17)
subject to the following initial conditions
u©) =1, ' (0)=0. (6.18)

The condition, u’(0) = 0 is applicable only when a > 1.
The exact solution of the problem (6.17)—(6.18) is as under

(59

_ (—z%)’
" = ]Z:; T(aj+ 1)

We study Example 6 to check the applicability of our proposed technique when 0 < @ < 1, and
1 < @ < 2, see Figures 18-23, Tables 10 and 11. We also investigate the accuracy and validity of the
FLFVs for various choices of @ = €, see Tables 10 and 11. We also observe the effect of the fractional
parameter @ by comparing the exact solution with the approximate solution, see Figures 21 and 22. We
observe that with the increase in scale level n and @ — 2, the approximate solution of the problem
(6.17)—(6.18) approaches to the solution of classical order differential equation, see Figures 21 and 22.
We also observe that when 0 < @ < 1 then at very low scale level n = 2, 3, the approximate solution
shows great resemblance with the exact solution, see Figures 18—19. We also determine the absolute
errors at scale level n = 10, and for various choices of @ = ). We observe that our technique is more
efficient as compared to the method used in [13], see Table 11 and Figure 23.
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08|
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05

04

O Approximate Solution
— Exact Solution -

Figure 18. Graphs of exact solution and approximate solution of Example 6 at Q = 1, =1

and n = 2.
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Figure 19. Graphs of exact solution and approximate solution of Example 6 at Q = 1,a =1

and n = 3.
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Error

NV

——Absolute Error

Figure 20. Error plot of Example 6 at Q = 1, =1 and n = 3.

Volume 6, Issue 8, 8742-8771.



8767

Figure 21. Graphs

and various values

— Exact solution

O a=1.95
=175
=155

of a.

— Exact solution

O a=1.95
—* =175
a=155

of exact solution and approximate solution of Example 6 at Q = 1,n = 3,

Figure 22. Graphs of exact solution and approximate solution of Example 6 at Q = 0.95,n =
4, and various values of a.

Table 10. Absolute error of Example 6 at n = 10 and various choices of Q = a.

Z

[ 0-a-]

— =23
Q—a—4

— =2
Q—a—3

[a-o=;

— =1
Q—a/—4

— =23
Q—a/—2

0.2
0.4
0.6
0.8
1

4.212086¢e-07
1.792713e-05
1.593986e-04
7.478411e-04
2.473455e-03

2.509733e-11
6.879759¢e-09
1.891806e-07
1.975211e-06
1.213707e-05

6.980854e-10
1.070398e-07
2.018518e-06
1.612752e-05
8.053908e-05

8.742474e-17
4.165262e-16
2.007704e-14
1.013113e-12
2.159538e-11

2.671553e-18
9.565113e-19
3.257643e-18
4.161064e-18
2.954844e-17

1.176754e-17
1.463810e-16
3.281789%¢-16
7.977363e-16
1.218018e-14
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Table 11. Comparison of absolute error of Example 6 computed using our proposed method
(PM) with the absolute error computed using [13] at n = 10, Q = 1 and at various choices of

Q.

@ | 2=01 z=01PM =03 z=03PM =05 z=05PM =07 z=07PM =09 z=09PM
12 ][ 3.1e03 2205 2803 1.9e-05 4.5e-03  1.2e-05 3.6e-03  1.6e-05 1.8e-03  2.0e-05
14 | 1.0e-03  1.6e-05  7.0e-04  1.4e05 13e-03 7.9e-06 1.1e-03  1.1e05  2.4e-04  1.4e-05
1.6 | 3.0e-04 7506 1.3e-04  63e-06 3.le04  3.4e-06  3.0e-04  49e-06 62e-07  6.1e-06
1.8 | 6.1e-05  22e-06  1.4e-05 1.8e-06 49e-05 9.2e-07  53e-05 1.4e-06 8.8e-06 1.7e-06
02 ][ 29e01  23e03  45e01  1.9e-02  7.4e-01  53e-02  37e-01  1.0e-01  2.0e-01  1.8e-01
04 | 3.9e-01  7.0e-04  5.1e01  1.0e-03  7.3e-01  1.5¢-03  33e01  24e-03 22e-01  8.2¢-03
0.6 | 6.7e-03  3.8¢-04  2.0e-05 4de04  52e-03 332e-04 4.4e-03 3.42e-04 4.6e-03 3.4le-04
0.8 || 1.1e:03  1.1e04  2.1e-04 1.14e-04 8.4e-04  7.8¢-05 87e-04  9.5e-05  5.8e-04  12e-04
O<ax<l. l<a<?2.

Figure 23. Comparison of the error plots of Example 6 with the results of [13] at n = 10,
O<a<2and Q= 1.

7. Conclusions

We proposed a numerical method which is completely based on the fractional derivative and
integral operational matrices of FLFVs. The proposed method is independent of the choice of the
suitable collocation points and expansion of the residual function as a series of orthogonal
polynomials. Consequently, the proposed method produced high efficient numerical results as
compared to the Spectral tau method [13], Bessel collocation method [6], Taylor matrix method [5],
function approximation theory [21], and stochastic technique [4]. The other novel aspect of our article
is the development of new integral and derivative operational matrices in Riemann-Liouville and
Caputo senses respectively. As an applications of the proposed method, we solved various MOFDEs
corresponding to initial conditions. Our approach has ability to reduce the MOFDE:s into a system of
Sylvester types matrix equations which can be solved using MATLAB built in function lyap(.). The
proposed results are not sufficient to solve numerically the fractional boundary value problems
(BVPs). We are interested in extending the developed numerical results for fractional BVPs as well to
partial FDEs by developing some more operational matrices.
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