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Abstract

In this research work, we discuss an approximation techniques for boundary value problems
(BVPs) of differential equations having fractional order (FODE). We avoid the method from
discretization of data by applying polynomials of Laguerre and developed some matrices of
operational types for the obtained numerical solution. By applying the operational matrices,
the given problem is converted to some algebraic equation which on evaluation gives the required
numerical results. These equations are of Sylvester types and can be solved by using matlab.
We present some testing examples to ensure the correctness of the considered techniques.

Keywords: Boundary Value Problems; Laguerre Polynomials; Discretization of Data; Numerical

Solution.

1. INTRODUCTION

For the last 30 years, fractional order differential
equations (FODESs) have gained wide-ranging appli-
cations in different realms like electrical activity of
heart ' tank reactors of continuous stirred? plug
flow reactors discussion of gravity and electromag-
netism#5 Likewise, researchers in fractional calcu-
lus have got popularity in applications in different
fields such as heredity characters, medical engineer-
ing subjects, chemistry as well as mechanics, elec-
trical networks, viscoelasticity, signaling, imaging
and phenomenon of optics®1 In addition, some
other attractive applications in dynamical system,
electrochemistry, culturing of microorganisms were
studied in Refs. [I5] and [16l. These problems related
to engineering and medical engineering are in terms
of mathematical problems, which are modeled by
FODESs discretized into problems of solving various
systems.

Several techniques and methods in natural
sciences, physical sciences, mechanics and fluid
mechanics, optical and engineering technologies
can be modified using partial differential equa-
tions. PDEs represent a large numbers of models
like waves equation, wave production, propagation
of long waves, heat equation for chemical reac-
tion T3SATIS Fyactional order differential equations
have been investigated and studied from various
aspects, like theory of existence and uniqueness
of solution, checking solution that either it is sta-
ble or not and approximation of solutions. The
theory of existence has been greatly gaining the
interest of researchers and a lot of research work
has been undertaken to explore this idea. In qual-
itative analysis, the exact solution is very diffi-
cult to be obtained. Therefore, the researchers have
shown keen interest in numerical and series solu-
tion of fractional order partial differential equations

(FOPDESs). Due to high applicability and much
more importance of FODEs, the researchers have
given the topic increased attention to develop
numerous techniques to find numerical and optimal
solutions for these equations. Generally, each and
every FODE or FOPDE cannot be solved directly
and exactly.

It is of fundamental interest to exploit vari-
ous numerical schemes, efficient enough to avoid
computational complexities or overcome the diffi-
culty in obtaining explicit analytical solutions. The
best option might be numerical solutions which are
achieved through approximate solution methods or
series-type solution, as found in Refs. 19-24. Sev-
eral other well-known semi-numerical and numeri-
cal techniques are also developed, among them the
“spectral method” needs discretization of data®
Further, scientists have introduced some matrix of
operational types by using polynomials like Shifted,
Legendre, Jacobi and various other polynomials
forms 2526

Haar and Legendre wavelet methods were also
beneficial to solve linear FPDEs228 Mostly, the
spectral methods based on matrices of opera-
tional types are applicable to find out the approx-
imate solutions for both FODEs and FOPDEs, see
Refs. 29432l For few years, the Bernoulli wavelet
method has been used to find numerical solu-
tions to FDEs, see Ref. [33l Jacobi wavelet opera-
tional matrices and optimal homotopy asymptotic
method were also used to find numerical solutions
of FOPDESs, see Refs. 34| and 35 Similarly, we also
use non-discretization of data, because it consumes
less time and there is no need of extra memory, by
obtaining the operational matrices using orthogonal
polynomial named “Laguerre polynomials”. These
orthogonal polynomials help to convert the opera-
tional matrices to algebraic equations of the form
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MX + XN + L = 0. After that, we take help
from matlab or mathematica to solve the obtained
algebraic equations for the unknown X. We now
provide boundary value problems (BVPs) of FODE
to find the approximate solutions by Laguerre poly-
nomials in Case 1 of the main section.

CDYZ(t) + A °DYZ(t) + Ay Z(t)

= (1),
200)=Zy, Z(1) =

l<y<2 0<a<ll,
Z1, Zy, 21 €N

Similarly, the coupled system of BVPs of FODEs is
treated in Case 2 as follows:

DY (t) + By D Z(t) + BoY (t)
+ B3Z(t) = (1),
‘DVZ(t) + E{DY (t) + Ea Z(t)
+ E3Y (t) = ¢(1),
2(0) =20, Y(0)=Yo, Z(1)=2,
Y(1)=Y1, Zy, Yo, Z1, Y1 €R.

2. PRELIMINARIES

In this section, requisite concepts and some basic
results along with definitions are provided, stapled
to the work of our discussion.

Definition 2.1 (Refs. 13, 24, and [37). The
fractional integral of order v € R of a function
Y :]0,00] — R is defined as

0y = ﬁ) /0 (t — )" 'Y ()dn.

Definition 2.2 (Ref. [6]). The Caputo fractional
derivative of fractional order of a function Y €
RT — R may be formulated as

v
L(m —7)

X /O (t—m)™ 7Y™ (n)d.

DY (t) =

Lemma 2.1 (Ref. B8). The solution of DY (t)
is given by Y (t) = do + dit +dot> + - - - + dp_1t™ !
such that d, € R, p=0,1,2,...,m — 1.

Lemma 2.2 (Ref.[39). For~y >0, IJ[°D"Y(t)] =
Y (t)+do+dit+dot?> + - -+dp1t™ 1, where d, € R,
p=0,1,2,....,m—1.

Definition 2.3. The famous Laguerre polynomial
“La(t)” is defined as

~DFC(p+~+1)
Z k+1+'y T(p+1— kT (1+k)yk

p=0,1,2,3,....

Lemma 2.3. Let us consider the function o, which
is continuous and differentiable up to n+ 1 and let

Y = (LO,’m LO,Tw cee aLO,n)
be Laguerre basis. If L' O(t)

the error will be
| < VRS
T I'(n+2)V2n+3

Proof. For the proof, we refer to Ref. [40. O

~ ¢ in form of Y then

o — L'O(t)

If L) and L, are Laguerre polynomials, then their
inner product is

t
/0 LI (O LY(0X7 (1)t = 5,

The weight function is

XV(t) =t"e ",
with
F(l4+~vy+k)
Q= CT(L+k) et
0, p#q.

We can express a function Y'(¢) in terms of Laguerre
polynomials as

M
Y(t)=> dpL]()
k=0

Y(t) = doLg(t) + diL](t)
+ -4+ da L, (t),

L(#) =y
Y(t)=[dy dy...dp] : ,
Ly(t),
Y (t) = d'Hy (1),
where
d" = [do dy...dp),
and
Ly (t)
Hy(t)=|
L (t)
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Again, if

Y(t) = Zm:dpLg(t)
k=0

then the inner product is

We represent the left-hand side as

/ Y (£)XO(t Zd hy,

where h,, is the general term of mtegratlon.
Then the coefficient d,, can be calculated as

L
dy = hi /0 y(O)X7 (L) (B)d(2).

Lemma 2.4. Let H1,(t) be a function vector, we
can obtain the fractional order integral provided as

I'HL (t) = Ry 0 Har(t),

where the OM of fractional integral is represented
in terms of R}, s gwen as follows:

r 7Y Y - v - Y 7
UO,O,k,r UO,l,k,r UO q,k,r UO m,k,r
2 2 - 2 - g
Ul,O,k,r Ul,p,k,r Ul,q,k,r Ul,m,k,r
¥ ¥ ¥ : ¥ ’
Uposr Upigr " Upgrr © Upmpr
Y 2 R Lo UY
-Um,O,k,r Um,l,k,r Um,q,k,r Um m,k,rJ
where
p q.k,r Z Z
k=0 r=0

(D" T(q+ 1l (p+7+1)

y xI'(k+~v+a+7r+1)
L(g—r+1T(p—k+1)I(r+1)
xDk+~v+1)I(k+a+1)

xI(y+r+1)

Proof. For the proof, we refer to Ref. 41l O

Lemma 2.5. Let H1/(t) represent a function
vector, the fractional order derivative of this

function, be given as
DVH} (1) = GhparHar (1),

such that G}, ,; is the OM of fractional order
derivative and is equal to the matriz

0 0 0 0 0
2 2 R Va2l R Vil
V’V'Y] 0 k7a Vlr’y_}717k7a V’V'Y] 7q7k7a V’V'Y] 7n7k7a
Vooka Vorka  Vogka = Vinka |
| Vioka Vatka  Vagka 0 Vanka
(2.2)
where
p q:k,a Z Z
k=~ r=0
()" T(g+ )T (p + a +1)
xT'k+a—r+vy+1)
X
Llg—r+1l(p—k+1)
xD(r+1)I'k+a+1)
xI'(k—~vy+1DI'(a+v+1)
Proof. For the proof, we refer to Ref. O

Lemma 2.6. We now obtain the OM for boundary
conditions such that X (t) be a function, with L(t)
= Ky HL (1), then

XU L) = KnQrear Hir (1),
where QX/[X w8 the operational matrix, given by
[doo, do1 -+ dog - dom]
dip dig oo dig -0 dim
dpo dp1 -0 dpg : dp,m
_dm,O dm,l e dm,q e dm,m_

with
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and

—1)PHT(p+1+7)

p
(
A = '
Pk kzo D(k+~+ 101 —k+p)L(k+7)

Proof. We consider the general term of H1,(t)

1
17 L,(t) = ﬁ /O (1= )~ Ly(n)dn.

1
1L, (t) = ﬁ /O A=t S ()

(D" (p+1+7)
I(-k+1+p(k+1+7)
xT'(1+ k)

9

= (DTt 1+7)
I/ Ly(t) = Z (VT (—k+1+p)

XxT(k+14+~)T(1+k)

1
x /0 (1 =)~ ()dn, (2.3)

Upon evaluating the integral
! L(y)T'(k+1)
1—n) kdy = =2~
/O (1—=n)"""n"dn Ty + k)

(2.3) becomes

& DT (p+1+7)
I/ Ly _z%r (—k+1+p)
xF(k:+1+'y) (1+Fk)
(VIT(k+1)
< (y + k)

zp: (=DT(p+1+7)
= D(—k+1+pl(k+y+ DI +E)

= Bp ke

With the help of Laguerre polynomials we obtain

deqL

where d), , can be calculated by using orthogonal-
ity as

Apy X (1)

1l
dpg = h_p/o Ay kX (t) L7 (t)dt. (2.4)

For any result, we can get this relation with p and
q=0,1,....,m. |

3. MAIN RESULT

In this main section, we take the considered BVPs of
FODE, and coupled system of BVPs of FODE, and
construct the general procedure for their numerical
solution such that in Case 1 we treat the BVP of
FODE, while in Case 2 we treat the coupled system
of BVPs of FODE.

Case I:
‘DVZ(t) + Ai1°D*Z(t) + A2 Z(t) = ¢(t),
l<y<2, 0<ac<l,
Z0) =2y, Z(Q1)=21, Zy, Z1 € R.
Assuming °D7Z(t)= Ly H1,(t), such that
Z(t) = Ly Py 0 Hi (1) — ao + ast,

Using the boundary conditions and then simplify-
ing, we get

Z(t) = Lar P B (0) + Zo

Zo) — tLy Py Har(t).  (3.1)

ap, a1 € N.

+t(Z1 —
We approximate
Zo + 21 — Zo) = F Hif(t)
and
— L Py Hy (8)l =1 & L@y s Hir (1),

Equation (B1]) implies that
Z(t) = L Py, Hip(8) + FVHE (2)
+ L Qs Hiy(t).
Applying ¢D® and using corollary
‘DZ(t)] = “D*[Lar Py o + FLY
+ Ly Qg His (8)-

Approximation of ¢(t) ~ FE)H?\} and further cal-

culation provides that
LarHL () + Ay[Lag Pl oy + FLY

?\L/IXMLIJ\} (t)
(1)

+LMQX4><M]
+A2[LMPM><M +F

+ Ly Qrn Hir (t) — FipHiy (1) = 0,

or
Lar + AL La Pl + FU + L@y )G
+A2[LMP]’\Y/[><M+FZ§/[)

+ Ly Q0] — Fip = 0.
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We obtain the matrix equation as
L + Lu[Av Py + A1Q 0 Gl

+ A2PM><M + AZQMxM]
+ A F DG s + AFY — F2 =0,

Solving the above “matrix equation” by matlab, we
get the coefficient matrix Lj;.

Case II: Similarly, the FDE with the boundary
conditions are given as

¢DYY (t) + B§DYZ(t)
+ BoY (1) + BsZ(t) = (1),
°DVZ(t) + E{DYY (t)
+ ExZ(t) + E3Y (1)
Z(0) = Zo, Y (0) = Yo,
Z) =21, Y(1)=Y.

Let us assume

{CDW(t)

= Ly Hi, (1),
¢DVZ(t) = Ny HE(t),
Y(t) =eo+ei(t) + LMP&XMH?\}(t),
Z(t) =do+di(t) + NuPJ o Hi (1)
Using the boundary conditions
Y (t) = Ly Py 0 Hig(t) + Yo + t(Y1 — Yo)
—tLp Py Hip ()],
Z(t) = NuPY, 2 Hi () + Zo + (71 — Zo)
— tNM P Hip ()=

Upon Approximation

Y0+t(Y1 ) FMHM t)
Zo+t(Z1 — Zo) ~ FyHL (1),
—tLMPMxMHM( ) = LMQMXM Hi (1),

_tNMPJ\'YJxMHM() NMQMxM f/[(t)

Equation ([3.2)) is then written as

Y(t) = Lo Pypp Hig (1)

+LMQM><M 1 (b)) + Fi H(t),
(3.5)
Z(t) = NuPip 2 Hi ()
+NMQM><M 1 (t) + Fr Hi ().

The source functions ¢(t) and (t) are approxi-
mated such that

{w(t) = Fy Hiy (1), 56)

W(t) = Fy Hi(t).

Due to application of D% to Z(t) and D to Z(t)

DY (t) = Ly P + LuQ@ienr + Fiy)
X Girear Hiy (8),
“DZ(t) = [N Pipyas + NuQifuas + Firl

X G%JXMHJY\;[@)’
(3.7)

using the above equations in ([B.2]) we get

Ly HE(t) + BiINv Py

+NMQ%t><M +F2 ]G%XMHﬁ(t)

+ BolLar Pirns + L @i

+ Fy|Hi(t) + Bs[INv Pl

+ NuQYar + i Hi (1) — F H (1) =0,
NyH () + By L PRy + L@ s + Fiyl

X Gy Hip(t) + Ea[Nyr Pl g

+ NuQ)fns + FYIHT (1)

+ E3[La Py + LMQijM + Fyy)

x HI(t) — FiHL(t) = 0.
(3.8)
Now, let us assume that
A = BilPYras + Qi Gisar
+ Bs[Pyppr + Qi)
BX/[XM = El[PMxM + QMxM]G%/[xM (3.9)

+ B3[Plrr + QYiwar)
O rnt = BalPlrsns + Qi)

RX/IXM - E2[PM><M + QMxM]

with

Sm = BiF3GSyo oy + BoFY + BsF3 — Fip,
Tu = E\Fy GSyony + E2F3 + EsFl — Fy.
(3.10)

2040046-6
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The matrix equation is obtained from (3.8) as

LarH () + Ny Ajpa Hiy (1)
+ Ly O Hiy () + Sy Hi(t) = 0,
Ny H () + Ly By Hiy (t)
+ Ny Ry Hiyg () + TarHiy () = 0,
(3.11)

which by simplification yields

[Lar Nal+ [Lar Nl

O, B}

Y Y
AM><M RM><M

4. TEST PROBLEMS

In this section, we provide some test problems to
elaborate the above analysis.

Example 4.1. Consider the following fractional
order problem with boundary conditions:

CDYZ(t) +5°DZ(t) + 6Z(t)
720167 12057

B 120¢4—« 10t2—«@
'G—a) T'B—a)
+6t5 + 6t° — 6t* + 6t° + 6,
Z(0)=1, Z(1)=3,

where 1 < v <2 0<a<1lAty=2 a=1,
the solution at integer order is given by Z(t) =
t0 4+ 5 — t* + 12 + 1. We investigate the approxi-
mate solutions at various fractional orders by using
the aforementioned proposed method correspond-
ing to different fractional orders. Also, we provide
the absolute error graphs. From Figs. [l and [, we
observe that the spectral method under the opera-
tional matrices by using Laguerre polynomials pro-
vides very good solutions. As the scale level enlarges
the approximate solution is tending to converge the
exact solution at integer order. But on the other
hand when (v,a) — (2,1), the numerical solution
is tending to the integer order solution.

Example 4.2. Consider the given coupled system

as

°DYY (t) + 10°D*Z(t) + 40Y (1)

—5Z(t) =49cost — 5sint, (4.1)

¢DVZ(t) — 10°D%y(t) + 20Z(t) '
(t

+6Y(t) = 29sint + 6 cost,

P(T=7) T6-7 under initial and boundary conditions as Z(0) =
24147 2127 1, Y(0) =0, Z(1) =cos1, Y (1) =sinl.
T(3-17) + I'(3—7) Let the solution at integer orders v = 2,a =
o - 1 be Y(t) = cost, Z(t) = sint. We approximate
3600t 600¢ the solution through the proposed method for the
IN7—a) T(-a given coupled system of fractional order. We see
x10®
8 q
7
1
6 mily |
U
]
m g
5 oanllidl
3 =l s
%) §3 N
< 1L
1!
2 W
u
1
i
0 ' ‘ ‘
0O o1 02 03 04 05 06 07 08 08 1 0 0.2 0.4 0.6 0.8 1

t

Fig. 1 Graphical representation at various values of M and taking v = 1.9, a = 0.9 and the absolute errors.

2040046-7



Fractals 2020.28. Downloaded from www.worldscientific.com
by CANKAYA UNIVERSITY on 03/01/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

A. Khan et al.

%1077
3f - 25
= = solution at v = 1.8
2.8 ——solution at v = 1.9 b
26 1 2
2.4 ]
2.2 b § 15 H
S ®
= 4 Q@
2 ° E
(%) [=]
1.8 18 4|
<
1.6 1
1.4 1 o5t
1.2 1
1 1 ol
s s s s s s s s s ‘ ‘ ‘ ‘
0 01 02 03 04 05 06 07 08 09 1 0 02 0.4 06 08
t t
Fig. 2 Numerical solution at M = 12 and o = 0.9 and their absolute errors.
09
1 — Exact Solution 1
= Approximate solution 081 — Exact solution
0.95
07F == Approximate solution
0.9
0.6
0.85
> N
= 08r o 05
2 2
= =04
Z o075+ £0
w0 195}
0.7 0.3
0.65 0.2
0.6 0.1
0.55 [ 0
05 L L L L L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1 0 0.2 0.4 06 08
t t
Fig. 3 Comparison between exact and approximate solutions at M = 10 and taking v = 1.9, o« = 0.9.
< 10°® x10°®
8 ]
7 ]
6 ]
5° 5
5 ®
4 2
=} =
S o
[%2] (%2}
24 :
o
1k
ol
0 01 02 03 04 05 06 07 08 09 1 0 0.2 0.4 0.6 0.8
t t

Fig. 4 Absolute errors at M = 10 and v = 1.9, a = 0.9.
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from Figs.Bland @ that the adopted spectral method
produces very accurate solution at the given values
scales and fractional orders.

5. CONCLUSION

We have successfully used Laguerre polynomials to
obtain the operational matrix without discretiza-
tion of data. Based on these matrices, we have con-
verted some FODEs and their systems to Sylvester-
type algebraic equations which then solved for
numerical solutions. In this regard, a new opera-
tional matrix “@Q” has been obtained for the BVPs.
From examples and their analysis, we observe that
the considered polynomials also provide excellent
numerical results for FODEs.
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