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Abstract: There is an increasing demand for numerical methods to obtain accurate approximate
solutions for nonlinear models based upon polynomials and transcendental equations under both
single and multivariate variables. Keeping in mind the high demand within the scientific literature,
we attempt to devise a new nonlinear three-step method with tenth-order convergence while using
six functional evaluations (three functions and three first-order derivatives) per iteration. The method
has an efficiency index of about 1.4678, which is higher than most optimal methods. Convergence
analysis for single and systems of nonlinear equations is also carried out. The same is verified
with the approximated computational order of convergence in the absence of an exact solution.
To observe the global fractal behavior of the proposed method, different types of complex functions
are considered under basins of attraction. When compared with various well-known methods, it
is observed that the proposed method achieves prespecified tolerance in the minimum number of
iterations while assuming different initial guesses. Nonlinear models include those employed in
science and engineering, including chemical, electrical, biochemical, geometrical, and meteorological
models.

Keywords: nonlinear models; efficiency index; computational cost; Halley’s method; basin of
attraction; computational order of convergence

MSC: 65H04; 68W05

1. Introduction

The study of iterative methods for solving nonlinear equations and systems appears
to be a very important area in theory and practice. Such problems appear not only in
applied mathematics but also in many branches of science including engineering (design
of an electric circuit), physics (pipe friction), chemistry (greenhouse gases and rainwater),
biology (steady-state of Lotka–Volterra system), fluid dynamics (combined conductive–
radiative heat transfer), environmental engineering (oxygen level in a river downstream
from a sewage discharge), finance (option pricing), and many more. The study of nonlinear
models is a vital area of research in numerical analysis. Interesting applications in pure
and applied sciences can be studied in the general construction of the nonlinear equations
expressed in the form g(x) = 0. Due to their significance, several iterative methods have
been devised under certain situations since it is near to impossible to obtain exact solutions
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of models that are nonlinear in nature. These iterative methods have been constructed
using different existing methods such as Taylor expansion, the perturbation method, the
homotopy perturbation method, Adomian decomposition method, quadrature formula,
multi-point iterative methods, the Steffensen-type methods adapted to multidimensional
cases, and the variational iteration method. For detailed information, see [1–8]. Among
existing iterative methods, the optimal methods are considered those that satisfy the
condition for an order of convergence of 2k−1, where k stands for the number of function
evaluations per iteration as suggested in [9]. In this way, Newton’s classical method
xn+1 = xn − g(xn)

g′(xn)
is the optimal method with quadratic convergence. Various attempts

have been made to improve the efficiency of Newton’s classical method in past and recent
research, as can be seen in [10–15] and most of the references cited therein.

2. Materials and Methods

In a general form, the uni-variate nonlinear equation can be expressed as g(x) = 0,
where x is the desired quantity. It is extremely difficult to solve the nonlinear equation
to find the value of x. Therefore, we attempt to devise a new, highly convergent iterative
method to obtain an accurate approximate x that could yield the smallest possible error
in the numerical solution. Before we continue with a discussion and derivation of the
proposed method, we present some of the methods that are frequently used in the available
literature. Later, we use these methods to compare the results obtained under these
methods and the results obtained via the method we plan to propose.

2.1. Some Existing Methods

The iterative method ,called the Newton Rahpson method NR2 [1,16,17] with quadratic
convergence, is shown below and uses two function evaluations: one for the function g(x)
itself and 1 for the first derivative g′(x):

xn+1 = xn −
g(xn)

g′(xn)
, n = 0, 1, 2, . . . , (1)

where g′(xn) 6= 0.
In [2], the authors proposed an iterative method with fifth-order convergence as

abbreviated by MHM5. The method requires four function evaluations per iteration: two
for the function itself and two first derivatives. The computational steps for the two-step
method MHM5 is described below:

yn= xn −
g(xn)

g′(xn)
,

xn+1= yn −
g′(yn) + 3g′(xn)

5g′(yn)− g′(xn)
.

g(yn)

g′(xn)
,

n = 0, 1, 2, . . . , (2)

where g′(xn) 6= 0 and 5g′(yn) 6= g′(xn).
An efficient three-step iterative method with sixth-order convergence is proposed

in [3]. This method is the combination of two different methods from [1,18] with second
and third-order convergence, respectively. The method requires five function evaluations:
three evaluations of the function itself and two evaluations of the first-order derivative per
iteration. We represent the method as HM6. The computational steps of the method can be
described as follows:

yn= xn −
g(xn)

g′(xn)
,

zn= yn −
g(yn)

g′(yn)
,

xx+1= yn −
g(yn) + g(zn)

g′(yn)
.

n = 0, 1, 2, . . . , (3)
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The three-step method with eighth-order convergence as denoted by WO8 is proposed
in [19]. The method requires four function evaluations: three evaluations of the function
itself and one evaluation of the first-order derivative per iteration. The computational steps
of WO8 can be described as follows:

yn= xn −
g(xn)

g′(xn)
,

zn= xn −
g(xn)

g′(xn)

4g(xn)2 − 5g(xn)g(yn)− g(yn)2

4g(xn)2 − 9g(xn)g(yn)
,

xn+1= zn −
g(zn)

g′(xn)

[
1 + 4

g(zn)

g(xn)

][ 8g(yn)

4g(xn)− 11g(yn)
+ 1 +

g(zn)

g(yn)

]
.

n = 0, 1, 2, . . . , (4)

The iterative method with ninth-order convergence can be seen in [20]. The method
requires five function evaluations: three evaluations of function itself and two evalua-
tions of the first-order derivative per iteration. This method is abbreviated as NM9. The
computational steps of the method are described as follows:

yn= xn −
g(xn)

g′(xn)
,

zn= yn −
[
1 +

( g(yn)

g(xn)

)2] g(yn)

g′(yn)
,

xn+1= zn −
[
1 + 2

( g(yn)

g(xn)

)2
+ 2

g(zn)

g(yn)

] g(zn)

g′(yn)
.

n = 0, 1, 2, . . . , (5)

The predictor–corrector modified Householder’s method with tenth order conver-
gence, as denoted by MH10, is proposed in [21]. The method is free from the second
derivative and requires only five function evaluations per iteration: three evaluations of
the function itself and two evaluations of the first-order derivative. The computational
steps of MH10 can be described as

yn= xn −
g(xn)

g′(xn)
,

zn= yn −
g(yn)

g′(yn)
− g2(yn)P(yn)

2g′3(yn)
,

xn+1= zn −
g(zn)

g[zn, yn] + (zn − yn)g[zn, yn, yn]
,

n = 0, 1, 2, . . . , (6)

where

P(yn)= g′′(yn) =
2

xn − yn

[
3

g(xn)− g(yn)

xn − yn
− 2g′(yn)− g′(xn)

]
,

g[zn, yn]=
g(zn)− g(yn)

zn − yn
,

g[zn, yn, yn]=
g[zn, yn]− g′(yn)

zn − yn
.

(7)

2.2. Proposed Iterative Method

There are many recent research studies wherein researchers have presented modified
iterative methods to solve nonlinear models of the form g(x) = 0. In some of these meth-
ods, modification is based on the idea of combining two existing methods to develop a
new method with a better order of convergence. After being motivated by such an idea
as observed in [3,22–24], we have developed a new method with tenth-order convergence
via the blending of two different iterative methods with second (Newton method) and
fifth-order (modified Halley method) convergence as given in [1,2], respectively. We recom-
mended the higher-order convergent method of the convergence order 2 × 5 = 10. The
choice of the methods in the present work is suitable because the resultant iterative method
with tenth order convergence uses only 6 function evaluations (3 function evaluations and
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three evaluations of the first-order derivative) per iteration. It may be noted that the choice
of blending of methods is extremely important to avoid extra function evaluations that
could bring additional computational cost, as can be seen in [25,26]. Hence, the proposed
iterative method not only confirms higher-order convergence but also employs fewer
function evaluations, as can be described by the following proposed three-step method
abbreviated as PM10:

yn= xn −
g(xn)

g′(xn)
,

zn= yn −
g(yn)

g′(yn)
,

xx+1= zn −
g′(zn) + 3g′(yn)

5g′(zn)− g′(yn)

(
g(zn)

g′(yn)

)
.

n = 0, 1, 2, . . . , (8)

The proposed iterative three-step method given in (8) is discussed in the flowchart
presented in Figure 1.
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Figure 1. Flowchart of the proposed three-step method given in (8).
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Figure 1. Flowchart of the proposed three-step method given in (8).

Furthermore, the efficiency index e is also computed for the proposed iterative method
as 101/6 ≈ 1.4678, whereas it would generally be shown as 101/3(n+n2) for n ≥ 1. The
following Table 1 and the Figure 2 can be consulted for the computation and comparison
of all iterative methods taken for comparison in the present research work. Although
the function evaluations (FV) of PM10 in the Table 1 seem to be more than some of the
methods under consideration, to achieve the desired accuracy regarding the performance
of the latter under different initial guesses (IG), the number of iterations (N) and CPU time
(seconds) are better than most of the methods. This discussion is presented in Section 5.

Figure 1. Flowchart of the proposed three-step method given in (8).
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Furthermore, the efficiency index e is also computed for the proposed iterative method
as 101/6 ≈ 1.4678, whereas it would generally be shown as 101/3(n+n2) for n ≥ 1. The
following Table 1 and the Figure 2 can be consulted for the computation and comparison
of all iterative methods taken for comparison in the present research work. Although
the function evaluations (FV) of PM10 in the Table 1 seem to be more than some of the
methods under consideration, to achieve the desired accuracy regarding the performance
of the latter under different initial guesses (IG), the number of iterations (N) and CPU time
(seconds) are better than most of the methods. This discussion is presented in Section 5.

Table 1. Comparison of efficiency indices for methods under consideration.

Method Order FV EI New Function Evaluations per Iteration for n ≥ 1.

PM10 10 6 1.4678 × 100 3(n + n2)

MH10 10 5 1.5849 × 100 3n + 2n2

NM9 9 5 1.5518 × 100 3n + 2n2

WO8 8 4 1.6818 × 100 3n + n2

HM6 6 5 1.4310 × 100 3n + 2n2

MHM5 5 4 1.4953 × 100 2(n + n2)

NR2 2 2 1.4142 × 100 n + n2

0 5 10 15

dimension (1  n  15)

1

1.1

1.2
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I
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8

HM
6
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5
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2

Figure 2. Behavior of efficiency index of various iterative methods for increasing dimensions of the
nonlinear problem.

3. Convergence Analysis

This section has been devoted to the proof of local convergence analysis for the
proposed tenth-order method under both scalar and vector (systems) cases. Single and
multivariate Taylor’s series expansion have been used to obtain the required order of local
convergence. It is worth noting that the convergence analysis is addressed in a similar
manner to many other existing articles, and the main interest in developing higher-order
methods is of the academic type. Even if higher-order methods are more complicated, the
efficiency can be measured, and this is why we have included the CPU time, as found
in Section 5. The theorems stated below are later used for the theoretical analysis of the
convergence.
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Theorem 1. (Single real variable Taylor’s series expansion): Suppose that r ≥ 1 is an integer and
further suppose that g : R → R is an r-times differentiable function at some finite point α ∈ R.
Then, there exists the following expression:

g(xn) = g(α) + g′(α)δn +
1
2!

g′′(α)δ2
n + ·+

1
r!

g(r)(α)δr
n + Rr(xn), (9)

where Rr(x) is the remainder term, whose integral form is

Rr(xn) =
∫ xn

α

1
(r + 1)!

g(r+1)(t)(xn − t)rdt. (10)

Theorem 2. (Multivariable Taylor’s series expansion): Suppose that G : P ⊆ Rn → Rn is an
r-times Frechet differentiable system of functions in a convex set P ⊆ Rn; then, for any x and
k ∈ Rn the equation given below is true:

G(x + k) = G(x) + kG′(x) +
k2

2!
G′′(x) +

k3

3!
G′′(x) + . . . +

kr−1

r!
G(r−1)(x) + Rr, (11)

where ||Rr|| ≤ 1
r! sup0<t<1 ||G(r)(x + kt)||||k||r and G(q)(x)kq = (. . . (G(q)(x)k) q. . .)k ∈ Rn.

3.1. Convergence under Scalar Case

In this subsection, we theoretically prove the local order of convergence for PM10.

Theorem 3. Suppose that α ∈ P is the required simple root for a differentiable function g : P ⊆
R → R within an open real interval P. Then, the proposed three-step numerical method (8)
possesses tenth-order convergence, and the asymptotic error term is given by

εxn+1 =
g′′7(α)

4096g′9(α)

(
52g′(α)g′′′(α)− 35g′′2(α)

)
ε10

xn +O(ε11
xn). (12)

Proof. Suppose α is the root of g(xn), where xn is the nth approximation for the root by the
proposed method (8), and εxn = xn − α is the error term in variable x at the nth iteration
step. Employing the single real variable Taylor’s series given in the theorem (1) for g(xn)
around α, we obtain

g(xn) = g′(α)εxn +
1
2!

g′′(α)ε2
xn +O(ε3

xn). (13)

Similarly, using the Taylor’s series for 1/g′(xn) around α, we obtain

1
g′(xn)

=
1

g′(α)
− g′′(α)

g′2(α)
εxn +

1
g′(α)

( g′′2(α)
g′2(α)

− g′′′(α)
2g′(α)

)
ε2

xn +O(ε3
xn). (14)

Multiplying (13) and (14), we obtain

g(xn)

g′(xn)
= εxn −

g′′(α)
2g′(α)

ε2
xn +

( g′′2(α)
2g′2(α)

− g′′′(α)
2g′(α)

)
ε3

xn +O(ε4
xn). (15)

Now, substituting (15) in the first step of (8), we obtain

εyn =
g′′(α)
2g′(α)

ε2
xn +

1
2g′2(α)

(
g′(α)g′′′(α)− g′′2(α)

)
ε3

xn +O(ε4
xn), (16)

where εyn = yn − α. Using the Taylor’s series (1) for g(yn) around α, we obtain

g(yn) = g′(α)εyn +
1
2!

g′′(α)ε2
yn +O(ε3

yn). (17)
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Similarly, using the Taylor’s series for
1

g′(yn)
around α, we obtain

1
g′(yn)

=
1

g′(α)
− g′′(α)

g′2(α)
εyn +

1
g′(α)

( g′′2(α)
g′2(α)

− g′′′(α)
2g′(α)

)
ε2

yn +O(ε3
yn). (18)

Multiplying (17) and (18), we obtain

g(yn)

g′(yn)
= εyn −

g′′(α)
2g′(α)

ε2
yn +

( g′′2(α)
2g′2(α)

− g′′′(α)
2g′(α)

)
ε3

yn +O(ε4
yn). (19)

Now, substituting (19) in the second step of (8), we obtain

εzn =
g′′(α)
2g′(α)

ε2
yn +

1
2g′2(α)

(
g′(α)g′′′(α)− g′′2(α)

)
ε3

yn +O(ε4
yn), (20)

where εzn = zn − α. Using the Taylor’s series (1) for g(zn) around α, we obtain

g(zn) = g′(α)εzn +
1
2

g′′(α)ε2
zn +O(ε3

zn). (21)

Using the Taylor’s series (1) for g′(yn) around α, we obtain

g′(yn) = g′(α) + g′′(α)εyn +
1
2

g′′′(α)ε2
yn +O(ε3

yn). (22)

Using the Taylor’s series (1) for g′(zn) around α, we obtain

g′(zn) = g′(α) + g′′(α)εzn +
1
2

g′′′(α)ε2
zn ++O(ε3

zn). (23)

Expanding the Taylor series
1

5g′(zn)− g′(yn)
and using Equations (22) and (23), we

obtain

g′(zn) + 3g′(yn)

5g′(zn)− g′(yn)
= 1 +

g′′(α)
g′(α)

(
εyn − εzn

)
+

(
g′′′(α)
2g′(α)

+
g′′2(α)
4g′2(α)

)
ε2

yn −
(

g′′′(α)
2g′(α)

− 5g′′2(α)
4g′2(α)

)
ε2

zn

− 3g′′2(α)
2g′2(α)

εyn εzn +O(ε3
zn).

(24)

Finally, substituting (24) in the third step of (8) and using Equations (16), (18), (20) and
(21), we obtain

εxn+1 =
g′′7(α)

4096g′9(α)

(
52g′(α)g′′′(α)− 35g′′2(α)

)
ε10

xn +O(ε11
xn). (25)

Hence, the tenth-order convergence of the proposed method PM10 given by (8) for
g(x) = 0 is proved.

3.2. Convergence under Vector Case

This subsection extends the proof for the tenth-order convergence of the proposed
method PM10 given in (8) regarding solving the system of nonlinear functions G(x) = 0,
where G = [g1(x), g2(x), . . . , gn(x)]′ from Rn to Rn. For the system of nonlinear functions,
PM10 can be described as follows:
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yn= xn −G′(xn)−1G(xn),
zn= yn −G′(yn)

−1G(yn),

xn+1= zn −
[
5G′(zn)−G′(yn)

]−1[
G′(zn) + 3G′(yn)

][
G′(yn)

−1G(zn)
]
.

n = 0, 1, 2, . . . . (26)

We present the following theorem to obtain the asymptotic error term and the order
of convergence for PM10.

Theorem 4. Let the function G : Pn ⊂ Rn → Rn be sufficiently differentiable in a convex set
Pn containing the zero α of G(x). Let us consider that G′(x) is continuous and nonsingular in
α. Then, the solution x obtained by using proposed three-step method PM10 converging to α has
tenth-order convergence, if an initial guess x0 is chosen close to α.

Proof. Suppose that εxn = ||xn − α||. Now, using the Taylor series described in the
Theorem (2) for G(xn), we obtain

G(xn) = G′(α)εxn +
1
2!

G′′(α)εx
2
n +O(εx

3
n). (27)

Similarly, using the Taylor’s series for G′(xn) around α, we obtain

G′(xn) = G′(α)+ G′′(α)εxn +
1
2!

G′′′(α)εx
2
n +O(εx

3
n). (28)

Employing the Taylor’s series for the inverted Jacobian matrix G′(xn)−1 around α, we
obtain

G′(xn)
−1 = G′(α)−1 −G′2(α)−1G′′(α)εxn+

G′(α)−1[G′2(α)−1G′′2(α)− 2G′(α)−1G′′′(α)
]
εx

2
n +O(εx

3
n).

(29)

Multiplying (27) and (29), we obtain

G′(xn)
−1G(xn) = εxn − 2G′(α)−1G′′(α)εx

2
n +

[
2G′2(α)−1G′′2(α)− 2G′(α)−1G′′′(α)

]
εx

3
n +O(εx

4
n). (30)

Now, substituting (30) in the first step of (26), we obtain

εyn = 2G′(α)−1G′′(α)εx
2
n + 2G′2(α)−1[G′(α)G′′′(α)−G′′2(α)

]
εx

3
n +O(εx

4
n). (31)

Similarly, employing the Taylor series for G(yn) and G′(yn) about α, and also for the
inverted Jacobian matrix G′(yn)

−1 in the second step of (26), we obtain

εzn = 2G(α)−1G′′(α)εy
2
n + 2G′2(α)−1[G′(α)G′′′(α)−G′′2(α)

]
εy

3
n +O(εy

4
n). (32)

Using the Taylor series for G′(zn) and G′(yn) around α, we obtain the following:

G′(zn) = G′(α)+ G′′(α)εzn +
1
2

G′′′(α)εz
2
n +O(εz

3
n), (33)

G′(yn) = G′(α)+ G′′(α)εyn +
1
2

G′′′(α)εy
2
n +O(εy

3
n). (34)

Using the above two equations and the inverted Jacobian matrix for
[
5G′(zn) −

G′(yn)
]−1, we obtain

[
5G′(zn)−G′(yn)

]−1[G′(zn)+ 3G′(yn)
]
= 1−G′(α)

−1G′′(α)εzn − 2G′(α)
−1G′′′(α)εz

2
n+

G′(α)
−1G′′(α)εyn +

[
2G′(α)

−1G′′′(α)+ 4G′2(α)
−1

G′′2(α)
]
εy

2
n + 4G′(α)

−15G′′2(α)εz
2
n

− 2G′2(α)
−1

3G′′2(α)εynεzn +O(εz
3
n).

(35)
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Finally, substituting (35) and other required expansions in the third step of (26), we
obtain

εzn+1 =
1

4096
G′9(α)

−1
G′′7(α)

[
52G′(α)G′′′(α)− 35G′′2(α)

]
εz

10
n +O(εz

11
n ). (36)

Hence, the tenth-order convergence of the proposed method PM10 given by (26) for a
non-linear system of equations G(x) = 0 is proved.

3.3. Computational Estimation of the Convergence Order

When a new iterative method is proposed to compute an approximate solution for
g(x) = 0, in order to verify its theoretical local order of convergence, one needs to use
a parameter called the Computational Order of Convergence (COC). However, this is
possible only when we have information about the exact root α for g(x) = 0. Thus, the
following parameters can alternatively be employed under some constraints as described
below.

Approximated Computational Order of Convergence [27]:

ACOC =
log|εn/εn−1|

log|εn−1/εn−2|
, εn = xn − xn−1, n ≥ 4. (37)

Computational Order of Convergence [28]:

COC =
log|εn/εn−1|

log|εn−1/εn−2|
, ε = xn − α, n ≥ 3. (38)

Extrapolated Computational Order of Convergence [29]:

ECOC =
log|ε̂n/ε̂n−1|

log|ε̂n−1/ε̂n−2|
, ε̂ = xn − αn, n ≥ 5, (39)

where

αn = xn −
(ρxn−1)

2

ρ2xn−1
, ρxn = xn+1 − xn.

Petkovic Computational Order of Convergence [30]:

PCOC =
log|ε̂n|

log|ε̂n−1|
, ε̂n =

f (xn)

f (xn−1)
, n ≥ 2. (40)

All of the above formulas can be used to test the convergence order, but in the present
study, ACOC as given by (37) is used since the number of iterations taken by the method
PM10 (8) is at least four in various numerically tested problems, as discussed in Section 5.
Additionally, this is the best-known approach employed in most of the recently conducted
research studies to verify the theoretical order of convergence.

4. Basins of Attraction

The stability of solutions (roots) for the nonlinear function g(z) = 0 using an iterative
method can be analyzed with the help of a concept called the basins of attraction. Basins of
attractions are phase-planes that demonstrate iterations employed by the iterative method,
which can assume different choices for the initial guess z0. Such 2D regions are esthetically
so beautiful that their applications are not only found in applied mathematics, but also
people working in fields such as architecture, arts, and design also use the concept to obtain
pleasing designs. Many other fields of applications for these basins can be seen in [31–36]
and most of the references cited therein. It may be noted that linear models do not depict
such dynamically eye-catching behavior, whereas the non-linearity results in features
such as those seen herein under the proposed iterative method PM10. MATLAB’s built-in
routines, including contour, colormap, and color bar, are utilized to obtain the basins of
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attraction in the present study. In this connection, a squared region R on [−4, 4] × [−4, 4]
containing 2000 by 2000 mesh points is selected for the selected functions in complex form.
Some of these complex-valued functions are taken as follows for the illustration of the
regions by the proposed method.

Example 1.

P1(z) = z8 + z5 − 4, P2(z) = z7 − 1, P3(z) = z3 − 1,

P4(z) = cos(z) + cos(2z) + z, P5(z) = exp(z)− z, P6(z) = cosh(z)− 1.
(41)

To maintain diversity, different kinds of functions including polynomials and tran-
scendental functions are used. The regions are achieved with a tolerance of ε = 10−2 and a
maximum number of iterations allowed of n = 12. As can be seen in Figures 3–8, for the
Example (1), the maximum number of iterations is needed by initial guesses that reside
near boundaries of the regions, whereas if z0 lies within the neighborhood of the required
solution, the proposed method PM10 does not require as many iterations as those needed
by most of the methods found in the literature. The average time required to produce
the dynamical planes shown in Figures 3–8 is stored in the Table 2. As expected, the
complex functions that have exponential and hyperbolic components are computationally
expensive.

Figure 3. The polynomiographs by the proposed method PM10 for P1(z).

Figure 4. The polynomiographs by the proposed method PM10 for P2(z).
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Figure 5. The polynomiographs by the proposed method PM10 for P3(z).

Figure 6. The basins of attractions by the proposed method PM10 for P4(z).

Figure 7. The basins of attractions by the proposed method PM10 for P5(z).

Figure 8. The basins of attractions by the proposed method PM10 for P6(z).
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Table 2. Execution time in seconds required by PM10 for each Pi(z), i = 1, 2, . . . , 6.

P1(z) P2(z) P3(z) P4(z) P5(z) P6(z)

767.413 s 570.103 s 289.626 s 537.531 s 782.588 s 730.300 s

5. Numerical Experiments with Discussion

Various types of test problems are considered from different sources including [3,19,22].
The approximate solutions x? up to 50 decimal places are shown against each test func-
tion. The error tolerance |εN | = |xN − x?| to stop the number of iterations is set to 10−200,
whereas the precision is chosen to be as large as 4000, and N shows the total number of
iterations taken by the method to achieve the required tolerance. In addition, physically
applicable nonlinear models such as the Van der Waals equation, the Shockley ideally
diode electric circuit model, the conversion of substances in a batch reactor, and the Lorenz
equations in meteorology are taken into consideration to demonstrate the applicability of
the proposed method PM10. Obtained numerical results are tabulated for further anal-
ysis. Each table contains different initial guesses, numbers of iterations required by a
method to achieve the preset error tolerance, function evaluations needed for each method,

approximated computational orders of convergence

(
ACOC =

log|εn/εn−1|
log|εn−1/εn−2|

)
where

εn = xn − xn−1, absolute errors, absolute values of functions at the last iteration, and the
execution (CPU) time in seconds.

For the test problem 2 (g1(x)), two initial guesses are chosen for simulations, as can be
seen in Table 3. For the initial guess x0 = 1.5, it is observed that the minimum number of
iterations is taken by the methods PM10 and WO8 to achieve the error tolerance; however,
the smallest error is given by PM10 while consuming an equivalent amount of CPU time.
The method NR2 takes the maximum number of iterations at x0 = 1.5. Under the second
initial guess x0 = 2.0, although many methods including PM10 take the equal number of
iterations to achieve ε = 10−200, the smallest absolute error and thus smallest absolute
functional value is achieved by PM10. This shows that if an initial guess lying near to the
solution of g(x) = 0 is passed to PM10, then the method yields the smallest error.

For the test problem 2 (g2(x)), two initial guesses are chosen for simulations as can be
seen in Table 4. One of them is taken far away from the approximate solution of the quintic
equation g2(x). For x0 = −3.8, the smallest possible absolute error is yielded by WO8, but
at the cost of the maximum number of iterations and largest amount of CPU time. Next
comes HM6 with an absolute error of 9.2097 × 10−670 and greater time efficiency, but it
requires one more iteration when compared with PM10, which achieves an absolute error
of 1.9515 × 10−572 with only four iterations while consuming a reasonable amount of CPU
time. When an initial guess lying near to the root is chosen, the method NM9 achieves the
smallest error, but it requires one extra iteration when compared with PM10 and WO8. The
most expensive methods (in terms of N, FV, and CPU time) for this particular test problem
seem to be WO8 and NR2.

For the transcendental problem 2 (g3(x)), two initial guesses are chosen for simula-
tions, as can be seen in Table 5. Under both of the initial guesses, the maximum numbers
of function evaluations are taken by HM6 followed by PM10 to achieve the desired error
tolerance. The smallest absolute functional values are obtained with HM6 and PM10,
where NR2 seems to be the most expensive method in terms of the number of iterations.
Although the method MH10 consumes the fewest number of CPU seconds, its ACOC is
only eight, contradicting the theoretical order of convergence found in [21].

For the transcendental problem 2 (g4(x)), two initial guesses are chosen for simulations
as can be seen in Table 6. One of the guesses is taken far away from the approximate
solution of g4(x). Under both initial guesses, it is observed that the method MHM5
takes the fewest iterations, fewest function evaluations, and fewest CPU seconds with
unsatisfactory absolute errors under x0 = −9.5. The method WO8 diverges for the second
initial guess x0 = −9.5, whereas NR2 is the most expensive method concerning N and
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FV, in particular. The proposed method PM10 performs reasonably well under the initial
guesses and does not diverge under any situation.

For the test problem 2 (g5(x)), three initial guesses are chosen for simulations as can
be seen in Table 7. Two of the guesses lie far away from the approximate root of g5(x). It
is easy to observe that the method PM10 performs better than other methods, even when
the initial guesses are not near to the approximate root, since the number of iterations to
attain the required accuracy is the smallest with PM10. Once again, the most expensive
method regarding N and FV proves to be NR2, whereas WO8 does not succeed towards the
desired root when the initial guesses are assumed to be away from the root. The absolute
error achieved by PM10 with x0 = 2.9 is the smallest when compared with the results of
other methods.

Example 2.

g1(x) = x3 − 10,

x? ≈ 2.15443469003188372175929356651935049525934494219210,

g2(x) = x5 + x− 10000,

x? ≈ 6.30877712997268909476757177178305911337755805821110,

g3(x) =
x
2
− sin(x),

x? ≈ 1.89549426703398094714403573809360169175134662738540,

g4(x) = x exp(x2)− sin2(x) + 3 cos(x) + 5,

x? ≈ −1.20764782713091892700941675835608409776023581894950,

g5(x) = expsin(x)−x + 1,

x? ≈ 2.63066414792790363397532705235059856858473195473320.

(42)

Table 3. Numerical results for problem 2: g1(x).

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 1.5 4 24 10 4.3384 × 10−427 1 × 10−3998 1.6 × 10−2

2.0 4 24 10 7.3775 × 10−1117 7.7598 × 10−11,164 2.1720 × 100

MH10 1.5 5 25 8 6.1001 × 10−1501 6 × 10−3999 3.2 × 10−2

2.0 4 20 8 8.7875 × 10−538 7.6607 × 10−4298 1.3391 × 101

NM9 1.5 5 25 9 1.3799 × 10−1487 6 × 10−3999 1.6 × 10−2

2.0 4 20 9 2.5853 × 10−772 6 × 10−3999 1.6 × 10−2

WO8 1.5 4 16 7.9999 × 100 3.7895 × 10−250 5.4086 × 10−1999 1.6 × 10−2

2.0 4 16 8 2.2967 × 10−676 1 × 10−3998 1.6 × 10−2

HM6 1.5 5 25 6 4.6527 × 10−496 6.0868 × 10−2973 3.1 × 10−2

2.0 4 20 6 2.7077 × 10−230 2.3643 × 10−1378 2.66 × 10−1

MHM5 1.5 5 20 5 2.5498 × 10−291 3.4832 × 10−1454 3.1 × 10−2

2.0 5 20 5 2.7042 × 10−743 4.6736 × 10−3714 1.2180 × 100

NR2 1.5 10 20 2 4.7719 × 10−221 1.4717 × 10−440 3.1 × 10−2

2.0 9 18 2 4.5282 × 10−288 1.3253 × 10−574 3.1 × 10−2
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Table 4. Data using fixed step-size problem 2: g2(x).

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 −3.8 4 24 10 1.9515 × 10−572 0 3.1 × 10−2

8.8 4 24 9.9999 × 100 1.7260 × 10−277 6.0030 × 10−2769 3.1 × 10−2

MH10 −3.8 4 20 8 4.4858 × 10−276 1.2527 × 10−2202 3.2 × 10−2

8.8 5 25 8 1.1988 × 10−910 0 3.1 × 10−2

NM9 −3.8 4 20 9 1.3626 × 10−350 5.8823 × 10−3149 3.1 × 10−2

8.8 5 25 9 3.4812 × 10−1362 0 1.5 × 10−2

WO8 −3.8 11 44 8 2.4211 × 10−933 0 9.4 × 10−2

8.8 4 16 8.0239 × 100 1.7219 × 10−242 1.1652 × 10−1938 3.2 × 10−2

HM6 −3.8 5 25 6 9.2097 × 10−670 0 3.1 × 10−2

8.8 5 25 6 5.0406 × 10−303 8.3149 × 10−1813 3.1 × 10−2

MHM5 −3.8 5 20 5 8.1401 × 10−297 2.1439 × 10−1479 3.2 × 10−2

8.8 5 20 5 1.3486 × 10−221 2.6761 × 10−1103 3.1 × 10−2

NR2 −3.8 10 20 2 2.1403 × 10−292 1.1503 × 10−580 3.2 × 10−2

8.8 11 22 2 6.8822 × 10−280 1.1893 × 10−555 1.6 × 10−2

Table 5. Numerical results for problem 2: g3(x).

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 3.5 4 24 10 1.3985 × 10−540 3 × 10−4000 1.41 × 10−1

2.5 4 24 10 9.4449 × 10−603 3 × 10−4000 1.41 × 10−1

MH10 3.5 4 20 8 4.4067 × 10−244 1.1093 × 10−1948 9.4 × 10−2

2.5 4 20 8 7.5796 × 10−277 8.4971 × 10−2211 9.4 × 10−2

NM9 3.5 4 20 9 1.9811 × 10−308 4.6535 × 10−2771 2.81 × 10−1

2.5 4 20 9 3.3116 × 10−366 4.7431 × 10−3291 1.4 × 10−1

WO8 3.5 5 20 8 5.0436 × 10−1292 3 × 10−4000 2.66 × 10−1

2.5 4 16 8 6.6531 × 10−270 1.4143 × 10−2155 2.18 × 10−1

HM6 3.5 5 25 6 3.9257 × 10−663 3.8877 × 10−3976 1.41 × 10−1

2.5 5 25 6 7.7054 × 10−742 5 × 10−4000 1.56 × 10−1

MHM5 3.5 5 20 5 9.1683 × 10−320 1.7296 × 10−1597 1.25 × 10−1

2.5 5 20 5 1.4187 × 10−412 1.5343 × 10−2061 1.25 × 10−1

NR2 3.5 10 20 2 5.1202 × 10−289 1.2423 × 10−577 9.3 × 10−2

2.5 10 20 2 4.5680 × 10−321 9.8883 × 10−642 1.09 × 10−1

Table 6. Numerical results for problem 2: g4(x) with ∗ showing the divergence of the method.

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 −4.5 10 60 10 4.1220 × 10−954 8 × 10−3999 4.38 × 10−1

−9.5 30 180 10 1.0834 × 10−353 1.0796 × 10−3527 1.39 × 100

MH10 −4.5 12 60 8 5.5553 × 10−552 8 × 10−3999 5.62 × 10−1

−9.5 39 195 8 1.0488 × 10−636 8 × 10−3999 1.8590 × 100

NM9 −4.5 12 60 9 4.4565 × 10−1467 8 × 10−3999 9.69 × 10−1

−9.5 37 185 9.0001 × 100 6.8 × 10−223 4.0517 × 10−1997 3.3590 × 100

WO8 −4.5 17 68 8 2.3107 × 10−1507 8 × 10−3999 1.5940 × 100

−9.5 200 * 800 9.5356 × 10−1 2.0883 × 10−2 9.0918 × 10+72 1.9266 × 101

HM6 −4.5 13 65 6 1.0498 × 10−243 4.1588 × 10−1456 5.47 × 10−1

−9.5 43 215 6 3.9815 × 10−227 1.2374 × 10−1356 1.8910 × 100

MHM5 −4.5 7 28 5 2.1606 × 10−978 8 × 10−3999 2.34 × 10−1

−9.5 17 68 5 3.1372 × 10−238 4.1824 × 10−1186 5.62 × 10−1

NR2 −4.5 30 60 2 1.4030 × 10−243 6.0043 × 10−485 4.84 × 10−1

−9.5 101 202 2 6.9221 × 10−226 1.4616 × 10−449 1.5620 × 100
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Table 7. Numerical results for problem 2: g5(x).

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 2.9 4 24 10 3.0523 × 10−1325 0 1.57 × 10−1

−3.7 5 30 10 3.1294 × 10−1405 0 2.19 × 10−1

7.4 6 36 10 1.2713 × 10−454 0 2.5 × 10−1

MH10 2.9 4 20 8 3.3060 × 10−632 0 9.4 × 10−2

−3.7 9 45 8 7.1797 × 10−378 4.0342 × 10−3023 2.97 × 10−1

7.4 22 110 8 5.3293 × 10−202 3.7179 × 10−1616 7.81 × 10−1

NM9 2.9 4 20 9 3.6544 × 10−815 0 2.5 × 10−1

−3.7 5 25 9 2.2115 × 10−563 0 3.13 × 10−1

7.4 failed – – – –

WO8 2.9 4 16 8 8.7376 × 10−540 0 1.87 × 10−1

−3.7 failed – – – – –
7.4 failed – – – – –

HM6 2.9 4 20 6 2.1574 × 10−305 3.1362 × 10−1833 1.41 × 10−1

−3.7 6 30 6 3.8865 × 10−904 0 1.72 × 10−1

7.4 12 60 6 3.3038 × 10−311 4.0442 × 10−1868 4.22 × 10−1

MHM5 2.9 5 20 5 4.0088 × 10−716 5.2603 × 10−3580 1.1 × 10−1

−3.7 8 32 5 7.1662 × 10−833 0 2.97 × 10−1

7.4 8 32 5 2.16 × 10−326 2.3890 × 10−1631 2.19 × 10−1

NR2 2.9 9 18 2 4.2361 × 10−377 3.9782 × 10−754 9.4 × 10−2

−3.7 11 22 2 4.9340 × 10−262 5.3970 × 10−524 3.13 × 10−1

7.4 16 32 2 1.0369 × 10−370 2.3835 × 10−741 2.66 × 10−1

Example 3. Volume from Van der Waals’ Equation [37].
The Van der Waals equation is represented by the following model:

(P +
an2

V2 )(V − bn) = nRT. (43)

After some simplifications, one obtains the following polynomial of nonlinear form:

g(V) = PV3 − n(RT + bP)V2 + n2aV − n3ab. (44)

The Van der Waals equation of state was formulated in 1873, with two constants a and
b (Van der Waals constants) determined from the behavior of a substance at the critical
point. The equation is based on two effects, which are the molecular size and attractive
force between the molecules. The model (43) is a modified version of the ideal gas equation
V = RT/nP, where n shows the number of moles, R stands for the universal gas constant
(0.0820578), T is the absolute temperature, V shows the volume, and P denotes the absolute
pressure. If V = 1.4 moles of benzene vapor form under P = 40 atm with a = 18 and
b = 0.1154, then one has

g1(V) = 40V3 − 95.26535116V2 + 35.28V − 5.6998368. (45)

The approximate solution up to 50 dp is given as:

V∗ = 1.9707842194070294114471303720868563598618121603538.

Being cubic, the Equation (45) certainly possesses one real root. Here, we aim to show
the performance of PM10 on this model. Therefore, the model is numerically solved by
PM10 and the other six methods chosen for comparison. It can be observed in Table 8 that
PM10 achieves the smallest possible error ε along with functional values nearest to 0 in a
reasonable amount of time, irrespective of the initial guesses.
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Table 8. Numerical results for problem 3.

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 2.0 4 24 10 4.6111 × 10−1485 1.3 × 10−3997 4.7 × 10−2

10.3 6 36 10 1.6261 × 10−1641 1.1 × 10−3997 6.2 × 10−2

MH10 2.0 4 20 8 1.5202 × 10−726 1.1 × 10−3997 1.6 × 10−2

10.3 6 30 8 6.2361 × 10−305 2.2532 × 10−2431 1.6 × 10−2

NM9 2.0 4 20 9 1.0867 × 10−1015 1.3 × 10−3997 1.6 × 10−2

10.3 6 30 9 9.6289 × 10−479 1.3 × 10−3997 3.2 × 10−2

WO8 2 4 16 8 3.9765 × 10−833 1.1 × 10−3997 1.6 × 10−2

10.3 6 24 8 4.8401 × 10−690 1.1 × 10−3997 4.7 × 10−2

HM6 2.0 4 20 6 9.3310 × 10−311 2.9554 × 10−1858 1.6 × 10−2

10.3 7 35 6 1.3806 × 10−532 3.1008 × 10−3189 1.6 × 10−2

MHM5 2.0 4 16 5 1.6172 × 10−201 8.3557 × 10−1003 0
10.3 7 28 5 7.9826 × 10−804 1.1 × 10−3997 0

NR2 2.0 9 18 2 1.7818 × 10−383 4.4839 × 10−764 0
10.3 15 30 2 1.1910 × 10−271 2.0034 × 10−540 1.6 × 10−2

Example 4. The Shockley Ideally Diode Electric Circuit Model.
The Shockley diode model giving the voltage going through the diode VD is represented by the

following equation:

J = JS

(
exp(VD/nVT)− 1

)
,

where JS stands for the saturation current, n is the emission coefficient, VT is the thermal voltage,
and J is the diode current. Using the Kirchhoff’s second law (VR + VD = VS) and Ohm’s law
(V = JR), a root-finding model can be found. The final structure for the model would be as follows:

VS = JR + nVT ln
( J

JS
+ 1
)

. (46)

Assuming values of parameters VS, R, n, VT , JS from [38], we obtain the following equation
that is nonlinear in the variable J:

g(J) = 1.4ln(J + 1) + 0.1J − 0.5. (47)

The approximate solution of the above equation correct to 50 dp is as follows:

J? = 0.38997719839007758658645353264634118996836946243662.

Table 9 presents numerical simulations for (47) with two different initial conditions
of 0.5 and 1.8, under which the smallest absolute error seems to lie under the column
of the proposed method PM10. Further analysis can easily be conducted by the careful
examination of the results tabulated therein.

Example 5. Conversion of Species within a Chemical Reactor [39].
The following nonlinear equation arises in chemical engineering during the conversion of

species in a chemical reactor:

g(x) =
x

1− x
− 5 ln

(0.4(1− x)
0.4− 0.5x

)
+ 4.45977, (48)

where x stands for the fractional conversion of the species; thus, it must lie in (0,1). The approximate
solution of the above equation correct to 50 dp is as follows:

x? ≈ 0.75739624625375387945964129792914529342795578042081.
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Table 9. Numerical results for problem 4.

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 0.5 4 24 10 7.2498 × 10−1614 2 × 10−4000 7.8 × 10−2

1.8 4 24 10 1.1065 × 10−661 2 × 10−4000 7.8 × 10−2

MH10 0.5 4 20 8 5.7732 × 10−741 2 × 10−4000 3.1 × 10−2

1.8 4 20 8.0001 × 100 1.3446 × 10−210 5.0780 × 10−1683 3.1 × 10−2

NM9 0.5 4 20 9 1.7171 × 10−1088 2 × 10−4000 4.7 × 10−2

1.8 4 20 9 5.9947 × 10−330 8.3091 × 10−2968 4.7 × 10−2

WO8 0.5 4 16 8 3.2491 × 10−712 2 × 10−4000 6.2 × 10−2

1.8 4 16 8.0001 × 100 8.3705 × 10−212 3.1312 × 10−1692 6.3 × 10−2

HM6 0.5 4 20 6 1.1747 × 10−300 2.1830 × 10−1802 3.1 × 10−2

1.8 5 25 6 6.2470 × 10−444 4.9378 × 10−2662 4.7 × 10−2

MHM5 0.5 5 20 5 2.9184 × 10−855 2 × 10−4000 1.6 × 10−2

1.8 5 20 5 3.7051 × 10−207 1.9490 × 10−1034 1.6 × 10−2

NR2 0.5 9 18 2 1.3 × 10−371 6.1228 × 10−743 1.5 × 10−2

1.8 10 20 2 × 100 1.1395 × 10−201 4.7044 × 10−403 3.2 × 10−2

Numerical results can be found in Table 10, where it is shown that PM10 has outper-
formed all other methods in terms of the absolute errors under consideration under two
different initial conditions.

Table 10. Numerical results for problem 5.

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 0.71 5 30 10 2.5434 × 10−1635 4 × 10−3999 1.25 × 10−1

0.76 4 24 10 5.0617 × 10−1424 1 × 10−3998 9.4 × 10−2

MH10 0.71 5 25 8 5.1147 × 10−640 4 × 10−3999 6.2 × 10−2

0.76 4 20 8 6.3350 × 10−690 4 × 10−3999 4.7 × 10−2

NM9 0.71 5 25 9 3.8480 × 10−559 1 × 10−3998 7.8 × 10−2

0.76 4 20 9 4.0774 × 10−981 4 × 10−3999 4.7 × 10−2

WO8 0.71 5 20 8 3.3478 × 10−584 1.3 × 10−3998 1.56 × 10−1

0.76 4 16 8 1.3297 × 10−696 2 × 10−3999 6.3 × 10−2

HM6 0.71 6 30 6 5.4957 × 10−618 4.4077 × 10−3696 6.3 × 10−2

0.76 4 20 6 9.3504 × 10−288 1.0692 × 10−1714 4.7 × 10−2

MHM5 0.71 6 24 5 2.0592 × 10−216 2.9538 × 10−1072 4.7 × 10−2

0.76 5 20 5 4.2638 × 10−834 4 × 10−3999 3.1 × 10−2

NR2 0.71 12 24 2 5.5571 × 10−216 3.9060 × 10−428 4.7 × 10−2

0.76 9 18 2 5.3583 × 10−356 3.6316 × 10−708 3.2 × 10−2

Example 6. The Two-Dimensional Bratu Model [40].
The two-dimension Bratu system is given by the following partial differential equation:

∂2U
∂x2 +

∂2U
∂y2 + λ exp(U) = 0, x, y ∈ D = [0, 1] × [0, 1], (49)

subject to the following boundary conditions

U(x, y) = 0 x, y ∈ D. (50)
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The two-dimensional Bratu system has two bifurcated exact solutions for λ < λc, a unique
solution for λ = λc, and no solutions for λ > λc. The exact solution to (49) is determined as
follows:

U(x, y) = 2 ln

[
cosh( θ

4 ) cosh((x− 1
2 )(y− 1

2 )θ)

cosh((x− 1
2 )

θ
2 ) cosh((y− 1

2 )
θ
2 )

]
, (51)

where θ is an undetermined constant satisfying the boundary conditions and assumed to be the
solution of (49). Using the procedure described in [41], one obtains

θ2 = λ cosh2
( θ

4

)
. (52)

Differentiating (52) with respect to θ and setting
dλ

dθ
= 0, the critical value λc satisfies

θ =
1
4

λc cosh
( θ

4

)
sinh

( θ

4

)
. (53)

By eliminating λ from (52) and (53), we have the value of θc for the critical λc satisfying

θc

4
= coth

( θc

4

)
, (54)

and θc = 4.798714561. We then obtain λc = 7.027661438 from (53). Numerical simulations
performed in Table 11 show that the proposed three-step method takes a smaller number of iterations
and produces considerably smaller absolute errors with a reasonable amount of CPU time.

Table 11. Numerical results for problem 6.

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 4.0 4 24 10 3.9 × 10−1086 0 1.41 × 10−1

15.5 4 24 10 1.9074 × 10−553 0 2.19 × 10−1

MH10 4.0 4 20 8 5.2357 × 10−556 0 1.09 × 10−1

15.5 4 20 8 3.6499 × 10−277 6.3171 × 10−2220 1.09 × 10−1

NM9 4.0 4 20 9 4.3486 × 10−847 0 6.3 × 10−2

15.5 4 20 9 2.3344 × 10−332 1.9566 × 10−2994 6.3 × 10−2

WO8 4.0 4 16 7.9999 × 100 1.4375 × 10−487 1.6570 × 10−3902 1.09 × 10−1

15.5 5 20 8 5.7605 × 10−1311 0 9.4 × 10−2

HM6 4.0 4 20 6 1.4310 × 10−221 3.9699 × 10−1331 1.25 × 10−1

15.5 5 25 6 2.0883 × 10−638 3.8348 × 10−3832 1.25 × 10−1

MHM5 4.0 5 20 5 8.6954 × 10−585 4.7414 × 10−2925 9.4 × 10−2

15.5 5 20 5 5.0264 × 10−265 3.06 × 10−1326 9.4 × 10−2

NR2 4.0 9 18 2 5.7111 × 10−278 1.0742 × 10−556 7.8 × 10−2

15.5 10 20 2 1.2645 × 10−281 5.2661 × 10−564 1.09 × 10−1

Now, we consider five different kinds of nonlinear multidimensional equations and
numerically solve them with PM10, HM6, MH5, and NR2 since the methods MH10, NM9,
and WO8 were either divergent or not applicable on systems of nonlinear equations. For
the systems considered, various types of initial guesses are used, and for comparison
purposes, the approximate solution and the normed error ε = ||xn+1 − xn||∞ having the
same tolerance 10−200 and CPU time are taken into consideration. It can be observed in
Tables 12–16 that the smallest possible absolute error is achieved only with the proposed
method—that is, PM10—in a reasonably affordable time period.
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Example 7. The nonlinear system of two equations from [3,41] is given as:

x1 + exp(x2)− cos(x2) = 0,

3x1 − x2 − sin(x1) = 0.
(55)

The exact solution of the system (55) is x = [0, 0]′. The numerical results for this system are
shown in Table 12 under the proposed PM10 and other three methods.

Table 12. Numerical results for problem 7.

N [x1,0, x2,0]T [x1, x2]T |ε| CPU

PM10 −1.0, 1.0 5.0151 × 10−4003, 1.0030 × 10−4002 7.7834 × 10−3318 0
HM6 – 1.2648 × 10−2287, 2.5296 × 10−2287 9.9330 × 10−382 1.4 × 10−1

MH5 – 4.6720 × 10−968, 9.8372 × 10−968 5.2359 × 10−194 1.5 × 10−2

NR2 – 1.2203 × 10−11, 2.4406 × 10−11 6.0505 × 10−06 4.7 × 10−2

PM10 −1.9, 1.8 5.0151 × 10−4003, 1.0030 × 10−4002 7.0614 × 10−1865 3.2 × 10−2

HM6 – 5.4937 × 10−1225, 1.0987 × 10−1224 1.2688 × 10−204 6.2 × 10−2

MH5 – 2.1088 × 10−559, 4.4402 × 10−559 2.8177 × 10−112 6.2 × 10−2

NR2 – 6.9588 × 10−07, 1.3916 × 10−06 1.4445 × 10−03 4.6 × 10−2

PM10 2.5,−2.3 1.9407 × 10−4002, 3.8815 × 10−4002 4.3934 × 10−3428 1.6 × 10−2

HM6 – 1.2918 × 10−4000, 2.5836 × 10−4000 1.8909 × 10−691 6.3 × 10−2

MH5 – 2.8427 × 10−695, 5.9858 × 10−695 1.8873 × 10−139 6.2 × 10−2

NR2 – 8.2443 × 10−15, 1.6489 × 10−14 1.5727 × 10−07 4.7 × 10−2

PM10 8.9, 5.5 3.9204 × 10−1989, 8.3019 × 10−1989 2.1886 × 10−199 7.8 × 10−2

HM6 – 3.6432 × 10−93, 7.2864 × 10−93 5.4995 × 10−16 9.3 × 10−2

MH5 – 5.6511 × 10−70, 1.1901 × 10−69 2.1654 × 10−14 1.41 × 10−1

NR2 – 2.7716 × 10−1, 5.1674 × 10−1 7.9930 × 10−1 4.7 × 10−2

PM10 1.9, 6.5 1.5819 × 10−1006, 3.3499 × 10−1006 3.9880 × 10−101 7.8 × 10−2

HM6 – 5.9575 × 10−44, 1.1915 × 10−43 8.7617 × 10−08 9.4 × 10−2

MH5 – 9.8552 × 10−36, 2.0743 × 10−35 1.5268 × 10−07 1.8700 × 10−1

NR2 – 6.7641 × 10−1, 1.3228 × 100 1.0621 × 100 4.6 × 10−2

PM10 0.1, 0.1 9.2473 × 10−4002, 1.8495 × 10−4001 0 0
HM6 – 4.9611 × 10−4002, 9.9222 × 10−4002 2.4509 × 10−1479 7.8 × 10−2

MH5 – 1.8099 × 10−3702, 3.8109 × 10−3702 6.8648 × 10−741 4.7 × 10−2

NR2 – 2.8142 × 10−39, 5.6283 × 10−39 9.1883 × 10−20 4.7 × 10−2

Example 8. Another nonlinear system of three equations taken from [42] is shown below:

3x1 − cos(x2x3)− 1/2 = 0,

x2
1 − 81(x2 + 0.1)2 + sin(x3) + 1.06 = 0,

exp(−x1x2) + 20x3 + (10π/3− 1) = 0,

(56)

where its approximate solution up to 50 dp is shown below:

x ≈
 0.49814468458949119126228211413809456132099782481239

0
−0.52882597757338745562224205210357569604547206124467

. (57)

The numerical results for the system (56) are shown in Table 13.
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Table 13. Numerical results for problem 8.

Method [x1,0, x2,0, x3,0]T [x1, x2, x3]T |ε| CPU

PM10 1.1, 1.1, −1.1 5 × 10−1, −1.4199 × 10−4001, −5.2360 × 10−1 3.6961 × 10−541 4.6 × 10−2

HM6 – 5 × 10−1, 5.9801 × 10−445, −5.2360 × 10−1 2.1352 × 10−75 4.7 × 10−2

MH5 – 5 × 10−1, 3.9207 × 10−162, −5.2360 × 10−1 2.4120 × 10−40 7.8 × 10−2

NR2 – 5.0001 × 10−1, 9.5530 × 10−04, −5.2357 × 10−1 1.3842 × 10−2 1.5 × 10−2

PM10 3.3, 2.1, −2.1 5 × 10−1, −4.5590 × 10−2904, −5.2360 × 10−1 2.9346 × 10−362 6.3 × 10−2

HM6 – 5 × 10−1, 2.1651 × 10−257, −5.2360 × 10−1 3.8835 × 10−44 4.7 × 10−2

MH5 – 5 × 10−1, −7.2199 × 10−131, −5.2360 × 10−1 5.4152 × 10−33 9.3 × 10−2

NR2 – 5.0007 × 10−1, 7.6756 × 10−03, −5.2340 × 10−1 3.9888 × 10−2 3.1 × 10−2

PM10 −1.3, 1.1, −0.1 5 × 10−1, −8.2172 × 10−4001, −5.2360 × 10−1 1.1159 × 10−551 6.3 × 10−2

HM6 – 5 × 10−1, 1.2373 × 10−456, −5.2360 × 10−1 2.4102 × 10−77 4.6 × 10−2

MH5 – 5 × 10−1, 3.9887 × 10−168, −5.2360 × 10−1 7.6082 × 10−42 4.7 × 10−2

NR2 – 5.0001 × 10−1, 8.3811 × 10−04, −5.2358 × 10−1 1.2961 × 10−2 1.6 × 10−2

PM10 1.9, 4.1, 0.1 5 × 10−1, −4.6794 × 10−1318, −5.2360 × 10−1 4.8484 × 10−164 6.3 × 10−2

HM6 – 5 × 10−1, 3.4949 × 10−117, −5.2360 × 10−1 9.0619 × 10−21 4.7 × 10−2

MH5 – 5 × 10−1, −5.3226e−56, −5.2360 × 10−1 1.0093 × 10−12 4.7 × 10−2

NR2 – 5.0048 × 10−1, 5.5684 × 10−2, −5.2215 × 10−1 1.1923 × 10−1 3.1 × 10−2

PM10 6.5, 2.2, −3.3 5 × 10−1, −7.0328e-2659, −5.2360 × 10−1 1.3210 × 10−331 6.3 × 10−2

HM6 – 5 × 10−1, 6.7653 × 10−236, −5.2360 × 10−1 1.4849 × 10−40 4.7 × 10−2

MH5 – 5 × 10−1, −3.4190 × 10−98, −5.2360 × 10−1 3.6270 × 10−24 1.1 × 10−1

NR2 – 5.0009 × 10−1, 1.0418 × 10−2, −5.2333 × 10−1 4.6778 × 10−2 3.2 × 10−2

PM10 3.5, 3.7, −2.3 5 × 10−1, −9.2310 × 10−1487, −5.2360 × 10−1 3.8829 × 10−185 6.3 × 10−2

HM6 – 5 × 10−1, 2.4238 × 10−131, −5.2360 × 10−1 3.9573 × 10−23 6.3 × 10−2

MH5 – 5 × 10−1, −1.2128 × 10−61, −5.2360 × 10−1 3.6152 × 10−14 1.41 × 10−1

NR2 – 5.0039 × 10−1, 4.4303 × 10−2, −5.2244 × 10−1 1.0395 × 10−1 3.1 × 10−2

Example 9. A three-dimensional nonlinear system is taken from [3] as given below:

x2
1 + x2

2 + x2
3 − 1 = 0,

2x2
1 + x2

2 − 4x3 = 0,

3x2
1 − 4x2

2 + x2
3 = 0,

(58)

where its approximate solution up to 50 dp is as follows:

x ≈
0.69828860997151390091867421225192307770469334334732

0.62852429796021380638277617781675123954652671431496
0.34256418968956943776230136116401106884202074401616

. (59)

The numerical results for the system (58) are shown in Table 14.
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Table 14. Numerical results for problem 9.

Method [x1,0, x2,0, x3,0]T [x1, x2, x3]T |ε| CPU

PM10 0.5, 0.5, 0.5 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 1 × 10−4000 0
HM6 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 3.8739 × 10−864 0
MH5 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 6.0191 × 10−527 1.5 × 10−2

NR2 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 3.8598 × 10−12 1.5 × 10−2

PM10 1.0, 1.0, 1.0 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 1 × 10−4000 0
HM6 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1, 4.1436 × 10−596 1.6 × 10−2

MH5 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1, 3.5513 × 10−269 0
NR2 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1, 1.1136 × 10−08 0

PM10 2.8, 3.2, 6.1 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 7.0153 × 10−894 0
HM6 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 1.4280 × 10−103 0
MH5 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 6.9270 × 10−53 0
NR2 – 6.9929 × 10−1, 6.2876 × 10−1, 3.4257 × 10−1 3.7312 × 10−2 0

PM10 5.1, 4.2, 1.1 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 4.8091 × 10−1119 0
HM6 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 8.9729 × 10−126 0
MH5 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 6.3425 × 10−68 0
NR2 – 6.9851 × 10−1, 6.2861 × 10−1, 3.4256 × 10−1 1.7731 × 10−2 0

PM10 5.1, 4.2, −1.1 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 1.1175 × 10−174 0
HM6 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 2.7993 × 10−19 0
MH5 – 4.3060 × 100, −9.1902 × 10−1, −2.7461 × 100 2.4533 × 100 0
NR2 – 1.0879 × 100, 8.0413 × 10−1, 5.3209 × 10−1 7.7974 × 10−1 0

PM10 10.2, 14.7, 11.1 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 2.9425 × 10−319 0
HM6 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 2.8736 × 10−34 0
MH5 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 1.1693 × 10−19 1.6 × 10−2

NR2 – 7.5545 × 10−1, 7.3493 × 10−1, 3.4367 × 10−1 3.7993 × 10−1 0

Example 10. (Catenary curve and the ellipse ([43], p. 83)):
Given below is a nonlinear system of two equations that describe trajectories for the catenary

and the ellipse, respectively. We are interested in finding their intersection point that lies in the first
quadrant of the cartesian plane. The system has been solved under the proposed PM10 method and
other methods under consideration. The performance of each method is shown in Table 15, whereas
an approximate solution up to 50 dp of the system (60) is shown in comparison to the system.

x2 −
1
2

(
exp(x1/2) + exp(−x1/2)

)
= 0,

9x2
1 + 25x2

2 − 225 = 0.
(60)

Approximate solution:

x ≈
[

3.0311553917189839536524964478460650851937092065081
2.3858656535628857281228809627652263081419323345176

]
. (61)
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Table 15. Numerical results for problem 10 with ∗ showing the divergence of the method.

Method [x1,0, x2,0]T [x1, x2]T |ε| CPU

PM10 9.3, 8.6 3.0312 × 100, 2.3859 × 100 8.4435 × 10−523 3.1 × 10−2

HM6 – – 3.1353 × 10−78 4.6 × 10−2

MH5 – – 1.4228 × 10−40 3.1 × 10−2

NR2 – – 2.1386 × 10−1 1.6 × 10−2

PM10
11.6,
13.1 3.0312 × 100, 2.3859 × 100 1.4738 × 10−275 4.7 × 10−2

HM6 – – 8.2367 × 10−31 1.6 × 10−2

MH5 – – 1.8199 × 10−17 3.1 × 10−2

NR2 – – 1.0020 × 100 1.6 × 10−2

PM10 4.6, 3.6 3.0312 × 100, 2.3859 × 100 1.7497 × 10−2436 3.1 × 10−2

HM6 – – 2.4449 × 10−528 3.1 × 10−2

MH5 – – 1.3516 × 10−167 1.6 × 10−2

NR2 – – 2.0398 × 10−07 1.6 × 10−2

PM10
16.6,
14.5 3.0312 × 100, 2.3859 × 100 8.0467 × 10−58 3.1 × 10−2

HM6 – – 3.8892 × 10−04 3.2 × 10−2

MH5 – – 1.1246 × 10−05 3.1 × 10−2

NR2 – 6.6073 × 100, −1.1486 × 100 2.5508 × 100 * 1.6 × 10−2

PM10 2.9, 1.9 3.0312 × 100, 2.3859 × 100 0 3.1 × 10−2

HM6 – – 1.1004 × 10−1156 3.1 × 10−2

MH5 – – 5.7581 × 10−307 3.1 × 10−2

NR2 – – 3.1421 × 10−15 0

PM10
10.3,
11.7 3.0312 × 100, 2.3859 × 100 5.3262 × 10−397 9.4 × 10−2

HM6 – – 7.9396 × 10−54 9.3 × 10−2

MH5 – – 1.6306 × 10−28 6.2 × 10−2

NR2 – – 5.0395 × 10−1 3.1 × 10−2

Example 11. Steady-State Lorenz Equations ([44], p. 816).
In this problem, we consider a system developed by Edward Lorenz, who was an American

meteorologist studying atmospheric convection around the Earth’s surface. Lorenz’s nonlinear
system is a set of three ordinary differential equations, as given below:

ẋ1(t) = a(x2 − x1),
ẋ2(t) = x1(b− x3)− x2,
ẋ3(t) = x1x2 − cx3.

(62)

In order to study the steady-state behavior of the system (62), we take ẋ1(t) = ẋ2(t) =
ẋ3(t) = 0 and a = −1, b = 2, c = 3 to obtain the following nonlinear algebraic system:

x1 − x2 = 0,

2x1 − x1x3 − x2 = 0,

x1x2 − 3x3 = 0.

(63)

The approximate solution for the system (63) correct to 50 dp is given as

x ≈
1.7320508075688772935274463415058723669428052538104

1.7320508075688772935274463415058723669428052538104
1

. (64)

The nonlinear steady-state system (63) has been numerically solved in Table 16.
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Table 16. Numerical results for problem 11 with ∗ showing the divergence of the method.

Method [x1,0, x2,0, x3,0]T [x1, x2, x3]T |ε| CPU

PM10 −2.5,−3.5,−1.5 1.7321, 1.7321, 1 3.1099 × 10−36 1.5 × 10−2

HM6 – 1.7321, 1.7321, 1 3.8304 × 10−2 1.6 × 10−2

MH5 – −1.7321, −1.7321, 1 8.8956 × 10−08 * 0
NR2 – – 1.1129 × 10−1 * 0

PM10 −1.0, −1.0, 2.0 −1.7321, −1.7321, 1 2.2477 ×
10−1164 0

HM6 – – 2.5855 × 10−138 1.6 × 10−2

MH5 – – 2.6805 × 10−77 0
NR2 – – 2.8563 × 10−04 0

PM10 −3.9,−3.3,−6.2 1.7321, 1.7321, 1 5.2666 × 10−84 1.6 × 10−2

HM6 – – 5.8363 × 10−07 0
MH5 – – 1.0692 × 10−05 1.5 × 10−2

NR2 – 1.9410, 1.9410, 1.1534 5.5426 × 10−1 * 0

PM10 1, 1, 2 1.7321, 1.7321, 1 2.247 7
× 10−1164 1.6 × 10−2

HM6 – – 2.5855 × 10−138 0
MH5 – – 2.6805 × 10−77 1.6 × 10−2

NR2 – – 2.8563 × 10−04 0

PM10 5.9, 3.3, 6.2 1.7321, 1.7321, 1 5.9770 × 10−811 1.6 × 10−2

HM6 – – 4.0516 × 10−136 1.5 × 10−2

MH5 – – 5.5239 × 10−62 0
NR2 – – 1.4635 × 10−2 0

PM10 2.4, 3.0, 1.0 1.7321, 1.7321, 1 0 0
HM6 – – 1.8162 × 10−811 0
MH5 – – 5.2175 × 10−433 1.6 × 10−2

NR2 – – 4.2917 × 10−11 0

6. Concluding Remarks

This research study is based on devising a new, highly effective three-step iterative
method with tenth-order convergence. The convergence is proved theoretically via Taylor’s
series expansion for single and multi-variable nonlinear equations, and the approximate
computational order of convergence confirms such findings. Thus, the proposed method
PM10 is applicable not only to single nonlinear equations but also to nonlinear systems.
Moreover, dynamical aspects of PM10 are also explored with basins of attraction that show
quite esthetic phase plane diagrams when applied to complex-valued functions, thereby
proving the stability of the method when initial guesses are taken within the vicinity of the
underlying nonlinear model. Finally, different types of nonlinear equations and systems,
including those used in physical and natural sciences, are chosen to be tested with PM10
and with various well-known optimal and non-optimal methods in the sense of King–
Traub. In most of the cases, PM10 is found to have better results, particularly when it comes
to the number of iterations N to achieve required accuracy, ACOC, absolute error, and
absolute functional value. It is also worthwhile to note that the proposed method always
converges, irrespective of whether the initial guess passed to it lies near to or away from
the approximate solution. Hence, PM10 is a competitive iterative method with tenth-order
convergence for solving nonlinear equations and systems.

We understand that methods of very high order are only of academic interest since
approximations to the solutions of very high accuracy are not needed in practice. On the
other hand, such methods are, to some extent, complicated and do not offer much of an
increase in computational efficiency. Moreover, the method proposed in this article lies in
the family of methods without memory, requiring the evaluation of three Jacobian matrices,
and thereby becomes computationally expensive. To avoid computational complexity,
we will propose, in future studies, a modification of the proposed method by replacing
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the first-order derivative with a suitable finite-difference approximation. In addition, the
proposed method will also be analyzed for its semi-local convergence.
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