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Abstract: The time–fractional reaction–diffusion (TFRD) model has broad physical perspectives and
theoretical interpretation, and its numerical techniques are of significant conceptual and applied
importance. A numerical technique is constructed for the solution of the TFRD model with the
non-singular kernel. The Caputo–Fabrizio operator is applied for the discretization of time levels
while the extended cubic B-spline (ECBS) function is applied for the space direction. The ECBS
function preserves geometrical invariability, convex hull and symmetry property. Unconditional
stability and convergence analysis are also proved. The projected numerical method is tested on two
numerical examples. The theoretical and numerical results demonstrate that the order of convergence
of 2 in time and space directions.

Keywords: time fractional reaction–diffusion model; B-spline basis; Caputo–Fabrizio derivative

1. Introduction

Fractional calculus (FC) is described as an extension to arbitrarily non-integer order of ordinary
differentiation. Due to its extensive implementations in the engineering and science fields, its research
has attained considerable significance and prominence during the last few years. FC is being used for
modeling physical phenomena by fractional-order differential equations (FODEs). Nowadays, several
other relevant areas of FC are found in numerous fields of application such as chemistry, electricity,
biology, mechanics, geology, economics, signal processing, and image theory [1–4]. Although,
fractional-order derivatives have a significant model for detecting inherited characteristics of various
conditions and treatments.

The reaction–diffusion equations (RDEs) emerge naturally as models for explaining several
problems’ adaptation in the physical world, such as chemistry, biology, etc. The RDEs are used to
explain the co-oxidation on Pt(1 1 0), the overview of the time–space variations of Ca2+ cytoplasmic
dynamics in T cells under the impacts of Ca2+-activated released channels, the problem in finance and
hydrology. Several cellulars and sub-cellular biological mechanisms can be defined in the forms of
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species that diffuse and react chemically [5–7]. The structure of diffusion is defined by a time scaling of
the mean square displacement proportional to tν of order ν. Many physical models are more accurately
established in the form of FODEs. Fractional derivatives are more efficient in the model and provide
an excellent tool to explain the history of the variable and the inherited properties of different dynamic
systems. The TFRD model provides a valuable description of dynamics in complex processes defined
by non-exponential relaxation and irregular diffusion [8,9]. In the TFRD model, the time derivative
defines the extent-based physical phenomena, recognized as historical physical dependence, the spatial
derivative explains the path dependence and global characteristics of physical processes [10].

Consider the TFRD model of the form [11]:

∂νΨ(x, t)
∂tν

= d
∂2Ψ(x, t)

∂x2 − αΨ(x, t) + G(x, t), x ∈ [0, L], t ≥ 0, 0 < ν < 1, (1)

having initial and boundary conditions:
Ψ(x, 0) = g(x), x ∈ [0, L]
Ψ(0, t) = h1(t), t ≥ 0
Ψ(L, t) = h2(t),

(2)

where α > 0 is a constant, d > 0 is a diffusivity constant and G(x, t), g(x), h1(t), h2(t) are known
functions. ∂νΨ(x,t)

∂tν is a Caputo–Fabrizio fractional derivative (CFFD) and ν ∈ (0, 1). The CFFD has
introduced a new aspect to the research of FODEs. However, the Caputo, Riemann–Liouville, etc.
operators exhibit a kernel for power-law and have shortcomings in modeling physical problems.
The elegance of the CFFD operator is that it contains a non-singular kernel with exponential decay [12].
It is constructed with an exponential function and ordinary derivative convolution but as for the Caputo
and Riemann–Liouville fractional derivatives, it preserves the same inherent inspiring characteristics
of heterogeneous and configuration for various scales [13,14]. Application of CFFD has been discussed
in several articles recently, for example, in a mass–spring Damper system [15], non-linear Fisher’s
diffusion model [16], electric circuits [13], diffusive transport system [14], fractional Maxwell fluid [17].

In many cases, the fractional reaction–diffusion model (FRDM) has no analytical exact solution
because of the non-locality of fractional derivatives. Therefore, the numerical solution of TFRD equation
has fundamental scientific importance and functional and practical implementation significance.
Rida et al. [18] solved the TFRD model via a generalized differential transform method. Turut and
Güzel [19] applied Caputo derivative and multivariate Padé approximation to solve TFRD model
numerically. Gong et al. [20] developed a numerical method depend on the domain decomposition
algorithm for solving TFRD equation. Sungu and Demir [21] derived the hybrid generalized differential
method and finite difference method (FDM) for solving the TFRD model numerically. Several numerical
techniques for the TFRD model are seen in literature; such as explicit FDM [22], H1-Galerkin mixed
finite element method [23], implicit FDM [24], the explicit–implicit and implicit–explicit method [10],
Legendre tau spectral method [25]. Ersoy and Dag [26] solved the FRDM using the exponential cubic
B-spline technique. Zheng et al. [27] presented the numerical algorithm of FRDM with a moving
boundary using FDM and spectral approximation. Owelabi and Dutta [28] considered the Laplace and
the Fourier transform to solve FRDM numerically. Zeynab and Habibollah [29] solved the fractional
reaction–convection–diffusion model numerically using wavelets operational matrices and B-spline
scaling functions. Kanth and Garg [11] proposed the exponential cubic B-spline for solving the TFRD
equation with Dirichlet boundary conditions. Pandey et al. [30] obtained the numerical solution of
TFRD equation in porous media using homotopy perturbation and Laplace transform.

The ECBS is a very well-known approximation method consisting of a free parameter within the
interval and piecewise polynomial function of class C2[a, b]. Akram et al. [31,32] solved the time-fractional
diffusion problems using ECBS in Caputo and Riemann–Liouville sense. Various numerical techniques
based on ECBS functions have been used to approximate fractional partial differential models, such
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as linear and non-linear time-fractional telegraph models [33,34], fractional Fisher’s model [35], time
fractional Burger’s model [36], fractional Klein–Gordon model [37], time-fractional diffusion wave
model [38], fractional advection-diffusion model [39].

The goal of this research is to explore a numerical technique for the TFRD model, which is an
implicit method and is based on ECBS and CFFD methods. This non-singular kernel operator is used
in B-spline methods for the first time. The TFRD model has not been developed to the highest of
the author’s understanding so far with the ECBS approximation. The paper is set out as follows:
the CFFD operator and ECBS function are defined in Section 2. Time discretization in terms of FDM is
explained in Section 3. To solve the TFRD model, the CFFD and ECBS are implemented in Section 4.
The unconditional stability and the convergence are proved in Sections 5 and 6, respectively. Sections 7
and 8 consist of numerical results and the conclusion.

2. Preliminaries

Definition 1. The CFFD [12] is formulated as follows:

∂νF(t)
∂tν

=
M(ν)

1− ν

∫ t

0
F′(ξ) exp[−ν(t− ξ)

1− ν
]dξ, (3)

where M(ν) is a normalizing function, so M(0) = M(1) = 1.

By Definition 1, it can be concluded that if F(t) is a constant function then CFFD of F(t) is zero
similar to Caputo derivative. However, the kernel has no singularity. The CFFD with order 0 < ν < 1
can be defined as [40]:

∂νF(t)
∂tν

=
1

1− ν

∫ t

0
F′(ξ) exp[−ν(t− ξ)

1− ν
]dξ, (4)

Basis Functions

Consider {xk} being an equal length partitioning based on the existing interval with k ∈ Z. Hence
the presumed interval at the knots is divided into N equivalent sub-intervals as xk = x0 + kh, where h
is the step-size. The ECBS function [41] at the grid points xk over the presumed interval is formulated
as follows:

Ei(x, δ) =
1

24h4



4h(1− δ)(x− xk−2)
3 + 3δ(x− xk−2)

4, x ∈ [xk−2, xk−1),
(4− δ)h4 + 12h3(x− xk−1) + 6h2(2 + δ)(x− xk−1)

2

−12h(x− xk−1)
3 − 3δ(x− xk−1)

4, x ∈ [xk−1, xk),
(4− δ)h4 + 12h3(xk+1 − x) + 6h2(2 + δ)(xk+1 − x)2

−12h(xk+1 − x)3 − 3δ(xk+1 − x)4, x ∈ [xk, xk+1),
4h(1− δ)(xk+2 − x)3 + 3δ(xk+2 − x)4, x ∈ [xk+1, xk+2),
0, otherwise.

(5)

where k = −1(1)N + 1, δ ∈ R in the [−8, 1] is a parameter and x ∈ R is a variable. For δ ∈ [−8, 1],
the cubic B-spline and the ECBS functions have the identical properties, such as symmetry in which
the identical curve shape is produced if the control points are defined in the reverse order, convex
hull, and invariability which are also called rotation, translation and scaling respectively. For δ = 0,
the ECBS converts to cubic B-spline. Figure 1 depicts the basis graphs at different knots and the colored
parts are the piece-wise function. The same shape of the curve is generated when the control points
are described in the opposite direction.
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Figure 1. Plot of the extended cubic B-spline (ECBS) function.

For a function Ψ(x, t) there is a unique Ψ̂(x, t), that assures the prescribed conditions, such that

Ψ̂(x, t) =
j+1

∑
k=j−1

Cm
k (t)Ek(x, δ), (6)

where time based undetermined coefficients Cj(t)’s are executed by such unique constraints.
The relations (5) and (6) yield the following equations

Ψ̂(x, t) =
j+1

∑
k=j−1

Ck(t)Ek(x, δ) =

(
4− δ

24

)
Cj−1 +

(
8 + δ

12

)
Cj +

(
4− δ

24

)
Cj+1 (7)

Ψ̂′(x, t) =
j+1

∑
k=j−1

Ck(t)E′k(x, δ) =

(
− 1

2h

)
Cj−1 +

(
1

2h

)
Cj+1 (8)

Ψ̂′′(x, t) =
j+1

∑
k=j−1

Ck(t)E′′k (x, δ) =

(
2 + δ

2h2

)
Cj−1 +

(
− 4 + 2δ

2h2

)
Cj +

(
2 + δ

2h2

)
Cj+1. (9)

3. Finite Difference Approximation for CFFD

In this part, we consider CFFD for the discretization in time dimension. Suppose tm = t0 +

mτ, m = 0, 1, ..., M in which τ = T
M is the step length in time direction. The FDM is employed for the

discretization of CFFD. Using the Equation (4), CFFD can be described as:

∂Ψν(x, tm+1)

∂tν
=

1
1− ν

∫ tm+1

0

∂Ψ(x, η)

∂η
exp[− ν

1− ν
(tm+1 − η)]dη

=
1

1− ν

m

∑
p=0

∫ tm+1

tm

∂Ψ(x, η)

∂η
exp[− ν

1− ν
(tm+1 − η)]dη

=
1

1− ν

m

∑
p=0

[
Ψ(x, tp+1)−Ψ(x, tp)

τ
+ O(τ)]

∫ tm+1

tm
exp[− ν

1− ν
(tm+1 − η)]dη

=
1

τ(1− ν)

m

∑
p=0

[Ψ(x, tp+1)−Ψ(x, tp)]

[exp[− ν
1−ν (tm+1 − η)]

ν
1−ν

]tp+1

tp

+ Rν
τ



Symmetry 2020, 12, 1653 5 of 19

For m = 0, the above equation becomes

∂Ψν(x, tm+1)

∂tν
≈ 1

τν
[Ψ(x, t1)−Ψ(x, t0)]

(
1− exp[− ν

1− ν
τ]

)
exp[− ν

1− ν
τ]

For m = 1, we obtain

∂Ψν(x, tm+1)

∂tν
≈ 1

τν
[Ψ(x, t1)−Ψ(x, t0)]

(
1− exp[− ν

1− ν
τ]

)
exp[− ν

1− ν
2τ]

+
1

τν
[Ψ(x, t2)−Ψ(x, t1)]

(
1− exp[− ν

1− ν
τ]

)
exp[− ν

1− ν
τ]

The generalized form can be written as

∂Ψν(x, tm+1)

∂tν
=

1
τν

m

∑
p=0

ωp[Ψ(x, tm−p+1)−Ψ(x, tm−p)]

(
1− exp[− ν

1− ν
τ]

)
+ Rν

τ , (10)

where ωp = exp[− ν
1−ν τp], The characteristics of ωp coefficients can be easily proved:

• ω0 = 1
• ω0 > ω1 > ω2 > ... > ωp, ωp → 0 as p→ ∞
• ωp > 0 for p = 0, 1, ..., m
• ∑m

p=0(ωp −ωp+1) + ωp+1 = (1−ω1) + ∑m−1
p=1 (ωp −ωp+1) + ωm = 1.

Remark 1. The graphical results of ωp = exp[− ν
1−ν τp] shows the asymptotic behaviour.

Theorem 1. Suppose Ψ(x) be a function satisfies C2[a, b] and the fractional derivative 0 < ν < 1. Then the
CFFD at knot tm+1 is

∂Ψν(x, tm+1)

∂tν
=

1
τν

m

∑
p=0

ωp[Ψ(x, tm−p+1)−Ψ(x, tm−p)]

(
1− exp[− ν

1− ν
τ]

)
+ O(τ2). (11)

Proof. From (10), we have

Rν
τ =

1
1− ν

m

∑
p=0

∫ tm+1

tm
exp[− ν

1− ν
(tm+1 − η)]O(τ)dη

=
1

1− ν

m

∑
p=0

[exp[− ν
1−ν (tm+1 − η)]

ν
1−ν

]tp+1

tp

O(τ)

=
1
ν

m

∑
p=0

[
exp[− ν

1− ν
(m− p)τ]− exp[− ν

1− ν
(m− p + 1)τ]

]
O(τ)

By expanding, we have

Rν
τ = 1− exp[− ν

1− ν
(m + 1)τ]O(τ). (12)

From the Taylor series of exponential function, we obtain

Rν
τ ≈

(
ν

1− ν

)
(m + 1)τO(τ).
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Therefore, we obtained the desired result

∂Ψν(x, tm+1)

∂tν
=

1
τν

m

∑
p=0

ωp[Ψ(x, tm−p+1)−Ψ(x, tm−p)]

(
1− exp[− ν

1− ν
τ]

)
+ O(τ2).

4. Illustration of the Method

In this portion, we employ the CFFD and the ECBS to establish the numerical approach for solving
TFRD equation. Using relations (6) and (10) in Equation (1), we obtain

1
τν

m

∑
p=0

ωp[Ψ̂(xi, tm−p+1)− Ψ̂(xi, tm−p)]

(
1− exp[− ν

1− ν
τ]

)
− d

∂2Ψ̂(xi, tm+1)

∂x2 + αΨ̂(xi, tm+1) = G(xi, tm+1). (13)

Rearranging equation (13), we have

α1
τν

Ψ̂(xi, tm+1)− dΨ̂′′(xi, tm+1) + αΨ̂(xi, tm+1) =
α1
τν

Ψ̂(xi, tm)−
α1
τν

m

∑
p=1

ωp[Ψ̂(xi, tm−p+1)− Ψ̂(xi, tm−p)]

+ G(xi, tm+1).

The aforementioned equation can be written as

α1

τν

j+1

∑
k=j−1

Cm+1
k Ek − d

j+1

∑
k=j−1

Cm+1
k E′′k + α

j+1

∑
k=j−1

Cm+1
k Ek =

α1

τν

j+1

∑
k=j−1

C0
k Ek

+
α1

τν

m

∑
p=1

[ωp −ωp+1]
j+1

∑
k=j−1

Cm−p
k Ek + Gm+1

k . (14)

The Equation (14) can be expressed in matrix form as

ACm+1 = B
(

C0 +
α1

τν

m

∑
p=1

[ωp −ωp+1]Cm−p
)
+ H (15)

where

A =



q1 q2 q1 0 . . . . . . 0
0 q1 q2 q1 . . . . . . 0
... . . .

. . . . . . . . . . . .
...

... . . . . . . q1 q2 q1 0
0 . . . . . . . . . q1 q2 q1


(16)

B =



r1 r2 r1 0 . . . . . . 0
0 r1 r2 r1 . . . . . . 0
... . . .

. . . . . . . . . . . .
...

... . . . . . . r1 r2 r1 0
0 . . . . . . . . . r1 r2 r1


(17)

r1 = 4−δ
24 , r2 = 8+δ

12 , r3 = 1
2h , r4 = 2+δ

2h2 , r4 = − 2+δ
h2 , q1 =

(
α1
τν + α

)
r1 − dr4, q2 =

(
α1
τν + α

)
r2 − dr5 and

H = [Gm+1
0 , Gm+1

1 , ..., Gm+1
N+1]

T . The above matrix system has of order (N + 1)× (N + 1). Two linear
equations from the boundary conditions are necessary for a unique solution. To commence the iteration
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on the system, obtaining the initial vector is mandatory and we will use following initial conditions for
the initial vector: 

Ψ̂′0 = Ψ(x0),
Ψ̂0

k = Ψ(xk), k = 0, 1, 2, ..., N
Ψ̂′N = Ψ(xN).

(18)

5. Stability Analysis

The principle of stability is connected to computing method errors which do not rise as the
procedure continues. We will analyze the stability using the Von Neumann approach. Suppose ξm in
the form of Fourier mode represents the growth factor and ξ̂m is the computed solution. Consequently,
we defined the error term at mth time stage as

Φm = ξm − ξ̂m. (19)

Substituting Equation (19) in (14), we have obtained the error equation as follows:

α1

τν
Φm+1 − dΦm+1

xx + αΦm+1 =
α1

τν
Φ0 +

α1

τν

m

∑
p=1

[ωp −ωp+1]Φm−p. (20)

Assume that the difference equation for the ECBS function in one Fourier mode as

Φm
k = λmeiγhk, (21)

where h.λ, γ and i =
√
−1 are the size of the element, Fourier coefficient, mode number respectively.

Using the Equation (21) and ECBS functions in (20), we obtain

[(
α1
τν

+ α

)
(r1eiγh(k−1) + r2eiγhk + r1eiγh(k+1))− d(r4eiγh(k−1) + r5eiγhk + r4eiγh(k+1))

]
λm+1

=
α1
τν

(r1eiγh(k−1) + r2eiγhk + r1eiγh(k+1))λ0 +
α1
τν

m

∑
p=1

[ωp −ωp+1](r1eiγh(k−1) + r2eiγhk + r1eiγh(k+1))λm−p.

All throughout divided by eiγhk and reorganization of the terms, we achieve

[(
α1

τν
+ α

)
(r2 + 2r1 cos(γh))− d(r5 + 2r4 cos(γh))

]
λm+1 =

α1

τν
(r2 + 2r1 cos(γh))λ0+

α1

τν

m

∑
p=1

[ωp −ωp+1](r2 + 2r1 cos(γh))λm−p,

Taking the term common on both sides then dividing by r2 + 2r1 cos(γh), we attain[(
α1

τν
+ α

)
+ dµ

]
λm+1 =

α1

τν
λ0 +

α1

τν

m

∑
p=1

[ωp −ωp+1]λ
m−p, (22)

where µ = 12ν(2+δ) sin2 γh/2
h2(6+(δ−4) sin2 γh/2)

> 0, δ 6= −2.

Proposition 1. Let λm, m = 0, 1, ..., M be the solution of TFRD Equation (1), we have

|λm| ≤ |λ0|, m = 0, 1, ..., M. (23)
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Proof. We verify this result with the assistance of mathematical induction. Substitute m = 0 in
Equation (22), we acquire [(

α1

τν
+ α

)
+ dµ

]
λ1 =

α1

τν
λ0.

Since α1
τν + α + dµ > α1

τν , we have
|λ1| ≤ |λ0|.

Assume that |λm| ≤ |λ0| for m = 0, 1, ..., M− 1. For m + 1, we have[(
α1

τν
+ α

)
+ dµ

]
λm+1 =

α1

τν
λ0 +

α1

τν

m−1

∑
p=1

[ωp −ωp+1]λ
m−p

[(
α1

τν
+ α

)
+ dµ

]
|λm+1| ≤ α1

τν
|λ0|+ α1

τν

m−1

∑
p=0

[ωp −ωp+1]|λm−p|

=
α1

τν

(
ωp +

m−1

∑
p=0

[ωp −ωp+1]

)
|λ0|

|λm+1| ≤ |λ0|.

Thus |λm+1| = |Φm+1
k | ≤ |λ0| = |Φ0

k |, so that ‖Φm+1
k ‖2 ≤ ‖λ0‖2. This implies that the proposed

method for TFRD model is unconditionally stable.

6. Convergence Analysis

First we recall some important findings to explain the convergence analysis.

Theorem 2 ([42,43]). Notice that Ψ(x, t) ∈ C4[a, b], G ∈ C2[a, b] and [a, b] is subdivided at the equidistant
knots with step length h. If Ψ̃(x, t) is the ECBS approximation for solving TRFD model at knots x0, ..., xN ∈
[a, b], then there are σk free of h, such that

‖Dk(Ψ(x, t)− Ψ̃(x, t))‖∞ ≤ σkh4−k, k = 0, 1, 2 (24)

Lemma 1 ([31,44]). The ECBS functions set {E−1, E0, ..., EN+1} explained in (5) acquires the result

N+1

∑
k=−1

|Ek(x, δ)| ≤ 7
4

, 0 ≤ x ≤ 1. (25)

Theorem 3. The Ψ̂(x, t) be the computational solution to the analytical Ψ(x, t) of the TFRD model.
Furthermore, if G ∈ C2[0, 1], we obtain

‖Ψ(x, t)− Ψ̂(x, t)‖∞ ≤ Sh2, t ≥ 0, (26)

where constant σ > 0 is a free of h and h is sufficiently small.

Proof. Assume that Ψ̃(x, t) = ∑N
k=0 βkEk is the determined solution to the Ψ̂(x, t). Allow the present

method for TFRD equation to achieve collocation condition as

LΨ(xk, t) = LΨ̂(xk, t) = G(xk, t), k = 0, ..., N

LΨ̃(xk, t) = G̃(xk, t), k = 0, ..., N.
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The difference equation of ECBS method for the TFRD model at mth time level, can be stated as

(
α1

τν
+ α

)
(r1Φm+1

k−1 + r2Φm+1
k + r1Φm+1

k+1 )− d(r4Φm+1
k−1 + r5Φm+1

k + r4Φm+1
k+1 )

=
α1

τν
(r1Φm

k−1 + r2Φm
k + r1Φm

k+1)−
α1

τν

m

∑
p=1

ωp[r1(Φ
m−p+1
k−1 −Φm−p+1

k−1 ) + r2(Φ
m−p+1
k −Φm−p

k )

+ r1(Φ
m−p
k+1 −Φm−p

k+1 )] + Gm+1, (27)

and the boundary conditions are mentioned below:

r1Φm+1
k−1 + r2Φm+1

k + r1Φm+1
k+1 = 0, k = 0, N,

where
Φm

k = βm
k − Cm

k , k = −1, 0, ..., N + 1.

From Theorem 2, it is clear that

κm
k = h2[Gm

k − G̃m
k ] ≤ σh4.

Define κm = max{|κm
k |; 0 ≤ k ≤ N}, Em

k = |Φm
k | and Em = max{|Em

k |; 0 ≤ k ≤ N}. For m = 0
in (27), we have(

α1

τν
+ α

)
(r1Φ1

k−1 + r2Φ1
k + r1Φ1

k+1)− d(r4Φ1
k−1 + r5Φ1

k + r4Φ1
k+1)

=
α1

τν
(r1Φ0

k−1 + r2Φ0
k + r1Φ0

k+1) + G1.

This implies[(
α1

τν
+ α

)
r2 − dr5

]
Φ1

k =

[(
α1

τν
+ α

)
r1 − dr4

]
(Φ1

k−1 −Φ1
k+1) + G1.

Take absolute values of κ1
k , Φ1

k and from the initial condition E0 = 0, we obtain

E1
k ≤

6σh4

(2 + δ)[( α1
τν + α)h2 + 12d]

, k = 0, 1, ..., N

The following relations can be obtained from the boundary conditions:

E1
−1 ≤

(20 + δ)6σh4

(4− δ)(2 + δ)[( α1
τν + α)h2 + 12d]

,

E1
N+1 ≤

(20 + δ)6σh4

(4− δ)(2 + δ)[( α1
τν + α)h2 + 12d]

.

Therefore
E1 ≤ σ1h2. (28)
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Here σ1 is independent of h. Assume that Em ≤ σkh2, for k = 1, ..., N. Let σ = max{σk : 0 ≤ k ≤
N}, then from (27), we attain

(
α1

τν
+ α

)
(r1Φm+1

k−1 + r2Φm+1
k + r1Φm+1

k+1 )− d(r4Φm+1
k−1 + r5Φm+1

k + r4Φm+1
k+1 )

= ωp
α1

τν
(r1Φ0

k−1 + r2Φ0
k + r1Φ0

k+1) +
α1

τν

m−1

∑
p=0

[ωp −ωp+1](r1Φm−p
k−1 + r2Φm−p

k + r1Φm−p
k+1 ) + Gm+1.

Taking absolute values of κm
k , Φm

k , we obtain

Em+1 ≤ 6σh2

(2 + δ)[( α1
τν + α)h2 + 12d]

( m−1

∑
p=0

[ωp −ωp+1]σh2 + σh2
)

.

Similarly from the boundary conditions, we get

Em+1
−1 ≤ σh2, Em+1

N+1 ≤ σh2.

Hence, for every m, we have
Em+1 ≤ σh2. (29)

From the above inequality and Theorem 1, we get

Ψ̃(x, t)− Ψ̂(x, t) =
N+1

∑
k=−1

(Ck − βk)Ek(x, δ) ≤ 7
4

σh2. (30)

By employing the triangular inequality, we have

‖Ψ(x, t)− Ψ̂(x, t)‖∞ ≤ ‖Ψ(x, t)− Ψ̃(x, t)‖∞ + ‖Ψ̃(x, t)− Ψ̂(x, t)‖∞.

By using inequalities (24) and (30), we obtain

‖Ψ(x, t)− Ψ̂(x, t)‖∞ ≤ σ0h4 +
7
4

σh2 = Sh2,

where S = σ0h2 + 7
4 . Therefore, It can be deduced form Theorems 1 and 3:

‖Ψ(x, t)− Ψ̂(x, t)‖∞ ≤ Sh2 + O(τ2).

7. Illustration of Numerical Results

In this portion, we will go through some numerical results for the ECBS technique. The theoretical
statements were verified with errors. All computational results can be carried out in any programming
language. The errors between the results obtained by the ECBS and the analytical results E∞(h, τ) and
E2(h, τ) are estimated as

E∞(h, τ) = max
0≤m≤M

‖Ψ(x, tm)− Ψ̂(x, tm)‖∞,

E2(h, τ) =

√√√√ M

∑
m=0
|Ψ(x, tm)− Ψ̂(x, tm)|2,
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The following definition can be employed numerically evaluate the convergence order:

Order =
log(E∞(Nk))− log(E∞(Nk+1))

log(2)
,

where E∞(Nk) and E∞(Nk+1) are the errors at nodal points Nk and Nk+1.

Example 1. Consider the TFRD of the form:

∂νΨ(x, t)
∂tν

=
∂2Ψ(x, t)

∂x2 −Ψ(x, t) + G(x, t),

with {
Ψ(x, 0) = 0, 0 ≤ x ≤ 1
Ψ(0, t) = Ψ(1, t) = t2, t ≥ 0.

where G(x, t) = 2(1−x) sin(x)
ν

(
t− 1−ν

ν (1− e−
νt

1−ν )

)
+ 2t2[cos(x) + (1− x) sin(x)] and analytical solution

is Ψ(x, t) = t2(1− x) sin(x) [11].

Table 1 shows the comparison of computational and analytical values corresponding to various ν,
N = 100 and τ = 0.005 at t = 1

2 . Table 2 displays the maximum errors and the order of convergence
for ν = 0.7, N = 40 and τ = 0.01, ν = 0.5 respectively corresponding to numerous τ and h at
T = 1. Table 3 displays the E∞ and E2 errors at t = 0.5, t = 0.75 and T = 1 corresponding ν = 0.5.
The piece-wise solutions of Example 1 for N = 100, ν = 0.4, τ = 0.0025 at T = 1 are shown in
Equation (31). The polynomial also shows that the solution based on the basis function of degree 4.
Figures 2 and 3 depict the graphs of computational outcomes at dissimilar time sizes and errors at
different τ corresponding ν = 0.6. Figure 4 illustrates the space–time plot for ν = 0.7, N = 80 and
τ = 0.006 at T = 0.6. The graphical and computational results show that as we increase the number of
partitioning in time–space directions, errors decrease.

Table 1. The computational and exact values for N = 100 at T = 0.5.

x ν = 0.2 ν = 0.4 ν = 0.6 ν = 0.8 Exact Values

1/20 0.0118787 0.0118701 0.0119612 0.0123015 0.0118701
1/10 0.0224750 0.0225208 0.0225932 0.0230770 0.0224625
3/20 0.0317683 0.0317556 0.0318879 0.0323731 0.0317556
1/5 0.0397443 0.0397971 0.0398415 0.0402323 0.0397339
1/4 0.0463949 .04638820 0.0464550 0.0466942 0.0463882

3/10 0.0517182 0.0517589 0.0517344 0.0517962 0.0517160
7/20 0.0557184 0.0557209 0.0556901 0.0555741 0.0557209
2/5 0.0584061 0.0584300 0.0583377 0.0580631 0.0584128

9/20 0.0597977 0.0598078 0.0596973 0.0592977 0.0598078
1/2 0.0599159 0.0599272 0.0597940 0.0593122 0.0599282

11/20 0.0587890 0.0584305 0.0586576 0.0581412 0.0588023
3/5 0.0564511 0.0564582 0.0563224 0.0558194 0.0564642

13/20 0.0529421 0.0521149 0.0528272 0.0523818 0.0529538
7/10 0.0483069 0.0483176 0.0482151 0.0478636 0.0483163
3/4 0.0425960 0.0413353 0.0425333 0.0422999 0.0426024
4/5 0.0358646 0.0358818 0.0358333 0.0357260 0.0358678

17/20 0.0281728 0.0265245 0.0281699 0.0281761 0.0281730
9/10 0.0195849 0.0196028 0.0196016 0.0196841 0.0195832
19/20 0.0101698 0.0101677 0.0101901 0.0102820 0.0101677
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Table 2. The maximum errors and order for ν = 0.7, ν = 0.5 corresponding τ and h.

τ E∞ Order h E∞ Order
1

04 0.074687677 . . . 1
05 0.072071696 . . .

1
08 0.018954332 1.97834 1

10 0.017726792 2.02350
1

16 0.004814144 1.97718 1
20 0.004285629 2.04835

1
32 0.001217257 1.98365 1

40 0.001014881 2.07820

Table 3. E∞ and E2 for ν = 0.5 at various time.

τ h
t = 0.5 t = 0.75 T = 1

E∞ E2 E∞ E2 E∞ E2

1
100

1
100 0.00908570 0.00066339 0.03367750 0.00245002 0.06323520 0.00459440

1
120

1
120 0.00560141 0.00037391 0.02026130 0.00134459 0.02563710 0.00169206

1
140

1
140 0.00160497 0.00009994 0.00761617 0.00046534 0.00930715 0.00055838

1
160

1
160 0.00084653 0.00004973 0.00276616 0.00015524 0.00484970 0.00026462

1
180

1
180 0.00029563 0.00001679 0.00044591 0.00002321 0.00067543 0.00002429

The piece-wise solution can be attained as:

Ψ̂(x, t) = Cm
j−1Ej−1(x, δ) + Cm

j Ej(x, δ) + Cm
j+1Ej+1(x, δ) (31)

Ψ̂(x, t) =



−1.94072× 10−16 + 1.00666x− x2

−6.73094x3 + 331.117x4, x ∈ [ 0
100 , 01

100 ),
0.0000132708 + 1.00268x− 0.601559x2

−20.0333x3 + 332.168x4, x ∈ [ 01
100 , 02

100 ),
0.000119841 + 0.986686x + 0.198911x2

−33.4144x3 + 333.165x4, x ∈ [ 02
100 , 03

100 ),
0.000480787 + 0.950566x + 1.40462x2

−46.8677x3 + 334.109x4, x ∈ [ 03
100 , 04

100 ),
0.00133918 + 0.886129x + 3.01837x2

−60.3869x3 + 334.999x4, x ∈ [ 04
100 , 05

100 ),
...

...
16.3425− 136.628x + 433.632x2

−610.188x3 + 321.231x4, x ∈ [ 47
100 , 48

100 ),
17.6788− 144.812x + 449.979x2

−620.079x3 + 319.709x4, x ∈ [ 48
100 , 49

100 ),
19.0882− 153.256x + 466.455x2

−629.744x3 + 318.134x4, x ∈ [ 49
100 , 50

100 ),
...

...
162.168− 678.223x + 1065.79x2

−744.798x3 + 195.068x4, x ∈ [ 95
100 , 96

100 ),
165.943− 686.831x + 1068.11x2

−738.684x3 + 191.463x4, x ∈ [ 96
100 , 97

100 ),
169.645− 694.963x + 1069.65x2

−732.161x3 + 187.88x4, x ∈ [ 97
100 , 98

100 ),
173.264− 702.59x + 1070.39x2

−725.228x3 + 184.162x4, x ∈ [ 98
100 , 99

100 ),
176.787− 709.682x + 1070.31x2

−717.885x3 + 180.467x4, x ∈ [ 99
100 , 100

100 ).
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t=1
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t=0.5

t=0.4
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Ψ(x,t)

Figure 2. Numerical solution corresponding to time at ν = 0.7.

τ=0.02

τ=0.01

τ=0.005

τ=0.0025

τ=0.00125

0.2 0.4 0.6 0.8 1.0
x

0.002

0.004

0.006

0.008

Absolute Error

Figure 3. Error plot corresponding to τ for ν = 0.8, N = 100 at t = 0.5.

Figure 4. Space–time plot of errors corresponding ν = 0.3, N = 80.

Example 2. Consider the TFRD of the form:

∂νΨ(x, t)
∂tν

=
∂2Ψ(x, t)

∂x2 −Ψ(x, t) + G(x, t),
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with {
Ψ(x, 0) = 0, 0 ≤ x ≤ 2
Ψ(0, t) = Ψ(2, t) = 0, t ∈ [0, 1].

where G(x, t) = 2x(2−x)
ν

(
t − 1−ν

ν (1 − e−
νt

1−ν )

)
+ t2(2 − x)x + 2t2 and analytic solution is Ψ(x, t) =

t2(2− x)x [10,11].

Table 4 exhibits the maximum errors and order of convergence for ν = 0.6, different τ and h.
Table 5 demonstrates that the comparison of computational and exact values corresponding different
ν, N = 100 and τ = 0.005. Table 6 displays the E∞ and E2 errors at t = 0.5, t = 0.75 and T = 1
corresponding ν = 0.5. The computational values show that these results are compatible with the
exact solutions. The piece-wise solutions of Example 2 for N = 100, ν = 0.4, τ = 0.002 at T = 1 are
presented in Equation (32). This polynomial also presents that we have utilized the degree 4 basis
function to obtain the computational outcomes. Figure 5 displays the numerical values at different
time levels while Figures 6 and 7 depict the comparison of errors for ν = 0.5 at t = 0.5 and space–time
graph of absolute errors for ν = 0.4, N = 100 and τ = 0.006 at t = 06

10 .

Table 4. The errors and order for ν = 0.6 corresponding τ and h.

τ E∞ Order h E∞ Order
1

05 0.055515805 . . . 1
5 0.124485059 . . .

1
10 0.014037928 1.98357 1

10 0.030807675 2.01461
1

20 0.003540545 1.98729 1
20 0.007802263 1.98133

1
40 0.000850180 2.05813 1

40 0.001914559 2.02688

Table 5. The computational values and exact values of Example 2 corresponding N = 100 at T = 1.

x ν = 0.1 ν = 0.3 ν = 0.5 ν = 0.7 Exact Values

0.1 0.190456 0.191839 0.196221 0.221592 0.19000
0.2 0.360661 0.362518 0.368566 0.401553 0.36000
0.3 0.510688 0.512392 0.518255 0.548109 0.51000
0.4 0.640598 0.641753 0.646276 0.667110 0.64000
0.5 0.750443 0.750840 0.753419 0.762705 0.75000
0.6 0.840262 0.839847 0.840307 0.837820 0.84000
0.7 0.910089 0.908924 0.907420 0.894491 0.91000
0.8 0.959948 0.958186 0.955114 0.934102 0.96000
0.9 0.989857 0.987712 0.983636 0.957540 0.99000
1.0 0.999826 0.997549 0.993127 0.965300 1.00000
1.1 0.989857 0.987712 0.983636 0.957540 0.99000
1.2 0.959948 0.958186 0.955114 0.934102 0.96000
1.3 0.910089 0.908924 0.907420 0.894491 0.91000
1.4 0.840262 0.839847 0.840307 0.837820 0.84000
1.5 0.750443 0.750840 0.753419 0.762705 0.75000
1.6 0.640598 0.641753 0.646276 0.667110 0.64000
1.7 0.510688 0.512392 0.518255 0.548109 0.51000
1.8 0.360661 0.362518 0.368566 0.401553 0.36000
1.9 0.190456 0.191839 0.196221 0.221592 0.19000
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Table 6. E∞ and E2 for ν = 0.5 at various time.

τ h
t = 0.5 t = 0.75 T = 1

E∞ E2 E∞ E2 E∞ E2

1
10

1
10 0.05497750 0.01286880 0.04825150 0.01101750 0.08207250 0.01848099

1
20

1
20 0.01783802 0.00288869 0.01149950 0.00244221 0.01925940 0.00249855

1
30

1
30 0.00778736 0.00097253 0.00853499 0.00125164 0.00977995 0.00107384

1
40

1
40 0.00357266 0.00034542 0.00554695 0.00058149 0.00807256 0.00087769

1
50

1
50 0.00106823 0.00009982 0.00335585 0.00033604 0.00673742 0.000677613

The piece-wise solution can be attained as:

Ψ̂(x, t) = Cm
j−1Ej−1(x, δ) + Cm

j Ej(x, δ) + Cm
j+1Ej+1(x, δ) (32)

Ψ̂(x, t) =



−8.67362× 10−18 + 2.04601x− x2

−14.201x3 + 358.103x4, x ∈ [0, 02
100 ),

0.000227971 + 2.01183x + 0.706653x2

−42.541x3 + 355.496x4, x ∈ [ 02
100 , 04

100 ),
0.00203554 + 1.87643x + 4.08378x2

−70.4828x3 + 352.985x4, x ∈ [ 04
100 , 06

100 ),
0.0080838 + 1.57454x + 9.09789x2

−98.0488x3 + 350.567x4, x ∈ [ 06
100 , 08

100 ),
0.022302 + 1.04254x + 15.718x2

−125.26x3 + 348.238x4, x ∈ [ 08
100 , 10

100 ),
...

...
248.472− 1044.27x + 1651.08x2

−1159.38x3 + 305.1x4, x ∈ [ 94
100 , 96

100 ),
270.008− 1111.5x + 1720.99x2

−1183.52x3 + 305.032x4, x ∈ [ 96
100 , 98

100 ),
292.945− 1181.69x + 1792.54x2

−1207.79x3 + 304.998x4, x ∈ [ 98
100 , 1.00),

...
...

4634.71− 9704.42x + 7621.88x2

−2660.65x3 − 50.7798x4, x ∈ [ 190
100 , 192

100 ),
4864.23− 10079.5x + 7834.42x2

−2706.49x3 + 350.567x4, x ∈ [ 192
100 , 194

100 ),
5103.99− 10467x + 8052.84x2

−2753.4x3 + 352.985x4, x ∈ [ 194
100 , 196

100 ),
5354.46− 10870.2x + 8277.37x2

−2801.43x3 + 355.496x4, x ∈ [ 196
100 , 198

100 ),
5616.13− 11286.9x + 8508.26x2

−2850.62x3 + 358.103x4, x ∈ [ 198
100 , 2.00).
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Figure 5. Numerical solution of Example 2 at ν = 0.5, N = 30.
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Figure 6. Absolute errors corresponding ν = 0.5, N = 100 at t = 0.5.

Figure 7. Space–time error plot for ν = 0.4, N = 100 at t = 0.6.

8. Conclusions

A ECBS collocation approach for the solution of the TFRD model was reported in this research
paper. ECBS was employed for space discretization while CFFD was applied for time direction.
The CFFD operator is used for the first time in B-spline methods. The operator is successfully utilized
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for the ECBS method. This approach has order 2 accuracy in time and space dimensions. Thus,
the ECBS method with a non-singular kernel leads to accurate computational results. A variety of
computational examples have validated the ECBS collocation approach.
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