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1. Introduction

Fractional calculus, which is the general development of old calculus, has a remarkable ability to
examine the world around us through the areas of both applied and pure mathematics, respectively. It
has also gained considerable attention from the genetics, physics, chemistry, and computer research
communities. The best way to make discoveries in mathematics is by adding some new theories to
evaluate the current results. Frequently the results may fail. But, often it may pave a way to a new
field of research works. Similarly, the fractional-order calculus is a perfect answer to the nonsensical
question “what if the derivative order is non-integer?” by Leibnitz during the late sixteenth century.
One of the most important properties of the differential fractional equation is its ability to track a motion
of an object continuously and instantly of non-local nature. Besides, it contains more memory of the
systems. The fractional-order models are easier to understand the complexity of the dynamic system
with greater precision contrast to the integer-order differential models. Due to the memory properties,
several researchers are integrating the memory properties into nonlinear dynamical systems, and lot
of important results about fractional order nonlinear dynamical systems have been reported in recent
literature, see Ref [3, 11, 12].

In an organism, gene expression is regulated by RNA, DNA, protein, and tiny molecules. Gene
Regulatory Network (GRNs) defined the interconnections between these two. GRNs are viewed as
complex networks. Each gene is regarded as a node, and the regulatory link between these genes is
known as a relation between the nodes. To unleash the cure for deadly diseases such as cancer and
AIDS, a greater understanding of the complex networks of GRNs is essential. Time delays in both
biological and artificial neural networks are unavoidable because of the limited speed of information
processing. Generally, there are typically two types of gene regulatory networks, such as the boolean
model and the continuous model. The continuous model is commonly used for the study of GRNs, and
several important results about GRNs with time delays had been well documented, see Ref [1, 16, 19].

On the other hand, stability theory is the flexible branch of science and engineering that deals with
the behavioral effect for linear and nonlinear systems of dynamic structures. The investigation on
various stability problems of time-delayed GRNs (TDGRNs) are accounted [20, 24, 26, 36]. Paper by
Luo et al., has analyzed the existence and Lagrange stability of TDGRNs in Lyapunov’s sense based
on novel algebraic method and stability theory [20]. In [24], the authors demonstrated the
delay-dependent finite time stability issues of TDGRNs with impulses based on the LMI approach
and Lyapunov stability theory. In [26], the problem of the stability criterion of TDGRNs with
impulsive effects was analyzed. By employing the LMI techniques, convex combination approach,
and Lyapunov-Krasovskii functional, the sufficient conditions to assure the global asymptotic stability
analysis of the proposed TDGRNs model. In [36], the authors researched the global exponential
delay-dependent stability criterion of TDGRNs under distributed delays based on LMI techniques and
Lyapunov-Krasovskii functional approach.

Nowadays, the synchronization of dynamic systems is advancing as a dominant research field and
has drawn a great deal of interest from researchers of diverse field. Its application found in many
fields like secure communication, image, and signaling process. Many types of synchronization
results are available in recent works including Mittag-Leffler, asymptotic, quasi and pinning
synchronization, and so forth [7–10, 17, 18, 30, 33]. GRN synchronization is essential for knowing the
synergic behavior between the more than one gene networks through the connections of gene signals
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and their products. The advantages of researching GRN synchronization are acquiring knowledge
about a gene’s internal processes even at cellular levels. Some significant results about
synchronization for time-delayed GRNs (TDGRNs) had been studied in recent years. For example, by
means of observer-based non-fragile and linear feedback control, LMI techniques, and
Lyapunov-Krasovskii method, Ali et al. demonstrate some sufficient criteria for the global asymptotic
synchronization issues of TDGRNs under uncertainty [2]. By exploiting finite-time control
techniques, robust analysis, and theory of finite-time stability, Jiang et al. investigate stochastic
synchronization in finite time analysis for TDGRNs under parameter uncertainties [14]. Depending
on the pinning control strategy, some famous inequality approaches, matrix theory, and
event-triggered condition, Yue et al.analyze the cluster synchronization analysis for GRNs with
coupling terms [35]. The research works in fractional order gene regulatory with delay arguments
has been undergone exciting development in recent years, and some meaningful scientific results had
been obtained. By using a hybrid control approach, the authors experimented with the bifurcation
analysis for FODGRNs [15]. By utilizing the principle of Banach contraction mapping and absolute
Lyapunov functional with 1-norm, the authors exhibited the several stability criteria of fractional
order GRNs [25]. Depending on the principle of Banach contraction, Lyapunov functional with
1-norm, linear feedback, and adaptive feedback techniques, the sufficient criteria to ensure the finite
time delay-independent synchronization problem of considered FODGRNs via Razumikhin
approach [23]. By employing the diffusion and stability theory, the authors have demonstrated with
the issues of local stability and instability criteria for bifurcation diffusion FODGRNs [29].
Unfortunately, there is no work done on the existence, stability, and synchronization for FODGRNs
via Razumikhin approach and quadratic Lyapunov approach, this situation motivates further
discussion for global Mittag-Leffler stability and adaptive synchronization of FODGRNs. The
essential theme of this manuscript lies in the following aspects:

1) By means of homeomorphism theory and Cauchy Schwartz inequality, a sufficient condition is
presented to ascertain the existence and uniqueness of the equilibrium point for FODGRNs.

2) Based on fractional Lyapunov method, fractional-order Razumikhin theorem, and some
traditional inequality techniques, a sufficient condition is established for global Mittag-Leffler
stability of the proposed networks.

3) According to feedback control technique, two kinds feedback controllers are designed to
guarantee the synchronization of a class of master-slave fractional order time delayed gene
regulatory networks. One is linear feedback control, which is better and simpler to execute over
the other controls. Another one is adaptive feedback control, which is designed to prevent the
high feedback gains and it is regarded as the more versatile one. Since, it can adjust the coupling
weights by itself.

4) The proposed results in this paper are still true for global exponential stability and synchronization
of integer-order GRNs with time delay effects, and these results do not discuss in the previous
works of literature.

The scheme of this paper is as planned out as follows. We present the key concepts about the
calculus of fractional order, essential lemmas, and the system description in Section 2. In Section 3
and Section 4, we present the main results of this manuscript. In Section 5, we include the numerical
results and its simulations. Lastly, we draw some conclusions in Section 6.
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Notations: The required notations are displayed as follows: Rm refers to the space of m-dimensional
space. A set of all m × m real matrix is described by Rm×m. sign(·) indicate the signum function. Eλ,µ
and Eλ,1 refers to the two parameter and one parameter Mittag-Leffler functions, respectively. For any
matrix B =

(
bpq

)
m×m, |B| =

(
|bpq|

)
m×m. The greatest and smallest eigenvalues of matrix B is represented

by ΦM and Φm, respectively. The symmetric term in a matrix is displayed byz. The operator norm of

a matrix B is denoted by ‖B‖ =

√
ΦM

(
BT B

)
. Γ(·) is the gamma function. C

(
[−τ, 0],Rm)

indicate the
group of continuous functions from [−τ, 0] to Rm, where time lag τ > 0 and the signum function is
referred by sign(·).

2. Basic tools and research problem

This section comprises of the rudimentary fractional-order definitions, lemmas which are further
employed in the subsequent section.

2.1. Basic tools of Caputo-fractional operator

Definition 2.1 [22] The λ − th fractional order for integral function `(t) is denoted as:

C
0 D−λt `(t) =

1
Γ(λ)

∫ t

t0
(t − θ)λ−1`(θ) dθ.

Definition 2.2 [22] The λ − th Caputo type fractional order for a function `(t) is denoted as:

C
0 Dλ

t `(t) =
1

Γ(m − λ)

∫ t

t0

`(m)(θ)
(t − θ)λ−m+1 dθ,

where t ≥ t0 and m − 1 < λ < m ∈ Z+.

Lemma 2.3 [13] For 0 < λ < 1, `(t) ∈ Rm be a continuously vector valued differentiable function,
then for any t ≥ t0

C
0 Dλ

t {`
T (t)X`(t)} ≤ 2`T (t)X{Dλ

t `(t)},

where X ∈ Rm×m is a positive definite symmetric matrix.

Lemma 2.4 [22] If `(t) ∈ Cm([0,+∞),R), then

C
0 D−λt

(C

0
Dλ

t `(t)
)

= `(t) −
m−1∑
x=0

tx

x!
`(x)(t0).

where m − 1 < λ < m, (m ∈ Z+, m ≥ 1).

If 0 < λ < 1, then C
0 D−λt

(C

0
Dλ

t `(t)
)

= `(t) − `(t0).
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Lemma 2.5 [31] For 0 < λ < 1, if `(t) is continuously derivable function on [0,+∞), then there exist
a constants ϑ1 > 0 and ϑ2 > 0 such that

C
0 Dλ

t `(t) ≤ −ϑ1`(t) + ϑ2, t ≥ t0,

then

`(t) ≤ `(t0)Eλ
(
− ϑ1(t − t0)λ

)
+ ϑ2tλEλ,λ+1

(
− ϑ1(t − t0)λ

)
, t ≥ t0.

Lemma 2.6 [34] For 0 < λ < 1, a nondecreasing derivable function `(t) is defined on positive, then
there exist a constant ϑ > 0 such that

C
0 Dλ

t [`(t) − ϑ]2 ≤ 2[`(t) − ϑ]C
0 Dλ

t `(t).

Lemma 2.7 [37] For 0 < λ < 1, `(t) be a continuously vector valued differentiable function, then

C
0 Dλ

t |`(t)| ≤ sgn(`(t))C
0 Dλ

t `(t).

2.2. Research problem

We consider a class of Caputo-sense FODGRNs in this manuscript as follows:C
0 Dλ

t gp(t) = −apgp(t) +
∑m

q=1 bpq fq
(
hq(t − σ1)

)
+ Fp,

C
0 Dλ

t hp(t) = −cphp(t) + dpgp(t − σ2),
(2.1)

where p = 1, 2, ..,m, 0 < λ < 1 signifies the fractional order, gp(t) ∈ Rm and hp(t) ∈ Rm indicate the
concentrations of mRNA and protein of pth node at time t, respectively. ap and cp are degradation
velocities of mRNA and protein molecule, respectively. Moreover, dp represents the translation rate.
The time lags are denoted as σ1 > 0 and σ2 > 0. bpq is coupling matrix. Besides, the functions fq(·)
represents the nonlinear protein feedback regulation, which are commonly indicated in the Hill form
as

fq(ν) =

(
ν
ςq

)Hq[
1 +

(
ν
ςq

)Hq
] ,

where Hq is the Hill coefficients and αy signifies non-negative constants. The coupling matrix of
the network B = (bpq)m×m ∈ R

m×m are represents as follows:

bpq =


−ϕpq, q is a repressor of gene p

0, q does not regulate gene p

ϕpq, q is a initiator of gene p.

Presently, we define Gp as Gp =
∑

y∈Ĝ bpq, where Ĝ indicate the set of all repressor of gene p. It’s
significant to mention that Caputo’s definition was the most celebrated definition due to its properties
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such as derivative of constant is zero. Further, the Cauchy problem defined in the sense of Caputo’s
definition has an interpretation of integer-order initial values. Therefore, the initial values combined
with FODGRNs (2.1) in the sense of Caputo type can be described as:

gp(t) = ωp(t), hp(t) = $p(t), t ∈ [−τ = max{σ1, σ2}, 0],

where ωp(t), $p(t) ∈ C
(
[−τ, 0],Rm)

and its norm is defined by

‖$‖ =

m∑
p=1

sup
−σ1≤θ≤0

{∣∣∣$p(θ)
∣∣∣}, ‖ω‖ =

m∑
p=1

sup
−σ2≤θ≤0

{∣∣∣ωp(θ)
∣∣∣}.

The vector form of FODGRNs (2.1) is given asC
0 Dλ

t g(t) = −Ag(t) + B f
(
h(t − σ1)

)
+ F

C
0 Dλ

t h(t) = −Ch(t) + Dg(t − σ2),
(2.2)

where g(t) =
(
g1(t), ..., gm(t)

)T , h(t) =
(
h1(t), .., hm(t)

)T , A = diag{a1, ..., am}, B = (bpq)m×m,
C = diag{c1, ..., cm}, D = diag{d1, ..., dm}, f

(
h(t)

)
=

(
f1
(
h1(t), ..., fm

(
hm(t)

)T and F = (F1, ..., Fm)T .

In the development of main results, the following Assumption and Lemma’s are important.

Assumption 1. The feedback function fq(·) is monotonically increasing, it is fulfilled that

0 ≤
fq(v) − fq(w)

v − w
≤ βq, q = 1, 2, . . . ,m,

for all v,w ∈ R with v , w.

Lemma 2.8 [5] A uniformly continuous function `(t) is defined on positive interval and
∫ t

t0
`(θ)dθ

exists and is bounded, then limt→+∞ `(t) = 0.

Lemma 2.9 [6] For any v,w ∈ Rm and R ∈ Rm×m is a positive definite matrix, then

vT w ≤
1
2

vTRv +
1
2

wTR−1w.

Lemma 2.10 [21] If a continuous map Υ : Rm → Rm holds the following conditions:

(1). Υ(g) is injective on Rm, that is Υ(g) , Υ(h) ∀ g , h.

(2). ‖Υ(g)‖ → +∞ as ‖g‖ → +∞.

Then, Υ(g) is homeomorphism of Rm.
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3. Existence and global Mittag-Leffler stability

In this part, we will derive the existence and stability of FODGRNs (2.1) by using the following
Definitions.

Definition 3.1 The vectors g? =
(
g?1 , ..., g

?
m

)T
and h? =

(
h?1 , ..., h

?
m

)T
is an equilibrium points of

FODGRNs (2.1), if and only if−apg?p +
∑m

q=1 bpq fq
(
h?q

)
+ Fp = 0,

−cph?p + dpg?p = 0, p = 1, 2, ..m.

Definition 3.2 The equilibrium point of FODGRNs (2.1) is said to be global Mittag-Leffler stable, if
there exists two positive constants ζ1 > 0 and ζ2 > 0 such that for any solution

(
g(t) − g?, h(t) − h?

)
of

FODGRNs (2.1) with initial conditions
(
ω(t) − g?, $(t) − h?

)
such that

m∑
p=1

(
gp(t) − g?p

)2
+

m∑
p=1

(
hp(t) − h?p

)2
≤

{
N

(
ω(t) − g?, $(t) − h?

)
Eλ,1

(
ζ1(t − t0)λ

)}ζ2
,

for t ≥ t0, where t0 is starting time, N
(
0, 0

)
= 0, N

(
ω,$

)
≥ 0, and N

(
ω,$

)
refers to locally Lipschitz

with respect to $ ∈ C
(
[−σ1, 0],Rm)

and ω ∈ C
(
[−σ2, 0],Rm)

.

Theorem 3.3 Under Assumption 1, the existence of equilibrium point
(
g?, h?

)
of FODGRNs (2.1)

is unique, where g? =
(
g?1 , ..., g

?
m

)T
and h? =

(
h?1 , ..., h

?
m

)T
if there exist positive constants αp > 0 for

p = 1, 2, ..m such that the condition is established:

ξp =
2apcp

dp
−

m∑
q=1

|bpq|βq −

m∑
q=1

αq

αp
|bqp|βp > 0, p = 1, 2, ..,m. (3.1)

Proof. According to Definition 3.1, it easy to obtain

g?p =
cp

dp
h?p , p = 1, 2, ..,m,

which prove that if the existence of equilibrium point
(
g?p , h

?
p
)

of FODGRNs (2.1) is unique, so we only
to establish the existence of unique equilibrium point h?p .

Define Υ(h) =
(
Υ1(h), ...,Υm(h)

)T
, h =

(
h1, ..., hm

)T
∈ Rm, where

Υp(hp) = −
apcp

dp
h?p +

m∑
q=1

bpq fq
(
h?q

)
+ Fp, p = 1, 2, ..,m. (3.2)

In the following, we will demonstrate that Υ(h) is homeomorphism of Rm onto itself based on Lemma
2.10. That is (i). If hp , kp, then Υp(hp) , Υp(kp), p = 1, 2, ..,m. (ii). ‖Υ(h)‖ → +∞ as ‖h‖ → +∞.
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Firstly, we show (i). If there exist hp, kp ∈ R
m holds hp , kp such that Υp(hp) , Υp(kp) for

p = 1, 2, ..,m. Then,

apcp

dp
(hp) −

apcp

dp
(kp) =

m∑
q=1

bpq
[
fq
(
hq

)
− fq

(
kq

)]
According to Assumption 1, it follows that

apcp

dp
|hp − kp| ≤

m∑
q=1

|bpq|βq|hq − kq|. (3.3)

From (3.3), we have

m∑
p=1

2αp
apcp

dp
|hp − kp|

2 =

m∑
p=1

2αp|hp − kp|
(apcp

dp
|hp − kp|

)
≤

m∑
p=1

2αp|hp − kp|
( m∑

q=1

|bpq|βq|hq − kq|
)

≤

m∑
p=1

m∑
q=1

2αp|bpq|βq|hp − kp||hq − kq|

≤

m∑
p=1

m∑
q=1

αp|bpq|βq

(
|hp − kp|

2 + |hq − kq|
2
)

=

m∑
p=1

m∑
q=1

[
αp|bpq|βq + αq|bqp|βp

]
|hp − kp|

2. (3.4)

Together with (3.1) and (3.4), we sustain

m∑
p=1

ξp|hp − kp|
2 ≤ 0. (3.5)

Based on inequality (3.2) and (3.5), it follows that |hp − kp| = 0, which leads to a contradiction with
our assumption.

Next, we show (ii). From (3.2), we get∑m
p=1 2αp

(
Υp(hp) − Υp(0)

)
sign

(
hp

)
|hp|

≤ −

m∑
p=1

2αp
apcp

dp
|hp|

2 +

m∑
p=1

m∑
q=1

2αp|bpq|βq|hq||hp|

≤

m∑
p=1

[
−

2apcp

dp
+

m∑
q=1

|bpq|βq +

m∑
q=1

αq

αp
|bqp|βp

]
|hp|

2

≤ −ξmin‖h‖2,
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where ξmin = min1≤p≤m{ξp}. Then, we have

‖h‖2 ≤ −
2
ξmin

m∑
p=1

αp

(
Υp(hp) − Υp(0)

)
sign

(
hp

)
|hp|

≤
2αM

ξmin

m∑
p=1

∣∣∣Υp(hp) − Υp(0)
∣∣∣|hp|, (3.6)

αM = max1≤p≤m{αp}. By means of famous Cauchy-Schwartz inequality and the above inequality (3.6),
we obtain

‖h‖2 ≤
2αM

ξmin

( m∑
p=1

∣∣∣∣Υp(hp) − Υp(0)
∣∣∣∣2) 1

2
( m∑

p=1

|hp|
2
) 1

2

,

which implies to

‖h‖ ≤
2αM

ξmin

∥∥∥Υ(h) − Υ(0)
∥∥∥

≤
2αM

ξmin

(∥∥∥Υ(h
∥∥∥ +

∥∥∥Υ(0)
∥∥∥).

Based on above discussions, we see that ‖Υ(h)‖ → +∞ as ‖h‖ → +∞. In view of Lemma 2.10, Υ(h)
is homeomorphism on Rm, which indicates, the existence of equilibrium point

(
g?p , h

?
p
)

of FODGRNs
(2.1) is unique, and the proof of Theorem 3.3 is ended.

Remark 3.4 There exist other methods to obtain the existence of equilibrium, such as Schauder’s
fixed point theorem, Banach fixed point theorem, Browner’s fixed point theorem and Krasnoselskii
fixed point theorem, and Homotopy invariance theorem. In [23, 25], based on the theory of fractional
calculus, the contraction mapping principle and the norm-1 properties, the existence and uniqueness
of the equilibrium point of the fractional order genetic regulatory networks is discussed. Different
from above mentioned references [23, 25], we have discussed the existence and uniqueness by
homeomorphism theory.

Transform
(
g?p , h

?
p
)

of FODGRNs (2.1) to origin via the transformation vp(t) = gp(t) − g?p and
wp(t) = hp(t) − h?p for p = 1, 2, ..,m. Then, the FODGRNs error system is:C

0 Dλ
t vp(t) = −apvp(t) +

∑m
q=1 bpq f̃q

(
wq(t − σ1)

)
C
0 Dλ

t wp(t) = −cpwp(t) + dpvp(t − σ2),
(3.7)

for p = 1, 2, ..,m and f̃q
(
wq(t − σ1)

)
=

(
fq
(
wq(t − σ1) + h?q

)
− h?q

)
. The vector form of FODGRNs (3.7)

is given as C
0 Dλ

t v(t) = −Av(t) + B f̃
(
w(t − σ1)

)
C
0 Dλ

t w(t) = −Cw(t) + Dv(t − σ2),
(3.8)

where v(t) =
(
v1(t), ..., vm(t)

)T , w(t) =
(
w1(t), ..,wm(t)

)T , f̃
(
w(t)

)
=

(
f̃1
(
w1(t), ..., f̃m

(
wm(t)

)T .
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Theorem 3.5 Under Assumption 1, the existence of equilibrium point
(
g?, h?

)
of FODGRNs (2.1)

is globally Mittag-Leffler stable if there exist two positive diagonal matrices X ∈ Rm×m and Y ∈ Rm×m

such that

ΦM
(
X
)(
− 2‖A‖ + ‖B‖‖S ‖

ΦM
(
X
)

+ Φm
(
Y

)
Φm

(
Y

) +
ΦM

(
Y

)
Φm

(
X
) ‖D‖) < 0, (3.9)

ΦM
(
Y

)(
− 2‖C‖ + ‖D‖

Φm
(
X
)

+ ΦM
(
Y

)
Φm

(
X
) +

ΦM
(
X
)

Φm
(
Y

) ‖B‖‖S ‖) < 0, (3.10)

where S = diag{β1, ..., βm}.

Proof. According to conditions (3.9) and (3.10) from Theorem 3.5 that there exist two positive scalars
γ1 > 0 and γ2 > 0 such that

ΦM
(
X
)(
− 2‖A‖ + ‖B‖‖S ‖

ΦM
(
X
)

+ Φm
(
Y

)
Φm

(
Y

) +
ΦM

(
Y

)
Φm

(
X
) ‖D‖) < −γ1, (3.11)

ΦM
(
Y

)(
− 2‖C‖ + ‖D‖

Φm
(
X
)

+ ΦM
(
Y

)
Φm

(
X
) +

ΦM
(
X
)

Φm
(
Y

) ‖B‖‖S ‖) < −γ2. (3.12)

Consider the following subsequent Lyapunov-Razumikhin functional:

H
(
v(t),w(t)

)
= vT (t)Xv(t) + wT (t)Yw(t) (3.13)

Noting that

Φm
(
X
)
‖v(t)‖2 + Φm

(
Y

)
‖w(t)‖2 ≤ H

(
v(t),w(t)

)
≤ ΦM

(
X
)
‖v(t)‖2 + ΦM

(
Y

)
‖w(t)‖2.

(3.14)

Then, based on Lemma 2.3, and the Caputo-derivative of H
(
v(t),w(t)

)
with respect to FODGRNs error

system (3.7), we have

C
0 Dλ

t H
(
v(t),w(t)

)
≤ 2ΦM

(
X
)
‖v(t)‖ C

0 Dλ
t ‖v(t)‖ + 2ΦM

(
Y

)
‖w(t)‖ C

0 Dλ
t ‖w(t)‖

From Assumption 1 and Lemma 2.7, we sustain

C
0 Dλ

t H
(
v(t),w(t)

)
≤ 2ΦM

(
X
)
‖v(t)‖sign

(
v(t)

) C
0 Dλ

t {v(t)}
+2ΦM

(
Y

)
‖w(t)‖sign

(
w(t)

) C
0 Dλ

t {w(t)}

≤ 2ΦM
(
X
)
‖v(t)‖sign

(
v(t)

) {
− Av(t) + BS w(t − σ1)

}
+2ΦM

(
Y

)
‖w(t)‖sign

(
w(t)

) {
−Cw(t) + Dv(t − σ2)

}
≤ −2ΦM

(
X
)
‖A‖‖v(t)‖2 − 2ΦM

(
Y

)
‖C‖‖w(t)‖2

+2ΦM
(
X
)
‖B‖‖S ‖‖v(t)‖‖w(t − σ1)‖

+2ΦM
(
Y

)
‖D‖‖w(t)‖‖v(t − σ2)‖

≤ −2ΦM
(
X
)
‖A‖‖v(t)‖2 − 2ΦM

(
Y

)
‖C‖‖w(t)‖2
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+2ΦM
(
X
)
‖B‖‖S ‖ sup

t−σ1≤θ≤t

{
‖v(t)‖‖w(θ)‖

}
+2ΦM

(
Y

)
‖D‖ sup

t−σ2≤θ≤t

{
‖w(t)‖‖v(θ)‖

}
.

By using famous inequality 2|µ1||µ2| ≤ µ
2
1 + µ2

2, for supt−σ1≤θ≤t

{
‖v(t)‖‖w(θ)‖

}
and

supt−σ2≤θ≤t

{
‖w(t)‖‖v(θ)‖

}
, we sustain

C
0 Dλ

t H
(
v(t),w(t)

)
≤ −2ΦM

(
X
)
‖A‖‖v(t)‖2 − 2ΦM

(
Y

)
‖C‖‖w(t)‖2

+ΦM
(
X
)
‖B‖‖S ‖

[
‖v(t)‖2 + sup

t−σ1≤θ≤t
‖w(θ)‖2

]
+ΦM

(
Y

)
‖D‖

[
sup

t−σ2≤θ≤t
‖v(θ)‖2 + ‖w(t)‖2

]
. (3.15)

For any function v(t) and w(t) that hold the following Razumikhin criteria, see Ref [27, 32]

H
(
v(θ),w(θ)

)
≤ H

(
v(t),w(t)

)
, t − τ ≤ θ ≤ t,

we get

Φm
(
X
)
‖v(θ)‖2 + Φm

(
Y

)
‖w(θ)‖2 ≤ vT (θ)Xv(θ) + wT (θ)Yw(θ)

≤ vT (t)Xv(t) + wT (t)Yw(t)
≤ ΦM

(
X
)
‖v(t)‖2 + ΦM

(
Y

)
‖w(t)‖2,

and hence

‖v(θ)‖2 ≤
ΦM

(
X
)
‖v(t)‖2 + ΦM

(
Y

)
‖w(t)‖2

Φm
(
X
) (3.16)

‖w(θ)‖2 ≤
ΦM

(
X
)
‖v(t)‖2 + ΦM

(
Y

)
‖w(t)‖2

Φm
(
Y

) (3.17)

for t − τ ≤ θ ≤ t. From (3.15)-(3.17), one can obtain

C
0 Dλ

t H
(
v(t),w(t)

)
≤ −2ΦM

(
X
)
‖A‖‖v(t)‖2 − 2ΦM

(
Y

)
‖C‖‖w(t)‖2

+ΦM
(
X
)
‖B‖‖S ‖

[
‖v(t)‖2 +

ΦM
(
X
)
‖v(t)‖2 + ΦM

(
Y

)
‖w(t)‖2

Φm
(
Y

) ]
+ΦM

(
Y

)
‖D‖

[
ΦM

(
X
)
‖v(t)‖2 + ΦM

(
Y

)
‖w(t)‖2

Φm
(
X
) + ‖w(t)‖2

]
≤ ΦM

(
X
)(
− 2‖A‖ + ‖B‖‖S ‖

ΦM
(
X
)

+ Φm
(
Y

)
Φm

(
Y

) +
ΦM

(
Y

)
Φm

(
X
) ‖D‖)

×‖v(t)‖2 + ΦM
(
Y

)(
− 2‖C‖ + ‖D‖

Φm
(
X
)

+ ΦM
(
Y

)
Φm

(
X
)

+
ΦM

(
X
)

Φm
(
Y

) ‖B‖‖S ‖)‖w(t)‖2
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≤ −γ1‖v(t)‖2 − γ2‖w(t)‖2

≤ −γm
(
‖v(t)‖2 + ‖w(t)‖2

)
(3.18)

where γm = min{γ1, γ2}. According to inequality (3.14), we get

C
0 Dλ

t H
(
v(t),w(t)

)
≤ −

γm

δM

(
‖v(t)‖2 + ‖w(t)‖2

)
(3.19)

where δM = max{ΦM
(
X
)
,ΦM

(
Y

)
}. According to inequality (3.19) and based on Lemma 2.5, we have

H
(
v(t),w(t)

)
≤ sup

−τ≤θ≤0

{
H

(
ω(θ) − g?, $(θ) − h?

)}
×Eλ,1

(
−
γm

δM

(
t − t0

)λ)
∀ t ∈ [t0,+∞).

Then, by using inequality (3.14), we get

δm
(
‖v(t)‖2 + ‖w(t)‖2

)
≤ H

(
v(t),w(t)

)
≤ sup

−τ≤θ≤0

{
H

(
ω(θ) − g?, $(θ) − h?

)}
Eλ,1

(
−
γm

δM

(
t − t0

)λ)
≤ δM

[ m∑
p=1

sup
−σ2≤θ≤0

(
ωp(θ) − g?p

)2
+

m∑
p=1

sup
−σ1≤θ≤0

(
$p(θ) − h?p

)2
]

×Eλ,1

(
−
γm

δM

(
t − t0

)λ)
where δm = min{Φm

(
X
)
,Φm

(
Y

)
}. Let

N
(
ω − g?, $ − h?

)
=

δM

δm

[ m∑
p=1

sup
−σ2≤θ≤0

(
ωp(θ) − g?p

)2
+

m∑
p=1

sup
−σ1≤θ≤0

(
$p(θ) − h?p

)2
]
,

then

‖v(t)‖2 + ‖w(t)‖2 ≤ N
(
ω − g?, $ − h?

)
Eλ,1

(
−
γm

δM

(
t − t0

)λ)
∀ t ≥ t0,

where N ≥ 0 and N = 0 satisfy only if ω(θ) = g? for −σ2 ≤ θ ≤ 0 and $(θ) = h? for −σ1 ≤ θ ≤ 0,
respectively. Therefore, based on Definition 3.2, the existence of equilibrium point

(
g?, h?

)
of

FODGRNs (2.1) is globally Mittag-Leffler stable, and the proof of Theorem 3.5 is ended.

If σ1 = σ2 = 0, then system (2.1) becomes the following form:C
0 Dλ

t gp(t) = −apgp(t) +
∑m

q=1 bpq fq
(
hq(t)

)
+ Fp,

C
0 Dλ

t hp(t) = −cphp(t) + dpgp(t), p = 1, 2..,m.
(3.20)

Corollary 3.6 Under Assumption 1, the existence of equilibrium point
(
g?, h?

)
of (3.20) is globally

Mittag-Leffler stable if there exist two positive diagonal matrices X ∈ Rm×m and Y ∈ Rm×m such that

ΦM
(
X
)(
− 2‖A‖ + ‖B‖‖S ‖ +

ΦM
(
Y

)
ΦM

(
X
) ‖D‖) < 0

ΦM
(
Y

)(
− 2‖C‖ + ‖D‖ +

ΦM
(
X
)

ΦM
(
Y

)‖B‖‖S ‖) < 0.
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Remark 3.7 This study is a first attempt on the global Mittag-Leffler stability criterion FODGRNs.
This analysis takes into account for feedback regulation time delay σ1 and translation time delay σ2.
The main difficulties of this study is how to deal with time-delay terms. To overcome this difficulty, we
adopt Razumikhin condition. In [25,28], many sufficient criteria guaranteeing the global Mittag-Leffler
stability of FODGRNs are obtained in terms of algebraic inequalities. Compared with other researches
by employing algebraic inequalities method to obtain the global Mittag-Leffler stability criteria in
[25,28], our results, in terms of norm matrices, are very easy to verified with help of MATLAB toolbox
in practice.

4. Synchronization criteria

FODGRNs (2.1) acts as the master system and the slave system isC
0 Dλ

t up(t) = −apup(t) +
∑m

q=1 bpq fq
(
zq(t − σ1)

)
+ Fp + xp(t),

C
0 Dλ

t zp(t) = −cpzp(t) + dpup(t − σ2) + yp(t),
(4.1)

where p = 1, 2, ..,m, up(t) ∈ Rm and vp(t) ∈ Rm indicate the concentrations of mRNA and protein of
p-node at time t, respectively. xp(t) and yp(t) are suitable controller and all others are same as one of
system (2.1). The initial values of FODGRNs (4.1) can be described as:

up(t) = ω̃p(t), zp(t) = $̃p(t), t ∈ [−τ = max{σ1, σ2}, 0],

where ω̃p(t), $̃p(t) ∈ C
(
[−τ, 0],Rm)

and its norm is defined by

‖$̃‖ =

m∑
p=1

sup
−σ1≤θ≤0

{∣∣∣$̃p(θ)
∣∣∣}, ‖ω̃‖ =

m∑
p=1

sup
−σ2≤θ≤0

{∣∣∣ω̃p(θ)
∣∣∣}.

Two types control like linear feedback control and adaptive feedback control, respectively, are designed
as follows: xp(t) = −kp

(
up(t) − gp(t)

)
yp(t) = −lp

(
zp(t) − hp(t)

) (4.2)

and xp(t) = −ξp(t)
(
up(t) − gp(t)

)
yp(t) = −ηp(t)

(
zp(t) − hp(t)

) (4.3)

with adaptive rule C
0 Dλ

t ξp(t) = k̃p

∣∣∣up(t) − gp(t)
∣∣∣2

C
0 Dλ

t ηp(t) = l̃p

∣∣∣zp(t) − hp(t)
∣∣∣2

for p = 1, 2, ..,m, kp > 0, lp > 0, k̃p > 0, l̃p > 0 are suitable constants, ξp(t) and ηp(t) are adaptive
coupling weights.
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Let vp(t) = up(t) − gp(t) and wp(t) = zp(t) − hp(t), then based on (2.1) and (4.1), the synchronization
error system is described byC

0 Dλ
t vp(t) = −apvp(t) +

∑m
q=1 bpq f̃q

(
wq(t − σ1)

)
+ xp(t),

C
0 Dλ

t wp(t) = −cpwp(t) + dpvp(t − σ2) + yp(t),
(4.4)

where p = 1, 2, ..,m and f̃q
(
wq(t − σ1)

)
= fq

(
zq(t − σ1)

)
− fq

(
hq(t − σ1)

)
.

In the development of synchronization criteria, the following Definition’s are significant.

Definition 4.1 Master-slave FODGRNs systems (2.1) and (4.1) are said to realize global
Mittag-Leffler synchronization under linear feedback control (4.2), if there exists two positive
constants ζ1 > 0 and ζ2 > 0 such that for any solution

(
u(t) − g(t), z(t) − h(t)

)
of FODGRNs systems

(2.1) and (4.1) with initial conditions
(
ω̃(t) − ω(t), $̃(t) −$(t)

)
such that∑m

p=1

(
up(t) − gp(t)

)2
+

∑m
p=1

(
zp(t) − hp(t)

)2

≤
{
N

(
ω̃(t) − ω(t), $̃(t) −$(t)

)
Eλ,1

(
ζ1(t − t0)λ

)}ζ2

for t ≥ t0, where t0 is starting time,N
(
0, 0

)
= 0,N

(
ω̃−ω, $̃−$

)
≥ 0, andN

(
ω̃−ω, $̃−$

)
refers to

locally Lipschitz with respect to $̃,$ ∈ C
(
[−σ1, 0],Rm)

and ω̃, ω ∈ C
(
[−σ2, 0],Rm)

.

Definition 4.2 Master-slave FODGRNs systems (2.1) and (4.1) are said to realize global asymptotical
synchronization under adaptive feedback control (4.3), if

lim
t→+∞

m∑
p=1

(
up(t) − gp(t)

)2
+ lim

t→+∞

m∑
p=1

(
zp(t) − hp(t)

)2
= 0.

Remark 4.3 Global synchronization in the sense of Mittag-Leffler leads to global asymptotic
synchronization.

Theorem 4.4 Under Assumption 1, master-slave FODGRNs systems (2.1) and (4.1) realize globally
Mittag-Leffler synchronization under linear feedback control (4.2) if there exist two positive diagonal
matrices X ∈ Rm×m and Y ∈ Rm×m such that

ΦM
(
X
)(
− 2‖A‖ − 2‖K‖ + ‖B‖‖S ‖

ΦM
(
X
)

+ Φm
(
Y

)
Φm

(
Y

) +
ΦM

(
Y

)
Φm

(
X
) ‖D‖) < 0,

ΦM
(
Y

)(
− 2‖C‖ − 2‖L‖ + ‖D‖

Φm
(
X
)

+ ΦM
(
Y

)
Φm

(
X
) +

ΦM
(
X
)

Φm
(
Y

) ‖B‖‖S ‖) < 0,

where S = diag{β1, ..., βm}, K = diag{k1, ..., km} and L = diag{l1, ..., lm}.

Proof. The proof of Theorem 4.4 is similar to the proof Theorem 3.5. Hence the proof of the above
Theorem 4.4 is skipped.
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Corollary 4.5 Under Assumption 1, master-slave FODGRNs systems (2.1) and (4.1) with σ1 = σ2 =

0 realize globally Mittag-Leffler synchronization under linear feedback control (4.2) if there exist two
positive diagonal matrices X ∈ Rm×m and Y ∈ Rm×m such that

ΦM
(
X
)(
− 2‖A‖ − 2‖K‖ + ‖B‖‖S ‖ +

ΦM
(
Y

)
ΦM

(
X
) ‖D‖) < 0

ΦM
(
Y

)(
− 2‖C‖ − 2‖L‖ + ‖D‖ +

ΦM
(
X
)

ΦM
(
Y

)‖B‖‖S ‖) < 0.

Theorem 4.6 Under Assumption 1, master-slave FODGRNs systems (2.1) and (4.1) realize global
asymptotic synchronization under adaptive feedback control (4.3) if there exist positive diagonal
matrices X > 0, Y > 0, R1 > 0 and R2 > 0 such that the following LMIs are holds:

(i). There exist two constants ζ1 > 0 and ζ2 > 0 such that[
−2XA − 2XK̃ + ζ1X XB

z −R1

]
< 0,

[
−2YC − 2YL̃ + ζ2Y Y

z −R2

]
< 0.

(ii). There exist two constants ζ3 > 0 and ζ4 > 0 such that

R1S 2 − ζ3Y < 0, R2D2 − ζ4X < 0.

(iii). For some ς > 1 and % > 1 such that

Ω > ςζ3 + %ζ4,

where Ω = min{ζ1, ζ2}, S = diag{β1, ..., βm}, X = diag{x1, ..., xm}, Y = diag{y1, ..., ym},
K̃ = diag{k̃?1 , ..., k̃

?
m} and L̃ = diag{l̃?1 , ..., l̃

?
m}.

Proof. Consider the following subsequent Lyapunov-Razumikhin functional:

H
(
v(t),w(t)

)
=

∣∣∣v(t)
∣∣∣TX∣∣∣v(t)

∣∣∣ +
∣∣∣w(t)

∣∣∣TY∣∣∣w(t)
∣∣∣︸                                ︷︷                                ︸

H1

(
v(t),w(t)

)
+

m∑
p=1

xp

k̃p

[
ξp(t) − k̃?p

]2
+

m∑
p=1

yp

l̃p

[
ηp(t) − l̃?p

]2

︸                                               ︷︷                                               ︸
H2

(
v(t),w(t)

)
(4.5)

where k̃?p and l̃?p holds the LMI of condition (i) in Theorem 4.6. Based on Lemma 2.3, Lemma 2.6,
Lemma 2.9 and Assumption 1, we obtain

C
0 Dλ

t H
(
v(t),w(t)

)
≤ 2

∣∣∣v(t)
∣∣∣TX C

0 Dλ
t

∣∣∣v(t)
∣∣∣ + 2

∣∣∣w(t)
∣∣∣TY C

0 Dλ
t

∣∣∣w(t)
∣∣∣
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+

m∑
p=1

2xp

k̃p

[
ξp(t) − k̃?p

]
C
0 Dλ

t ξp(t) +

m∑
p=1

2yp

l̃p

[
ηp(t) − l̃?p

]
C
0 Dλ

t ηp(t)

≤ 2
m∑

p=1

xp|vp(t)| C
0 Dλ

t |vp(t)| + 2
m∑

p=1

yp|wp(t)| C
0 Dλ

t |wp(t)|

+

m∑
p=1

2xp

k̃p

[
ξp(t) − k̃?p

]
{k̃p

∣∣∣vp(t)
∣∣∣2} + m∑

p=1

2yp

l̃p

[
ηp(t) − l̃?p

]
{l̃p

∣∣∣wp(t)
∣∣∣2}

≤ 2
m∑

p=1

xp|vp(t)|sign
{
− apvp(t) +

m∑
q=1

bpq f̃q
(
wq(t − σ1)

)
− ξp(t)vp(t)

}

+2
m∑

p=1

yp|wp(t)|sign
{
− cpwp(t) + dpvp(t − σ2) − ηp(t)wp(t)

}

+2
m∑

p=1

xp

[
ξp(t) − k̃?p

]∣∣∣vp(t)
∣∣∣2 + 2

m∑
p=1

yp

[
ηp(t) − l̃?p

]∣∣∣wp(t)
∣∣∣2

≤ −2
m∑

p=1

|vp(t)|
(
xp

(
ap + k?p

))
|vp(t)| − 2

m∑
p=1

|wp(t)|
(
yp

(
cp + l?p

))
|wp(t)|

+2
m∑

p=1

m∑
q=1

|vp(t)|xp

∣∣∣bpq

∣∣∣βq

∣∣∣wq(t − σ1)
∣∣∣ + 2

m∑
p=1

|wp(t)|ypdp

∣∣∣vp(t − σ2)
∣∣∣

= −2
∣∣∣v(t)

∣∣∣TX(
A + K̃

)∣∣∣v(t)
∣∣∣ − 2

∣∣∣w(t)
∣∣∣TY(

C + L̃
)∣∣∣w(t)

∣∣∣
+2

∣∣∣v(t)
∣∣∣TXBS

∣∣∣w(t − σ1)
∣∣∣ + 2

∣∣∣w(t)
∣∣∣TYD

∣∣∣v(t − σ2)
∣∣∣

≤ −2
∣∣∣v(t)

∣∣∣TX(
A + K̃

)∣∣∣v(t)
∣∣∣ − 2

∣∣∣w(t)
∣∣∣TY(

C + L̃
)∣∣∣w(t)

∣∣∣
+
∣∣∣v(t)

∣∣∣TXBR−1
1 BTXT

∣∣∣v(t)
∣∣∣ +

∣∣∣w(t − σ1)
∣∣∣TR1S 2

∣∣∣w(t − σ1)
∣∣∣

+
∣∣∣w(t)

∣∣∣TYR−1
2 Y

T
∣∣∣w(t)

∣∣∣ +
∣∣∣v(t − σ2)

∣∣∣TR2D2
∣∣∣v(t − σ2)

∣∣∣
=

∣∣∣v(t)
∣∣∣T [ − 2XA − 2XK̃ + XBR−1

1 BTXT + ζ1X

]∣∣∣v(t)
∣∣∣

+
∣∣∣w(t)

∣∣∣T [ − 2YC − 2YL̃ +YR−1
2 Y

T + ζ2Y

]∣∣∣w(t)
∣∣∣

−ζ1

∣∣∣v(t)
∣∣∣TX∣∣∣v(t)

∣∣∣ +
∣∣∣w(t − σ1)

∣∣∣T [R1S 2 − ζ3Y
]∣∣∣w(t − σ1)

∣∣∣
−ζ2

∣∣∣w(t)
∣∣∣TY∣∣∣w(t)

∣∣∣ +
∣∣∣v(t − σ2)

∣∣∣T [R2D2 − ζ4X
]∣∣∣v(t − σ2)

∣∣∣
+ζ3

∣∣∣w(t − σ1)
∣∣∣TY∣∣∣w(t − σ1)

∣∣∣ + ζ4

∣∣∣v(t − σ2)
∣∣∣TX∣∣∣v(t − σ2)

∣∣∣ (4.6)

Combined with condition (i) and (ii) from Theorem 4.6 of (4.6) and Razumikhin theorem for fractional
systems, see Ref [4] that

C
0 Dλ

t H
(
v(t),w(t)

)
≤ −ΩH1

(
v(t),w(t)

)
+ ζ3H1

(
v(t − σ1),w(t − σ1)

)
+ζ4H1

(
v(t − σ2),w(t − σ2)

)
≤ −

[
Ω − ζζ3 − ρζ3

]
H1

(
v(t),w(t)

)
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= −γ H1
(
v(t),w(t)

)
, (4.7)

where γ = Ω − ζζ3 − ρζ3 > 0. Taking integer order integration of (4.7) on both sides, we have

−γ

∫ t

t0
H1

(
v(θ),w(θ)

)
dθ ≥

∫ t

t0

C
0 Dλ

θ H
(
v(`),w(`)

)
d` dθ

=
1

Γ
(
1 − λ

) ∫ t

t0

∫ θ

t0

(
θ − `

)−λH
′(

v(`),w(`)
)
d` dθ

=
1

Γ
(
1 − λ

) ∫ t

t0

∫ t

`

(
θ − `

)−λH
′(

v(`),w(`)
)
dθ d`

=
1

Γ
(
2 − λ

) ∫ t

t0

(
t − `

)1−λH
′(

v(`),w(`)
)
d`

=
1

Γ
(
1 − λ

) ∫ t

t0

(
t − `

)−λH
(
v(`),w(`)

)
d`

−
1

Γ
(
2 − λ

)(t − t0
)1−λH

(
v(t0),w(t0)

)
≥ −

1
Γ
(
2 − λ

)(t − t0
)1−λH

(
v(t0),w(t0)

)
which leads to ∫ t

t0
H1

(
v(θ),w(θ)

)
dθ ≤

H
(
v(t0),w(t0)

)
γΓ

(
2 − λ

) (
t − t0

)1−λ
. (4.8)

Noting that

δm
(
‖v(t)‖2 + ‖w(t)‖2

)
≤ H1

(
v(t),w(t)

)
≤ δM

(
‖v(t)‖2 + ‖w(t)‖2

)
, (4.9)

where δm = min
{
Φm

(
X
)
, Φm

(
Y

)}
and δM = max

{
ΦM

(
X
)
, ΦM

(
Y

)}
. From (4.8) and (4.9), we sustain∫ t

t0

(
‖v(θ)‖2 + ‖w(θ)‖2

)
dθ ≤

H
(
v(t0),w(t0)

)
δmγΓ

(
2 − λ

) (
t − t0

)1−λ

hence

lim
t→+∞

∫ t

t0

(
‖v(θ)‖2 + ‖w(θ)‖2

)
dθ(

t − t0
)1−λ ≤

H
(
v(t0),w(t0)

)
δmγΓ

(
2 − λ

) .
If limt→+∞

∫ t

t0

(
‖v(θ)‖2 + ‖w(θ)‖2

)
dθ < +∞, then

lim
t→+∞

(
‖v(t)‖2 + ‖w(t)‖2

)
= 0,

where Lemma 2.8 has been used.

If limt→+∞

∫ t

t0

(
‖v(θ)‖2 + ‖w(θ)‖2

)
dθ = +∞, then by using well known L’Hospital rule, we get

lim
t→+∞

(t − t0)λ
(
‖v(t)‖2 + ‖w(t)‖2

)
≤

H
(
v(t0),w(t0)

)
δmγΓ

(
2 − λ

) . (4.10)
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Based on Lemma 2.4, we take the fractional integral of both sides of (4.7) from t0 to t, one can get

H
(
v(t),w(t)

)
≤ H

(
v(t0),w(t0)

)
−

Ω

Γ(λ)

∫ t

t0

(
t − θ

)λ−1H1
(
v(θ),w(θ)

)
dθ. (4.11)

Combined with (4.5) and (4.11), we establish

δm
(
‖v(t)‖2 + ‖w(t)‖2

)
≤ H1

(
v(t),w(t)

)
≤ H

(
v(t),w(t)

)
≤ H

(
v(t0),w(t0)

)
,

which proves that
(
‖v(t)‖2 + ‖w(t)‖2

)
must be bounded, then it follows from (4.10), there exist a T > 0

such that (
‖v(t)‖2 + ‖w(t)‖2

)
≤

H
(
v(t0),w(t0)

)
δmγΓ

(
2 − λ

)
(t − t0)λ

, ∀ t ≥ T , (4.12)

which means that

lim
t→+∞

(
‖v(t)‖2 + ‖w(t)‖2

)
= 0.

Therefore, master-slave FODGRNs systems (2.1) and (4.1) can realize global asymptotic
synchronization under adaptive feedback control (4.3) and the proof of Theorem 4.6 is ended.

Corollary 4.7 Under Assumption 1, master-slave FODGRNs systems (2.1) and (4.1) with
σ1 = σ2 = 0 realize global asymptotic synchronization under adaptive feedback control (4.3) if there
exist positive diagonal matrices X > 0, Y > 0, R1 > 0 and R2 > 0 such that the following LMIs are
holds:

(i). There exist two constants ζ1 > 0 and ζ2 > 0 such that[
−2XA − 2XK̃ + R2D2 + ζ1X XB

z −R1

]
< 0,

[
−2YC − 2YL̃ + R1S 2 + ζ2Y Y

z −R2

]
< 0,

where X, Y, K̃ and L̃ are already defined in Theorem 4.6.

Remark 4.8 For time delayed GRNs, there are many findings regarding stability and synchronization
criteria, see Ref [10, 20, 26, 30, 33]. Yet these results are discussed mainly in the case of integer-order.
Consequently, the stability and synchronization of FODGRNs via 2-norm method properties are not
studied by anyone. Therefore our research work, in the sense of innovation, is completely distinct from
previous ones.

Remark 4.9 When λ = 1, the FODGRNs model (2.1) reduces into global exponential stability and
synchronization for integer-order time-delayed gene regulatory networks.
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Remark 4.10 In Theorem 3.5, Theorem 4.4, and Theorem 4.6, the sufficient condition ensuring
global stability in sense of Mittag-Leffler, global synchronization in sense of Mittag-Leffler, and
adaptive synchronization for Caputo sense FODGRNs are derived in form of LMIs. These results can
be easily checked with the MATLAB LMI Control Toolbox.

5. Numerical examples

This section, providing three numerical simulations to verify the superiority and benefits of the
presented main results.

Example 5.1 Consider a class of three dimensional FODGRNs:

C
0 Dλ

t gp(t) = −apgp(t) +
∑3

q=1 bpq fq
(
hq(t − σ1)

)
+ Fp,

C
0 Dλ

t hp(t) = −cphp(t) + dpgp(t − σ2), p = 1, 2, 3,
(5.1)

where λ = 0.98, g(t) =
(
g1(t), g2(t), g3(t)

)T , h(t) =
(
h1(t), h2(t), h3(t)

)T , a1 = a2 = a3 = 6, c1 = c2 =

c3 = 5, d1 = d2 = d3 = 1.5, σ1 = σ2 = 0.6, fq(hq(t)) =
h2

q(t)

1+h2
q(t) , F1 = F2 = F3 = 1.5, and

B =
(
bpq

)
3×3 =


1.4 −0.8 1.6
−0.7 0.65 1.2

2 −1.5 −0.5

 .
From Assumption 1, we have β1 = β2 = β3 = 0.3. Choose α1 = α1 = α3 = 1. According to the

conditions of Theorem 3.3, it is easy to obtain ξ1 = 37.63, ξ2 = 38.35 and ξ3 = 37.69. Then, let us
take X = diag{2, 2, 2} and Y = diag{1.5, 1.5, 1.5}. Based on the conditions of Theorem 3.5, we have

ΦM
(
X
)(
− 2‖A‖ + ‖B‖‖S ‖

ΦM
(
X
)

+ Φm
(
Y

)
Φm

(
Y

) +
ΦM

(
Y

)
Φm

(
X
) ‖D‖) = −17.3844 < 0

ΦM
(
Y

)(
− 2‖C‖ + ‖D‖

Φm
(
X
)

+ ΦM
(
Y

)
Φm

(
X
) +

ΦM
(
X
)

Φm
(
Y

) ‖B‖‖S ‖) = −8.0625 < 0.

Thus, all conditions of Theorem 3.3 and Theorem 3.5 holds. Therefore, the existence of the
equilibrium point of FODGRNs (5.1) is globally Mittag-Leffler stable. Furthermore, the simulation
results for FODGRNs (5.1) narrates in Figures 1 and 2 under that initial values
ω(t) =

(
− 0.65, 0.3, 1.3

)T , $(t) =
(
0.25, 0.8, 1.5

)T . The state trajectories for concerned FODGRNs
(5.1) are displayed in Figure 1. Figure 2 indicates the state norm trajectories for the concerned system
(5.1).
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Figure 1. State trajectories g(t) and h(t) of FODGRNs (5.1) in Example 5.1.
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Figure 2. State norm trajectories g(t) and h(t) of FODGRNs (5.1) in Example 5.1.

where λ = 0.99, g(t) =
(
g1(t), g2(t), g3(t)

)T , h(t) =
(
h1(t), h2(t), h3(t)

)T , a1 = a2 = a3 = 1, c1 = c2 =

c3 = 2.5, d1 = d2 = d3 = 3, σ1 = σ2 = 0.4, fq(hq(t)) =
h2

q(t)

1+h2
q(t) , F1 = F2 = F3 = 0, and

B =
(
bpq

)
3×3


−2.5 3.2 1.5
1.3 1.6 −2.5
−2.4 1.6 −1.8

 .
The three-dimensional slave system is given as:C

0 Dλ
t up(t) = −apup(t) +

∑3
q=1 bpq fq

(
zq(t − σ1)

)
+ Fp + xp(t),

C
0 Dλ

t zp(t) = −cpzp(t) + dpup(t − σ2) + yp(t), p = 1, 2, 3
(5.2)

where λ = 0.99, xp(t) and yp(t) are linear feedback control, and others are same as FODGRNs (5.3).
The initial conditions are chosen as: ω(t) =

(
1.7,−1.3, 2.5

)T , $(t) =
(
− 2,−1.4,−1.9

)T , ω̃(t) =(
− 2,−1.6,−1.7

)T and $̃(t) =
(
1.4, 2.5, 2

)T . When the controllers are not applied, the state trajectories
of FODGRNs (5.3) and FODGRNs (5.2) are shown in Figure 3. In Figure 4 depicts the synchronization
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error trajectories of FODGRNs (5.3) and FODGRNs (5.2), without applying any control inputs. The
chaotic behavior of FODGRNs (5.3) and FODGRNs (5.2), without using controller are shown in Figure
5.
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Figure 3. State trajectories of the FODGRNs (5.3) and (5.2) without control in Example 5.2.

Example 5.2 Consider a class of three-dimensional FODGRNs:C
0 Dλ

t gp(t) = −apgp(t) +
∑3

q=1 bpq fq
(
hq(t − σ1)

)
+ Fp,

C
0 Dλ

t hp(t) = −cphp(t) + dpgp(t − σ2), p = 1, 2, 3,
(5.3)
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Figure 4. Time responses of the synchronization error without control inputs in Example
5.2.
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Figure 5. The phase trajectories of master system (5.3) and slave system (5.2) without control
inputs in Example 5.2.

One simply to verify that Assumption 1 holds with β1 = β2 = β3 = 0.75. By Theorem 4.4, we select
X = diag{1.75, 1.75, 1.75} and Y = diag{2, 2, 2}. If we choose the control gains of linear feedback
controller (4.2) as: k1 = k2 = k3 = 14 and l1 = l2 = l3 = 12. Based on the above parameters, it is
simply to get

ΦM
(
X
)(
− 2‖A‖ − 2‖K‖ + ‖B‖‖S ‖

ΦM
(
X
)

+ Φm
(
Y

)
Φm

(
Y

) +
ΦM

(
Y

)
Φm

(
X
) ‖D‖) = −34.37 < 0,

ΦM
(
Y

)(
− 2‖C‖ − 2‖L‖ + ‖D‖

Φm
(
X
)

+ ΦM
(
Y

)
Φm

(
X
) +

ΦM
(
X
)

Φm
(
Y

) ‖B‖‖S ‖) = −40.75 < 0.

Hence, all the conditions of Theorem 4.4 hold. Therefore, the master system FODGRNs (5.3)
synchronizes with the slave system FODGRNs (5.2) under linear feedback control.

When the linear feedback controllers are applied to the slave system, the state trajectories of
FODGRNs (5.3) and FODGRNs (5.2) are exhibits in Figure 6. Figure 7 depicts the synchronization
error trajectories of FODGRNs (5.3) and FODGRNs (5.2). The chaotic behavior of FODGRNs (5.3)
and FODGRNs (5.2) with control inputs are shown in Figure 8. Synchronization error norm of
FODGRNs (5.3) and FODGRNs (5.2) are displayed in Figure 9.
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Figure 6. The phase trajectories of master system (5.3) and slave system (5.2) with control
inputs in Example 5.2.
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Figure 7. The synchronization error norms with control inputs in Example 5.2.
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Figure 8. State trajectories of the FODGRNs (5.3) and (5.2) with control in Example 5.2.
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Figure 9. Time responses of the synchronization error with control inputs in Example 5.2.
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Example 5.3 Consider a class of two dimensional FODGRNs:C
0 Dλ

t gp(t) = −apgp(t) +
∑2

q=1 bpq fq
(
hq(t − σ1)

)
+ Fp,

C
0 Dλ

t hp(t) = −cphp(t) + dpgp(t − σ2), p = 1, 2,
(5.4)

where λ = 0.98, g(t) =
(
g1(t), g2(t)

)T , h(t) =
(
h1(t), h2(t)

)T , a1 = a2 = 2, c1 = c2 = 2.5, d1 = d2 = 2.5,

σ1 = σ2 = 0.9, fq(hq(t)) =
h2

q(t)

1+h2
q(t) , F1 = F2 = 2.4, and

B =
(
bpq

)
2×2 =

[
−3.5 2.2
−2.3 −3.6

]
.

The two-dimensional slave system is given as:C
0 Dλ

t up(t) = −apup(t) +
∑2

q=1 bpq fq
(
zq(t − σ1)

)
+ Fp + xp(t),

C
0 Dλ

t zp(t) = −cpzp(t) + dpup(t − σ2) + yp(t), p = 1, 2,
(5.5)

where λ = 0.98, xp(t) and yp(t) are adaptive feedback control, the initial values are selected as: ω(t) =(
1.8,−1.22

)T , $(t) =
(
− 1.14, 1.6

)T , ω̃(t) =
(
− 1.1, 1.6

)T and $̃(t) =
(
1.2,−2

)T , and others are same
as FODGRNs (5.4).

When the control inputs are not applied in FODGRNs (5.5), the state trajectories of (5.3) and (5.2)
are shown in Figure 10. In Figure 11 depicts the time evolution of synchronization error, without using
control inputs. The phase plot of FODGRNs (5.4) and FODGRNs (5.5), without using the controller
is depicted in Figure 12. In Figures 10–12 demonstrate that FODGRNs (5.4) and FODGRNs (5.5) did
not achieve synchronization if the control inputs are not applied.
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Figure 10. State trajectories of the FODGRNs (5.4) and (5.5) without control in Example
5.3.
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Figure 11. Time responses of the synchronization error without control inputs in Example
5.3.
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Figure 12. The change processes of zl1(t), zl2(t) and ‖ml(t)‖2, l = 1, 2..., 6.

Through simple computation, we have β1 = β2 = 0.1. If the adaptive feedback controller xp(t)
and yp(t) in (4.3) is designed as, select k̃1 = k̃2 = 0.8, k̃1 = k̃2 = 0.5, ξ1(0) = ξ2(0) = 0.05 and
η1(0) = η2(0) = 0.08. Let ζ1 = 3.5, ζ2 = 2.8, ζ3 = 0.5, ζ4 = 0.4, k?1 = k?2 = l?1 = l?2 = 0.9. Then it is
clear to find that the given LMIs (i) and (ii) of Theorem 4.6 is feasible, and these solutions are given as
below:

X =

[
0.769 0

0 0.796

]
, Y =

[
0.1875 0

0 0.1937

]
,

R1 =

[
4.5662 0

0 4.7104

]
, R2 =

[
0.0232 0

0 0.0241

]
.
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Therefore, all conditions of Theorem 4.6 are holds, which indicates that master-slave FODGRNs
systems (5.4) and (5.5) realize global asymptotic synchronization under adaptive feedback control
(4.3). The time responses of states (5.3) and (5.2) with control inputs are displayed in Figure 13. The
time evolution of synchronization errors with control inputs is illustrated in Figure14. The phase plot
of FODGRNs (5.4) and FODGRNs (5.5) with control inputs are shown in Figure 15. Synchronization
error norm of (5.3) and (5.2) with control inputs are presented in Figure 16. The adaptive control
strengths are demonstrated in Figure 17, which it tends to some positive constants.
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Figure 13. State trajectories of the FODGRNs (5.4) and (5.5) with control.
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Figure 14. Time responses of the synchronization error with control inputs in Example 5.3.
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Figure 15. The change processes of zl1(t), zl2(t) and ‖ml(t)‖2, l = 1, 2..., 6.
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Figure 16. The synchronization error norms with control inputs.
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Figure 17. The change processes of zl1(t), zl2(t) and ‖ml(t)‖2, l = 1, 2..., 6.
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Remark 5.4 As we can see that the linear feedback controller (4.2) is simpler than the adaptive
feedback controller (4.3), but the control strengths of the adaptive feedback controller (4.3) is smaller
than those of linear feedback controller (4.2). Adaptive synchronization is superior to the
synchronization in general.

6. Conclusions

In this manuscript, the stability and synchronization for fractional-order gene regulatory networks
wit time-delay effects has been investigated in brief. Under some inequality techniques, Razumikhin
approach and fractional order Lyapunov method, the globally Mittag-Leffler stability of proposed
FODGRNs is proved. Moreover, the suitable controllers were designed to ensure the several
synchronization for addressing FODGRNs in terms of LMIs. Further, three numerical simulations are
provided. Our future research work will be generalized to state estimator design for fuzzy non-integer
order gene regulatory networks with time delays and impulsive effects.
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